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Abstract—In recent years, IT Service Providers have been
rapidly transforming to an automated service delivery model.
This is due to advances in technology and driven by the
unrelenting market pressure to reduce cost and maintain quality.
Tremendous progress has been made to date towards attainment
of truly automated service delivery; that is, the ability to deliver
the same service automatically using the same process with
the same quality. However, automating Incident and Problem
Management continuous to be a difficult problem, particularly
due to the growing complexity of IT environments.

Software monitoring systems are designed to actively collect
and signal event occurrances and, when necessary, automatically
generate incident tickets. Repeating events generate similar
tickets, which in turn have a vast number of repeated problem
resolutions likely to be found in earlier tickets. In this paper
we find an appropriate resolution by making use of similarities
between the events and previous resolutions of similar events.
Traditional KNN (K Nearest Neighbor) algorithm has been used
to recommend resolutions for incoming tickets. However, the
effectiveness of recommendation heavily relies on the underlying
similarity measure in KNN. In this paper, we significantly
improve the similarity measure used in KNN by utilizing both
the event and resolution information in historical tickets via a
topic-level feature extraction using the LDA (Latent Dirichlet
Allocation) model. In addition, when resolution categories are
available, we propose to learn a more effective similarity measure
using metric learning. Extensive empirical evaluations on three
ticket data sets demonstrate the effectiveness and efficiency of
our proposed methods.

Index Terms—IT Service Management, Recommender System,
LDA (Latent Dirichlet Allocation), Metric Learning

I. INTRODUCTION

Today’s competitive business climate, as well as the com-
plexity of service environments, dictate the need for efficient
and cost-effective service delivery and support. This is largely
achieved through service-providing facilities that collaborate
with system management tools, combined with automation of
routine maintenance procedures such as problem detection,
determination and resolution for the service infrastructure [1],
[2], [3], [4], [5]. Automatic problem detection is typically
realized by system monitoring software, such as IBM Tivoli
Monitoring [6] and HP OpenView [7]. Monitoring continu-
ously captures the events and generates incident tickets when
alerts are raised. Deployment of monitoring solutions is a first
step towards fully automated delivery of a service. Automated
problem resolution, however, is a hard problem.

With the development of e-commerce, a substantial amount
of research has been devoted to recommendation systems.
These recommendation systems determine items or products
to be recommended based on prior behavior of the user or
similar users and on the item itself. An increasing amount
of user interactions have provided these applications with a
vast amount of historical information that can be converted
into practical knowledge. In this paper we apply a similar
approach and develop a methodology that finds a resolution
for an event by making use of similarities between the events
and previous resolutions of monitoring tickets. Most service
providers keep years’ worth of historical tickets with their
resolutions. The resolution is usually collected as a free-
form text and describes steps taken to remediate the issue
described in the ticket. We analyzed historical monitoring
tickets collected from three different accounts managed by one
of the large service providers (an account is as an aggregate of
services that use common infrastructure). We noticed that there
are many repeating resolutions for monitoring tickets within
an account. It is natural to expect that if events are similar,
then their respective tickets probably have the same resolution.
Therefore, we can recommend a resolution for an incoming
ticket based on the event information and historical tickets.

A KNN-based approach has been proposed in [8] to provide
resolution recommendations for incoming tickets in service
management. Although the approach has been successfully
used in practice, it has the following two major limitations:

• Representation of monitoring tickets: In the KNN-
based approach, attribute-based features are used to rep-
resent monitoring tickets. However, attribute-level feature
representation is not interpretable and often contains lots
of noise. In practice, each monitoring ticket describes
the existing problems (e.g., low capacity, high CPU
utilization) in service and the associated ticket resolutions
should be highly relevant to the problems. Therefore,
it is better to use features semantically capturing these
problems, instead of attribute-level features, to represent
monitoring tickets.

• Similarity Measurement: The similarity measure used
in [8] only considers the event information, and ignores
the related resolutions. In addition, each attribute is
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treated equally when computing the similarity measure.
However, the resolutions often reveal their prevalence
in historical tickets and contain important information
about the events, which can be used to improve the rec-
ommendation performance. Moreover, different attributes
should have different weights in computing the similarity
measure as they often play different roles in representing
the tickets.

