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ABSTRACT
Point-of-interest (POI) recommendation is essential to a variety
of services for both users and business. An extensive number of
models have been developed to improve the recommendation per-
formance by exploiting various characteristics and relations among
POIs (e.g., spatio-temporal, social, etc.). However, very few studies
closely look into the underlying mechanism accounting for why
users prefer certain POIs to others. In this work, we initiate the
first attempt to learn the distribution of user latent preference by
proposing an Adversarial POI Recommendation (APOIR) model, con-
sisting of two major components: (1) the recommender (R) which
suggests POIs based on the learned distribution by maximizing the
probabilities that these POIs are predicted as unvisited and poten-
tially interested; and (2) the discriminator (D) which distinguishes
the recommended POIs from the true check-ins and provides gradi-
ents as the guidance to improve R in a rewarding framework. Two
components are co-trained by playing a minimax game towards im-
proving itself while pushing the other to the boundary. By further
integrating geographical and social relations among POIs into the
reward function as well as optimizing R in a reinforcement learning
manner, APOIR obtains significant performance improvement in
four standard metrics compared to the state of the art methods.
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1 INTRODUCTION AND MOTIVATION
Location-based recommendation systems primarily aim at suggest-
ing spatial entities (i.e., point-of-interest (POI)) to users, and have
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recently spurred a significant research interests in both academia
and industry. Different variations of POI recommendations have
been explored, including next POI recommendation [4, 7], time-
aware POI recommendation [13] and out-of-town POI recommen-
dation [21].

A body of existing works has focused on improving the POI
recommendation performance by exploiting various implicit con-
text features embedded in check-ins, such as their spatial informa-
tion [13, 14, 17]; semantics [9]; social relations [5, 11, 36]; temporal
characteristics [18, 33]; and sequential dependence [6, 19, 27, 35].
Complementary to these, approaches that model user preference
through mining various features for POI recommendation have
been proposed – e.g., Matrix Factorization (MF) [11, 13, 14, 17],
Context Embedding (CE) [15, 27, 33] and Pairwise Ranking (PR) [4,
12, 22, 33]. A recent work [16] summarized that geographical infor-
mation and social influence are the two most effective factors for
modeling user preference, while MF based methods such as GeoMF
and RankGeoFM exhibit superior performance on POI recommen-
dation. Some of the existing methods make simple but proven-to-be
effective assumptions for POI recommendation.

At the heart of our motivation is the observation that many
of the existing studies lack formal underlying mechanisms to un-
derstand essential user check-in behavior, which may often lead
to elusive results. Inspired by recent advances in deep generative
models [8, 25] that are successfully and widely used in the areas
of computer vision and information retrieval, we attempt to learn
user latent preference in a generative way, rather than extracting
different features and quantitatively analyzing their impact on POI
recommendation as done in most of the existing works.

Towards that, we propose a novel POI recommendation approach,
called Adversarial POI Recommendation (APOIR), which learns the
underlying check-in distribution in an adversarial manner by si-
multaneously training two synergistic components. Specifically,
we model a user u and his check-in locations l in a generative
way, with two neural network components: recommender (R) and
discriminator (D) – being co-trained alternatively, to optimize the
generative process of u → l . R recommends POIs based on the
currently learned user preference distribution, while D, acting as
a catalyzer, judges whether the recommended POIs are true loca-
tions visited by that user and provides guidance to improve R. Two
effective features (geographical and social influence) are also incor-
porated into the APOIR to further improve the performance. Note
that our model can be generalized to include other features.
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To train APOIR, we alternate the updates of the recommender
and the discriminator as follows. Given the currently learned pref-
erence distribution, a set of POIs are sampled to update the R using
the policy gradient method. Subsequently, D is updated using user
u’s true check-ins along with the ones sampled from the updated R.
After an equilibrium is reached – which is, the true user preference
distribution is close enough to the empirical learned distribution, a
list of POIs with high probabilities based on the learned distribution
are generated and eventually recommended. Our main contribu-
tions can be summarized as follows:

• We address the POI recommendation in a generative way, which
is a novel approach in the area of spatial mining and POI recom-
mendation.
• We propose a method – APOIR – to learn underlying user prefer-
ence distribution, which significantly boosts the recommendation
performance. In addition, APOIR successfully unifies reinforce-
ment learning and matrix factorization methods into an adver-
sarial learning framework for POI recommendation.
• We evaluate our method on three public location-based social
network (LBSN) datasets and compare it to several state-of-the-
art models. The results show that the APOIR approach performs
well, e.g., achieving 10.17%, 11.7% and 10.0% improvement over
the best baseline on Gowalla, Foursquare and Yelp datasets in
terms of Precision@5.

