
Geoinformatica
https://doi.org/10.1007/s10707-019-00378-7

Improving humanmobility identification
with trajectory augmentation

Fan Zhou1 ·Ruiyang Yin1 ·Goce Trajcevski2 ·Kunpeng Zhang3 · Jin Wu1 ·
Ashfaq Khokhar2

Received: 31 January 2019 / Revised: 3 July 2019 / Accepted: 7 August 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Many location-based social networks (LBSNs) applications such as customized Point-Of-
Interest (POI) recommendation, preference-based trip planning, travel time estimation, etc.,
involve an important task of understanding human trajectory patterns. In particular, identify-
ing and linking trajectories to users who generate them – a problem called Trajectory-User
Linking (TUL) – has become a focus of many recent works. TUL is usually studied as a
multi-class classification problem and has gained recent attention because: (1) the number
of labels/classes (i.e., users) is way larger than the number of motion patterns among various
trajectories; and (2) the location-based trajectory data, especially the check-ins – i.e., events
of reporting a location at particular Point of Interest (POI) with known semantics – are often
extremely sparse. Towards addressing these challenges, we introduce a Trajectory Genera-
tive Adversarial Network (TGAN) as an approach to enable learning users motion patterns
and location distribution, and to eventually identify human mobility. TGAN consists of two
jointly trained neural networks, playing a Minimax game to (iteratively) optimize both com-
ponents. The first one is the generator, learning trajectory representation by a Recurrent
Neural Network (RNN) based model, aiming at fitting the underlying trajectory distribution
of a particular individual and generate synthetic trajectories with intrinsic invariance and
global coherence. The second one is the discriminator – a Convolutional Neural Network
(CNN) based model that discriminates the generated trajectory from the real ones and pro-
vides guidance to train the generator model. We demonstrate that the above two models can
be well tuned together to improve the TUL performance, while achieving superior accuracy
when compared to existing approaches.

Keywords Adversarial learning · Spatio-temporal learning ·
Synthetic trajectory generation · Motion pattern recognition

� Fan Zhou
fan.zhou@uestc.edu.cn

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-019-00378-7&domain=pdf
http://orcid.org/0000-0002-8038-8150
mailto: fan.zhou@uestc.edu.cn

Geoinformatica

1 Introduction

The advancements in networking technologies and miniaturization of computing and com-
munication devices have enabled plethora of applications that generate large volumes of
spatio-temporal data pertaining to both: (a) mobile users locations; and (b) additional con-
texts associated with the temporal and spatial dimension. Location-based Social Networks
(LBSNs) such as Instagram and Twitter generate large scale geo-spatial datasets capturing
human behavior at unprecedented volume and level of detail [16]. This, in turn, created
opportunities to uncover various patterns created by mobile human users, to better under-
stand different motion plans in various application scenarios [54], such as: inferring latent
mobility patterns [1]; personalized recommendation of Point Of Interests (POI) [6] or
suggesting next location to visit [12]; geo-aware maximization of influence [32], etc.

A crucial task to enable better understanding of the behavior of mobile users in multi-
ple applications is the trajectory classification [18, 37]. Examples of patterns related to a
collection of spatio-temporal trajectories include descriptions of values for mobility-related
attributes such as stationary or moving; driving or walking; conducting activities (e.g., din-
ing while stationary; listening to news while driving); etc. – which have recently spurred the
topic of trajectory semantic inference [15]. Many of the traditional trajectory classification
works leverage techniques aiming at understanding the activity patterns and transporta-
tion modes of users given the history of visited locations. Typical tools include Hidden
Markov Model (HMM), Dynamic Bayesian Network (DBN), and Conditional Random
Fields (CRF). Complementary to this, a body of works addressed the problem of discover-
ing the characteristics of a single user or a group of users, relying on Linear Discriminant
Analysis (LDA) and Bayesian probabilistic graph models, targeting applications such as
POI recommendation [6] and trip planning [10].

Part of the motivation for this work is based on the observation that the existing bodies
of work have not addressed the problem of linking trajectories to their corresponding gen-
erating users. This is an important problem in many LBSN-type of applications like, for
example, ride-sharing (bike, car) platforms. On the one hand, the users provide large vol-
umes of trajectories data in terms of (location, time) sequences, however, their identities are
usually protected for the sake of privacy. On the other hand, the ability to correlate such
trajectories to users may enable more informed decision-making in personalization of, e.g.,
marketing campaigns. Moreover, from a complementary perspective, such linking could
help in detecting potential criminals, based on values from similar types of sparse mobility
data such as the transient phone signals as well as other check-in events – i.e., a presence
at a location corresponding to a particular Point of Interest (POI), possibly with semantic
features available from a POI database.

The Trajectory-User Linking (TUL) problem was first studied in [20], where three-
fold challenges were identified: (1) the number of classes/labels (unique mobile users) is
way larger than the number of possible motion patterns in trajectory classification; (2) the
sparsity of trajectories, users usually visit a few popular locations among thousands. In addi-
tion, the data may involve noise and outliers that can affect the performance of TUL; (3)
TUL differs from many traditional mobility pattern-recognition problems in that it requires
extracting and analyzing various features from trajectories [48], which entails both the curse
of dimensionality, as well as the invasion of user privacy.

The solution proposed in [20] – TULER (TUL via Embeddings and Recurrent Neural
Networks) – achieves high classification accuracy, however, it fails to address one of the
most important issues in mining LBSNs data, i.e., the sparsity of a user-location check-ins.
For example, the sparsity of the Gowalla dataset [13] is about 99.98% [59]. Additionally,

Geoinformatica

mining and characterizing individual motion patterns requires a large number of labeled
trajectory data – the lack of which is another setback of most LBSNs studies [54].

Since numerous factors – such as transportation modes; priorities (job, family, friends),
etc. (cf. [21]) – may influence human mobility patterns, users trajectories are often approx-
imated with models like random walk [9] or Lévy flight [41]. While human mobility is
associated with spatial and temporal constraints that follow reproducible scaling laws, the
number of independent parameters characterizing the human movement can be quite large.
Moreover, growing evidence suggests that the existing parameter-based scaling law studies
on spatio-temporal datasets are limited and affected by the domain of explored datasets, i.e.,
the results from mobile phone data are not generalizable to LBSNs data, and vice versa.

The above facts are at the heart of the motivation for investigating the Trajectory Distri-
bution Approximation (TDA) – a novel trajectory pattern recognition problem in the areas of
both human mobility and social networks. TDA has a similar task with traditional statistics-
based scaling law discovery problem – that is, uncovering the basic human mobility patterns.
However, it learns the individual trajectory probability distribution directly from the data
and fits the underlying characteristic of its mobility patterns, rather than quantitatively
analyzing various factors and random variables – e.g., displacement distribution [9], rank
distribution [4], etc. – that affect users motion. We postulate that an efficient TDA solu-
tion should satisfy four desiderata: (1) Ability to capture the natural features determining
the individual moving patterns; (2) Enable generating synthetic trajectories of a particular
person, once the characteristics of his moving patterns are learned; (3) Ensure theoretical
soundness of the method for guiding the training process and testing the results of trajec-
tory generation; and (4) The synthetic trajectories should improve the performance of other
supervised trajectory classification problems, such TUL in LBSNs.

One appealing methodology for tackling the TDA problem are the generative models – in
particular, Generative Adversarial Nets (GAN) [22]. Essentially, a GAN is a minimax game
between a generator and a discriminator seeking to match the distributions of both the gen-
erated and the real data. Unfortunately, the existing GAN based methods – both continuous
GANs (e.g., used for image generation [11]) or discrete ones (e.g., used for sequence mod-
eling [50] and text generation [53]) – can not be directly applied to the TDA problem. The
main reason is that the true semantics of the generated trajectories can not be identified nei-
ther by the GAN discriminators nor by a human labor directly. For example, the generated
images or sentences may be easily discriminated from the realistic-looking ones by manual
identification of an ordinary person without any supervision. However, when it comes to
the generated POIs forming a trajectory from real locations visited by a user, the end result
may consist of indistinguishable patterns of a synthetic trajectory. Moreover, as mentioned,
the LBSNs datasets are usually too sparse to characterize an individual mobility patterns,
not to mention the extremely imbalanced label (user) distribution in LBSNs datasets, both
of which require an elastic generator to prevent model collapse – a problem commonly
occurring in the existing GANs, largely due to insufficient data.

To tackle this problem, we introduce the TGAN (Trajectory Generative Adversarial) net-
work, which consists of two adversarial training neural networks: (1) a Long Short-Term
Memory (LSTM) [24] network employed as a POI sequence generator; and (2) a Con-
volutional Neural Network (CNN) [28] playing the role of discriminator. The generator
learns the trajectory representation and progressively fits the underlying trajectory distribu-
tion of a particular person, after which the synthetic trajectories with intrinsic invariance
and global coherence are generated, preserving the long-term dependencies of POIs. The
discriminator, on the other hand, takes the responsibility of distinguishing the generated tra-
jectory from the real ones and guides the training of the generator. These two jointly trained

Geoinformatica

neural networks in a two-player game iteratively optimize both sides and learn individual
motion patterns and spatio-temporal distribution, until convergence. In addition to improv-
ing the TUL, TGAN can also directly evaluate the quality of the trajectory generation, and
the synthetic data could be incorporated to improve the supervised trajectory classification
accuracy by augmenting the labeled trajectories and balancing the label distribution.

