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Abstract—An inherent challenge arising in any dataset con-
taining information of space and/or time is uncertainty due to
various sources of imprecision. Integrating the impact of the
uncertainty is a paramount when estimating the reliability (confi-
dence) of any query result from the underlying input data. To deal
with uncertainty, solutions have been proposed independently
in the geo-science and the data-science research community.
This interdisciplinary tutorial bridges the gap between the two
communities by providing a comprehensive overview of the
different challenges involved in dealing with uncertain geo-spatial
data, by surveying solutions from both research communities, and
by identifying similarities, synergies and open research problems.

I. INTRODUCTION

Current technology trends such as smart phones, general
mobile devices, stationary sensors and satellites coupled with
a new user mentality of utilizing this technology to voluntarily
share information, generate a huge volume of geo-spatial and
geo-spatio-temporal data. This data flood, offers a tremendous
potential of discovering new and useful knowledge that could
advance a plethora of location based services [1]. However,
there are certain aspects of reality which render uncertainty
to be an inevitable component of any geo-spatial application
domain: Location measurements, regardless whether they are
obtained via GPS-enabled device or other tracking devices, are
imprecise, due to physical limitation of devices. Contextual
information may be imprecise – e.g., an information stating
in the mall or soon. The quest to reduce communication
bandwidth, energy consumption and storage, often relies on
data reduction which, in many spatio-temporal settings is lossy
implying “gaps” in both spatial and temporal domains. The
attempt to model a continuous motion with discrete measure-
ments, ultimately yields an ignorance about what happens in-
between consecutive updates.

The main objective of the tutorial is to provide a de-
tailed overview of effective and efficient solutions to various
problems related to the management of uncertain geo-spatial
data, presented by speakers from both geoinformation-science
and data science communities. To provide more concrete
motivation and to illustrate the scope of the tutorial, consider
the map shown in Figure 1 showing the discrete precipitation
measurements on a map.1 Given only these discrete measure-
ments, answering various queries of interest to the underlying
applications becomes challenging due to multiple types of
uncertainty:

1Credit for this image goes to Ross Purves, Department of Geography,
University of Zurich.

Fig. 1. Interpolated Swiss Rainfall Data.

Spatial Uncertainty is the challenge of inferring knowl-
edge from one location to another. Naive solutions for spatial
interpolation do not return any notion of reliability. Given only
the map of Figure 1, it is not possible to assess the reliability
of the estimated precipitation values. Clearly, in an area having
a dense sensor coverage with recent and accurate precipitation
measurements, the result is more significant and thus reliable
than in an area far from any measurement. To assess this
uncertainty information, this tutorial will introduce techniques
for Spatial Interpolation including Geostatistical methods such
as Kriging, in order to provide a measure of certainty and
accuracy to the interpolation results.

Temporal Uncertainty is the challenge of deriving mean-
ingful and current information from potentially outdated and
obsolete data sources. For instance, some of the discrete
precipitation measurements shown in Figure 1 may be several
minutes, or even hours old. Clearly, the degree of loss of
information of a discrete data source highly depends on the
application. Learning how parameters change over time, and
how to predict and interpolate parameters through time and
space can be done by fitting Stochastic Processes on training
data of the past to obtain a model describing the current and
the future. This tutorial will introduce stochastic processes and
show how to apply these to successfully spatio-temporal data
sets to reduce the inherent uncertainty.

Attribute Uncertainty is the challenge of dealing with
potentially inaccurate and wrong data. For example, some of
the data points in both scenarios illustrated in Figure 1 may
be reporting, accidently or deliberately, wrong information.
Clearly, a single wrong data record may significantly impact
the correctness of the result in a large area. For this purpose,
a notion of Data Reliability is required to assess the quality
of a single data record. This can be done by applying sanity
checks to the data source and by learning which of the data
sources are trustworthy.
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To unify all types of uncertainty, recent solutions proposed
in spatio-temporal data management as well as state-of-the-art
solution of geostatistical simulation are presented. As a case-
study application having all these notions of uncertainty at
once, is the problem of handling uncertainty in crowd-sourced
data. For all of the presented state-of-the-art solutions, both
the challenges of effectiveness and efficiency are discussed.
The challenge of effectiveness in uncertain data is to correctly
determine the set of possible results, each associated with the
correct probability of being a result, in order to give a user
a confidence about the returned results. The complementary
challenge of efficiency is to enable fast computations for
these results and corresponding probabilities, allowing for
reasonable querying times, even for large uncertain databases.
The main objectives of this tutorial are:

• Provide a comprehensive overview of different research
issues and solutions addressing various aspects of uncer-
tainty in geo-spatial data. This overview is aimed both at
students with no prior experience in the field, as well as
at attendants with some background.