2 RELATED LITERATURE
ML based POI Recommendation Matrix Factorization (MF) and
its variants are prevalent techniques in traditional POI recommen-
dation. Typically, a user-POI matrix is factorized to identify user
latent references. For example, in [14] user and POI latent factors
in the factorization model are augmented with activity area vectors
of users and influence vectors of POIs, to deal with the challenge of
matrix sparsity. User interest and check-in behavior [12], user pref-
erence ranking and metric embedding [4], as well as POI semantic
categories [9] are also taken into account for POI recommendation
in the MF-based framework.

An extensive experimental evaluation [16] has been recently
conducted to compare 12 representative POI recommendation mod-
els and draw relevant findings, among which are: (a) geographical
information [13, 14]; and (b) implicit feedback of user preference
[17], are the most relevant factors to the recommendation perfor-
mance. According to their results, RankGeoFM [13], IRenMF [17]
and GeoMF [14] are the three state-of-the-art POI recommendation
models. Our work differs from these methods in that we propose a
generative model to learn underlying user preference distribution
in an adversarial manner.
GAN and POI Recommendation Generative adversarial net-
works (GANs) have gained recent popularity due to their successes
in natural image generation [8]. GANs have also been used for
modeling sequential data, such as discrete token generation [29]
and have been applied in information retrieval [25]. However, few
efforts have been made towards recommending POIs in LBSNs with
adversarial networks due to the following challenges: (1) data spar-
sity inherent in LBSN data, e.g., the density of the check-ins used

in POI recommendation is usually around 0.1% [16]; (2) complex-
ity. Various complicated, latent, and mixed-typed factors, includ-
ing geographical, spatio-temporal, sequential, social influence, etc.,
need to be combined into a unified framework for addressing POI
recommendation. Our proposed method APOIR provides a funda-
mentally different way for POI recommendation by learning the
user preference distribution, and thus opens up a new perspective
for addressing POI recommendation problems – e.g., adversarial
time-aware POI recommendation and next POI recommendation.

3 PROBLEM FORMULATION AND
PRELIMINARIES

Given a set of POIs L (|L| = M) and a set of usersU (|U | = N ),
each with associations to multiple historical check-ins Lui , POI
recommendation aims at recommending each user ui ∈ U with
top-K new POIs in the set of L̃ui = L − Lui that ui is likely to be
interested in but has never visited before.
Matrix Factorization (MF): [10] decomposes the user check-in
matrix C ∈ RN×M into a user matrix U ∈ RN×Q and a POI matrix
L ∈ RM×Q with Q-dimensional latent factors by:

argmin
U,L
= ∥C − UL⊺∥2F + κ

u ∥U∥2F + κ
l ∥L∥2F (1)

where κu and κl are regularization coefficients, N is the number
of users and M is the number of check-ins. The probability of
recommending a POI lj to user ui is thus derived based on the
inner product between the latent factor of user ui and that of POI
lj (denoted as ui l

⊺
j ). The preference score vector of ui over all POIs

is denoted uiL⊺.
Gated Recurrent Units (GRU): [3] is a variant of recurrent neu-
ral network (RNN) models consisting of gating mechanisms that
control the influence of the hidden state of previous unit ht−1 on
the state ht at time step t , i.e., learning to ignore the previous units
if necessary. Specifically,