Following are the main contributions of this work:

(1) We introduce a novel formalization of the TUL problem from the perspective of TDA,
and we discuss its positioning in the context of TULER – an RNN (Recurrent Neural
Network) based solution to the TUL problem.

(2) We present the first comprehensive TDA solution – TGAN (Trajectory Generative
Adversarial Network) which: (a) fulfills the aforementioned four properties of TDA;
and (b) sidesteps the problems in existing GANs.

(3) We provide omprehensive experimental evaluations conducted on real-world datasets,
which illustrate the benefits of TGAN over the existing approaches.

We note that our earlier work [20] introduced and addressed the TUL problem – however,
this study presents a significant extension of it: both the novel TDA variant of the problem
as well as the TGAN approach for the solution.

The rest of this article is structured as follows: we review the related work in Section 2
and Section 3 formalizes the TUL problem and present the main methodology behind
TULER RNN. Section 4 formalizes the problem of TDA and provides the TGAN solu-
tion to data sparsity. Experimental evaluations quantifying the benefits of our solutions are
presented next (Section 5), followed by concluding remarks and directions for future work.

2 Related work

We now review the related literature and position our work in that context. There are three
broad categories of approaches that we overview in the sequel.

Uncovering patterns characterizing human motion has been studied in traffic engineer-
ing [3], city planning [51] and many location-based applications [8]. Traditional motion
pattern mining studies fall into four broad classes: (1) individual statistical patterns under-
standing: measuring and quantifying the models, e.g., continuous-time random-walk [9] or
Lévy flight [21], accounting for characteristics of individual human trajectories [41]; (2)
trajectory similarity mining: measuring the similarity or distance between two trajectories,
such as Dynamic Time Warping or Edit distance [17] – which may exploit the uniqueness
and regularity of human mobility, and linking accounts across sites, etc.; (3) sequential and
periodical pattern mining: finding (sub-)sequences and periodical motion patterns, enabling
travel recommendation [10], life pattern understanding [42] and trajectory classification
[20] and next location prediction [6]; (4) trajectory classification: recognizing trajectories
as different types of motion patterns, such as Biking, Bus, Driving, and Walking in trans-
portation classification [55] and Occupied, Nonoccupied and Parked in taxi status inference
[58]. The key task involved is to extract representative spatio-temporal features in trajec-
tories. They are different from the complex TUL problem because of the large number of
labels (users) and the interleaving sub-trajectories among users.

Recurrent Neural Networks (RNNs) have achieved great successes in many Natural Lan-
guage Processing (NLP) applications, especially since the introduction of memory units to

Geoinformatica

networks, such as LSTM [24] and GRU [14]. It has been widely applied to text classifi-
cations [30, 33], where the number of labels/classes is relatively small. Most of them are
binary (e.g., IMDB1 dataset), while few have more (but at most 20) classes – e.g., Fudan2

dataset. This is substantially less than a typical TUL setting. In addition, the sufficient cor-
pus is usually available in the task of text classification, which can alleviate the data sparsity
issue that is severe is TUL.

Despite the large body of works in individual trajectory parameterizing and semantic
trajectory mining – the TDA problem has not been formally defined and investigated. Our
proposed TGAN methodology is different from conventional trajectory models in that it:
(1) requires to match individual motion patterns and trajectories distribution; and (2) may
generate synthetic trajectories that augment the training data to improve the location-based
applications such as clustering and classification. To our best knowledge, TGAN is the first
attempt to perform such trajectory distribution approximation.

A recent approach to augment the initial TUL settings and solution was presented in [57].
Essentially, a generative model was proposed to mine human mobility patterns, relying
on the Variational Auto-Encoder (VAE) [26] paradigm, and an architecture consisting of
three RNNs (encoder, intermediate RNN and decoder) plus a semi-supervised classifier was
presented. However, the work in [57] is, in a sense, orthogonal to this work, from two per-
spectives: (1) it aims at learning the implicit hierarchical structures of trajectories, whereas
we focus on the TDA problem, as well as generation of synthetic trajectories datasets; (2)
we rely on GAN paradigm and the architecture also employs CNN (in the discriminator).

Generative Adversarial Networks (GANs) have gained a tremendous successes in natural
image generation [22]. Recently, GANs has also been used as a tool for modeling sequential
data [50] and generating text [53]. However, few efforts have been conducted towards mod-
eling human trajectories with adversarial networks that confront: (1) the sparsity problem of
check-ins inherent in trajectory data; (2) extremely longer trajectory sequences than other
generated discrete samples, such as sentence in natural language; and (3) the lack of metrics
for evaluating the trajectory generation results. TGAN not only provides a complementary
approach to traditional scaling law based trajectory models by approaching the latent trajec-
tory distribution of users, but may also inspire potential novel location-based applications –
e.g., adversarial trajectory based recommendation and privacy protection.

3 Trajectory-user linking

We now turn the attention to formalizing the TUL problem, and discuss the intricacies of
TULER – our proposed method.

3.1 Problem settings

Let Tui
= {li1, li2, ..., lin} denote a trajectory generated by the user ui corresponding to a

particular time interval, where lij (j ∈ [1, n]) is the location/POI at time tj for the user ui

(∈ U), in a suitable coordinate system (e.g., longitude + latitude, or a Cartesian coordinate

1http://ai.stanford.edu/amaas/data/sentiment/
2http://www.datatang.com/data/44139

http://ai.stanford.edu/amaas/data/sentiment/
http://www.datatang.com/data/44139

Geoinformatica

Fig. 1 Architecture of the proposed method TULER. TULER first learns check-in embeddings T ∈ R
|C|×d

using all trajectories. Then a RNN model will be trained to characterize latent patterns of linking trajectories
to users. Finally, a user of an unlinked trajectory is inferred

system after a suitable projection: (xlij , ylij)). In this paper, each lij is considered as a check-
in.

Definition 1 Trajectory-User Linking (TUL): A trajectory Tk = {l1, l2, ..., lm} for which
it is not known who was the user generating it, is called unlinked. Assume that we are given
a number of unlinked trajectories T = {T1, ..., Tm} generated by some of the users in the
set U = {u1, ..., un} (m � n). We call a solution to TUL problem the mapping that assigns
unlinked trajectories to the users: T �→ U .

Our proposed solution (TULER) works as follows: each unlinked trajectory is first
divided (i.e., segmented) into a collection of sub-trajectories based on a fixed time inter-
val [5]. Subsequently, we represent and characterize each trajectory using trajectory
embedding via trained RNN models, with a capability to mitigate the curse of dimensional-
ity problem. Finally, we build a multi-class classification model to link these trajectories to
users. The overall architecture of TULER is shown in Fig. 1.

3.2 Segmentation and check-in embedding

To capture the rich semantics content of the trajectories and increase the computational
efficiency, we segment each trajectory Tui

into k consecutive sub-trajectories T 1
ui

, ..., T k
ui

.
Such a segmentation process can be done by various methods, e.g., based on the semantic
meaning and shape of the trajectories [54]. For simplicity, we adopt the method used in [34]
in this paper, although other methods are possible, e.g., re-sampling in frequency domain
(cf. [5]) – which we defer to our future work.

To alleviate the sparsity issue and dimensionality curse, we represent each check-in with
a low-dimensional vector vlt ∈ R

d rather than a traditional location representation method
such as one-hot. We obtain the check-in trajectory representation T ∈ R

|C|×d using the sim-
ilar technique implemented in word embeddings [35], where |C| is the number of all unique
check-ins across all trajectories, d is the dimensionality in the lower dimensional space.
Specifically, we maximize the probabilities of check-ins given their neighboring locations
in trajectories.

Figure 2 shows the distribution of check-ins in two real-world LBSN datasets from [13],
which follow a power-law distribution. Using check-in embedding can somehow address

Geoinformatica

the sparsity issue as discussed above. In addition, it can mitigate the overfitting problem
especially when the amount of training instances is small.

More specifically, the embedding of a check-in lt is to infer its conditional probability
given the context check-ins C(lt) = lt−w : lt+w , where w is the size of sliding window
of each sub-trajectory. To better embed our check-in into a low dimensional representation
vlt ∈ R

d , the probability p(lt |C(lt)) is defined by the softmax function as:

p(lt |C(lt))
∏

l′∈C(lt)

p(lt |l′)
∏

l′∈C(lt)

exp(vlt · vl′)∑
l′′∈C exp(vl′′ · vl′)

(1)

3.3 Trajectory characterization

Part of the problem in trajectory characterization stems from the fact that splitting the
original trajectories into sub-trajectories even with a shorter duration, may still result in
denser check-ins in some of the sub-trajectories. To address this issue (long-term variable-
length location sequences), we incorporate several variants of well-known RNN models,
i.e., LSTM [24] and GRU [14], as well as the stacked and bidirectional RNNs, into TULER.
These are aiming at controlling the input and output of trajectory embeddings. We provide
a brief description of the use of LSTM and GRU model used in TULER next.

