ABSTRACT
A spatial similarity join of two geospatial datasets finds pairs of records that are simultaneously similar on spatial and textual attributes. Such join is useful for a variety of applications, like data cleansing, record linkage, duplications detection and geocoding enhancement. Efficient techniques exist for the individual joins on either spatial or textual attributes. However, the combined problem has received much less research attention. This paper presents the SpSJoin (Spatial Similarity join) system to fill in this gap. SpSJoin is a platform that merges geospatial and text processing techniques for efficiently performing spatial similarity joins. The platform leverages parallel computing with MapReduce to tackle scalability issues in joining large datasets. The efficiency of the proposed techniques are experimentally validated with a join case for improving the geolocation of entities in a real geospatial dataset with referential entities of another dataset.

1. INTRODUCTION
In modern geographical databases, records contain textual and spatial attributes to describe characteristics and location of real-world entities. When the location of the records has low precision, e.g., geolocated at the center of the city, their location may be enhanced by finding their most similar records in another database, known to have high location precision. For instance, Figure 1 shows sample records of Physicians database, geolocated at city center level precision and Yellow Pages database with high geolocation precision. Intuitively, the most similar object of physician “John F. Smith MD” is “John Smith MD” in Yellow Pages, since both names are very similar and geographically closer. Therefore, finding the most similar pairs between two geographical databases requires a composite join operation that considers both types of attributes, textual and spatial.

Such type of join, namely Spatial Similarity join, has received much less attention in the research community than individual joins on either textual or spatial attributes. In the textual case, the degree of resemblance in a similarity join [1] [7] is measured by a similarity function, e.g. Jaccard coefficient or Levenshtein distance, and pairs that satisfy a user-defined similarity threshold are included in the output. Recently, parallel processing with MapReduce, a parallel programming model proposed by Google [3], has been explored to tackle the scalability problem of this type of joins [6]. In the spatial case, a spatial join [4] between two geographical datasets matches records based on their spatial attributes. The spatial relation may be expressed in several ways, e.g. distance threshold or polygon overlap.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

ACM SIGSPATIAL GIS ’11, November 1-4, 2011, Chicago, IL, USA

Figure 1: Best match for physician “John F. Smith”.

Direct application of either spatial join or similarity join techniques to solve the spatial similarity join problem has the disadvantage of potentially generating lots of pairs that do not satisfy the composite constraint; for example, in Figure 1 several similar physician names and yellow page contact persons may be located far away from each other, e.g. “John F. Kennedy” in New York, but we are interested only in the geographically nearest pair. Also, when a threshold is predefined for either similarity or spatial joins, some records may not find their most similar pair when they do not satisfy the threshold. It is then up to the user to define an appropriate distance or similarity threshold even when there is no knowledge of the precision and quality of the data. In addition, as geolocation data is rapidly increasing in databases, scalability in processing spatial similarity joins is a top concern.

Spatial similarity joins have generally the same applications as similarity joins, including data cleansing and record linkage. In addition to geolocation enhancement, this join might be used in disaster management applications, e.g.
2. SYSTEM ARCHITECTURE

The SpSJoin system is divided into four components. Figure 2 shows the proposed architecture for our system. The Data Repository stores the geographical databases used by the system and supports data persistency required by the interacting modules. The Spatial Similarity Join module performs the join and returns the result set that is indexed by the Query Processing module. Finally, the Data Visualization module presents an interface to the user for displaying and analyzing the join results.

2.1 Data Repository

The data repository contains several geographic datasets used in different GIS applications. Data comes from different sources, including the Internet and public and private sources, that may or may not need additional geographic location processing. Examples of datasets found in the repository include Hotels, Crime Data, Places and Landmarks, etc., all of them containing different attributes and geographic location. Figure 3 shows the Physicians and Yellow Pages datasets with some of their attributes and spatial location.

2.2 Spatial Similarity Join

Intuitively, a Spatial Similarity Join finds pairs of objects from two spatial datasets, a target and a source, in which every pair represents a match of an object in the target with the most related object in the source. Relatedness between objects is modeled with a composite similarity function that combines spatial and textual attributes. For instance, in Figure 3b, the similarity of a pair is calculated by combining the distance of the objects with their textual similarity on Name attribute in Physicians and Contact Person in Yellow Pages. The most related pairs from the Cartesian product are the ones with the highest value given by the similarity, sim(r, s), function, e.g., (“John F. Smith”, “John Smith”) and (“J.F. Rose”, “Judith F. Rose”). Next, we present the problem statement and describe our approach for processing spatial similarity joins efficiently.

Notation. We denote our input datasets as R (target) and S (source). Without loss of generality, records in these datasets are tuples of the form o = (a, p), where a denotes a textual attribute and p is a point in the space that denotes the location of the object o. In practice, objects may contain additional textual attributes, which we omit to simplify the explanation. MBR refers to the Minimum Bounding Rectangle that encloses a set of objects. Given two objects r and s, we refer to the function sim(a_r, a_s) as the textual similarity between attributes a_r and a_s, and dist(p_r, p_s) as the distance between points p_r and p_s. We denote sim(r, s) as the composite similarity function in the problem statement.

