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Abstract—The typical aim of User Identity Linkage (UIL) is
to detect when users from across different social platforms are
actually one and the same individual. Existing efforts to address
this problem of practical relevance span from user-profile-based,
through user-generated-content-based, user-behavior-based ap-
proaches to supervised or unsupervised learning frameworks,
to subspace learning-based models. Most of them often require
extraction of relevant features (e.g., profile, location, biography,
networks, behavior, etc.) to model the user consistently across
different social networks. However, these features are mainly
derived based on prior knowledge and may vary for different
platforms and applications. Inspired by the recent successes of
deep learning in different tasks, especially in automatic feature
extraction and representation, we propose a deep neural network
based algorithm for UIL, called DeepLink. It is a novel end-to-end
approach in a semi-supervised learning manner, without involv-
ing any hand-crafting features. Specifically, DeepLink samples
the networks and learns to encode network nodes into vector
representation to capture local and global network structures
which, in turn, can be used to align anchor nodes through deep
neural networks. A dual learning based paradigm is exploited to
learn how to transfer knowledge and update the linkage using
the policy gradient method. Experiments conducted on several
public datasets show that DeepLink outperforms the state-of-the-
art methods in terms of both linking precision and identity-match
ranking.

Index Terms—user identity linkage, social networks, deep
learning, reinforcement learning

I. INTRODUCTION

Online social networks (OSNs) such as Facebook, Twitter,
and Instagram allow their respective users to generate and
share various contents, and communicate with other users
(individuals or public accounts) on topics of mutual interest.
Such activities provide a rich data source – both contextual
(i.e., text, pictures), as well as networked-related – for many
valuable applications. But one example is cross-platform audi-
ence targeting in marketing and malicious (fake or duplicated)
account detection in cyber-security [1]. All such applications
typically involve an important step of User Identity Linkage
(UIL) which usually aims to find users across different social
platforms that refer to the same individual/entity [2]. UIL has
important impact in multiple applications – e.g., user behavior
prediction [3], identity verification and privacy protection [4].

Variety of approaches have been proposed to tackle this
practically relevant problem, and majority of them fall into two

broad categories: (1) Feature-based approaches: they require to
extract a set of independent features from account profiles or
activities, e.g., username, gender, writing style, etc... for repre-
senting user’s identity. This hand-crafting feature engineering
is often based on domain knowledge and deep understanding
of user activities. For example, Goga et. al [4] combine several
characteristics extracted from user’s posts, e.g., geo-location,
timestamps and language, to profile their identities. Zafarani
et. al [5] apply theories from sociology and psychology to
model user behavioral patterns to map identities across OSNs.
(2) Network-based methods: much attention has been recently
paid to make use of user network structural information for
correlating accounts across social platforms. For example,
COSNET [6] considers the local and global consistency among
multiple networks and Adamic/Adar scores are computed to
measure neighborhood similarities. IONE [7] learns network
embedding from the follower/followee-ship couplings in order
to preserve the proximity of users with “similar” relationships.
We note that several other works (e.g., [8]–[10]) combine
profile features and network information to improve account
alignment across OSNs.
Challenges and Our Approach: The drawbacks of the exist-
ing approaches addressing the UIL problem can be categorized
as follows: (1) They do not provide a comprehensive frame-
work to address the heterogeneity of users and OSNs. Namely,
the different social network sites are independent and activities
on one site can be very different from other(s). Additionally,
users often act differently in multiple sites – thus, mapping the
behaviors of cross-site accounts to a particular user is complex.
(2) User representation: capturing latent semantic relationships
among users based on network structures is difficult, especially
if one seeks a meaningful and generalizable model for different
networks and applications. Most of the existing works that
focus on cross-platform behavior prediction or account corre-
lation are using transfer learning, which assumes that multiple
networks are either fully-overlapped or non-overlapped. In
reality, however, there may be a very high degree of partial
overlaps. (3) Lack of labeled data: Obtaining a set of users
with the same identity across platforms is not easy. There is no
central repository that would provide an explicit information
to this effect. From a complementary perspective – manual
labeling is time-consuming and sometimes infeasible.
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To address above challenges, in this paper we propose a
novel deep learning based approach, called DeepLink which,
in principle, operates along the following four components:
(1) It samples networks to produce the training “corpus”
while preserving network structures at the maximum; (2) Each
node in the network is represented as a vector in a low-
dimensional space via network embedding; (3) The anchor
nodes are then fed into a deep neural network to train a
non-linear transformation for user alignment across networks;
(4) DeepLink uses a dual-learning process to improve the
identity linking performance and boost the supervised training
algorithm.