3.3.1 TULER with LSTM

Given a sub-trajectory T = {l1, l2, ..., lk}, let ht−1, ht and h̃t denote the respective last,
current and candidate embedding state. The LSTM model that we incorporated in TULER
is implemented as follows:

it = σ(Wivt (li) + Uiht−1 + Vict−1 + bi), (2)

ft = σ(Wf vt (li) + Uf ht−1 + Vf ct−1 + bf), (3)

ot = σ(Wovt (li) + Uoht−1 + Voct + bo) (4)

Fig. 2 Frequency count of check-ins from real-world datasets

Geoinformatica

where it , ft , ot and b∗ respectively denote the input gate, forget gate, output gate and bias
vector. Also, σ denotes the logistic sigmoid function; the different gate parameters are spec-
ified by the matrices W , U and V (∈ R

d×d); and vt (li) is the embedding of the check-in
location li . The memory cell ct is updated by partially replacing the existing memory unit
with a new cell ct as follows:

ct = ftct−1 + it tanh(Wcv(li) + Ucht−1 + bc) (5)

Then, the trajectory embedding is updated as:

ht = ot � tanh(ct) (6)

where σ(·) and tanh(·) denote the sigmoid and hyperbolic tangent function, and � denotes
the entry-wise product.

3.3.2 TULER with GRU

TULER with GRU models the trajectory embedding using extra gating units, in a similar
spirit to the LSTM method, however, it does so without separated memory cells. The state
of ht is updated by a linear interpolation between the last state ht−1 and the candidate state
h̃t in the following manner:

ht = (1 − gt)ht−1 + gt h̃t (7)

where gt is the update gate, deciding by how much the unit will updates its activation:

gt = σ(Wzvt (li) + Uzht−1) (8)

The computation of the candidate state h̃t is much like a traditional RNN unit:

h̃t = tanh(Wvt (li) + U(st � ht−1)) (9)

with st denoting the set of reset gates; computed, in turn, very similarly to updating the gate,
as:

st = σ(Wsvt (li) + Usht−1)

3.3.3 Variants

We now discuss the implication of having certain variants of TULER (i.e., LSTM/GRU
and Bidirectional LSTM [43]) stacked. The peculiarity of a stacked LSTM/GRU, is that the
hidden state of a given unit in layer n, is subsequently used as an input to the unit in the
layer n+1 – except, at a same time step. The main objective of multi-RNN stacking is to
grasp the longer check-in dependencies of a trajectory.

There is a drawback to stacking, though – the training time of a stacked TULER increases
exponentially with the number of layers. An option to alleviate this issue is to use Bidirec-
tional LSTM by running two LSTMs in parallel: (1) on the sequential check-in embedding
vectors, and (2) on the reverse embedding vectors. As it turns out, this may yield a substan-
tial reduction in the time for training the model, in comparison with the general and stacked
LSTM/GRU based TULER. We note that the performance of using different types of deep
TULER is discussed in Section 5.

Geoinformatica

3.4 Trajectory-user linking

Linking the trajectories to the corresponding users is done by using a softmax output layer
to calculate the corresponding estimated user distribution:

p(û(lu) = i|lu; κ) = exp{Bihu + bi}
∑|u|

j=1 exp{Bjhu + bj }
,∀i = 1, · · · , |u| (10)

The interpretaion of the symbols in the equation above is as follows: – û(lu) is the predicted
user of lu and hu is the final hidden state of RNN module; – the weight matrix B ∈ R

d×|u|
and bias vector b ∈ R

1×|u| are the corresponding parameters in the softmax layer; Bi indi-
cates the i-th column of B and bi indicates the i-th element of b; lastly, κ = {W,U, V,B, b}
denotes the set of parameters that need to be learned.

To learn the parameters in the quintuple κ with respect to the given objective function,
we proceed as follows. Given a user u and his trajectory sequence lu = l1, l2, ..., lm, we
train the TULER to maximize the log-likelihood with respect to κ with:

u(lu) �→
∑

lu∈U
log p(u|lu, κ) (11)

where u and U denote the ground-truth user of trajectory lu and the training data, respec-
tively. A stochastic gradient descent is used in each step, in order to estimate the parameter
set κ:

κ ← κ + α
∂ log p(u|lu, κ)

∂κ
(12)

where α is the learning rate.
Lastly, we proceed with the minimization of the following cost function:

Φ(lui
, l̃ui

) = −
|l|∑

i=1

|u|∑

j=1

u log(l̃
j
i) (13)

where l̃
j
i is the predicted trajectory embedding vector.

After both of the models – the embedding one and the RNN have been trained, we con-
struct the TULER model. Its embedding layer is used to encode the semantics of check-ins,
initialized with the corresponding trained weights. A random initialization is used for the
stacked or bidirectional layer of RNN and the softmax of the model, while all the parameters
are being fine-tuned on the labeled data.

4 Adversarial synthesis trajectory generation

We now present the main results of the TGAN based solution, starting with an overview of
GAN, and a formal definition of the TDA problem, and following with the details of our
proposed method TGAN. Lastly, we discuss the evaluation and training details.

4.1 Generative adversarial nets

To make the paper self-contained, we now present an overview of the relevant background
of GAN and WGAN.

Geoinformatica

4.1.1 Generative adversarial nets (GAN)

The main objective of Generative Adversarial Nets (GAN) is to obtain the equilib-
rium between a discriminator D and a generator G by optimizing the following minimax
objective [22]:

LGAN(px, pg) = E
x∼px

[log D(x)] + E
z∼pg

[log (1 − D(G(z)))] (14)

where px is the data distribution and pg is the model distribution. The LGAN is then max-
imized with respect to D(x) and minimized with respect to D(G(z)). The generator G

takes a prior noise distribution z ∼ p(z) (e.g., uniform or Gaussian) as input and pro-
duces a sample G(z) in the data space using a deep neural network, such as Multi-Layer
Perceptron (MLP) [22]. The discriminator D – normally another neural network such as
CNN or MLP – plays the role of classifier and represents the probability that a certain
sample comes from the true data distribution px or the generator G. In practice, the param-
eters of the generator and the discriminator networks are updated in an alternating fashion,
based on stochastic gradient descent (SGD) [39]. It has been demonstrated that this game
achievesa global equilibrium if and only if pg(x) = px(x), and the optimal discriminator
is D∗(x) = px(x)/(px(x) + pg(x)) [22]. That is, if the optimal discriminator is found in
each iteration, minimization of the resulting loss function of the generator implicitly leads
to minimization of the lower bound on the Jensen-Shannon divergence (JSD) .

4.1.2 Optimal transport andWGAN

We note that, as demonstrated in [2], the strong probability distances (such as KL divergence
and JSD) between px and pg may no longer provide useful gradients forthe generator and
correspondingly result in model collapse. This is an implication of the optimal discriminator
becoming perfect, and its gradient will be zero almost everywhere. More importantly, this
is the case for many real applications where both px and pg have supports that are disjoint
or lie on low dimensional manifolds. To address this issue, Wasserstein GAN (WGAN) was
proposed [2]. It uses the Earth-Mover distance (EMD), denoted W(q, p), as the measure
of the distance between two distributions (rather than JSD in “regular” GAN), which is
informally defined as the minimum cost (mass times transport distance) of transporting
mass in order to transform one distribution q to another distribution p.

Optimal Transport The theory of Optimal Transport (OT) problem, in addition to Earth
Mover’s Distance (EMD), has induced a rich class of divergences between probability dis-
tributions, among which two main formulations (i.e., Monge’s and Kantorovich’s) were
developed in the past century [27]. In the machine learning field, Kantarovich’s formulation
is more popular since it is more general and also covers the case of discrete masses (in our
case, trajectories).

More formally, let X be a metric space (e.g., X = R
n) endowed with a metric dX . A

coupling π of px and pg is a probability distribution on X ×X such that π(A,X) = px(A)

and π(X ,A) = pg(A) for all Borel probability measures (A ⊆ X) with finite moments
of order k, i.e.,

∫
X ρ(X, Y)kdpx(x) < ∞ and

∫
X ρ(X, Y)kdpg(x) < ∞, ∀Y ∈ X , where

Geoinformatica

ρ(X, Y) is a distance function for any two instances in X . Kantorovich’s formulation of OT
problem is defined as [45]:

Wk(px, pg) = inf
γ∈∏

(X∼px,Y∼pg)
E(X,Y)∼γ [cost(X, Y)]

=
(

inf
γ∈∏

(X∼px,Y∼pg)

∫∫

X×X
ρ(X, Y)kdπ(X, Y)

) 1
k

(15)

where cost(X, Y) is any measurable cost function and
∏

(X ∼ px, Y ∼ pg) is a set of
all joint distributions γ (X, Y) of (X, Y) (all coupling of px and pg) whose marginals are
respectively px and pg . Intuitively, γ (X, Y) indicates how much mass must be transported
from X to Y in order to transform the distribution px into the distribution pg . A particularly
interesting case is when (X , ρ) is a metric space and cost(X, Y) = ρ(X, Y)k for k ≥ 1.
The k-th root of Wassk is called the k-Wasserstein distance, which is then the cost of the
optimal transport plan. In the case of k = 1 (1-Wasserstein distance), it refers to the EMD
and the following Kantorovich-Rubinstein duality theorem holds for representing EMD as
a form of integral probability metric [46]:

inf
γ∈∏

(X,Y)

∫∫
ρ(X, Y)dπ(X, Y) = sup

f ∈FL

(∫

X
f (x)dpx(x) −

∫

X
f (x)dpg(x)

)
(16)

where FL is the class of all bounded 1-Lipschitz functions on space (X , ρ). One of the
core merits of this dual representation is that both infimum and supremum exist. That is, the
optimal coupling π∗ can be obtained by minimizing the value on the LHS of Eq. 16, while
any optimal function f ∗ ∈ FL satisfies f ∗(X) − f ∗(Y) = ρ(X, Y) for all (X, Y) in the
support of π∗, which is attained by maximizing the RHS of Eq. 16.