In this paper, we propose an approach to address the
aforementioned limitations in recommending ticket resolutions
for service management. In particular, we make the following
contributions:
• We analyze historical monitoring tickets from three pro-

duction accounts and observe that their resolutions are
recommendable for current monitoring tickets on the
basis of event information.

• We propose a feature extraction approach capable of
representing both the event and resolution information
using topic-level features obtained via the LDA model.

• We propose to further improve the similarity measure-
ment using metric learning when resolution categories
are available.

• We conducted extensive experiments for our proposed
algorithms on real ticket datasets, and experimental re-
sults demonstrate the effectiveness and efficiency of the
proposed approaches.

The rest of the paper is organized as follows: Section II
briefly introduces the workflow of the infrastructure manage-
ment of an automated service and shares our observations on
three sets of monitoring tickets. In Section III, we present
resolution recommendation algorithms for monitoring tickets.
Section IV discusses some detailed implementation issues. In
Section V, we present experimental studies on real monitoring
tickets. Section VI describes related work about service infras-
tructure management and recommendation systems. Finally,
Section VII concludes our paper and discusses our future
work.

II. BACKGROUND

In this section, we first provide an overview of automated
service infrastructure monitoring with ticket generation and
resolution. Then we present our analysis on real ticket data
sets.

A. Automated Services Infrastructure Monitoring and Event
Tickets

The typical workflow of problem detection, determination,
and resolution in services infrastructure management is pre-
scribed by the ITIL specification [9]. Problem detection is
usually provided by monitoring software, which computes
metrics for hardware and software performance at regular
intervals. The metrics are then matched against acceptable
thresholds. A violation induces an alert. If the violation
persists beyond a specified period, the monitor emits an event.
Events from the entire service infrastructure are accumulated

in an enterprise console that uses rule-, case- or knowledge-
based engines to analyze the monitoring events and decide
whether to open an incident ticket in the ticketing system.
The incident tickets created from the monitoring events are
called monitoring tickets. Additional tickets are created upon
customer request. The information accumulated in the ticket
is used by technical support for problem determination and
resolution. In this paper, we consider tickets generated by a
service management system (see Figure 1).

Fig. 1: Service Management System

Each event is stored as a database record that consists of
several related attributes with values describing the system
status at the time this event was generated. For example,
a CPU-related event usually contains the CPU utilization
and paging utilization information. A capacity-related event
usually contains the disk name and the size of disk used/free
space. Typically, different types of events have different sets
of related attributes. The problem resolution of every ticket is
stored as a textual description of the steps taken by the system
administrator to resolve this problem.

B. Repeated Resolutions of Monitoring Tickets

We analyzed ticket data from three different accounts
managed by IBM Global Services. Many ticket resolutions
repeatedly appear in the ticket database. For example, for
a low disk capacity ticket, usual resolutions are deletion of
temporal files, backup data, or addition of a new disk. Unusual
resolutions are very rare.

TABLE I: Data Summary

Data set Num. of Tickets Time Frame
account1 31,447 1 month
account2 37,482 4 months
account2 29,057 5 months

The collected ticket sets from the three accounts are denoted
by “account1”, “account2” and “account3”, respectively. Table
I summarizes the three data sets. Figure 2 shows the numbers
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Fig. 2: Numbers of Tickets and Distinct Resolutions
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Fig. 3: number of monitoring tickets resolved by each resolu-
tions denoted by “resolution ID” in account1

of tickets and distinct resolutions and Figure 3 shows the
top repeated resolutions in “account1” denoted by “resolution
ID”. We observe that a single resolution can resolve multiple
monitoring tickets. In other words, multiple tickets share the
same resolutions.

III. RESOLUTION RECOMMENDATION

In this section, we first introduce the basic KNN-based
recommendation algorithm, and then present our improved
algorithms.

A. Workflow

Figure 4 shows the workflow of resolution recommendation.
Four different algorithms are included in the workflow:
• KNN: the algorithm using attribute-level features
• LDABaselineKNN: the algorithm using topic-level fea-

tures obtained via LDA
• CombinedLDAKNN: the algorithm incorporating both

the event and resolution information with top-level fea-
tures

• MLCombinedLDAKNN: the algorithm using the sim-
ilarity measure obtained using metric learning (when
resolution categories are available)

The first algorithm was used in [8] and the last three algorithms
are proposed in this paper. Figure 4 clearly illustrates the
differences among these four recommendation methods. The
details of the three proposed algorithms will be described

in detail in Section III-C, Section III-D, and Section III-E,
respectively.