More specifically, we first pretrain two preliminary mapping
functions between a given pair of networks A and B, i.e.,
Φ(A → B) and Φ−1(B → A) using automapping on anchor
nodes without their labels (their alignment) . Then the user
identity linkage can be formalized as a dual learning game:
the embedded representation (vector) of an anchor node ~a
in network A can be mapped into a vector ~b′ denoting its
correspondent in network B using Φ(A → B). The vector
~b′ is then compared to its true embedding vector ~b in the
network B, and A is notified whether Φ(A → B) is a high-
quality mapping, followed by mapping ~b′ back to A (obtaining
~a′) according to Φ−1(B → A). After receiving the vector
~a′, network A measures the similarity between ~a and ~a′ and
feedbacks the result to B. The game can also start from a node
in B with vector embedding in B′s space. Essentially, the two
mapping functions get increasingly improved along with more
anchor nodes.

The main advantages of DeepLink and contributions of our
work are:

• DeepLink takes advantage of deep neural networks to
learn latent semantics of both user activities and network
structure in an end-to-end manner, thereby avoiding the
labor-intensive feature engineering, which is also easy to
be generalized to various OSNs.

• DeepLink leverages a semi-supervised graph regulariza-
tion to predict the context (neighboring structures) of
nodes in the network. It encodes structural information
of anchor nodes to align networks.

• DeepLink uses a dual-learning process to improve the
identity linking performance and boost the supervised
training algorithm. In this way, not only unlabeled an-
chor nodes are being exploited, but also the mapping
among multiple networks can get improved through the
reinforcement learning procedure. Moreover, the number
of aligned (labeled) anchor nodes required can be signif-
icantly reduced.

• To demonstrate the effectiveness of DeepLink, we con-
ducted experiments on both real-world and synthetic
datasets. The results show that DeepLink can significantly
improve the identity accuracy compared to the state-of-
the-art approaches, e.g., up to 30% for top-1 and 40% for
top-5 in terms of linking precision.

In the rest of this paper, Section II reviews the related work,

followed by Section III which presents the preliminary back-
ground and formalizes the problem statement. In Section IV,
we present the main methodology including aligning OSNs
and training details. Experimental evaluations quantifying the
benefits of our approach are presented in Section V, and
Section VI concludes the paper and outlines directions for
future work.

II. RELATED WORK

Several variants of the User Identity Linkage (UIL) [11]
problem have been studied in the literature, also known as
Link Inference/Prediction [12], [13], Correlating Accounts [4],
Node Alignment [10], [14], etc. The existing research efforts
can be broadly classified into two main categories: profile-
based and network-based identity linkage.

Profile-based methods: leverage user’s profile information
(e.g., username [5], spatio-temporal patterns [15], posts [4],
writing style [16], etc.) to link accounts across different sites.
For instance, Reza et al. find correlating accounts using user
names by modeling the naming process and rules from the per-
spective of information redundancy [5]. However, user names
can be deliberately selected and modified at any time, which
increases the difficulty of completing the UIL task. Writing
style identification is another promising way to localize multi-
account users while revealing various camouflage behaviors.
Arvind et al. used writing style of user generated text, e.g.,
grammatical structure and frequency of letters to identify
users [16]. However, this method results in over-fitting, es-
pecially for short texts such as tweets, because it involves too
many features. Recent research results investigate the security
issues of multi-accounts. For instance, Jiang et al. propose
a semi-supervised transfer learning method to predict cross-
platform behaviors through sparsely overlapped crowds [3].
Qian et al. protect against de-anonymization attack by dis-
covering the approach for inferring privacy using knowledge
graphs [1]. Luo et al. presents a uni-class classification-based
approach to detect multi-account users across OSN sites [17].
Riederer et al. use the timestamped location data generated by
users to infer the user identities across the OSNs [15]. Zhang
et al. presents an energy-based model to link user identities
by extracting distance-based profile features [6].

Almost all previous methods focus on either writing-style
analysis or user behavior inference – however, in addition to
the risk(s) of privacy leakage [1], they have a drawback in
terms of coping with potential inconsistencies [2].

Network-based methods: are becoming increasingly
promising in tackling the UIL problem and have received
much attention, because they only require structural informa-
tion to align networks based on anchor nodes. For instance,
BIG-ALIGN [18] introduces the problem of aligning bipartite
graphs and proposes a gradient-descent based solution. In [19],
Tan et al. model user relationship using a hyper-graph and
project the manifolds of two OSNs onto a commonly embed-
ded space to correlate accounts. Neighborhood-based features
seem like a natural choice for the UIL problem [6], [9], [20],
relying on computing the Adamic/Adar scores to measure the
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neighborhood similarity [21]. CLF [22] predicts both anchor
nodes and social links by transferring information related to
social links formed by anchor nodes in the source network to
the target network.