дt = σ (W lj +Uht−1)
st = σ (W lj +Uht−1)

h̃t = tanh(W lj +U (st ⊙ ht−1))

ht = (1 − дt )ht−1 + дt h̃t (2)

where дt and st are update and reset gates, respectively; h̃t is a can-
didate hidden state;W andU are parameter matrices of respective
units; σ and tanh are sigmoid and hyperbolic tangent functions,
respectively; ⊙ is element-wise product.
Generative Adversarial Nets (GAN): [8] aims at obtaining the
Nash equilibrium between a discriminator D and a generator G by
optimizing the following minimax objective :

JGAN = E
x∼px

[log(D (x ))] + E
x̃∼pд

[log(1 − D (x̃ ))] (3)

where px is the data distribution and pд is the model distribution
implicitly defined by x̃ = G (z), and JGAN is maximized w.r.t D (x )
and minimized w.r.t. D (G (x̃ )). The generator G takes a noise prior
distribution z ∼ p (z) (e.g., uniform or Gaussian) as input and upon
which a sample is generated using a deep neural network. The
discriminator Dϕ – usually another neural network – plays the
role of classifier and distinguishes that a certain sample coming

3463



from the true distribution px or the generatorG . It has been demon-
strated that this game achieves global equilibrium if and only if
pд (x ) = px (x ), where pд is the defined distribution and the optimal
discriminator is D∗ (x ) = px (x )/(px (x ) + pд (x )) [8].

4 OUR PROPOSED APPROACH: APOIR
We now discuss in detail our proposed method, and feature model-
ing and training details.
Temporal & sequential preference modeling. Before presenting the
APOIR method, we first leverage a variant of GRU, combined with
MF, to capture both temporal and sequential preference of users.
Given a sequence of POIs l1, l2, · · · , lt , each associated with a check-
in time τ1,τ2, · · · ,τt , we compute the time interval between adja-
cent POIs as ∆τt = τi − τi−1, i ∈ [1, t]. Then, we can modify the
candidate hidden state of Eq.(2) with a time gate Tt as:

Tt = σt (W lj + σ ([∆τt ;τt ]Wt ))

h̃t = tanh(W lj +U (st ⊙ Tt ⊙ ht−1)) (4)

where [∆τt ;τt ] is a concatenation of time interval between two suc-
cessive check-ins and the current check-in time. Now time gate Tt
captures the temporal preference of users, as well as POI representa-
tion lj , and is used to control the influence of previous hidden state
ht−1 in Eq.(4). Finally, a user’s temporal and sequential preferences
are coded in the last hidden state ht , which is then used to update
user representation with an element-wise product as ûi = ui ⊙ ht .
The new user latent factor representation ûi would be used in the
following adversarial learning.

Note that above temporal GRU is similar to recent advances on
recurrent unit modification [18, 19, 37] towards capture contextual
information associated with input data in RNN, except that we
only consider temporal features here because we would learn other
important factors in an adversarial manner later.

4.1 Adversarial Learning
In this work, we use a generative process ui → L to model the rela-
tionship between a user ui and the set of POIs L . The underlying
true distribution of the user preferences over POIs (expressed as
a conditional probability ptrue (L|ui )) will be learned by alterna-
tively optimizing two competing components: Recommender and
Discriminator.

4.1.1 Recommender. Rθ (l
R |ui ), parameterized by θ , is used to rec-

ommend a set of unvisited but potentially interested POIs lR for ui .
The recommender Rθ here is a generator analogue in GAN where
it mainly fits a true distribution of data ptrue (L|ui ). Similar to this,
the POIs recommended by Rθ are based on a process of sampling
from the learned empirical distribution Rθ (L|ui ). Such a user-POI
preference distribution is approximated using the pairwise bayesian
personalized ranking (BPR) [22], where user representation is ob-
tained via above described temporal GRU. The objective is to learn
a Rθ where the true distribution is close enough to the empirical
one so that it is difficult for the discriminator to decide whether the
POI is generated by Rθ or from the true distribution.

4.1.2 Discriminator. Dϕ (ui , l
R ), parameterized by ϕ, is used to

discriminate whether the recommended POI lR matches the true
preference Lui of user ui . In other words, it constructs a binary

vector where 1 denotes that the recommended POI is exactly the
true check-ins (positive example) while 0 means a mismatch (non-
visited example). The goal of Dϕ (ui , l

R ) is to improve its ability to
distinguish historical check-ins from the recommended ones upon
Rθ , for a given user ui .