Wasserstein GAN (WGAN) WGAN has been recently proposed in [2], and the aim is to
learn the generator network for any random vector such that the Wasserstein distance is
minimized between the resulting distribution pg of the generated samples and the real distri-
bution gx underlying the observed data points. Replacing JSD with 1-Wasserstein distance
, which is known to induce a much weaker topology than JSD (and other strong distances),
yields a more sensible distance function and provides stable gradients. This, in turn, renders
WGAN to be better suited for generative modeling.

Formally, the utility function of the minimax game of WGAN is:

LWGAN(px, pg) = min
G

max
D∈D E

x∼px

[D(x)] − E
z∼pg

[D(G(z))] (17)

where D is any subset of 1-Lipschitz functions on X . Minimizing above objective w.r.t. the
generator parameters minimizes the EMD W(q, p), i.e., LWGAN(px, pg) ≤ Wass1(px, pg).
The loss of the generator in WGAN Lg is:

Lg
WGAN = −Ez∼pg [D(G(z))] (18)

and the loss of the discriminator (or more precisely, the critic [2] since it is a real-valued
function here and is no longer trained to classify) is:

Ld
WGAN = E

z∼pg

[D(G(z))] − E
x∼px

[D(x)] (19)

Geoinformatica

This family of functions D is specified in [2] via neural networks, and then weight
clipping is used to enforce Lipschitz continuity.

WGAN-Gradient Penalty (GP) However, as Arjovsky et al. note, the networks’ capacities
become limited due to the weight clipping and there could be gradient vanishing problems
in the training. In the later work [23], they present more concrete examples to illustrate
the perils of the weight clipping and propose an alternative way of imposing the Lipschitz
continuity by introducing a gradient penalty term into discriminator as:

Ld
WGAN−GP = E

z∼pg

[D(G(z))] − E
x∼px

[D(x)] + λ E
x̂∼px̂

[(‖∇x̂D(x̂)‖2 − 1)2] (20)

where the last term is the constraint with a penalty on the gradient norm of the discrimi-
nator output w.r.t. its input, an alternative way to enforce the Lipschitz constraint, and px̂

is defined as the distribution over x̂ = δx + (1 − δ)y for δ ∼ U [0, 1], i.e., a straight line
between two points respectively from real data distribution px and generator distribution pg

[23].
We note that recent works introduce additional penalty into WGAN-GP for improving

the training of WGAN, e.g., [38, 47]. Since how to improve WGAN is not the main concerns
of this work, we leave the investigating and comparison of various regularization methods
as future work.

4.1.3 Trajectory distribution approximate

In this paper we consider a trajectory-user linking problem from a perspective of TDA,
formally defined as:

Definition 2 Trajectory Distribution Approximation (TDA): Given a trajectory dataset
T produced by a set of users U , the task of a TDA is to generate a specific number of trajec-
tories G(ui) (e.g., using GANs) for each ui ∈ U to approximate the underlying trajectory
distribution of each user for ultimately improving the performance of mapping T �→ U .
The number of generated trajectories for users is not mandatory to be equal in TDA, which
can be allocated to balance the label distribution in the dataset.

Note that the generative model used in TDA is not limited to GANs. One could
employ other sophisticated generative models such as Hidden Markov Chians (HMM) [7]
Variational Auto-Encoders (VAE) [26] or PixelRNN [44] for synthetic trajectory generation.

4.2 TGANmodel – overview andmain components

The main aspects of the TGAN model for trajectory distribution approximation are shown
in Figure 3. The TGAN model is inspired by the recent advances in WGAN [2] and TULER
[20], and consists of three parts. First, the generator samples from a Gaussian distribution
(pg) and generates synthetic trajectories using a LSTM network. Next, the generated and
real trajectories are fed into a CNN discriminator that classifies them into real or fake, and
feedbacks the generator to update the distribution pg . The generated trajectory classified as
real will be considered as a new training sample to augment the training set.

Specifically, the underlying trajectory distribution of a user ui can be expressed as
px(ui), under which we build the following three models which, when combined, can help
addressing the TUL problem:

Geoinformatica

Fig. 3 Overview of TGAN: To augment an existing training set (trajectories with known users generat-
ing them), we initially generate trajectories based on some randomly picked distributions (e.g., uniform or
Gaussian) using a LSTM-based generator. The likelihood of them being sampled from a true distribution of
specific users is determined based on the discriminator (e.g., a CNN network), trained on the existing real
trajectories. During the process, the initial distribution is increasingly optimized to approximate the underly-
ing distribution. After convergence (reaching the equilibrium between the generator and the discriminator),
all subsequently generated trajectories together with real ones will be used as the final training pool to learn
user-trajectory mapping

Generative Trajectory Model G it attempts to generate a sequence of check-ins T̃ =
{l1, ..., lk, ..., lm}, lk ∈ L, where L is the vocabulary of candidate check-ins (the POIs user
ui has visited). At each time step k, the generator produces a check-in lk . The goal of this
model is to approximate the true distribution of trajectories corresponding to user ui as
much as possible.

Discriminative TrajectoryModel D aims at discriminating the generated trajectory sample
from the real ones and provides the guidance for improving the generator. It is in fact a
binary classifier characterized by a CNN and produces a probability indicating how likely a
generated sample is produced upon a real distribution px(ui).

Trajectory-User Linking Model3 L: in essence, this is a multi-class classification model
used to link the trajectories, both synthetic and real, to users who generated them. Similar
to [20], TUL model is a RNN based neural network learning the intrinsic moving patterns
of users.

However, due to the nature of non-continuity and non-differentiability of the classical
GAN, the gradient cannot be back-propagated to the generator. Trajectory is inherently
constituted of discrete tokens (POIs). Thus, we first embeds POIs in a continuous low-
dimensional space (c.f Section 3.2) which makes the step of discrete tokens generating
differentiable.

4.3 Trajectory synthesis

We now proceed with discussing each component of TGAN in a greater detail.

3Strictly speaking, TUL model is not part of TGAN but a method used for verifying the effectiveness of
TGAN.

Geoinformatica

Trajectory Generator TGAN employs a LSTM as the generator to learn a latent vector z

upon which a synthetic trajectory T̃ is generated. The probability of generating a trajectory
with a length of h is

p(T̃ |z) = p(l1|z)
h∏

t=2

p(lt |l1, · · · , lt−1, z) (21)

where lt is the t th location in T̃ and l1 is sampled from some distribution (e.g., a Gaussian
being used here). At each time step (t ≥ 2) of the generating process, we seek to estimate a
probability distribution over all the possible next POIs in the vocabulary given the previous
locations using a LSTM [24].

To generate a trajectory, the generator takes lt from the input sequence and lt−1 from
the output POI probability distribution at the previous step, combined with previous hidden
state ht−1 to update the hidden state ht , on top of which a softmax layer is used to produce
the POI samples. All the other POIs in the trajectory are sequentially generated using the
RNN, based on the previously generated locations – until the end-of-trajectory token. Note
that in order to obtain a fully-differentiable generator, the input to the LSTM at each time
step is the POI embedding vector vt for lt .

Note, however, that if we sample each lt from its conditional distribution on the previ-
ously generated POIs, the performance of the generator would deteriorate as the trajectory
becomes longer, due to the generation divergence of the POIs. To alleviate this problem, we
leverage a procedure proposed in [31], called Professor Forcing (PF), for matching the gen-
erative trajectory with the ground-truth sequence during training. The basic idea of PF is
to train the RNN generator to behave (both in its output and hidden states) the same as the
input regardless of whether real training sequences or its self-generated ones are fed. Thus,
we train two RNN models which share parameters with each other to produce the POIs –
however, different from the original PF approach, we do not differentiate between the two
RNN models. Thus, instead of directly discriminating the closed-loop (i.e., the generative)
and open-loop (i.e., real trajectory training) distribution used in [31], we leverage PF as a
joint training process to pretrain the RNN generator, followed by a CNN based discriminator
that distinguishes the generated trajectories from the real data.

Trajectory Discriminator The generator deterministically transforms a latent vector into a
length h trajectory through a LSTM, where a softmax nonlinearity at the output is directly
passed into a discriminator. The discriminator architecture we choose for TGAN is based
on a convolutional neural network, similar to the choices of critic in WGAN [31] and dis-
criminator in SeqGAN [50]. It involves 2 convolution layers and 2 max-pooling operations
over the entire trajectory – represented by a matrix D ∈ R

d×L, where the trajectory has
length of L and would be padded with 0 if necessary. On top of the convolutional feature
vector, a softmax layer is leveraged to produce a probability representing the likelihood of
a trajectory being generated from a real user or from the generator.

We also note that RNN has been widely used in modeling discriminator in sequential
GAN, e.g., text generation [53]. However, since the generator (as well as the TULER later
used for evaluating) are deployed with RNNs, we prefer to introduce variety into TGAN
to alleviate the imbalance problem between generator and discriminator inherent in GAN –
because training a too strong discriminator may prevent or early-stop updating the generator.
In addition, we use trajectory embedding in TGAN to address the non-differentiability of

Geoinformatica

the discrete variables generation in RNN generator, while an alternative method is Gumbel-
softmax [25] which can also make the steps of discrete tokens generating differentiable.
Furthermore, unlike text or dialogue generation which can be estimated by language syntax
and coherence in a reinforcement manner [53], the semantics of generated trajectories can
not be directly evaluated due to the sparsity of the check-ins and the lack of “reward” for
the generated ones.