Inspired by word embedding techniques, e.g., word2vec [23]
and Glove [24], in natural language processing, a number
of approaches have been proposed to embed the graph, e.g.,
DeepWalk [25], Line [26], SDNE [27], SDAE [28], node2vec
[29], MM-DeepWalk [30], M-NMF [31], TransNet [32],
CANE [33] – to name a few. Recently, some researchers have
exploited Convolutional Neural Networks (CNN) and spectral
graph theory to learn the representation of arbitrary net-
works [34], such as Planetoid [35], GraphCNN [36], Patchy-
SAN [37], GCN [38], etc.

In the context of UIL task, Man et al. [8] used network
embedding techniques to capture latent structural regularities
of observed anchor links and further learn a cross-network
mapping for predicting anchor links. Liu et al. proposed IONE
which also embeds two OSNs onto a common space to capture
the social contacts of users [7]. PCT [39] aims at inferring
potential corresponding connections linking multiple kinds
of shared entities across networks simultaneously through
combination of both profile and network features.

Existing network-based methods embed structures of nodes
from their local context by preserving the first and/or second-
order proximity to link accounts across OSNs. The local
structure of a network contains rich information for a group of
nodes, but it is hard for existing UIL algorithms to discriminate
the real user identity from its neighborhoods. Previous works
only leverage the partial anchor nodes for supervised training,
including embedding and network alignment while using the
rest for testing which incurs insufficient training and inefficient
linking. Moreover, many UIL algorithms including IONE use
anchor nodes to embed and align non-anchor nodes [7]. How-
ever, their anchor nodes may become deviated (not aligned
any more) after training.

Compared to these work, our approach is capable of embed-
ding the global network structure and achieves higher correla-
tion accuracy. In addition, DeepLink learns more sophisticated
non-linear mapping among multiple networks, when compared
to the traditional embedding-based methods. To make full
use of unlabeled anchor nodes, we borrow an idea of dual-
learning mechanism, a policy gradient-based method to boost
the training while updating the linkage.

III. PRELIMINARY BACKGROUND

In this section, we introduce the basic terminology in the
setting of our proposed approach, and present a few formal
definition in that context.

A. Problem Definition

We consider a set of s different social networks as G1, ...,Gs,
each of which is defined as a Social Network Graph (SNG).

Definition 1. Social Network Graph Let G = (V,E) be
an unweighted and undirected graph, where V is the set of
vertices, each representing a user, and E is the set of edges

connecting users. ei,j ∈ E indicates the relationship between
user ui and user uj .

We represent each SNG with an unique latent user space
according to the Network Embedding Model (NEM). NEM
learns the probabilistic distributions of nodes and uses low-
dimensional vectors to represent them in a latent space.
Formally:

Definition 2. Network Embedding Model Given a set of
u1, u2, ..., um users in G, NEM learns to represent each ui
with a vector v(ui) ∈ Rd, where d is the dimensionality of
the latent space.

After embedding each of the SNGs G1, ...,Gs, we learn the
prediction functions among them as the task of User Identity
Linkage (UIL), similar to the definition in [11].

Definition 3. User Identity Linkage Given any two social
networks Gs and Gt, the goal of UIL is to predict that any pair
of user identities us and ut chosen from Us and U t respectively
belong to the same real natural person (i.e., us = ut). That
is, UIL learns a binary function ΦU : Us × U t → 0, 1 such
that

ΦU (Us,U t) =

{
1, us = ut,

0, otherwise.

where ΦU (Us,U t) = 1 means a successful linkage (a good
identity matching).

However, perfect prediction function ΦU is hard to obtain,
as the latent space of each G is unknown to the others. In
real implementations, most UIL algorithms try to find an
approximate graph mapping (projection) function Φ [9].

Definition 4. Graph Mapping Function The function Φ is
defined as a mapping from Gs to Gt, such that for each
ui ∈ Gs and its latent space vector v(ui), we have Φ(v(ui)) =
v(u′i), u

′
i ∈ Gt. We also denote the inverse mapping as

Φ−1(v(uj)) = v(u′j), where uj ∈ Gt and u′j ∈ Gs.

Generally, the mapping function Φ is unknown for a given G
– and the objective of our work is to learn a bilateral mapping
(Φ and Φ−1) such that the two SNGs Gs and Gt are aligned by
maximizing the similarity of all aligned pairs (v(ui),v(uj)).
Note that fully aligned networks hardly exist in the real world,
hence, we leverage the partially aligned anchor nodes (labeled
data) to map the user latent spaces of two SNGs.

