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ABSTRACT
Recent advances in network representation learning have enabled
significant improvements in the link prediction task, which is at the
core of many downstream applications. As an increasing amount
of mobility data becoming available due to the development of
location technologies, we argue that this resourceful user mobility
data can be used to improve link prediction performance. In this
paper, we propose a novel link prediction framework that utilizes
user offline check-in behavior combined with user online social
relations. We model user offline location preference via probabilis-
tic factor model and represent user social relations using neural
network embedding. Furthermore, we employ locality-sensitive
hashing to project the aggregated user representation into a binary
matrix, which not only preserves the data structure but also speeds
up the followed convolutional network learning. By comparing
with several baseline methods that solely rely on social network
or mobility data, we show that our unified approach significantly
improves the performance.
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1 INTRODUCTION
Link prediction [13] aims at identifying missing links, or links that
are likely to be formed in the future in a network. It is at the core
of many applications, including prediction of a friendship in social
network, relations between entities in a knowledge graph, affinities
between users and items in a recommender system, and potential
biological interactions between drugs and diseases.

Recent years have brought advances in network representa-
tion learning, such as DeepWalk [16], Line [20], node2vec [8] and
struc2vec [17]. These methods often learn low-dimensional repre-
sentation of network nodes – also known as network embedding
– to facilitate the link prediction task, where the propensity of
forming a link is based on the nodes similarity. Concurrently, as
increasing amount of mobility data becomes available due to the
development of location technologies, there is a body of works
focusing on inferring social relationships from user offline mobility
data [1, 10, 22, 24]. As demonstrated in [21, 22], mobility data can
indeed serve as a strong predictor for inferring social ties.

However, most previous studies either infer potential links be-
tween two users solely from their mobility data [1, 23] or learn user
preference only from social network structures [8, 17, 20]. To our
knowledge, taking advantage of both user location information and
the social relationship for link prediction has not been exploited,
and this paper presents an attempt to bridge this gap. Specifically,
we propose a novel link prediction framework vec2Link which
captures user offline location preference (learned from check-in
behaviors) and online social preference (learned from network struc-
tures). vec2Link models user location preference via a probabilistic
factor model (PFM), while leveraging neural network embedding
(NE) method for social representation. It then employs a locality-
sensitive hashing (LSH) to project the two representations into
a binary vector in a manner that preserves similarities in both
check-in behaviors and network structures. Subsequently, the ma-
trix reshaped from the binary vector is fed into a convolutional
neural network to perform prediction. This novel usage of LSH
not only makes the convolution faster – compared to operations
over original representations without LSH – but it also preserves
well the latent patterns behind data, especially similarities, which
yields performance improvement. We conducted experiments on
two real-world LBSN datasets. By comparing with several base-
line methods that solely rely on social network or mobility data,
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we show that unifying both social and mobility information can
significantly improve the prediction performance.

2 METHODOLOGY
The proposed model consists of three components – visit prefer-
ence learning, social relationship embedding, and heterogeneous
mapping – as illustrated in Figure 1.

2.1 Modeling Visit Preference
Given a set of Point-of-Interests (POIs) L (|L| = M) and a set of
usersU (|U| = N ), each user ui ∈ U is associated with a set of his-
torical check-ins Lui . Let V ∈ RN×M be the visit frequency matrix
whose element vi j denotes the number of visits of POI lj by user
ui . Matrices U ∈ RN×D and L ∈ RM×D denote the corresponding
latent user and POI feature matrix, with row vectors ui ∈ RD and
lj ∈ RD (both areD-dimensional vectors) representing user-specific
and POI-specific latent factors, respectively.

To understand visiting preferences, we employ the Probabilistic
Factor Model (PFM) [5, 14, 15]. Let Z ∈ RN×M be the matrix of
expected frequency with the same dimensions as V. Every observed
visit frequency vi j ∈ V is assumed to follow a Poisson distribution
with the mean zi j inZwhich, in turn, is factorized into twomatrices
U ∈ RN×D and L ∈ RM×D . Each element uik ∈ U (k = 1, · · · ,D)
encodes the preference of a user ui for latent topic k , and each
ljk ∈ L reflects the affinity of POI lj to topic k . The priors ofuik and
ljk follow Gamma distributions Γ(α , β). Thus, we have following
generative process of observed user-POI visit frequency vi j :
1. Generate user latent factor uik ∼ Γ(αu , βu ).
2. Generate POI latent factor ljk ∼ Γ(αl , βl ).
3. Generate visit frequency vi j ∼ Poisson(u⊺i lj ).
where the probability of visit frequency V follows a Poisson distri-
bution:

p(V|U, L) =
N∏
i=1

M∏
j=1

(u⊺i lj )
vi j exp(−u⊺i lj )
vi j !