4.4 Generation evaluation and training details

As discussed above, in addition to discriminator used as a constraint and guidance of gener-
ator, we should include another method to evaluate the performance of individual trajectory
generation. In this work, we employ the TUL task [20], which aims at identifying and link-
ing trajectories to users who generate them, as the generation performance evaluation. That
is, we augment the training trajectory data of each user with the generated trajectories and
test the TUL accuracy. The basic idea of this choice is that if we can correctly approximate
individual trajectory distribution with TGAN, the TUL accuracy should be improved using
the augmented training set.

Specifically, we use a Bi-directional RNN [43] for the TUL classification, in which we
run two LSTMs in parallel: one is on the sequential check-in embedding vectors, and the
other is on the reverse embedding vectors. We note that although Bi-directional RNN per-
forms best for the TUL task in [20], we also evaluate TUL with other TUL classification
methods and our experiments show that TGAN can, to varying extent, improve the perfor-
mance of both neural networks based TUL and the baselines introduced in [20] such as
LCSS and SVM.

We train TGAN to generate trajectories for each user, in which the discriminator is a
binary classifier to determine how likely a trajectory being generated from a real underlying
distribution. This may incur a high computation complexity due to training G and D sepa-
rately for each user – especially so when the number of users (labels) is large. An alternative
method is to incorporate labels in TGAN using a semi-supervised learning [40], where gen-
erated samples are added to dataset with a new label “fake” (y = K + 1, where K is the
original number of labels).

We note that although the label-including method in [40] demonstrates certain efficiency
in image classification, we found that this does not improve the performance of TUL; and
even decreases the linking accuracy for some methods. Essentially, the method simply adds
samples from the generator to the data set and labels them as “fake” which, thereafter, is to
be minimized when learning the classifiers. The rationale behind this approach is that we
can now learn from unlabeled data, as long as we know that it corresponds to one of the K

classes of real data – which is therefore maximized during training. Also, it may benefits
the training efficiency by adding the negative (“fake”) samples, since the discriminator can
directly distinguish them with the label.

However, we can leverage this method as a pre-training process – i.e., to train a model to
initialize the G and D for each user trajectory generation.

Due to the sparsity of LBSN datasets, we generate trajectories in an incremental way –
the generator starts producing sequences of length 1 and increases to length 2 and 3 and
until the maximum length of L. We also leverage a parameter α(1 ≤ α ≤ L) to control the
length of the generated trajectory. In addition, we use another random binary parameter β

to indicate the generation conditioned on a ground truth (i.e., whether an actual trajectory or

Geoinformatica

not) after reaching the equilibrium. For trajectory generation, we train the generator using
the RMSProp algorithm with a learning rate at 0.55 × 10−3 and the decay rate at 0.9.

Finally, note that in both TGAN and TUL implementations, we concatenate all check-in
locations of each user to form a trajectory which will be further divided into sub-trajectories
based on time intervals. To capture richer semantics of individual moving patterns, and for
fairness in our experimental evaluation (i.e., comparison with [20]), we set the time interval
to 6 hours.

5 Experimental evaluation

We now proceed with describing first the settings and metrics used over several real-
world datasets in our experiments, and then present in detail the experimental observations
regarding the advantages of our proposed methods, both TULER and TDA.

5.1 Settings andmetrics

All models were implemented in tensorflow on Ubuntu 16.04 operating system. The
machine is a server with two Intel(R) Xeon(R) CPU E5-2630, 128GB memory, and a sin-
gle GTX 2080Ti GPU. Following are the specifications of the neural networks and training
setup used in TGAN:

– The POI embedding leverages Skip-gram model with window size of 10 and negative
samplings with size 10.

– The dimensionality of POI embedding is 100.
– The generator G:

– LSTM has one hidden layer with 200 neuron units.
– The dropout rate is 0.5 and the batch size is set to 50.

– The discriminator D:

– The CNN for discriminator is a 1-D CNN
– It has 2 convolution layers followed by 2 max-pooling operations.

– The training time ratio of D and G is 5 : 1, that is, we simultaneously train 5 iterations
of D as well as 1 iteration of G to obtain a rapid-growth discriminator compared to
the generator – when the discriminator is too poor, the gradient propagating into the
generator RNN could be detrimental.

– For each user in the dataset, we use TDA to adaptively generate approximately half of
their existing training trajectories and incorporate them into our TUL training.

Metrics The performance of TGAN-based trajectory generation is evaluated on the TUL
task, for which several methods have already been proposed – e.g., Longest Common
Sub-Sequence (LCSS), Linear Discriminant Analysis (LDA), SVM with linear kernel and
Bi-directional RNN (Bi-TULER). We use two metrics for evaluating the quality of TUL
solutions – ACC@K and macro-F1:

ACC@K = # correctly identified trajectories @K

trajectories
(22)

macro-F1 = 2 × macro-P × macro-R

macro-P + macro-R
(23)

Geoinformatica

both of which have been widely used in earlier works (cf. [20]). The purpose of ACC@K is
to evaluate the trajectory-user linking precision, whereas macro-F1 is the typical harmonic
mean of the precision@1 (macro-P) and recall@1 (macro-R). We compare the result of
TUL with and without TGAN to validate the performance of our trajectory approximation
methods.

5.2 Datasets

Three publicly available LBSN datasets were used in our experiments: Gowalla, Brightkite
[13] and Geolife [56]. Most of the users have very sparse check-ins in the original datasets
which makes the TUL impossible for those users having only several check-ins in a long
period, e.g., a month. For Gowalla and Brightkite, we selected top 201 and 92 users who
have most check-in data, respectively. For each user, we concatenate all check-in locations
to form a trajectory which will be further divided into sub-trajectories based on the time
interval we define (i.e., 6 hours). We note that this is a relatively large dataset for testing
classification models. For example, the widely used text classification datasets are either
binary (e.g., IMDB dataset) or have at most 14 classes (e.g., DBpedia dataset) – which is
much less than the number of classes (users) in the TUL settings. We then used 90% of data
for training (and generation) and 10% for testing, similarly to [20].

For Geolife dataset, 20% of the data was chose (randomly) for generation, which was
fed into TGAN to learn the trajectory distribution, and the other 80% were left for testing.
The reason of this partition is that the daily trajectories of the users in Geolife are relatively
stable and 20% of training data (combined with generated trajectories) are enough to capture
the trajectory distribution of the users. Just as importantly, if more trajectories are used
in training (correspondingly the testing data decreases), the generated trajectories may not
fit the distribution of data for testing very well even though TGAN correctly matches the
training data. This phenomenon happens because of the conflicts of TGAN and TULER and
the data characteristics. First, TGAN tries to match the trajectory distribution of training
data while the goal of TULER is to accurately classifying the test trajectories by learning
the motion patterns of training data. Imagine an extreme case that we use 99% data of a
user for training TGAN and use 1% for testing the TGAN via a TUL model. No matter how
better we match the training data (and therefore generate more plausible trajectories and
learn a better TUL model), it cannot assure that the TULER can be more accurate on the 1%
data that randomly selected for testing. Moreover, unlike Gowalla and Brightkite which are
sparse and irregular, the data in Geolife is relatively stable and dense (regular daily travel
data captured by GPS equipments), a small portion of which can train a good learner to
distinguish the mobility patterns. Finally, since the trajectory in the original Geolife dataset
contains only the GPS points (longitude and latitude), we cluster all points to obtain 3,646
POIs – that is, we save the two digits after the decimal point of longitude and latitude. The
summary of datasets used in our experiments is presented in Table 1.

Table 1 Attributes description of datasets. U : the number of users; S/T : the number of trajectories in the
training/testing set; C: the number of unique check-ins; tr : the range of the number of check-ins across all
sub-trajectories

Dataset U S/T C tr

Gowalla 201 17,654/2,063 10,956 [1,131]

Brightkite 92 17,934/2,039 2,120 [1,184]

Geolife 20 1,690/6,763 3,646 [1,172]

Geoinformatica

5.3 Baselines

To demonstrate the superior performance of TULER, we define several baselines in the
sequel:

– LCSS: The Longest Common Sub-Sequence [49]: It is widely used to measure the
trajectory similarity by matching the longest common sub-trajectory between two tra-
jectories via dynamic programming. In this work, LCSS is used as a solution to the
TUL problem for the purpose of linking an unlinked testing sub-trajectory to the user
of its most similar trajectory among all trajectories.

– LDA: Linear Discriminant Analysis-based: LDA has demonstrated a great perfor-
mance in many text classification tasks. In this paper, we embed the trajectory into
one-hot vectors following the method proposed in [29], and then we use Singular Value
Decomposition (SVD) to decompose the within-class scatter matrix. We note that other
alternative matrix solvers – e.g., eigenvalue decomposition and least squares – have
also been tested but are not reported here due to their lower performance in comparison
with SVD in our experiments.

– SVM: Support Vector Machine: We applied SVM on trajectory embeddings as a
multi-class classifier. We observed that the linear kernel shows a superior performance
over the other kernels such as RBF and Gaussian.