Fig. 4: Algorithms’ workflow

B. Basic KNN-based Recommendation

Given an incoming monitoring ticket, the objective of the
resolution recommendation is to find k resolutions as close
as possible to the true one for some user-specified parameter
k. The recommendation problem is often related to that of
predicting the top k possible resolutions. A straightforward
approach is to apply the KNN algorithm, which searches the
K nearest neighbors of the given ticket (K is a predefined
parameter), and recommends the top k ≤ K representative
resolutions among them [10], [11]. The nearest neighbors are
indicated by similarities of the associated events of the tickets.
In this paper, the representativeness is measured by the number
of occurrences in the K neighbors.

TABLE II: Notations

Notation Description
D Set of historical tickets
| · | Size of a set
ti i-th monitoring ticket
r(ti) Resolution description of ti
e(ti) The associated event of ticket ti
A(e) Set of attributes of event e
sim(e1, e2) Similarity of events e1 and e2
sima(e1, e2) Similarity of a values of event e1 and e2
K Number of nearest neighbors in the KNN algorithm
k Number of recommended resolutions for a ticket, k ≤

K

Table II lists the notations used in this paper. Let D =
{t1, ..., tn} be the set of historical monitoring tickets and ti
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be the i-th ticket in D, i = 1, ..., n. Given a monitoring ticket
t, the nearest neighbor of t is the ticket ti which maximizes
sim(e(t), e(ti)), ti ∈ D, where sim(·, ·) is a similarity
function for events. Each event consists of event attributes
with values. Let A(e) denote the set of attributes of event e.
The similarity for events is computed as the summation of the
similarities for all attributes. There are three types of event
attributes: categorical, numeric and textual (shown by Table
III). Given an attribute a and two events e1 and e2, a ∈ A(e1)

TABLE III: Event Attribute Types

Type Example
Categorical OSTYPE, NODE, ALERTKEY,...
Numeric SERVERITY, LASTUPDATE, ...
Textual SUMMARY,...

and a ∈ A(e2), the values of a in e1 and e2 are denoted by
a(e1) and a(e2). The similarity of e1 and e2 with respect to
a is

sima(e1, e2) =


I[a(e1) = a(e2)], if a is categorical,
|a(e1)−a(e2)|

max|a(ei)−a(ej)| , if a is numeric,
Jaccard(a(e1), a(e2)), if a is textual,

where I(·) is the indicator function returning 1 if the input
condition holds, and 0 otherwise. Let max|a(ei) − a(ej)| be
the size of the value range of a. Jaccard(·, ·) is the Jaccard
index for bag of words model [12], frequently used to compute
the similarity of two texts. Its value is the proportion of
common words in the two texts. Note that for any type of
attribute, inequality 0 ≤ sima(e1, e2) ≤ 1 holds. Then, the
similarity for two events e1 and e2 is computed as

sim(e1, e2) =

∑
a∈A(e1)∩A(e2)

sima(e1, e2)

|A(e1) ∪A(e2)|
. (1)

Clearly, 0 ≤ sim(e1, e2) ≤ 1. To identify the type of attribute
a, we only need to scan all appearing values of a. If all values
are composed of digits and a dot, a is numeric. If some value
of a contains a sentence or phrase, then a is textual. Otherwise,
a is categorical.

C. Representation of Monitoring Tickets

As shown in Section III-B, attribute level features are used
in the traditional KNN algorithm for recommendation. How-
ever, attribute-level feature representation is not interpretable
and often contains a lot of noise.

Our observation indicates that each monitoring ticket de-
scribes the existing problems (e.g., low capacity, high CPU,
utilization) in service, and the associated ticket resolution
should be highly relevant to the problems. For example,
Table IV presents some sample monitoring tickets for “low
free space” and their corresponding resolutions. The problems
in these tickets are described by the “SUMMARY” attribute
and they all share the similar semantic meaning “low free
space”. Therefore, it is better to use features semantically
capturing these problems, instead of attribute-level features,
to represent monitoring tickets.