• Bridging the gap between data-science and geo-science by
surveying and unifying solutions for uncertain geo-spatial
data management from both data-science and geo-science.

• Present a comprehensive overview of models, algorithms,
solutions and techniques in the field of managing geo-
spatial data, catering to a broad audience.

• Teach common paradigms used to manage uncertainty,
including techniques for spatial regression, Kriging, sam-
pling, simulation based approaches, and query processing
using possible world semantics.

• By bridging data-science and geo-science solutions, this
tutorial will identify a number of open research issues
on both sides. The tutorial will suggest directions to
solve these open issues by exploring techniques from the
respectively other research area.

In contrast to existing tutorials on uncertain data management
that have been presented in the past [2], [3], [4], this tutorial is
the first to unify uncertain data solutions from both geo-science
and data-science. The vast majority (approximately 80%) of
this tutorial have not been presented at any previous tutorial.
This new material includes:

• Approaching uncertain geo-spatial data from a geo-
science perspective, thus providing a tutorial on state-
of-the-art solutions such as Kriging and simulation, un-
touched by any previous tutorial that we are aware of.

• The few selected topics, such as uncertainty models
and uncertain database management systems, that are
inherited from the ICDE 2014 tutorial [2], are enhanced
and enriched by the expertise and experience of our
geoinformation-science co-authors. Thus, the focus of
the tutorial is shifted towards geo-science applications,
making it the first of its kind.

• A new case-study of uncertainty in spatial crowdsourcing
applications such as Open-Street-Map at the end of the
tutorial. This new 30-minute part of the tutorial will unify
the previous concepts and techniques and put them into
a real application;

• Its unique presentation style – mingling experts from geo-
science and data-science to show synergies with the other
field.

II. TUTORIAL OUTLINE

Although preparing the materials for the tutorial was a
challenging undertaking for which the authors contributed
jointly, the presentation will be given by three presenters, who
will be aiming at illustrating the geo-science and data-science
perspectives, as well as the bridges in-between. These three
presenters will be Dr Züfle, Dr. Trajcevski and Dr. Pfoser, who
all have a strong scientific background in both geoinformation-
science and data-science.

A. Introduction

Motivation - Application Settings – Living in a world of
data-driven science, we will begin the tutorial by introducing
spatial and spatio-temporal data as well as modern sources
of such data, like the Geo-Web 2.0 and Geo-Social data.
We motivate the importance of managing and analyzing such
data, giving spatial applications such as sensor monitoring
[5], location-based services [6]; as well as spatio-temporal
applications including RFID tracking [7] and GPS tracking
[8]. The importance of analyzing data that arises in such
applications is set into the context of the vision of analyzing
big data [9]. We briefly introduce spatial and spatio-temporal
data and give an overview of existing work that has been done
on managing such data, ignoring uncertainty.

B. Geo-Spatial Uncertainty

Uncertainty Models and Possible World Semantics – In the
first main part of the tutorial, Dr. Züfle will first introduce the
formal categorization of models for uncertain geo-spatial data:
discrete uncertainty models [10] and continuous ones [11],
[12], along with attribute [13], [14], [15] and existential [16]
uncertainty. The concept of Possible World Semantics, widely
used by the data-science community, will be discussed as a
mathematically sound and intuitive interpretation of uncertain
spatial databases. Additionally, a survey of the Equivalent
Worlds Paradigm will be given, to tame the exponential
number of possible worlds [17], [18], [19] and #P hard query
processing [20]. This paradigm allows to answer a large
number of spatial query predicates efficiently. We show how
these models, which have also been surveyed in a previous
tutorial [2], can be extended and applied to uncertain point,
line and polygon data.