IV. DEEPLINK: THE PROPOSED MODEL

As shown in Figure 1, DeepLink consists of four main
components: network sampling, users latent space embedding,
unsupervised automapping and supervised linkage dual learn-
ing – which we discuss in detail in the sequel.

A. Network Structure Sampling

To embed users into a latent space, we first generate multiple
social sequences for each user ui ∈ V in several rounds of
random walks. Each sequence encodes the social relationships
among users in the SNG. All the sequences combined across
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Fig. 1. Overview of DeepLink: (1) first, it uses the random walk to generate samples of node sequences to form corpus. (2) then, in the initialization phase,
it embeds and represents each node in a low-dimensional latent space and pretrains two mapping functions from G→ G′ using anchor nodes in G (without
knowing their aligned correspondents in G′), similarly for G′ → G – to improve Φ and Φ−1. (3) finally, it learns the node alignment across networks based
on pairs of aligned anchor nodes using a policy gradient-based method in a supervised manner (with known alignments).

the different SNGs are called “corpus” and are used to learn
the embedding vectors for users.

Sampling process works as follows: it starts at vertex (user)
ui and proceeds along a randomly selected edge at each
step, until length L is reached. This can implicitly extract
some hidden structural social information, e.g., friendship and
community in a network. As discussed in [25], random walks
not only capture basic network information, but can also scale
in the sense of accommodating minor changes in a graph with
no need to re-compute everything. From a complementary
perspective, generating social sequences is time consuming
for a large network, but can be implemented in parallel by
assigning several simultaneous walkers.

There are several recent works on learning structural fea-
tures of connected graph by leveraging various sequence
generating algorithms, such as LINE [26], GraRep [40] and
node2vec [29]. node2vec samples network neighborhoods of
each node using the biased random walks. This can capture the
community information of that node. In this work, we still use
traditional random walks to generate social sequences due to
its computational efficiency compared to the exhaustive search
used in works such as node2vec [29].

B. User Latent Space Embedding

After generating the social sequence Srui
for user ui in the

rth round, DeepLink uses Skip-gram model to update its social
representation. Skip-gram model is originally used to predict
the context of a word [23] by maximizing the average log
probability in the domain of word representation. Formally,
given a sequence of users u1, u2, ..., um ∈ G, DeepLink aims
to maximize the log probability using the following equation:

1

m

m∑
t=1

w∑
j=−w

log p(ut+j | ut), j 6= 0 (1)

where w is the size of the sliding window and indicates
that increasing the training context w may lead to a higher
accuracy at the cost of training time. A softmax function is

used to define the conditional probability p(ut+j | ut) as the
occurrence of the j-hop neighbor ut+j given user ut:

p(ut+j | ut) =
exp(vTut+j

v′ut
)∑m

i=1 exp(vTui
v′ut

)
(2)

where vui and v′ui
are, respectively, the input and output vector

representations of user ui, and m is the number of users in a
SNG.

To improve the training efficiency, Negative Sampling [41]
is adopted. Specifically, we maximize the objective function
as [8]

log[σ(vTut+j
v′ut

)] +

K∑
i=1

Eui∼pn(u)[log(1− σ(vTui
v′ut

))]. (3)

where there are K negative samples. Empirically, each node
is sampled with probability pn(u) ∼ d

3/4
ui , where dui is the

degree of node ui [23].
By maximizing Eq. 3 over all the nodes in SNGs inde-

pendently, we can approximate the objective function Eq. 1
to train the representation vector for each ui with stochastic
gradient descent algorithm.

C. Neural Mapping Learning

After obtaining the latent embedding space for each SNG,
DeepLink turns to learn the mapping functions between any
two SNGs based on the anchor nodes by using two Multi-
Layer Perceptrons (MLP). Given each labeled anchor node
pair (ui, uj) and their representation vectors (v(ui),v(uj)),
DeepLink learns a mapping Φ(v(ui) by minimizing the loss
function below:

`(v(ui),v(uj)) = min(1− cos(Φ(v(ui)),v(uj))) (4)

where cos(·) is the cosine similarity between mapped vector
Φ(v(ui)) from Gs and the embedding representation v(uj) in
Gt. The loss of `(·) ranges from 0 meaning exactly the same
to 2 meaning exactly opposite.

Suppose we have n anchor nodes, their embedding vector
matrices are respectively denoted by A ∈ Rd×n and B ∈
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Rd×n, where d is the embedding dimensionality. The mapping
learning minimizes the following objective function

`(A,B) = arg min
W,b

(1− cos(Φ(A),B; W,b)) (5)

where W and b are the parameters and the bias to learn. In a
real implementation, we use a batch size of h (h� n) vectors
to feed MLP at each step until the n anchor nodes have been
visited, which would be repeated R times until convergence.