4.1.3 Objective. According to the GAN paradigm [8], the above
two models can be unified into a minimax game: Rθ (lR |ui ) maxi-
mizes the probability of Dϕ (ui , l

R ) not being able to discriminate
recommended POIs lR from the truth. Correspondingly, Dϕ (ui , l

R )
judges and improves the recommendation performance ofRθ (L|ui ).
Eventually, Rθ (lR |ui ) recommends POIs for user ui with high qual-
ity once an equilibrium reaches, in which Dϕ (ui , l

R ) cannot distin-
guish the recommended POIs from the truth. Formally, we have the
following objective trained alternatively between the recommender
Rθ and the discriminator Dϕ :

J R∗,D∗ = min
θ

max
ϕ

∑
ui ∈U

(
El+∼Lui [logDϕ (ui , l

+)]

+ ElR∼Rθ (lR |ui )[log(1 − Dϕ (ui , l
R ))]
)

(5)

where l+ is the set of visited (positive) check-ins, and discrim-
inator Dϕ (ui , l

R ) estimates the probability of POIs lR being pre-
ferred/visited by userui . We use the sigmoid functionσ (Dϕ (ui , l

R ))
as the discrimination score, similar to [25].

As shown in Eq.(5), both the discriminator and the recommender
are iteratively optimized in a minimax game, and we now describe
them in details.

4.1.4 Training Discriminator. The objective of the discriminator
is to maximize the probability of correctly distinguishing the true
check-in locations from the generated recommended POIs by the
recommender, given positive samples from true preference distri-
bution and non-visited samples from the recommender. That is, the
training objective of Dϕ is to find an optimal ϕ∗ by maximizing:

ϕ∗ = argmax
ϕ

∑
ui ∈U

(
El+∼Lui [logDϕ (ui , l

+)]

+ ElR∼Rθ ∗ (lR |ui )[log(1 − Dϕ (ui , l
R ))]
)

(6)

where lR ∼ Rθ ∗ (l
R |ui ) is the generated POIs by the current op-

timal Rθ , and l+ ∼ Lui are the positive samples. Dϕ (ui , l
R ) can

also be considered as the probability of Rθ assigning correct labels
to recommended POIs lR . Since function Dϕ (·) is differentiable
w.r.t parameters ϕ, the above objective can be solved by stochastic
gradient descent [25].

4.1.5 Training Recommender. Similarly to SeqGAN [29], the rec-
ommender Rθ generates (selects) a list of ranked POIs for user ui .
Specifically, given the current Dϕ which is fixed after Eq.(6), we
can minimize the following objective to find an optimal θ∗:

θ ∗ = argmin
θ

∑
ui ∈U

ElR∼Rθ (lR |ui )
log(1 − σ (Dϕ (ui , l

R )))

= argmax
θ

∑
ui ∈U

ElR∼Rθ (lR |ui )
log(1 + exp(Dϕ (ui , l

R ))) (7)

which is the objective considered in previous works [25, 34]. How-
ever, it does not consider the contexts associated with items, or POIs
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in our case. To explicitly explore the rewards from POI contexts,
we modify above objective as:

θ ∗ = argmax
θ

∑
ui ∈U

ElR∼Rθ (lR |ui )
log(λ + exp(Dϕ (ui , l

R )))

= argmax
θ

∑
ui ∈U

ElR∼Rθ (lR |ui )
log R︸                    ︷︷                    ︸

JR (ui )

where we add a factor λ which is a constant for each ui , and a
defined reward R = λ + exp(Dϕ (ui , l

R )) will be used as the reward
(will explain it later).