. (1)

Since Z = UL⊺, the latent matrices U and L can be estimated
with MAP (maximum a posteriori) as:

p(U, L|V,αu , βu ,αl , βl ) ∝ p(V|U, L)p(U|αu , βu )p(L|αl , βl ). (2)

The log of the posterior distribution over the user and POI latent
factors is inferred as:

E(U, L|V) =
N∑
i=1

D∑
k=1

((αu − 1) lnuik −
uik
βu

− αu ln βu + ln βu )

+

M∑
j=1

D∑
k=1

((αl − 1) ln ljk −
ljk

βl
− αl ln βl + ln βl )

+

N∑
i=1

M∑
j=1

(vi j ln(u
⊺
i lj ) − u⊺i lj ) +C . (3)

The latent factors in U can be inferred by taking derivatives on
E with respect to uil . Finally, uik can be iteratively updated using
gradient descent. The visit preference for user ui can be obtained as
ui = ui1, ...,uiD . We denote the user visit preference representation
as uvi .

2.2 Modeling Social Representation
The social representation of a userui (∈ U) can be obtained through
network embedding (NE). Given a graph G = (V,E), and a prede-
fined dimensionality of the embedding d (d ≪ |V|), the problem
of NE is to encode G into a d-dimensional space (ENC(V) → Rd ),
in which the network property is preserved as much as possible.
Formally, the NE problem can be defined in the framework of au-
toencoder [9] as:

DEC(ENC(vi ), ENC(vj )) = DEC(uni , u
n
j ) ≈ P(vi ,vj ), (4)

where vi ,vj ∈ V; DEC(·, ·) → R+ decodes pairs of node embed-
dings to a real-valued graph proximity measure; and P(·) is a user-
defined, graph-based proximity measure between nodes. The graph
property can be quantified using a proximity measure such as the
first- [16] and higher-order [20] proximity. Each graph is repre-
sented as either one d-dimensional vector (for a whole graph) or
a set of d-dimensional vectors where each vector represents the
embedding of a part of the graph (e.g., node, edge, substructure) [2].

We note that, in our model, we do not rely on specific imple-
mentation of network embedding. Instead, we leverage the output
vector uni of NE as the social representation for each user ui – and
we incorporate several state-of-the-art NE models to investigate
the link prediction performance.

2.3 The Joint Model with LSH
After the above two steps of learning preference representations,
we obtain the vectors uvi ∈ RD and uni ∈ Rd for ui , respectively
denoting user’s visit preference over POIs and social representa-
tions. However, we need a way to preserve data properties as much
as possible while boosting the link prediction. One of the practical
ways to facilitate efficient feature retrieval and to reduce computa-
tional cost is to convert the feature vectors to binary codes. In this
work, we propose to embed the domain specific representation with
the Locality-Sensitive Hashing (LSH) [12]. Recently, LSH has been
employed to reduce the amount of computation needed to train
and test neural networks through hashing weights and biases into
binary representations and preserving inner products [6, 11, 19]. In
this paper, we apply LSH to encode continuous embedding vectors
into binary ones while preserving similarities for efficient link pre-
diction. Specifically, a hash h is called (S, cS,p1,p2)-sensitive if, for
any two points x ,y ∈ R, h satisfies the following:

1. if sim(x ,y) ≥ S , then Prh (h(x) = h(y)) ≥ p1;
2. if sim(x ,y) ≤ cS , then Prh (h(x) = h(y)) ≤ p2;

where S is a threshold of interest, c < 1 and p1 > p2 for efficient
approximate nearest neighbor search. sim denotes a similarity mea-
sure, which is defined as the cosine similarity between two vectors
in our case. The LSH algorithm aims at maximizing the probability
that similar data are mapped to similar binary codes and could
benefit many applications such as Maximum Inner Product Search
(MIPS) [18].