– Hidden Markov Model (HMM): A classical dynamic Bayesian network in which the
system being modeled is assumed to be a Markov process with unobserved hidden
states.

– Random Forest (RF): We utilize the multi-class classification algorithm based on
random forest to predict the generator for each trajectory.

– Gradient Boosting Decision Tree (GBDT): GBDT is a boosting-based machine learn-
ing model that ensembles a set of ”weak classifiers” for classifying trajectories, and is
widely used in competitions such as Kaggle and KDDCup.

– Multi Layer Perceptron (MLP): An MLP constitutes the simplest and most traditional
architecture for classification.

We note that TULER also has five variants based on different types of RNN models,
one layer of RNN with LSTM or GRU (TULER-LSTM and TULER-GRU), stacked RNNs
(TULER-LSTM-S and TULER-GRU-S) and Bidirectional LSTM (Bi-TULER).

We omit the comparison to another recent work TULVAE [57], which addresses the
TUL problem with hierarichical variational autoencoders [26] in a semi-supervised manner,
due to the unfair comparison reason, i.e., TGAN learns the underlying human mobility
in a totally unsupervised manner. Furthermore, there is a fundamental difference between
TGAN and TULVAE: TGAN is a trajectory generation method aiming at augmenting the
sparse LBSN dataset with synthetic trajectories, while TULVAE tries to addressing the data
sparsity problem by leveraging the unlabeled data.

To illustrate the benefits of TGAN, we compare it with two baselines that could be used
to generate individual trajectories. The first one is continuous-time Random Walk (RW) [9]
which samples randomly from the visited POIs of individuals at each time step. The second
model is Markov Chain (MC) which we learn the adjacent POI transition probability to
generate trajectories.

5.4 Results on trajectory-user linking

We first report the experimental results on Trajectory-User Linking.

Geoinformatica

Fig. 4 Examples of inferring users of trajectories using TULER

5.4.1 Empirical results

Before delving into the details of the performance comparisons between our proposed
approach and baselines, we first visualize the outcomes of randomly selecting several tra-
jectories from two different datasets and their predicted users using TULER (See Fig. 4).
Figures 4a and c show that TULER successfully identifies the trajectories produced by user
No.119 and No.19, respectively. However, it fails to do so for the trajectories generated
by user No. 79 and No. 97 in Fig. 4b and d (marked as red ×). This is mainly due to the
extreme sparsity of the sequences, with only 1 or 2 check-ins involved. This is a still an
open and challenging problem in TUL. That is, how can we understand the sparse check-in
trajectories? A natural idea is to incorporate more characteristics of trajectories and the first

Geoinformatica

Table 2 The list of parameters
and values used in this paper Parameters Tuned Commonly suggested

Dimensionality 250 100-300

Hidden size 300 250-1000

Learning rate 0.95 × 10−3 0.85 × 10−3-0.1

Dropout rate 0.5 0-1

Stacked TULER 2 ≥ 2

LDA Matrix solver SVD SVD, LSQR, etc

SVM Kernel Linear Linear, RBF, etc

extensions would be to include the timestamps of check-ins (which might help reduce the
complexity).

Table 2 lists the common guidelines of choosing values for parameters as well as the
optimal ones, tuned for both TULER and baselines. The results in the rest of this section are
reported based on these optimal parameter values (unless otherwise specified).

5.4.2 Performance comparison

The performance comparison between TULER and baselines (the best is shown in bold, and
the second best is underlined) are summarized in Tables 3 and 4 for Gowalla and Brightkite,
respectively.

We observe that on Gowalla dataset, our model TULER with Bidirectional LSTM con-
sistently outperforms the other methods in terms of accuracy, while the TULER with one
layer of LSTM achieves the best result with respect to the Macro-F1 metric. Specifically,
Bi-TULER yields 36.9%, 28.1% and 13.8% improvement compared to LCSS, LDA and
SVM on ACC@5 metric.

Similar performance by TULER also holds on the Brightkite dataset. As can be seen,
TULER-LSTM and Bi-TULER achieve the best and the second best results in terms of
accuracy, respectively. LDA obtains the highest Macro-F1, but TULER based methods still
achieve comparable results.

Table 3 Performance of various
methods on the dataset of
Gowalla

ACC@1 ACC@5 Macro-F1

LCSS 32.65 46.13 27.02

LDA 37.86 49.28 34.08

SVM 41.25 55.50 34.32

HMM 40.54 53.22 33.59

RF 39.86 52.47 32.23

GBDT 42.34 57.55 34.67

MLP 41.45 56.28 33.68

TULER-LSTM 45.03 63.15 35.77

TULER-GRU 41.06 60.37 31.46

TULER-LSTM-S 41.68 57.03 32.43

TULER-GRU-S 40.10 59.08 32.37

Bi-TULER 45.70 65.68 35.56

Geoinformatica

Table 4 Performance of various
methods on the dataset of
Brightkite

ACC@1 ACC@5 Macro-F1

LCSS 30.12 39.13 23.02

LDA 40.50 53.38 39.38

SVM 42.07 61.46 36.59

HMM 41.49 60.23 35.62

RF 40.82 60.11 35.08

GBDT 43.26 62.25 36.74

MLP 42.58 61.85 36.29

TULER-LSTM 45.00 64.64 38.18

TULER-GRU 43.29 62.49 34.86

TULER-LSTM-S 43.19 61.56 38.71

TULER-GRU-S 41.38 60.68 38.71

Bi-TULER 44.91 63.91 38.20

We note that we have observed something counter-intuitive in the results: namely, the
stacked TULER (such as stacked LSTM and GRU) – which primarily aims at capturing
characteristics of longer trajectory sequences – actually falls behind the one layer TULER,
as well as the Bi-TULER (although each of them outperforms the baselines). A possible
explanation is that the trajectory segmentation in TULER has truncated the original long
trajectories into short sub-trajectories – whereas for longer trajectories, stacked TULER
performs the best.

One could be tempted to hypothesize that the length of the trajectory is what affects the
performance of TULER – however, upon running additional experiments we observ that
the situation is more complicated, as illustrated by Fig. 5. Firstly, after the truncation (i.e.,
within 6 hours), most of the trajectories have ≤ 6 POIS. This may have some intuitive jus-
tification in the sense that most individuals would not check-in to more than 6 POIs within
6 hours. Secondly, one can not readily claim that there is a simple relationship between the
length of the trajectories and TUL results. One of the main reasons is that the lenght of the
trajectories is not evenly distributed – i.e., the number of trajectories in the dataset signif-
icantly decreases with the trajectories’ length (cf. Fig. 5a). This, in turn, implies that one
cannot simply claim that the performance of TUL will decrease with the trajectory length.

Fig. 5 Impact of trajectory length (Gowalla). The X-axes in both sub-figures indicate the length in terms of
6-hours segments

Geoinformatica

Fig. 6 Sensitivity of parameters under TULER-LSTM

We also note that the impact of the length is twofold: (1) the longer the trajectory, the
more context/patterns we can draw from the training data – and, therefore the better perfor-
mance of TUL; (2) the performance of the TULERs, which are RNN based models, may
decrease with the length of the trajectories (c.f Fig. 5b), especially when the testing trajec-
tories are very different than the training data. Thus, in additoin to sophisticated TULER
models, improving the TUL performance may require investigating the dependies on dataset
characteristics.

5.4.3 Model robustness

Some parameters like the number of iterations and learning rate might have significant
impact on the model performance. Figure 6 illustrates that the accuracy of TULER is propor-
tional to the number of iterations. In addition, a small value of learning rate (e.g., 0.95×10−3

) can obtain a higher classification accuracy.

5.5 Results on trajectory generation

We now present our evaluation of the effects of TDA solution for the TUL problem.

5.5.1 Case study

We first present a visualization study of several trajectories from Geolife dataset and the
effect of TGAN. Figure 7 illustrates: (a) A successful TUL case: a dense trajectory by user
No.35. (b) A Failed TUL case: some check-ins with red ‘×’ marked are not correctly linked
to their user No.62. (c) A generated trajectory using TGAN for user No.62 (dashed arrows).
(d) TGAN incorporates the generated trajectory in (c) into training and successfully link
all check-ins in (b) to user No.62 (equivalently classify the trajectory into user No.62). The
Bi-directional RNN is employed for TUL here.

5.5.2 Quantitative observations

We also quantitatively evaluate the model performance in terms of ACC@K and micro-F1
on three datasets. Bi-TULER is chosen since it is proved to perform well overall from pre-
vious results. Table 5 summarizes the following observations: (1) TGAN improves the TUL

Geoinformatica

Fig. 7 Visualization examples of using TGAN to improve TUL on Geolife data

accuracy across all TUL methods with generating adversarial trajectories. The improvement
originates from learning the underlying individual trajectory distribution and augmenting
the size of training data, which supports our initial motivation; (2) the performance of
TGAN relies on individual motion patterns and the characteristics of datasets. For example,
TGAN greatly improved the TUL results on Geolife dataset especially using Bi-directional
RNN – 88.6% for ACC@1 and 155.6% for Macro-F1. The reason is that the trajectories
in Geolife are densely and periodically distributed, compared to the sparse check-ins in
Gowalla and Brightkite; although, as can be observed, TGAN still achieves satisfactory
improvement on the later two datasets.