Since the POIs lR sampled from the recommender Rθ is discrete,
J R (ui ) cannot be directly optimized with gradient descent as in
continuous GANs [8]. Following the discrete GANs [25, 29, 34]
where the gradient descent is not available, we use the probability
of being sampled for each POI to replace the discrete POI as:

▽θ J
R (ui ) = ▽θ ElR∼Rθ (lR |ui )

log R =
M∑
j=1

▽θ Rθ (l
j |ui ) log R

=

M∑
j=1

Rθ (l
j |ui )▽θ log R = ElR∼Rθ (lR |ui )

[▽θ log R]

⋍
1
K

K∑
k=1

▽θ logRθ (lk |ui ) log R (8)

where K is the number of POIs sampled by the recommender and
lk is the kth sampled POI. Eq.(8) shows that we use policy gradient
based REINFORCE algorithm [26] to derive the gradient. In the
context of reinforcement learning [23], log(λ + exp(Dϕ (ui , l

k )))

acts as the reward for the policy Rθ (l
k |ui ) when taking action of

recommending POI lk in the environment ui .

4.2 Modeling Reward
We note that above reinforcement learning based likelihood sam-
pling is also used in previous work [25, 29, 34] for sequential data
generation and information retrieval. However, these work did not
explicitly model the reward of Eq.(8). Instead, they can be con-
sidered as optimizations for various methods, e.g., IRGAN [25]
is essentially an adversarial optimization method for MF in item
recommendation.

In this section, we proceed with modeling the context of POIs
and the implicit feedback into the reward function. In this work,
we exploit two most important factors [16], i.e., geographical and
social influence, for explicitly measuring reward of candidate POIs.
Specifically, we consider following reward λ in Eq.(8):

λ = αRдeo + (1 − α )Rsoc (9)

where Rдeo and Rsoc are the reward from the geographical and
social factors, respectively. Hyperparameter α is used for scal-
ing the two factors. Rдeo and Rsoc are in fact two 1-D vectors
(Rдeo ,Rsoc ∈ R1×M ) constructed as follows:
– Geographical reward Rдeo is initialized with 0 in each column.
We set the jth item l j ∈ Rдeo as 1 if POI l j is within a distance d to
any visited POIs for user ui . That is, we are interested in including
the nearby POIsN (l j ) for all check-ins of userui into the candidate
list and magnify its importance since people are normally visiting
the neighboring POIs [14, 16, 17, 31].

– Social reward Rsoc is generated in a similar way by setting the
jth column u j ∈ Rsoc to 1 if corresponding POI has been visited
by ui ’s friend uj ∈ F (ui ), where F (ui ) denotes the friends of ui –
motivated by the observation that people may visit the POIs where
their friends have visited before [2, 11, 16, 31].

4.2.1 Overall Rewards. Note that the second term exp(Dϕ (ui , l
k ))

in the reward of Eq.(8), the function of the discriminator, is also a
reward item (1 ×M vector) . Now, we have the following overall
reward:

R = β (αRдeo + (1 − α )Rsoc ) + (1 − β )RD (10)

where hyperparameter β controls the effect from POI context and
the discriminator RD = exp(Dϕ (ui , l

k )), both of which can be
learned from the data. Then, Eq.(8) can be reformulated as:

▽θJ
R (ui ) ⋍

1
K

K∑
k=1

▽θ logRθ (lk |ui ) log(β (αRдeo

+ (1 − α )Rsoc ) + (1 − β ) exp(Dϕ (ui , l
k ))) (11)

Essentially, reward R acts as a regularizer to the recommended
POIs from the recommender Rθ (lk |ui ) – which outputs the user
preference probability over POIs (also a 1×M vector). As the training
process goes, R may gradually push recommender Rθ to produce
the POIs matching the preference of the user. It has been proved
that if we know the true preference distribution of users, the above
adversarial minimax training of APOIR can achieve Nash equilib-
rium [8] – the recommender exactly fits the true distribution of the
user preference, i.e., Rθ (L|ui ) = ptrue (L|ui ), the discriminator
cannot distinguish the recommended POIs from the truth, i.e., the
probability of lR being preferred by ui based on Dϕ (ui , l

R ) is close
to 0.5.

The overall logic of adversarial POI recommendation is summa-
rized in Algorithm 1.

4.3 Discussion
The complexity of the APOIR training is linear in the number of
GAN iterations, each of which has a time complexity O (NK |L̃ui |)

in terms of the number of candidate POIs L̃ui . We note that possible
improvements can result from reducing the size of |L̃ui | through
filtering the POIs by considering spatial and/or categorical ranking
influence [9].