D. Linkage Dual Learning

The MLP based anchor mapping from Gs to Gt introduced
above can be straightforwardly applied so that we can learn a
reverse mapping Φ−1 from Gt to Gs with the same process.
However, this automapping process does not take into account
anchor nodes that are used for training. In other words,
assuming that we have n anchor nodes, when TR% used for
training then TE%(=1−TR%) are used for evaluation/testing.
To fully exploit these anchor nodes, we employ a variation
of dual-learning [42], originally used in natural language
translation, for the task of user identity linkage.

Suppose we have two weak mapping functions Φ and Φ−1

– e.g., pretrained with partial anchor nodes – that can project
vectors from Gs to Gt and vice versa. We then improve two
mapping functions by leveraging the duality of Φ and Φ−1.
The two steps achieving this goal are described next.

1) Unsupervised UIL Pretraining: Most of existing work
(e.g., [7], [8]) employ the labeled anchor nodes – i.e., the align-
ment for a pair of nodes is known – for aligning two networks.
However, the unlabeled anchor nodes, normally used for
testing, are also informative in network alignment. Specifically,
for each anchor node (labeled and unlabeled) ub in Gs, we first
obtain v′(ub) via the Φ mapping: v′(ub) = Φ(v(ub)) and then
map back from Gt via Φ−1(v′(ub)) to get a vector v′′(ub).
Note that no labels are required in this unsupervised learning
process, therefore there is no difference between labeled and
unlabeled anchor nodes. The loss of this automapping (similar
to autoencoder in [43]) is calculated based on the difference
between v(ub) and v′′(ub). In addition, the anchor nodes in
one network are blinded to with respect to the other. We
use the same method to pretrain a Gt → Gs model. After
this unsupervised pretraining, we have two weak mapping
functions Φ and Φ−1 that will be further improved in the next
step – described below.

2) Supervised UIL Learning: The labeled anchor nodes are
used to improve the mapping function Φ and Φ−1 by playing
a dual learning game. Specifically, we set h batches for n
anchor nodes where each batch has bn/hc labeled nodes.
Each batch forms an episode, where one anchor node ua
denotes a state sa. Note that the state transition in this case
is deterministic, i.e., the current state has probability of 1
transferring to the next state (anchor node) and the action is
defined as selecting an anchor node. We use v(ua) and v′(ua)
as the vectors respectively representing ua in networks Gs and
Gt. The basic idea of our dual identity linkage learning is that
given a batch of anchor nodes, two mapping functions try

Algorithm 1 User Identity Linkage Dual Learning.
Input: anchor nodes A and B (|A| = |B| = n), batch size h, two initialized

pretrained weak functions: Φ and Φ−1, discount rates γhs,t and γht,s.
Output: ΦW,b and Φ−1

W,b, hyper-parameter α.
1: repeat
2: h = 1, 2, ...
3: for anchor vector v(ua) in batch h do
4: for each ua ∈ Gs do
5: state sa = ua;
6: Search k most similar vectors S(v′(uk)) in Gt:
7: S(v′(uk)) = Top(Φ(v(ua))).
8: Compute reward ras,t according to Eq.6.
9: Compute reward rat,s according to Eq.7.

10: Compute stochastic gradient of OΦW,bE[rs,t] as:
11: 1

k

∑k
i=1[αOΦW,br

i
s,t;W,b)];

12: Update ΦW,b ← ΦW,b + γhs,tOΦW,b.
13: Compute stochastic gradient of OΦW,bE[rt,s] as:
14: 1

k

∑k
j=1[(1− α)OΦW,br

j
t,s;W,b)];

15: Update ΦW,b ← ΦW,b + γht,sOΦW,b.
16: end for
17: end for
18: until convergence;

to align two user latent spaces according to the rewards of
mapping anchor nodes in the batch. Additionally, it provides
an explicit convergence and termination conditions, in contrast
to those completely empirically chosen in existing works such
as IONE [7] and ULink [9].

More formally, for a game starting with ua in Gs (agent A),
we use Φ to map its vector on the space of Gt and search its
k nearest vectors S(v′(ua)) = Top(Φ(v(ua))), indicating the
most similar k embedding vectors of anchor nodes in Gt. Here,
k vectors are the candidates for real users and the probability
of successful linkage gets higher with training on more anchor
nodes. The agent B (in Gt) then computes a reward ris,t as:

ras,t =
1

k

k∑
i=1

log(cos(v(ui),v
′(ua)) + 1) (6)

where cos(·) + 1 denotes the similarity value between two
vectors and ranges from 0 to 2. We note that the reason for
searching and averaging top-k vectors for Φ(v(ua)) is that it
is difficult for the mapping function to exactly match the real
identity of ua ∈ Gt (vector v′(ua)) – however, it has a larger
probability to include the real identity in the top-k nearest
ones.