There still remains one question not answered yet: the quality of generated trajectories
for TUL comparing to some heuristic methods, such as Random Walk (RM) and Markov
Chain (MC) methods. The results, illustrated in Fig. 8, demonstrate the superiority of TGAN
on TUL in terms of ACC@1 for all three datasets. Note that it requires time for TGAN

Geoinformatica

Table 5 Performance comparison of Trajectory-User Linking (TUL) on three datasets

Dataset ACC@1 ACC@3 ACC@5 ACC@10 Macro-F1

Without TGAN

Geolife LCSS 13.35 27.20 32.69 39.15 11.71

LDA 14.11 31.14 37.96 48.74 13.81

SVM 15.70 33.21 38.83 56.12 15.77

Bi-TULER 31.69 59.49 75.22 90.56 19.19

Gowalla LCSS 32.65 42.00 46.13 51.00 27.02

LDA 37.86 46.10 49.28 53.30 34.08

SVM 41.25 51.85 55.50 60.35 34.32

Bi-TULER 45.70 60.08 65.68 71.94 35.56

Brightkite LCSS 30.12 36.31 39.13 44.17 23.02

LDA 40.50 48.46 53.38 58.66 39.38

SVM 42.07 54.66 61.64 69.55 36.59

Bi-TULER 44.91 58.08 63.91 72.86 38.20

With TGAN

Geolife LCSS 13.80 28.71 34.28 40.97 11.88

LDA 18.50 34.11 39.91 52.13 15.17

SVM 19.45 33.74 40.98 57.94 16.83

Bi-TULER 59.75 82.21 89.85 95.33 49.05

Gowalla LCSS 35.25 45.40 51.00 55.35 29.86

LDA 41.60 50.22 52.59 55.84 35.10

SVM 43.80 55.80 59.35 64.40 36.13

Bi-TULER 47.96 63.34 68.45 75.48 37.69

Brightkite LCSS 32.02 39.58 43.68 49.83 25.16

LDA 43.48 54.03 59.83 64.42 41.24

SVM 44.80 60.23 67.16 74.72 38.54

Bi-TULER 47.71 63.61 69.66 78.10 40.22

to achieve the best performance while learning the underlying mobility patterns – which
also means that as the training proceeds, TGAN converges to an equilibrium between the
generator and the discriminator.

In fairness, we note that TGAN does have overheads in terms of running time for the
training, in comparison with RW and MC. What we observed while running our experi-
ments is that: (1) RW would only require a few seconds for sampling (i.e., generating) the
trajectories; (2) MC model is also rather efficient in constructing the transition probability
matrices (i.e., approximately 20-25 minutes); (3) TGAN, in contrast, would require up to a
couple of hours of training time for matching the trajectories distribution and synthesizing
the trajectories. However, in practice, the overhead of the offline training time in TGAN is
amortized by the benefits of the accuracy offered when classifying a trajectory, as well as
the relevant enrichment of the datasets.

Geoinformatica

Fig. 8 Performance comparison of TUL using TGAN with two baselines: RW and MC

6 Concluding remarks

We addressed the Trajectory-User Linking (TUL) problem – an important task for many
LBSN applications, targeting the identification of potential users who could have generated
location-based trajectories. We presented an RNN based model called TULER which, unlike
traditional models mainly based on trajectory similarity measurement and classification, is
designed to capture the dependency of check-ins and to infer the latent patterns of user-
trajectory interactions. Experiments conducted on three publicly available datasets show
that TULER achieves the significant performance improvement, when compared to state-
of-the-art baselines.

In addition, to alleviate data sparsity problem during the training phase of TUL, we intro-
duced the Trajectory Distribution Approximation (TDA) problem and proposed the TGAN
– a generative adversarial samples-based individual trajectory generation algorithm. TGAN
learns the underlying moving patterns of the users, aiming to improve the performance of
identifying human mobility. TGAN is a first attempt towards addressing the TDA problem
and, as demonstrated, it can be an effective way with augmenting the training trajectories in
location-based datasets.

Our ongoing works focuses on two aspects. Firstly, we would like to improve the TGAN
performance to target different applications in a more context-aware manner about the
datasets – e.g., LBSN in regular vs. abnormal circumstances, such as crowd after concerts

Geoinformatica

or games [36, 52]. Secondly, we plan to investigate the issue of formally incorporating the
uncertainty in the TUL problem [19].

References

1. Alharbi B, Qahtan A, Zhang X (2016) Minimizing user involvement for learning human mobility patterns
from location traces. In: Proceedings of the AAAI Conference on Artificial Intelligence

2. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial networks. In: International
conference on machine learning (ICML)

3. Bao J, He T, Ruan S, Li Y, Zheng Y (2017) Planning bike lanes based on sharing-bikes’ trajectories. In:
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(KDD)

4. Barthélemy M (2011) Spatial networks. Physics Reports
5. Bashir FI, Khokhar AA, Schonfeld D (2007) Object trajectory-based activity classification and recogni-

tion using hidden markov models. IEEE Trans Image Process 16(7):1912–1919
6. Bhargava P, Phan T, Zhou J, Lee J (2015) Who, what, when, and where: Multi-dimensional collaborative

recommendations using tensor factorization on sparse user-generated data. In: International world wide
web conferences (WWW)

7. Bindschaedler V, Shokri R (2016) Synthesizing plausible privacy-preserving location traces. In: IEEE
Symposium on security and privacy (s&p). IEEE, pp 546–563

8. Brockmann D (2013) The hidden geometry of complex, network-driven contagion phenomena. Science
9. Brockmann D, Hufnagel L, Geisel T, Whitaker RM (2006) The scaling laws of human travel. Nature

10. Chen D, Ong CS, Xie L (2016) Learning points and routes to recommend trajectories. In: International
conference on information and knowledge management (CIKM)

11. Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: Interpretable rep-
resentation learning by information maximizing generative adversarial nets. In: Neural information
processing systems (NIPS)

12. Cheng C, Yang H, Lyu MR, King I (2013) Where you like to go next: successive point-of-interest
recommendation. In: International joint conference on artificial intelligence (IJCAI)

13. Cho E, Myers SA, Leskovec JA (2011) Friendship and mobility: User movement in location-based social
networks. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD)

14. Chung J, Gulcehre C, Cho KH, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks
on sequence modeling. arXiv e-prints

15. Damiani ML, Gu̇ting RH (2014) Semantic trajectories and beyond (tutorial). In: International conference
on mobile data management (MDM)

16. Deville P, Song C, Eagle N, Blondel VD, Barabási AL, Wang D (2016) Scaling identity connects human
mobility and social interactions. Proceedings of the National Academy of Sciences of the United States
of America (PNAS)

17. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh EJ (2008) Querying and mining of time series
data: experimental comparison of representations and distance measures. Proceedings of the VLDB
Endowment (PVLDB)

18. Dodge S, Weibel R, Ahearn SC, Buchin M, Miller JA (2016) Analysis of movement data. International
Journal of Geographical Information Science

19. Gal Y, Ghahramani Z (2016) Dropout as a bayesian approximation: Representing model uncertainty in
deep learning. In: Proceedings of The 33rd International Conference on Machine Learning, pp 1050–
1059

20. Gao Q, Zhou F, Zhang K, Trajcevski G, Luo X, Zhang F (2017) Identifying human mobility via trajectory
embeddings. In: International joint conference on artificial intelligence (IJCAI)

21. González M. C., Hidalgo CA, Barabási A. L., Barabási A. L. (2008) Wang: Understanding individual
human mobility patterns Nature

22. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014)
Generative adversarial nets. In: Neural information processing systems (NIPS)

23. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein
gans. In: Neural information processing systems (NIPS)

24. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Computation
25. Jang E, Gu S, Poole B (2017) Categorical reparameterization with gumbel-softmax. In: International

conference on learning representations (ICLR)

Geoinformatica

26. Kingma DP, Welling M (2014) Auto-encoding variational bayes. In: International conference on learning
representations (ICLR)

27. Kolouri S, Park SR, Thorpe M, Slepcev D, Rohde GK (2017) Optimal mass transport - signal processing
and machine-learning applications. IEEE Signal Proc Mag 34(4):43–59

28. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Neural information processing systems (NIPS)

29. Lai S, Liu K, He S, Zhao J (2016) How to generate a good word embedding. IEEE Intelligent Systems
30. Lai S, Xu L, Liu K, Zhao J (2015) Recurrent convolutional neural networks for text classification. In:

Proceedings of the AAAI Conference on Artificial Intelligence
31. Lamb AM, ALIAS PARTH GOYAL AG, Zhang Y, Zhang S, Courville AC, Bengio Y (2016) Professor

forcing: a new algorithm for training recurrent networks. In: Neural information processing systems
(NIPS)

32. Li J, Cai Z, Yan M, Li Y (2016) Using crowdsourced data in location-based social networks to explore
influence maximization. In: IEEE Conference on computer communications (INFOCOM)

33. Liu P, Qiu X, Huang X (2016) Recurrent neural network for text classification with multi-task learning.
In: International joint conference on artificial intelligence (IJCAI)

34. Liu Q, Wu S, Wang L, Tan T (2016) Predicting the next location: a recurrent model with spatial and
temporal contexts. In: Proceedings of the AAAI Conference on Artificial Intelligence

35. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector
space. Computer Science

36. Naboulsi D, Fiore M, Ribot S, Stanica R (2016) Large-scale mobile traffic analysis: a survey Communi-
cations Surveys and Tutorials. IEEE Communications Society 18(1):124–161

37. Pelekis N, Theodoridis Y (2014) Mobility Data Management and Exploration. Springer, Berlin.
https://doi.org/10.1007/978-1-4939-0392-4

38. Petzka H, Fischer A, Lukovnicov D (2018) On the regularization of wasserstein gans. In: International
conference on learning representations (ICLR)

39. Ruder S (2016) An overview of gradient descent optimization algorithms. CoRR arXiv:1609.04747
40. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X, Chen X (2016) Improved

techniques for training gans. In: Neural information processing systems (NIPS)
41. Song C, Koren T, Wang P, Barabási A. L. (2010) Modelling the scaling properties of human mobility.