2.2.1 Problem Statement

Given two datasets R and S and a composite similarity function sim(r, s) ∈ [0, 1], that combines spatial and textual similarity, the problem of Spatial Similarity Join finds the set of pairs (r, s) ∈ R × S, such that sim(r, s) = max_s′∈S sim(r, s′). We say that s is the most related object of s′ ∈ S if r found in S and the pair (r, s) is a best matched pair.

Choosing an adequate sim(r, s) function is challenging since each type of attribute has its own semantics and independent similarity values. Therefore, careful analysis of the datasets is required. For example, if R and S are known to have very precise spatial attributes, then sim(r, s) may give less importance to the textual attributes.

2.2.2 Processing Spatial Similarity Joins

In our approach, sim(r, s) meets the criterion that similarity of pairs of proximal objects must be higher than objects located far away from each other. We defined the following similarity function

\[sim(r, s) = \frac{sim(a_r, a_s)}{1 + \text{dist}(p_r, p_s)} \]

(1)

Where sim(a_r, a_s) is a textual similarity function (we used the Jaccard coefficient in our experiments, \(sim(a_r, a_s) = \frac{|a_r \cap a_s|}{|a_r \cup a_s|}\)) and dist(p_r, p_s) is a distance function (we used Great Circle distance since geographical objects are located with latitude and longitude). In general, if an object r has two possible matching objects s and s’ with equal similarity value (i.e., \(sim(r, s) = sim(r, s’))\), the pair with minimum distance is considered the better pair.

When processing spatial similarity joins in large datasets, scalability is a key challenge. Our algorithm leverages parallel computing with MapReduce, which has proven its effec-
tiveness in large-scale data intensive problems [3].

The join process is divided into two main phases: a Spatial Filtering phase and an Expansion phase. In the Spatial Filtering phase, the entire set of records is partitioned w.r.t. their spatial attribute. The rationale is that geographically proximal object pairs are more likely to generate higher similarity values, using Equation 1. In this way, potential best matches are co-located in the same partition, filtering out pairs with low similarity value whose evaluation is not necessary, e.g. far away objects do not represent the same real world entity. Since each partition may contain some local best pairs that may have globally best matches, i.e. with increased similarity value, the Expansion phase gradually expands the search space of each partition using an upper bound Expansion Region. Object pairs are reprocessed iteratively on adjacent geographical regions until their similarity value cannot be improved anymore, i.e. the best pairs are found, or the expansion region covers all universe of objects.

We illustrate the join execution with an example, shown in Figure 5, that describes the workflow of the process. We denote clusters of records as \(C_i \), \(i = \{1, 2, 3\} \), and sets \(L_i \) as local output in cluster \(C_i \) at iteration \(j \). Final join output is denoted as \(L \).

Spatial Filtering phase. Figure 5 part (I). The Spatial Partitioner component is used for partitioning the entire set of records. It is expressed as a MapReduce job that clusters \(R \cup S \) in parallel using a clustering algorithm; in our experiments, we used the X-means clustering technique [5]. Figure 4 shows the spatial layout of the three clusters in this example: \(C_1 \), \(C_2 \) and \(C_3 \). Note that each \(C_i \) is expressed in Figure 5 as \(R_i \cup S_i \).

Expansion phase. Figure 5 part (II). Each cluster \(C_i \) is processed locally in parallel using several expansion iterations. Each iteration of our example is described next.

Iteration 1. For each cluster \(C_i \), the Local Joiner component joins \(R_i \) and \(S_i \) using a nested-loop approach; we implemented the Local Joiner using a modified version of the fuzzy join proposed in [6], leveraging the MapReduce framework. Mappers tokenize textual attributes from records in \(R_i \cup S_i \), and generate record projections for each token, tagged with the relation name. Reducers receive records that share the same token, sorted by relation \(S_i \), and records in \(R_i \) are combined with records in \(S_i \). To accelerate the process, records in \(S_i \) are indexed using their spatial attribute. For every record in \(R_i \), the spatial index filters records in \(S_i \) that will not improve in the combined similarity. The combined similarity is computed for candidate pairs and the pair with the highest \(\text{sim}(r, s) \) is kept. The output of the Local Joiner \(L_i \) is the set of local best matched pairs found in cluster \(C_i \).