Intuitively, we can also calculate the mapping Φ−1 of v′(ui)
back to Gs and leverage the duality of the mapping to produce
the second reward rat,s, i.e., the average similarity between
Φ−1(v′(ui)) and v(ua), as:

rat,s =
1

k

k∑
i=1

log(cos(Φ−1(v′(ui)),v(ua)) + 1) (7)

Thus, the action-value ra of selecting user (state) ua is
a linear combination of ras,t and rat,s which indicates the
estimated probability of correct real identity linkage by the
mapping functions. In particular, it exploits the duality of two
mapping functions to guide the anchor nodes training process.
Now the expected reward E[rh] for the hth batch is:

E[rh] =
bn/hc∑
a=1

(αras,t + (1− α)rat,s) (8)
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where hyper-parameter α is learned and tuned from the
training, similarly to [42].

The process of supervised user identity linkage learning is
summarized in Algorithm 1. Since the reward of the game can
be considered as a function of v′(ua), v(ua), Φ and Φ−1, we
can optimize the parameter W and b in two mapping functions
based on maximizing the expected reward (line 12 and line 15
in Algorithm 1 where γhs,t and γht,s are discount rates using
policy gradient methods [44]).

We also use the same method to train DeepLink from the
other direction Gs → Gt in order to alleviate overfitting.
Empirically, we found that averaging the linkage results is
informative to help aligning two networks efficiently.

E. Discussion

As discussed so far, our proposed algorithm DeepLink links
users across two networks. However, in many real applications,
it is often the case that more than two platforms are involved
for user identity linkage [9]. We note that this can also be
addressed by DeepLink in two ways:
(1) A straightforward “chain rule”, i.e., sequentially aligning
several networks such as G1 → G2 → G3....
(2) Training different versions of DeepLink for every pair of
networks. For example, suppose we have three networks G1,
G2 and G3. The dual mappings between all possible pairs, i.e.,
(G1,G2), (G1,G3) and (G2,G3), can be trained in parallel.
Then the user identity linkage across three networks can be
easily obtained via transitivity.

DeepLink is a network-based UIL approach, but it can
easily incorporate features from users to improve the linkage
efficiency, such as usernames and/or locations, if available.
These features can be embedded into the vector obtained via
network embedding. We note that the existing network struc-
ture based embedding may suffer from top-k mess, meaning
that embedded vectors for neighboring nodes are too close
to distinguish from each other. The features irrelevant to
network structures might be helpful to discriminate the top-
k candidates. For instance, we can use an edit distance of
usernames as a constraint to screen out the top-1 result from
the most similar k vectors.

V. EXPERIMENTS

We now describe several real-world and synthetic datasets
used in our experiments, and then present in detail the exper-
imental observations regarding the advantages of DeepLink
from two aspects: linking precision and ranking performance.
We also discuss the effects of different parameters’ combina-
tions on model performance.

A. Datasets

To compare the performance of all the different methods we
used the following ground truth social network collections in
our experiments (Table I describes the corresponding graphs):
• Foursquare - Twitter: This dataset is provided by Zhang

et al. [39], where nodes (users) of two social networks
(Foursquare and Twitter) are partially aligned.

• Lastfm-MySpace and Livejournal-MySpace: This
dataset is published by Zhang et al. [6] and available
online1. It contains 5 networks, however, for the sake
of privacy, they only provide partial anchor nodes for
true identity linkage. We randomly choose two network
pairs for our evaluation, including Lastfm-MySpace and
Livejournal-MySpace.

TABLE I
STATISTICS OF DATASETS.

Dataset |V | |E| anchor nodes
Foursquare 5,120 76,972 3,148Twitter 5,313 164,920

Lastfm 2,659 102,506 1,561MySpace 2,161 90,438
Livejournal 1,366 22,299 667MySpace 867 18,163

B. Baselines and Settings

For DeepLink, we use a 3-layer perceptron as the mapping
function. Each perceptron has 2 hidden layers which produce
a non-linear transformation by projecting the input (e.g.,
800d) to intermediate vectors: 1200d (first hidden layer) and
1600d (second hidden layer) before reducing to its original
dimensionality (800d). The learning rate for training is 0.001,
and the batch size is set to 32.

We compare our DeepLink approach with several network-
based methods which also require only network structural
information. We note that there are many methods using both
profile-based feature and network information, which is also
applicable in DeepLink as we discussed in section IV-E. In
this paper, we concentrate on the network-based UIL, and
evaluate the performance of DeepLink by comparing it with
the following baselines:
• IONE: Input-Output Network Embedding (IONE) is

a network embedding and partial network alignment
method proposed in [7] achieving the state-of-the-art
linking results compared to previous works. In IONE,
the followers and followees of users are represented with
three vectors: node vector, input vector and output vector.
The user latent space is obtained with negative sampling
and constraints on common users of the networks, where
gradient descent is used to train and align two networks
with the anchor nodes.