Then, we perform the following operations for every possible
pair of users ei j = (ui ,uj ) in G:

1. Concatenate uvi and uni as a vector uvni = [uvi ; u
n
i ] ∈ R

D+d .
2. Generate Hamming code mi ∈ {0, 1}m for uvni with LSH.
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Figure 1: The Overview of our proposed method vec2Link.

3. Concatenate mi and mj to form a binary vector mi j (∈

{0, 1}2m ) = [mi ;mj ].

In step 1, we set D = d for ease of computation and in the sequel
we use ui in place of uvni , without ambiguity. Step 2 works as a
Sign Random Projection (SRP) [4, 7]: Given a vector ui , SRP utilizes
a random vector r with each bit r(b) generated from independent
identically distributed normal, i.e., r(b) ∼ N (0, 1), and only stores
the sign of the projection.

Now we have a binary vector mi ∈ {0, 1}m aggregating the
heterogeneous information consisting of social representation and
visit preference of user ui , wherem is the number of bits of random
vector r, i.e., the number of hyperplanes used for hash projection.
For each link (or edge) between ui and uj , we concatenate mi and
mj to obtain mi j ∈ {0, 1}2m in step 3.

2.4 Efficient Representation via Reshape
After mapping the heterogeneous embedding into a Hamming
space, we reshape the one dimensional vector mi j to a binary ma-
trix B ∈ Rn×n . Then we apply a convolution operation on B with
a kernel K ∈ Rw×w to obtain the feature maps M = {m1, ...,mk }.
Max-over-time pooling is used on the feature maps to learn the
underlying representation of matrix B. Note that we also try one di-
mensional convolution onmi j but found that reshaping to a matrix
performs better.

3 EXPERIMENTS
We now present our experimental observations, comparing
vec2Link with several baseline methods on two public datasets
commonly used in link prediction.

The dimensionality of location preference vector D and network
embedding vector d are both set to 128, while the lengthm of the
Hamming code is 512. In our implementation, we use two layer
CNN and 16 (32) filters in the first (second) layer. The kernel size in
both layers are 5× 5. The activation function is ReLU. For all exper-
iments, we generate training and testing set of edges following [8]:
To obtain positive instances, we remove 50% of edges chosen ran-
domly from the network while ensuring that the remaining network
obtained after the edge removals is connected. To generate negative
examples, we randomly sample an equal number of non-existing
edges. For all experiments, we randomly choose 80% of the nodes
and corresponding edges for training and the rest for testing.

Table 1: Descriptives of datasets.
Dataset #check_ins #POIs #edges #users
Foursquare@NYC 22,563 1,992 5,810 588
Foursquare@TKY 38,742 2,212 9,624 1,055
Gowalla@DC 13,594 4,795 5,826 880
Gowalla@CHI 10,314 3,269 2,542 627

Datasets: We used two public datasets – Foursquare and Gowalla1.
For Foursquare, we extract the users and friendship networks and
check-in history in the area of New York City (NYC) and Tokyo
(TKY). Similarly, we extract the data in Washington DC (DC) and
Chicago (CHI) from Gowalla. Data statistics are shown in Table 1.
Metrics: We use Area Under Curve (AUC) to measure the perfor-
mance of link prediction. In addition, we use four binary operators
proposed in [8], i.e., Average, Hadamard, Weighted-L1 and Weighted-
L2, for generating a representation of the edge between any two
nodes in the graph.
Baselines: We compare vec2Link with several state-of-the-art net-
work embedding methods. Since vec2Link leverages mobility data
for improving link prediction and does not rely on specific NE, the
reported results are NE-related, i.e., the NE part of vec2Link is the
same as the compared method. The baselines consist of:
• walk2friends [1]: is a Skip-Gram based model that employs
mobility information for inferring social links.
• DeepWalk [16]: performs random walks over networks and em-
ploys Skip-Gram model to learn node embeddings.
• LINE [20]: learns node embeddings in networks considering both
first-order and second-order proximities.
• GraRep [3]: learns node embeddings in large-scale networks
considering both first-order and second-order proximities.
• node2vec [8]: performs the 2nd-order random walks to explore
neighborhood architecture and embeds nodes with Skip-Gram
model.
• struc2vec [17]: involves generating a series of weighted auxil-
iary graphs, capturing structural similarities between nodes’ k-hop
neighborhoods, and running node2vec for embedding the auxiliary
graphs.