In this paper, we propose to apply Latent Dirichlet Alloca-
tion [13](LDA) to perform feature extraction, which can first
extract hidden topics and then encode monitoring tickets using
topic level features.

LDA is a generative probabilistic model of a document cor-
pus. Its basic idea is that documents are represented as random
mixtures over latent topics, where each topic is characterized
by a distribution over words [13]. Figure 5 shows the graphical
model representation of LDA.

The wij’s are the only observable variables. Following [13],
LDA assumes the following generative process for each doc-
ument w in a corpus D of length M :

1) Choose θ ∼ Dir(α), where Dir(α) is the Dirchlet
distribution for parameter α

2) For each of the N words wn:
a) Choose a topic zn ∼Multinomial(θ).
b) Choose a word wn from p(wn|zn, β), a multino-

mial probability conditioned on the topic zn.
According to the graphical model, the total probability
P (D|α, β) of a corpus D is given by:

M∏
d=1

∫
p(θd|α)

( Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn)|zdn , β
)
dθd (2)

Learning the various distribution (the set of topics, their

Fig. 5: Plate notation representing the LDA model. α is the
parameter of the Dirichlet prior on the per-document topic
distribution; β is the parameter of the Dirichlet prior on the
per-topic word distribution; θi is the topic distribution for
document i; φk is the word distribution for topic k; zij is the
topic for the j-th word in document i, and wij is the specific
word.

associated word probabilities, the topic of each word, and the
topic probabilities of each document) is a problem of Bayesian
Inference [13]. Topic probability distribution of a document is
commonly used as its feature vector.

Following are steps for using LDA for feature extraction in
our work:
• Represent each monitoring ticket as a document by

concatenating each attribute after stop words removal and
tokenization

• Using historical tickets to train a LDA model
• Inference feature vectors using the trained LDA model for

both incoming events and historical monitoring tickets.
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After those steps, monitoring tickets can be encoded as feature
vectors and the cosine similarity can then be applied to mea-
sure their similarities. Experiments in Section V demonstrate
that the algorithm performance based on topic level features
is better than that on attribute level features.

D. Incorporating the Resolution Information

In previous KNN-based recommendation approaches, reso-
lutions are ranked according to the similarity measurement
using the event information only. However, the resolutions
often reveal their prevalence in historical tickets and contain
important information about the events, which can be used
to improve the recommendation performance. There are two
practical motivations for incorporating the resolution informa-
tion:

1) In a K nearest neighbor search, historical tickets with
resolutions that are highly relevant to an incoming event
should be ranked higher than those tickets having similar
event descriptions, but with less related resolutions.

2) In a K nearest neighbor search, those tickets with
resolutions that are more prevalent should be ranked
higher than those with less prevalent resolution, even
if their event descriptions are similar.

Table IV presents four tickets having similar event descrip-
tions (shown in the “SUMMARY” attribute) from account1.
All four tickets are describing a “low free space” problem. In
practice, however, the resolution from Ticket 1 should have a
higher rank than the one from Ticket 4 since the resolution
from Ticket 1 is more informative. Similarly, resolutions from
Ticket 1 and Ticket 2 should have higher ranks than the one
from Ticket 3 because of their higher prevalence.

TABLE IV: Tickets for explaining motivation of incorporating
resolution information

ticketID SUMMARY RESOLUTION
1 The logical disk has a low

amount of free space. Percent
available: 2 Threshold: 5

After deleting old uninstall
files, the logical disk has now
over 10% of free disk space.

2 The percentage of used space
in the logic disk is 90 percent.
Threshold: 90 percent

After deleting old uninstall
files, the logical disk has now
over 15% of free disk space.

3 File system is low. The per-
centage of available space in
the file system is 10 percent.
Threshold: 90 percent

After delprof run, the server
now has more than 4gb of free
space

4 The logical disk has a low
amount of free space. Percent
available: 3 Threshold: 5

No trouble was found, situa-
tion no longer persists.

In Section III-B, sim(e, e(ti)) is computed to find the K
nearest neighbors of an incoming event e, in which e(ti)
is the event information associated with the i-th ticket. To
incorporate the resolution information, sim(e, ti) (i.e., simi-
larity between an incoming event and the i-th ticket), rather
than sim(e, e(ti)), is used in the algorithm. sim(e, ti) can
be easily computed since e and ti can be vectorized with the
same dimensions after using topic-level features. Experiments
in Section V demonstrate the effectiveness of this proposed
approach.