• ONE: ONE is simplified version of IONE where only
node vector and output vector representation of a user
are considered for alignment.

• MAH: Manifold Alignment on Hypergraph (MAH) is
the network embedding method proposed in [19] which
represents nodes into a common low dimensional space
(dimensionality is 400 in our repeated implementation
which is the best result reported in [19]) and infers
account correlation by comparing distances between two
vectors across networks in the embedding space. MAH

1http://aminer.org/cosnet
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uses hypergraph to model high-order relations, e.g., same
interest group or same activity. For a target user in one
network, MAH ranks all users in the other network by
their probability of referring to the same user.

• MAG: Manifold Alignment on traditional Graphs
(MAG) [19] builds a social graph for each network by
computing user-to-user pairwise weights as w(ui, uj) =|
Rui∩Ruj | /(| Rui | + | Ruj |) where Rui is relation set
containing user ui. The ranking result of users is obtained
via the manifold alignment.

• CRW: Collective Random Walk (CRW) [22] predicts the
formation of social links among users in the target net-
work as well as anchor links aligning the target network
with other external social networks. CRW consists of two
phases: (1) collective link prediction of anchor and social
links; and (2) propagation of predicted links across the
partially aligned probabilistic networks with collective
random walk.

C. Evaluation Metrics

In a similar spirit to [2], we choose three standard metrics to
evaluate the performance, including Precision@k(P@k), MAP,
AUC and Hit-Precision. Note that the higher the value of each
of these measures, the better the performance.

Precision@k is the metric for evaluating the linking accu-
racy, defined as:

P@k =

n∑
i

1i{success@k}/n (9)

where 1i{success@k} measures whether the positive match-
ing identity exists in top-k (k <= n) list, and n is the number
of testing anchor nodes. Note that since top-k is a metric of the
true positive prediction rate, Precision@k is exactly the same
as Recall@k, as well as the F1@k, in the context of UIL.

MAP, AUC and Hit-Precision are used for evaluating the
ranking performance of the algorithms, defined as:

MAP = (

n∑ 1

ra
)/n

AUC = (

n∑ m+ 1− ra
m

)/n

Hit-Precision = (

n∑ m+ 2− ra
m+ 1

)/n

(10)

where ra is the rank of the positive matching identity and m
is the number of negative user identities. The goal of all three
metrics is to rank the true matching user identities as high as
possible.

D. Results

We first examine the performance of various methods on
linking precision, as illustrated in Table II, from which we
notice that the embedding based methods achieve higher
precision compared to the traditional link based prediction
method (CRW). Among the latent space learning approaches,
DeepLink achieves the highest accuracy in all top-k identity
matching. Table II randomly reports 6 different k values be-
tween 0 and 30 for lack of space, while Figure 2(a) compares

TABLE II
COMPARISONS OF LINK PRECISION ON FOURSQUARE-TWITTER DATA.

Precision
P@1 P@5 P@9 P@13 P@21 P@30

CRW 0.0000 0.0219 0.0476 0.0538 0.0909 0.1603
MAG 0.0638 0.1362 0.1705 0.2081 0.2708 0.3229
MAH 0.0500 0.1219 0.1886 0.2148 0.2513 0.0003
ONE 0.1229 0.2533 0.3038 0.3510 0.4071 0.4270
IONE 0.2238 0.4033 0.4638 0.5010 0.5571 0.5970

DeepLink 0.3447 0.5942 0.6609 0.6866 0.7000 0.7048

the performance of different algorithms by varying the value
of k.
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Fig. 2. Linking precision results on Foursquare-Twitter data. Parameters: k is
the predicted k top matching identities; d is the embedding dimensionality; r
is the percentage of anchor nodes used for training; i is ith training iteration.

(a) IONE Anchor Nodes (b) DeepLink Anchor Nodes

(c) IONE Testing Nodes (d) DeepLink Testing Nodes

Fig. 3. Heatmap comparison on Foursquare-Twitter data. Best viewed when
zoomed digitally. Note that IONE may disrupt linkage of anchor nodes after
training which makes the network “partially” alignment. The ideal result is
that all pairs of anchor nodes are perfectly diagonally aligned.