Nature Physics
42. Song C, Qu Z, Blumm N (2010) Limits of predictability in human mobility. Science
43. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In: Neural

information processing systems (NIPS)
44. Van Oord A, Kalchbrenner N, Kavukcuoglu K (2016) Pixel recurrent neural networks. In: International

conference on machine learning (ICML)
45. Villani C (2003) Topics in optimal transportation. Graduate studies in mathematics
46. Villania C (2008) Optimal transport. Springer Science & Business Media
47. Wei X, Gong B, Liu Z, Lu W, Wang L (2018) Improving the improved training of wasserstein gans: a

consistency term and its dual effect. In: International conference on learning representations (ICLR)
48. Yang D, Zhang D, Zheng VW, Yu Z (2015) Modeling user activity preference by leveraging user spatial

temporal characteristics in lbsns. Transactions on Systems, Man, and Cybernetics: Systems
49. Ying JC, Lee WC, Weng TC, Tseng VS (2011) Semantic trajectory mining for location prediction.

In: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems

50. Yu L, Zhang W, Wang J, Yu Y (2017) Seqgan: sequence generative adversarial nets with policy gradient.
In: Proceedings of the AAAI Conference on Artificial Intelligence

51. Zhang J, Zheng Y, Qi D (2017) Deep spatio-temporal residual networks for citywide crowd flows
prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence

52. Zhang J, Zheng Y, Qi D, Li R, Yi X, Li T (2018) Predicting citywide crowd flows using deep spatio-
temporal residual networks. Artif Intell 259:147–166

53. Zhang Y, Gan Z, Fan K, Chen Z, Henao R, Shen D, Carin L (2017) Adversarial feature matching for
text generation. In: International conference on machine learning (ICML)

54. Zheng Y (2015) Trajectory data mining: An overview. ACM Transactions on Intelligent Systems and
Technology (TIST)

55. Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on gps data. In:
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing
(UbiComp)

56. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from gps
trajectories. In: International world wide web conferences (WWW)

https://doi.org/10.1007/978-1-4939-0392-4
http://arXiv.org/abs/1609.04747

Geoinformatica

57. Zhou F, Gao Q, Trajcevski G, Zhang K, Zhong T, Zhang F (2018) Trajectory-user linking via variational
autoencoder. In: International joint conference on artificial intelligence (IJCAI)

58. Zhu Y, Zheng Y, Zhang L, Santani D, Xie X, Yang Q (2012) Inferring taxi status using gps trajectories.
Computer Science

59. Zhuang C, Jing Yuan N, Song R, Xie X, Ma Q (2017) Understanding people lifestyles: Construction
of urban movement knowledge graph from gps trajectory. In: International joint conference on artificial
intelligence (IJCAI)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Fan Zhou received his BS degree in Computer Science from Sichuan University, China, in 2003, and his
MS and PhD degrees from University of Electronic Science and Technology of China, in 2006 and 2011,
respectively. He is currently an Associate Professor at the School of Information and Software Engineering,
University of Electronic Science and Technology of China. His research interests include machine learning,
spatio-temporal data management and social network knowledge discovery.

Ruiyang Yin received the BS and MS degrees in Software Engineering from University of Electronic Science
and Technology of China (UESTC) in 2016 and 2019, respectively. He is currently working in Baidu Inc..
His research interests include recommendation system, spatio-temporal data mining and deep generative
learning.

Geoinformatica

Goce Trajcevski received the B.Sc. degree from the University of Sts. Kiril i Metodij, and the M.S. and Ph.D.
degrees from the University of Illinois at Chicago. He is currently an Associate Professor with the Department
of Electrical and Computer Engineering, Iowa State University. His main research interests are in the areas
of spatio-temporal data management, uncertainty and reactive behavior management in different application
settings, and incorporating multiple contexts. In addition to a book chapter and three encyclopedia chapters,
he has coauthored over 140 publications in refereed conferences and journals. His research has been funded
by the NSF, ONR, BEA, and Northrop Grumman Corp. He was the General Co-Chair of the IEEE ICDE
2014, ACM SIGSPATIAL 2019, the PC Co-Chair of the ADBIS 2018 and ACM SIGSPATIAL 2016 and
2017, and has served in various roles in organizing committees in numerous conferences and workshops. He
is an Associate Editor of the ACM TSAS and the Geoinformatica Journals.

Kunpeng Zhang received the Ph.D. degree in computer science from Northwestern University. He is a
Researcher in the area of large-scale data analysis, with particular focuses on social data mining, image under-
standing via machine learning, social network analysis, and natural language processing. He is currently an
Assistant Professor with the Department of Information Systems, Smith School of Business, University of
Maryland, College Park, MA, USA. He has published papers in the area of social media, artificial intel-
ligence, network analysis, and information systems on top conference and journals. He serves as program
committees for many conferences and Associate Editors for journals.

Geoinformatica

Jin Wu received her BS degree in Automatic control from University of Electronic Science and Technology
of China (UESTC), in 1993, and her MS and PhD degrees from UESTC, in 1996 and 2004, respectively.
She is currently an Associate Professor at the University of Electronic Science and Technology of China.
Her research interests include machine learning, Knowledge Mapping, software development techniques and
process technology.

Ashfaq Khokhar received the B.Sc. degree in electrical engineering from the University of Engineering and
Technology, Lahore, Pakistan, in 1985, the M.S. degree in computer engineering from Syracuse University
in 1989, and the Ph.D. degree in computer engineering from the University of Southern California in 1993.
He served two years as a Visiting Assistant Professor with the Department of Computer Sciences (CS) and
the School of ECE, Purdue University. In 1995, he joined the ECE Department, University of Delaware,
where he first served as an Assistant Professor and then as an Associate Professor. In 2000, he joined the
CS and ECE Departments at UIC, and served first as Associate Professor and then as Professor and the
Director of Graduate Studies of ECE until 2013. From 2013 to 2017, he served as a Professor and the
Department Chair of ECE with the Illinois Institute of Technology, Chicago. He is currently a Professor
and the Palmer Department Chair with the Department of Electrical and Computer Engineering (ECE), Iowa
State University. He has authored over 270 technical papers and book chapters in refereed conferences and
journals in the areas of healthcare data mining, wireless networks, multimedia systems, data mining, and
high performance computing. His research centers on high performance solutions for diverse application
area including, computational biology, health care data mining, and content-based multimedia modeling. He
is a fellow of IEEE for his contributions to multimedia computing and databases. He was a recipient of the
NSF CAREER award in 1998. He has received numerous outstanding paper awards, and has served as the
Program Chair and technical program committee members of leading IEEE/ACM conferences.

Geoinformatica

Affiliations

Fan Zhou1 ·Ruiyang Yin1 ·Goce Trajcevski2 ·Kunpeng Zhang3 · Jin Wu1 ·
Ashfaq Khokhar2

Goce Trajcevski
gocet25@iastate.edu

Kunpeng Zhang
kpzhang@umd.edu

Jin Wu
wj@uestc.edu.cn

Ashfaq Khokhar
ashfaq@iastate.edu

1 School of Information and Software Engineering, University of Electronic Science and Technology
of China, Chengdu, 610054, China

2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
3 Department of Decision, Operations & Information Technologies, University of Maryland, College park,

MD 20742, USA

http://orcid.org/0000-0002-8038-8150
mailto: gocet25@iastate.edu
mailto: kpzhang@umd.edu
mailto: wj@uestc.edu.cn
mailto: ashfaq@iastate.edu

	Improving human mobility identification with trajectory augmentation
	Abstract
	Introduction
	Related work
	Trajectory-user linking
	Problem settings
	Segmentation and check-in embedding
	Trajectory characterization
	TULER with LSTM
	TULER with GRU
	Variants

	Trajectory-user linking

	Adversarial synthesis trajectory generation
	Generative adversarial nets
	Generative adversarial nets (GAN)
	Optimal transport and WGAN
	Optimal Transport
	Wasserstein GAN (WGAN)
	WGAN-Gradient Penalty (GP)

	Trajectory distribution approximate

	TGAN model – overview and main components
	Generative Trajectory Model G
	Discriminative Trajectory Model D
	Trajectory-User Linking Model

	Trajectory synthesis
	Trajectory Generator
	Trajectory Discriminator

	Generation evaluation and training details

	Experimental evaluation
	Settings and metrics
	Metrics

	Datasets
	Baselines
	Results on trajectory-user linking
	Empirical results
	Performance comparison
	Model robustness

	Results on trajectory generation
	Case study
	Quantitative observations

	Concluding remarks
	References
	Affiliations