E. Metric Learning

In previous sections, we improve the recommendation algo-
rithm by using topic-level features and incorporating resolution
information into a K nearest neighbor search. However, we
still treat each feature equally in computing the similarity
measure. According to our observation, topics extracted from
the LDA model should have different contributions to the
similarity measurement since some topics contain the major
descriptive words about events while the others may consist of
less meaningful words. For example, Table V lists two topics
for illustration. Apparently Topic 30 contains more descriptive
words than Topic 14 and thus we should assign a larger weight
to Topic 30 in the similarity measurement. We adopt metric
learning [14] to achieve this goal.

TABLE V: First 6 words are extracted to represent topics trained
from LDA

topicID SUMMARY
14 server wsfpp1 lppza0 lppzi0 nalac application
30 server hung condition responding application apps

The metric learning problem aims at learning a distance
function tuned to a particular task, and has been shown to
be useful when used in conjunction with nearest-neighbor
methods and other techniques that rely on distances or similar-
ities [15]. Mahalanobis Distance is commonly used for vector-
ized inputs, which can avoid the scenario in which one feature
dominates in the computation of the Euclidean distance. In the
metric learning literature, the term “Mahalanobis distance” is
often used to denote any distance function of the following
form:

dA(x, y) = (x− y)TA(x− y), (3)

where A is some positive semi-definite (PSD) matrix, and x, y
are the feature vectors. To facilitate the learning process, in
metric learning, a slightly modified form of distance function
is commonly used, as described below [14]:

dA(x, y) = xTAy. (4)

In our work, we have n historical tickets t1, t2, . . . , tn
and n corresponding resolutions r(t1), r(t2), . . . , r(tn). We
consider the resolution categories as supervision for metric
learning since intuitively similar resolutions solve similar
issues. We pre-calculate matrix R ∈ Rn∗n in which Ri,j =
sim(r(ti), r(tj)). Our goal is to learn a similarity function
SA(~ti, ~tj) by solving following an optimization problem:

f(A) = min

n∑
i=1

n∑
j=1

||Ri,j − SA(~ti, ~tj)||2

= min||R− SAST ||2, (5)

in which we use SA(~ti, ~tj) = ~ti
T ∗ A ∗ ~tj (~ti and ~tj are

feature vector for ticket ti and tj) instead of SA( ~e(ti), ~e(tj))
as we want to keep benefits of incorporating the resolution
information into K nearest search. Since matrix A is con-
strained to be a PSD matrix, the projected gradient descent

2015 IFIP/IEEE International Symposium on Integrated Network Management (IM2015) 291



algorithm can be directly applied to solve the optimization
problem in Equation 5. In each iteration of gradient descent,
the new updated matrix A will be projected into a PSD matrix
as the initial value for the next iteration. The singular value
thresholding [16] has been applied to project A into a PSD
matrix by setting all A’s negative eigenvalues to be zero.

The following is the gradient for Equation 5:

∂f(A)

∂A
=

∂((R− SAST )T (R− SAST ))
∂A

= 2STSASTS − 2STAS (6)

The resolution categories are usually provided by system
administrators. With the available category information, the
similarity between two resolutions is computed as follows:

sim(r(ti), r(tj)) =

{
1, if r(ti), r(tj) are in same category,
0, otherwise.

IV. IMPLEMENTATION

In this section, we discuss several issues in implementing
the resolution recommendation system.

A. Redundancy Removal in Recommendation

KNN-based recommendation algorithms recommend the top
k representative resolutions in the K nearest tickets. However,
since all of these are similar to the incoming ticket, the
resolutions of the K tickets may also be similar to each other,
so that there may be some redundancy in the recommended
results. To avoid this, another validation step is applied. First,
the K nearest tickets’ resolutions are sorted according to
their representativeness in descending order. Then, we go
through all K resolutions and check whether or not each
of them is redundant to any previously selected resolution.
If it is, we skip this resolution and jump to the next one;
otherwise, we add it to the selection. Since the resolutions
are textual descriptions, the redundancy of two resolutions is
measured by the Jaccard index, Jaccard(·, ·), introduced in
Section III-B. In practice, if the descriptions of two resolutions
r(t1) and r(t2) have more than one half common words (i.e.
Jaccard(r(t1), r(t2)) > 0.5), the two resolutions are quite
likely to be the same.