Although both APOIR and IRGAN [25] leverage REINFORCE
method for training the generator (recommender for APOIR), we
highlight their fundamental differences: (1) APOIR explicitly mod-
els the POI reward which can help better understanding and in-
terpreting the recommendation methods; In contrast, IRGAN is a
GAN based optimization method for MF; and (2) APOIR addition-
ally incorporates a temporal GRU for modeling the user dynamic
preference.

We also note that the reward R in APOIR only explicitly con-
siders two POI contexts (arguably, the most important two [16]),
whereas temporal and sequential factors have been incorporated
in the context GRU units. Other factors such as categorical infor-
mation of POIs have been used in the literature [9]. Incorporating
them into the reward function Eq.(9) for better understanding of
the POI context, along with incorporating POI embedding [27, 33]
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Algorithm 1: Adversarial POI Recommendation.
Input: Recommender Rθ , Discriminator Dϕ , training data S .

1 Initialize Rθ and Dϕ with random parameters θ and ϕ .
2 Pretrain Rθ on S with MF.
3 repeat
4 Sample K POIs lR for each user via Rθ ;
5 foreach lk ∈ lR do
6 Calculate reward R of lk using Eq.(10);
7 end
8 Update Rθ parameters via policy gradient Eq.(11);
9 Recommend POIs for each user using updated R′θ ;

10 Sample a set of true locations: l+ ∼ Lui ;
11 Update Dϕ parameters via Eq.(6) with l+ and lR ;
12 until converge

Output: Recommend top-K POIs based on the optimal Rθ for ui ∈ U .

for capturing the context of POIs, are also potential sources of
improving the Interpretability. However, it may introduce more
hyperparameters to tune. How to learn the weights of different
contextual factors in the reward function remains an open problem.
Such explainable considerations regarding the recommendation
model are subject of our future work.

5 EXPERIMENTAL OBSERVATIONS
In this section, we compare the performance of APOIR to baselines
using three real-world datasets.

The hyperparameters of APOIR are empirically tuned as: α = 0.4,
β = 0.7 for all experiments. The geographical distance parameter d
is set to 50km following [2].

Table 1: Statistics of three datasets used in experiments.

Dataset #Users #POIs #Check-ins Sparsity
Gowalla 18,737 32,510 1,278,274 99.865%
Foursquare 24,941 28,593 1,196,248 99.900%
Yelp 30,887 18,995 860,888 99.860%

Datasets: We conducted our experiments on three publicly avail-
able LBSN datasets1: Gowalla, Foursquare and Yelp. For all datasets,
we filter out those POIs with fewer than 10 visitors and those users
(usually aka. the colder-start users) with fewer than 15 check-in
POIs. Since Foursquare data does not have social information, we
only report results from those not considering social information.
Therefore, we remove the social factor Rsoc in Eq.(9) for compar-
ison on Foursquare. And Yelp data does not have check-ins time.
Thus, we replace the temporal GRU in APOIR with a matrix factor-
ization based user representation. The datasets after pre-processing
are described in Table 1.

Following previous works [16, 27], we partition each dataset
into training set and test set. For each user, we use the earlier 75%
check-ins as the training data and the most recent 25% check-ins
as the test data. All datasets are very sparse (the frequency of most
POIs being visited is extremely low). Since a POI recommender
system typically aims at recommending POIs that a user has not
1http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/

visited before, we further merge repetitive check-ins and use the
earliest one. This can also avoid a testing interaction appearing in
the training set.
Baselines: We compare APOIR with 10 approaches, covering from
the most popular/representative POI recommendation techniques
to models using different kinds of context information:
– USG [28]: is a collaborative filtering-based recommendation
with user preference, social influence and geographical influence
simultaneously incorporated.
–MGMPFM [1]: combines Poisson factor model and a multi-center
Gaussian based geographical modeling method.
– LFBCA [24]: is a link-based method that constructs a graph to
model users and their relations.
– iGSLR [30]: exploits personalized geographical preference and
social influence with FCF (friend-based CF) and KDE (kernel
density estimation).
– LORE [32]: considers sequential influence in addition to social
and geographical influence by FCF, KDE and MF.
– IRenMF [17]: incorporates characteristics of neighboring POIs
in both individual level and region level into weighted matrix
factorization for POI recommendation.
– GeoMF [14]: integrates spatial influence in user geographical
regions and its propagation.
– RankGeoFM [13]: is a ranking based geographical factorization
method incorporating the spatial-temporal factors.
– GeoTeaser [33]: a temporal POI embedding model to capture the
contextual check-in information and the temporal characteristics
using word2vec framework.
– PACE [27]: builds a word2vec-based architecture to jointly learn
the embeddings of users and POIs to predict both user preference
over POIs and context associated with users and POIs.