In addition to k, we also investigate the impact of space
dimensionality d, the percentage of anchor nodes used in
training r and iteration i on the performance of algorithms,
which are illustrated in Figure 2 and show that:
• A small number of dimensionality is sufficient for

DeepLink and IONE;
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(a) µ = 0.3 (b) µ = 0.4 (c) µ = 0.5 (d) µ = 0.6 (e) µ = 0.9

Fig. 4. Heatmap (DeepLink) on Lastfm-MySpace data.

(a) µ = 0.3 (b) µ = 0.4 (c) µ = 0.5 (d) µ = 0.6 (e) µ = 0.9

Fig. 5. Heatmap (DeepLink) on Livejournal-MySpace data.

• The percentage of anchor nodes used for training greatly
affects the performance of all algorithms, while DeepLink
achieves the best results due to its ability of leveraging
all the anchor nodes (both labeled and unlabeled) for
pretraining and dual learning process;

• The number of training iterations required for algorithm
convergence is another important factor, as illustrated
in Figure 2(d). Two important observations are: (1)
DeepLink converges to the best result sooner than IONE;
and (2) an interesting finding is that IONE is an empirical
method and there is no explicit way to stop training,
which might easily incur overfitting problem (declining
of the precision) if the value of i becomes larger.

TABLE III
RANKING PERFORMANCE COMPARISON

MAP AUC Hit-Precision
IONE 0.003 0.926 0.926
DeepLink 0.022 0.991 0.991

We also investigated the ranking performance of IONE
and DeepLink, and the findings are illustrated in Table III.
As discussed in Section IV-E, the existing methodologies for
addressing the UIL problem, including IONE, suffer from top-
k mess problem. DeepLink significantly outperforms IONE
in terms of Hit-Precision which measures the ranking per-
formance on identity prediction.

Finally, we visualize our observations regarding the perfor-
mance of DeepLink and IONE in Figure 3, which consists of
two components. First, we randomly select 50 anchor nodes
(for training) and plot their pair-wise cosine similarity in two
networks after alignment (Figure 3(a) and 3(b)). As can be
seen, IONE may disrupt the alignment of anchor nodes after
training, while DeepLink maintains their user latent space
linkage relatively well. Complementary to this, Figure 3(c)
and 3(d) depict the alignment results of 50 randomly selected

testing anchor nodes – which further demonstrated the advan-
tage of DeepLink (having less predicting noise) compared to
IONE.

DeepLink focuses on utilizing network features to link user
identities. To further evaluate the performance, we generate
several partially simulated synthetic sub-networks using node
and edge sampling strategies. The construction process is
as follows: (1) Given a pair of real social networks (e.g.,
Lastfm-MySpace), we first include all n anchor nodes and
randomly select 50% of them as non-anchor nodes in the
new sub-networks. Therefore, we have two subnetworks A
and B with n/2 anchor nodes and n/2 non-anchor nodes and
aligned accordingly. (2) For each of the n/2 anchor nodes in
network A, we use a random probability ρ to decide whether
we should add edges on both networks (we fix ρ = 0.9
in our experiments). If both networks for the anchor node
are going to be augmented with an edge, we use another
parameter µ to control the probability that added edges are
connecting to exactly the same pair of nodes for both networks.
The parameter µ is mainly used for adjusting the degree of
similarity between A and B. (3) To make network A and B
more realistic, we randomly add some extra nodes and edges
for either A or B.

Figure 4 exhibits the heatmap of DeepLink on 20 randomly
chosen testing nodes (from n/2 non-anchor nodes) and shows
that the similarity of two networks on structures plays a
paramount role of user identity linkage. We have similar
results for Livejournal-MySpace shown in Figure 5.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a novel deep reinforcement learning based
algorithm – DeepLink – to study the UIL problem by lever-
aging the duality of mapping between any two networks.
DeepLink is an end-to-end network alignment approach and a
semi-supervised user identity linkage learning algorithm that
does not require a heavy feature engineering and can easily
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incorporate profile-based features. Despite the challenges of
linking identity across different sites and running such map-
ping in a data-driven manner, we believe that the deep struc-
ture learning framework and cross-site reinforcement learning
paradigm presented in this work can be beneficial for network
alignment and many identity-based applications. Our experi-
ments demonstrated that the proposed framework outperforms
various state-of-the-art UIL methods in both linkage precision
and ranking matching user identity.

There are several directions to be investigated in the future.
First, DeepLink chooses random walk and word2vec as the
basic method for capturing the network structure – which
perform well and are natural choices in existing works. It
will be interesting to investigate some other types of network
representation models such as the one based on spectrum of the
graph Laplacian [35] or convolutional neural networks [37].
Another important implication of DeepLink is its ability to
underpin novel patterns of cross-site analysis by leveraging the
duality of pair-networks such as improving advertising accu-
racy and product recommendation efficiency. Thus, developing
new cross site applications might also be worthwhile pursuing.
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