B. Finding Nearest Neighbors

Finding the K nearest neighbors in a large collection of
historical tickets is time-consuming. There are many standard
indexing search methods, such as k-d Tree [17], R-Tree
[18], VP-Tree [19], cover tree [20]. But the search space of
our monitoring tickets is not metric and the dimensionality
is high. Therefore, locality sensitive hashing [21] is more
practical. Another heuristic solution is the attribute clustering
based method. Different system events have different system
attributes, and the clustering algorithm can easily separate
all tickets into categories based on their attribute names. If
two events share very few common attributes, their similarity
cannot be high. Therefore, in most cases, the nearest neighbors
search only needs to access these tickets in the same category.

V. EVALUATION

A. Implementation
We implemented four algorithms: Weighted KNN [22]

using attribute level feature, the Weighted KNN method using
topic level feature, the method incorporating historical resolu-
tions information and the method using improved similarity
metric after applying metric learning, which are denoted
by “WKNN”, “LDABaselineKNN”, “CombinedLDAKNN”
and “MLCombinedLDAKNN” respectively. Those algorithms,
“WKNN”, “LDABaselineKNN”, “CombinedLDAKNN” and
“MLCombinedLDAKNN”, are all based on the weighted
KNN algorithm framework. We still show experimental re-
sults between “WKNN” and “LDABaselineKNN” since they
prove that topic level features do not cause information loss
compared to attribute level features. The “LDABaselineKNN”
algorithm is the baseline for “CombinedLDAKNN”, which
itself is the baseline for “MLCombinedLDAKNN”. We use the
Weighted KNN algorithm as the underlying algorithm because
it is the most widely used Top-N item-based recommendation
algorithm.

B. Experimental Data
Experimental monitoring tickets are collected from three

accounts managed by IBM Global Services, denoted later “ac-
count1”, “account2” and “account3”. The monitoring events
are captured by IBM Tivoli Monitoring [23]. The ticket
sets are summarized in Table I. To evaluate metric learning,
1000 labeled tickets with resolution categories are obtained
from “account1”. Table VI shows three sample categories of
resolutions [24].

TABLE VI: Three resolution types with the event description they
resolved

resolution class resolved event key words
Server Unavailable Server unavailable due to unex-

pected shutdown, reboot, defect
hardware, system hanging

Disk/FS Capacity shortage Disk or file system capacity prob-
lems and disk failure

Performance inefficiency Performance and capacity prob-
lems of CPU or memory

C. Evaluation Metric
The following evaluation measures are used in our experi-

ments.
1) average similarity: In general, several resolutions can

be recommended for a single testing instance. To consider
the relativeness of all recommended resolutions, the average
similarity (avgSim) is used as one evaluation metric which is
given by the following equation:

avgSim =
1

N

N∑
i=1

ni∑
j=1

sim(rio, rj)/ni,

in which N is the number of testing instances, and ni is the
number of recommended resolutions for testing instance i and
rio is its original resolution, and rj is its jth recommended
resolution. Jaccard Similarity is used to calculate sim(rio, rj).
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2) mean average precision: Mean Average Precision
(MAP) [25] is widely used for recommendation evaluation. It
considers not only the relativeness of all recommended results,
but also the ranks of the recommended results.

MAP@n =
N∑
i=1

ap@ni/N,

N is the number of a testing instance, ap@n is given by the
following equation:

ap@n =
n∑
k=1

p(k)δr(k),

where k is the rank in the sequence of retrieved resolutions,
n is the number of retrieved resolutions, p(k) is the precision
at cut-off k in the list, and δr(k) is the change in recall from
items k − 1 to k.

D. Choosing the Number of Topics

Figure 6 shows the experimental results of choosing the
proper number of topics for training the LDA model using
data set “account1”. The results show that numTopics = 300
is a proper setup for the number of topics. Thus, we choose
numTopics = 300 for all the following experiments.