We exclude many MF-based approaches, since they have already
been shown to be inferior to RankGeoFM [13]. Several recent ap-
proaches such as SG-CWARP [15] and ASMF [11] are also excluded
because of their worse performance as compared to GeoTeaser [33]
and PACE [27].
Metrics: We compare the model performance using four standard
metrics in POI recommendation, i.e., Pre@K (precision), Rec@K
(recall), nDCG@K (normalized discounted cumulative gain), and
MAP@K (mean average precision) [16, 27]. They show different
perspectives of the performance evaluation. Precision and recall
measure the number of correct recommendations, while nDCG
and MAP consider the rank of the recommendations by assigning
higher score to hits at higher positions. We report the average score
for all methods, and perform one-sample paired t-test to judge the
statistical significance where necessary.

5.1 Results
Overall Performance: Figures 1-3 illustrate the comparisons
among different methods.From the results, we have following obser-
vations: (1) APOIR consistently performs the best and significantly
improves the POI recommendation performance over the baselines
on all metrics across datasets. Take the Yelp data for example (Fig-
ure 2), APOIR achives 10.0% on Pre@5, 16.0% on Rec@5, 23.3% on
MAP@5 and 9.4% on nDCG@5 over RankGeoFM which performs
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Figure 1: Comparisons Among Different Algorithms on Gowalla Data.
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Figure 2: Comparisons Among Different Algorithms on Yelp Data.
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Figure 3: Comparisons Among Different Algorithms on Foursquare Data.

the second best. (2) The strength of APOIR comes from its capa-
bility of capturing user preference with an adversarial learning
process. Figure 4(a) plots the training process of APOIR. We ob-
serve in experiments that discriminator exhibits strong ability at
the beginning of the training but deteriorates as the recommender
grows to produce more competitive POIs – Figure 4(b) compares
the performance with or without adversarial training. (3)MF-based
methods, such as IRenMF, GeoMF and RankGeoFM, outperform
other baselines which proves the effectiveness of MF in modeling

20 40 60 80 100 120
Number of epoches

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Va
lu

e

Pre@5
Rec@5
MAP@5
nDCG@5

(a) APOIR training

20 40 60 80 100 120
Number of epoches

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Va
lu
e

Pre@5
Pre@5 without adversarial training

(b) Effect of adversarial training

Figure 4: Training Process.

latent features underpinning the complex interactions between
users and POIs and the implicit feedback from the geographical
information. (4) The most recent context embedding-based mod-
els such as GeoTeaser and PACE do not exhibit the performance
as expected. We conjecture that the dataset used in their released
implementation is relatively small and dense. Thus, it is difficult
to obtain similar performance with larger and sparser datasets –
having more POIs and more low-frequency visited POIs may result
in worse embedding in word2vec[20].

6 CONCLUSIONS
We proposed a novel approach – APOIR – for POI recommendation
by learning the underlying user preference over POIs in an adver-
sarial manner. APOIR leverages different contexts into the rewards
in the reinforcement learning and adopts a generative framework
for training two competing components: a recommender and a
discriminator. By pushing each other to be close to its limit, the
recommender may approach the true preference of users (upon
which POIs are sampled and recommended), reaching an equilib-
rium where it becomes difficult for the discriminator to distinguish
these generated POIs from the truly visited ones. Comprehensive
experiments on three datasets have demonstrated the effectiveness
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of APOIR, with a significant performance improvement on POI
recommendation when compared to existing methods.
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