Uncertainty Within Spatial Interpolation – Approaching
uncertainty from the perspective of geoinformation-science,
Dr. Züfle will discuss kriging interpolation methods [21] that
explicitly measure uncertainty in the interpolation output. Con-
trary to previous deterministic methods, Kriging’s regression-
based methodology includes elements of uncertainty in both
the prediction of the final surface as well as in the estimated
error surface of the predictions [22], [23], [24]. An imple-
mentation with Esri’s geostatistical analyst ([25], [26]) will be
demonstrated to illustrate the important decision steps in the
interpolation process. A multi-variogram approach called Em-
pirical Bayesian Kriging ([27]) will be shown that differs from
other interpolation and kriging methods by accounting for the
error introduced by estimating the underlying semivariogram
and selecting the best fit ([28]). He will review Monte Carlo
simulation as a well-established and broadly-applied approach
for addressing uncertainty in spatial data analysis [29], [30],
[31], [32].
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C. Spatio-Temporal Uncertainty

This part of the tutorial adds the time dimension to uncer-
tain geo-spatial data. As we will have discussed in the previous
part of the tutorial, the complexity of querying uncertain geo-
spatial data is exponential. Considering time, this problem
becomes even more complex. Consequently, the main scope
of this part of the tutorial is to explore approximate solutions
for handing uncertain spatio-temporal data such as trajectory
data. Dr. Trajcevski will be presenting this part of the tutorial.

Traditional Approaches for Uncertain Spatio-Temporal
Data Dr. Trajcevski will review traditional models to cope
with these new challenges by bounding the possible loca-
tions of objects over time by spatio-temporal cylinders [33],
[34], diamonds [35] or beads [36], [37]. Based on these
models/types, corresponding algorithms for processing certain
query categories have been proposed, e.g. range queries [38],
[34], kNN queries [33], [39], etc. which will be overviewed in
this part of the tutorial. Additionally, some foundational works
on location dependency will be reviewed [39], [33], [35], [40]
in order to motivate the use of more advanced models. State-of-
the-art approaches for querying traffic network data will also
be discussed, along with the issues related to spatio-temporal
data compression [41], [42], [43] and the fusion of uncertain
location data from different sources [44].

Data Science Approaches for Spatio-Temporal Uncertainty
– Dr. Trajecevski will present models for uncertain spatio-
temporal data that describe objects by stochastic processes [7]
to model the motion of objects in space and time. The notion of
stochastic processes will be brought in line with possible world
semantics, describing a possible spatio-temporal database as
an instantiation of a global stochastic process consisting of
all spatio-temporal objects in the database. We will show how
a Bayesian learning approach can add additional information,
such as discrete object observations, to improve the motion
model of individual objects [8].

D. Case Study: Uncertainty in Crowd-Sourced Data
Crowdcouring and Spatial Data Quality – Spatial uncer-
tainty has been described as “the Achilles’ Heel of GIS, the
dark secret that once exposed will bring down the entire house
of cards” [45]. Dr. Pfoser will show that with the advent of
Volunteered Geographic Information (VGI) [46], [47] as an
alternative mechanism for the acquisition and compilation of
geographic information the problems of uncertainty and data
quality have multiplied. We will analyze geocrodsourcing qual-
ity issues using Openstreemap as a case study [48], [49]. While
such studies give useful insights into the accuracy of VGI, but
only indirectly help to identify mechanisms for assuring and
improving data quality. As authoritative data gets increasingly
out of date, we will discuss various crowd-based, social, and
geographic approaches to assure and improve quality in VGI
[50], [51]. Crowdsourcing approaches converge on a solution
by relying on frequently edits of crowdsourced facts [52], [53].
When discussing social approaches, we rely on reputation as
a means to assess the reliability of contributions [54] and, in a
broader context, on trust and credibility of VGI [55]. Finally,
any volunteered geographic information needs to adhere to
certain rules that govern geographic knowledge. Aspects we
can exploit to assure data quality include Tobler’s first law of
geography [56], the fractal dimension of spatial features [57],

or the central place theory [58]. We will conclude this part of
the tutorial by discussing working systems that have been put
in place to improve crowdsourced geospatial data quality.
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