50 100 150 200 250 300 350
numTopics

0.32

0.34

0.36

0.38

0.40

a
v
g
S
im

WKNN
LDABaselineKNN
CombinedLDAKNN

Fig. 6: Accuracy varies for different numTopics for dataset
“account1”

E. Overall Recommendation Performance

The average similarity is used for comparing the perfor-
mance among “WKNN”, “LDABaselineKNN” and “Com-
binedLDAKNN”. When resolution categories are available,
MAP@n is used for comparing the performance between
“CombinedLDAKNN” and “MLCombinedLDAKNN” since
it explicitly considers the relativeness of the recommended
results.

To compare the results of each algorithm, we vary the
number of recommended resolutions, k. Figures 7, and 8
show the average similarity scores by setting k = 1, 3, 5, 7
separately, with K = 8 and K = 16. As shown by Figure
7 and Figure 8, topic level features are better than attribute
level features for account1 and account2 and slightly worse

for account3 by comparing algorithm “WKNN” and “LD-
ABaselineKNN”. “CombinedLDAKNN” always outperforms
“LDABaselineKNN”, which proves the effectiveness of incor-
porating the resolution information into K nearest neighbor
search.

1) Metric Learning Performance: Figure 9, Figure 10 and
Figure 11 are used to illustrate the usefulness of metric
learning. In these figures, X-axis and Y-axis are the event id’s
ordered by the resolution categories, and the color indicates
the similarity score. As shown in Figure 9 and Figure 10,
similarity scores between monitoring tickets with resolutions
from the same category will be enhanced while similarity
scores between monitoring tickets with resolutions from dif-
ferent categories will be reduced. Therefore, for example, for a
testing instance whose original resolution belongs to category
i, more resolutions from category i will be retrieved first after
applying metric learning.

0

0.5

0

0.5

Fig. 9: similarity measure before and after metric learning for
training set

0

0.5

0

0.5

Fig. 10: Similarity measure before and after metric learning
for testing set

Figure 11 uses MAP to evaluate the performance of “Com-
binedLDAKNN” and “MLCombinedLDAKNN”. As shown in
Figure 11, overall MAP scores of “MLCombinedLDAKNN”
are higher and more stable than “CombinedLDAKNN” when
K increases. It indicates that “MLCombinedLDAKNN” can
retrieve more related resolutions first and thus is more robust to
noisy resolutions compared to “CombinedLDAKNN”, which
proves the effectiveness of metric learning.

VI. RELATED WORK

This section reviews prior research studies related to the
automated IT service management and the recommendation
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Fig. 7: Test Results for three accounts by varying k for K = 8.
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system. System monitoring, as part of the automated Service
management, has become a significant research area of the IT
industry in the past few years. There are many commercial
products, such as IBM Tivoli [23], HP OpenView [7] and
Splunk [26] that focuses on system monitoring. The moni-
toring targets include the components or subsystems of IT
infrastructures, such as the hardware of the system (CPU, hard
disk) or the software (a database engine, a web server). Once
certain system alarms are captured, the system monitoring
software will generate the monitoring tickets into the ticketing
system. Automated ticket resolution is much harder than
automated system monitoring because it requires vast domain

knowledge about the target infrastructure. Some prior studies
apply approaches in text mining to explore the related ticket
resolutions from the ticketing database [27], [28]. Other works
propose methods for refining the work order of resolving
tickets [27], [29], [30] and discovering the dependency of
tickets [31].

VII. CONCLUSION

This paper studies the problem of resolution recommenda-
tion for monitoring tickets in an automated service manage-
ment. We analyze three sets of monitoring tickets collected
from a production service infrastructure and identify a vast
number of repeated resolutions for monitoring tickets. Based
on our prior work of KNN-based recommendation, we im-
prove the similarity measure by utilizing both the event and
resolution information from historical tickets via a topic-level
feature extraction using the LDA (Latent Dirichlet Allocation)
model. In addition, a more effective similarity measure is
learned using metric learning when resolution categories are
available.

There are several avenues for future research. First, we plan
to investigate and develop intelligent classification techniques
to automatically label resolutions [30], [32]. Second, our
current recommendation system uses KNN-based algorithms
due to their simplicity and efficiency. We will investigate and
develop other advanced algorithms to improve the recommen-
dation performance. Finally, we also plan to use an active
query strategy to fully automate resolution recommendations.
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