Note that walk2friends is the only baseline method that utilizes
user mobility data, while all the other baselines rely on using online
social relationship for link prediction. To test the efficiency impact
of LSH, we also used vec2Link-, a framework that does not apply
LSH.

1http://snap.stanford.edu
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Table 2: Area Under Curve (AUC) scores for link prediction.
Method Operator Dataset

NYC TKY WA CHI
Walk2friend 0.6648 0.6139 0.6156 0.6059

DeepWalk

Average 0.5735 0.5906 0.7115 0.5959
Hadamard 0.8621 0.7995 0.7858 0.8227
Weighted-L1 0.9052 0.8732 0.9063 0.8144
Weighted-L2 0.9061 0.8731 0.9062 0.8107

vec2Link- 0.9441 0.9051 0.9232 0.8575
vec2Link 0.9533 0.9085 0.9361 0.8622

LINE

Average 0.6739 0.6537 0.6842 0.6240
Hadamard 0.5185 0.5825 0.4997 0.5731
Weighted-L1 0.5477 0.6020 0.5333 0.5515
Weighted-L2 0.5358 0.5992 0.5326 0.5945

vec2Link- 0.8652 0.8332 0.7955 0.7847
vec2Link 0.8676 0.8421 0.8093 0.7914

GraRep

Average 0.6643 0.6656 0.6763 0.5670
Hadamard 0.9327 0.9031 0.7063 0.8030
Weighted-L1 0.9171 0.8809 0.8821 0.8558
Weighted-L2 0.9096 0.8809 0.8995 0.8344

vec2Link- 0.9422 0.9183 0.9279 0.8650
vec2Link 0.9539 0.9258 0.9322 0.8852

node2vec

Average 0.5660 0.5737 0.7137 0.5857
Hadamard 0.8752 0.8280 0.8392 0.8288
Weighted-L1 0.9189 0.8816 0.9169 0.8376
Weighted-L2 0.9228 0.8825 0.9177 0.8399

vec2Link- 0.9462 0.9052 0.9162 0.8375
vec2Link 0.9510 0.9129 0.9257 0.8642

struct2vec

Average 0.7834 0.7663 0.7895 0.6869
Hadamard 0.7463 0.7146 0.7562 0.6311
Weighted-L1 0.7046 0.6815 0.7208 0.6129
Weighted-L2 0.7189 0.6844 0.7287 0.6267

vec2Link- 0.8328 0.8175 0.8208 0.7584
vec2Link 0.8458 0.8275 0.8319 0.7670

Results: Recall that vec2Link does not rely on any specific NE
method for representing social network users in a low-dimensional
space. Therefore, we compare it with the baseline using the same
NE model – e.g., the NE method in vec2Link uses DeepWalk when
comparing to DeepWalk. The experiment results are illustrated in
Table 2, from which we can observe that:

(1) leveraging the user check-in preference can efficiently im-
prove the link prediction performance. For example, vec2Link
achieves 6.35%, 33.12%, 6.09%, 3.06% and 22.39% improvement over
DeepWalk, LINE, GraRep, node2vec and struc2vec respectively on
Gowalla@CHI data. As expected, walk2friends performs the worst
due to lacking of the network information.

(2) vec2Link with LSH slightly increases (p < 0.05) the predic-
tion accuracy compared to directly concatenating two heteroge-
neous vectors, i.e., vec2Link without LSH. The reason behind this
improvement lies in that LSH can distinguish the dissimilar user
representations while preserving the similar ones, which facilitates
the feature learning in CNN. Moreover, training a convolution neu-
ral network on binary matrix is order of magnitude faster than
training on dense real-value vectors, which can benefit large-scale
network learning.

(3) We also observe that node2vec performs the second best
and weighted-L2 is the best operator for learning edge features
for NE methods – in fact, vec2Link can be thought of as a method
for incorporating heterogeneous information into learning edge
features.

4 CONCLUSIONS
We presented vec2Link – a novel link prediction framework, captur-
ing both social network relationship and location-based check-in

information of the users. We demonstrated vec2Link’s superior per-
formance over the state-of-the-art link prediction methods which
rely either on online user social relationship or offline user mobility
data. Currently, we are extending vec2Link to incorporate the user
check-in preference to a broader range of spatio-temporal contexts
such as geographical influence and sequential patterns of human
mobility.
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