In order to prepare for the next iteration, the input \(P_i \cup S_i' \) needs to be calculated. We observed that each pair \((r, s)\) in \(L_i \) defines an internal region, as shown in Figure 4, with center \(p_r \) of \(r \) and radius \(e_r \). The union of all internal regions defines the upper bound Expansion Region for the cluster, in which objects from \(R_i \) may find better matches. Since the Expansion Region may overlap adjacent clusters, objects in pairs with internal regions that lie within the cluster’s MBR will not find a better match and the corresponding pairs are stored in the \(B_i \) database as part of the final output. This reduces the size of the input in the next iteration. With the remaining pairs, objects in \(R_i \) are extracted and stored in \(P_i \), which need further iterations. Finally, the system identifies the nearest cluster \(C_k \), that overlaps the Expansion region, and stores the overlapping objects from \(S_k \) in \(S_k' \). In Figure 4 for example, the nearest cluster of \(C_1 \) is \(C_3 \), so \(S_1' \) is the set of records from \(S_3 \) in the shaded region of \(C_3 \).

Iteration 2. Each Local Joiner receive \(C_i = P_i \cup S_i' \) as input and joins \(P_i \) and \(S_i' \) as in the previous iteration. Output pairs in \(L_i' \) that improved their similarity are updated as the new best pair matches. If further clusters need to be explored, the next nearest cluster that overlaps the Expansion region is identified and \(S_i' \) is computed as above. Else, the

\[\text{dist}(p_r, p_s) \leq 1 - \frac{1}{\text{sim}(r, s)} - e_r \]

From Eq. 1, to improve a current \(\text{sim}(r, s) \) with \(s_2 \), at best \(\text{sim}_1(a_r, a_{s_2}) = 1 \), hence \(\text{sim}(r, s) \leq 1 - \text{dist}(p_r, p_{s_2}) \). It follows that \(\text{dist}(p_r, p_{s_2}) \leq \frac{1}{\text{sim}(r, s)} - 1 - e_r (r, s) \).
Table 1: Geographical databases of Physicians (PHY) and Yellow Pages (YP) used in experiments.

<table>
<thead>
<tr>
<th>Database</th>
<th>Records</th>
<th>Joining Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY</td>
<td>2 millions</td>
<td>name, location</td>
</tr>
<tr>
<td>YP</td>
<td>20 millions</td>
<td>contact person, zip</td>
</tr>
</tbody>
</table>

local process finishes its execution. In Figure 4, Expansion regions for clusters C_2 and C_3 do not expand anymore so L_2' and L_3' are part of the final output. On the other hand, Expansion region of C_1 overlaps C_2 so P_1 requires further processing. S'_1 is now the set of records from S_2 in the shaded region of C_2.

Iteration 3. Local Joiner is called again with the new input $C_i = P_i \cup S'_i$, and the output L_i is generated. In our example, the Expansion region for cluster C_1 has no more overlapping clusters to cover, hence set L_1' is part of the final output. Since no clusters need further expansion, the process terminates and the join result set L is complete. Shaded blocks in Figure 5 form the final output of the join.

2.3 Query Processing

The Query Processing module, Figure 2, is used primarily by the Data Visualizer component to retrieve records of joined databases (generated by the Spatial Similarity Join module). This module executes spatial queries with non-spatial constraints posted by users for join quality inspection. Attributes in the join result are first indexed using a hybrid data structure that leverages R-trees and inverted files [2] by the Data Indexer. Second, the Query Processor parses a user query to identify the query window (geographical region) and (optionally) non-spatial constraints, and it uses the hybrid index structure to efficiently retrieve records. For instance, in the join example of Figure 3, joined records of physicians with last name “Smith” and located in “Miami, FL” are displayed in Figure 6.

2.4 Data Visualization

The Data Visualization module displays the results of spatial similarity joins on a map. Figure 6 shows the general user interface of the system. Aerial and satellite imagery as well as user interface widgets are provided by the TerraFly system2 via its public API.

When the user selects a location to visualize, the currently displayed map portion determines the query window that will be submitted to the Query Processing module. Then, users pick a previously joined database from a database drop-down list to visualize its records. Optionally, users can include keywords in the query to locate specific objects for inspection. Records that match the query criteria are displayed as pairs, visually distinguished by circles and diamonds, united by lines and enclosed in rectangles. Users can click on individual object icons to display detailed information about the pair the object participates on.

3. DEMO DESCRIPTION

The setup for the demonstration is as follows. First, two real geographical databases, Physicians (target) and Yellow Pages (source), were joined with the SpSJoin operator. The database sizes and joining attributes are shown in Table 1. Objects in the databases represent real-world entities located in the United States. For example, YP entries include medical professionals of various specialities, which are expected to match with records in PHY. Jaccard coefficient and Great Circle distance were used to compute the similarity of textual and spatial attributes, respectively. The data was provided by the HPDRC laboratory3. Second, joined records were stored in a third database PHY-YP inside our Data Repository, and its attributes were indexed by the Data Indexer component. The use case demonstrates the improvement of geolocation precision in the Physicians database with matching objects in the Yellow Pages database; initially, records in PHY were geolocated to the center of their ZIP codes.

During the demonstration, users will have the opportunity to interact with the system by visualizing the joined data in the PHY-YP database as shown in Figure 6.

4. REFERENCES

2http://terrafly.fiu.edu
3http://hpdrc.fiu.edu