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ABSTRACT Extracting knowledge from human mobility data is an important task for many downstream
applications such as point-of-interest recommendation, motion trace identification, and personalized trip
planning. A specific problem that has recently spurred research interest is the so-called Social Circle
Inference from Mobility data (SCIM), aiming at inferring relationships among users based on mobility
data and without any explicit structured network information. The existing methods either require partial
social ties or fail to model the implicit correlations between user links, thereby suffering from critical
inference bias. We present a novel SCIM framework, called SCIM via self-Attention and Contextualized-
embedding (SCIMAC) – a methodology capturing multiple aspects of users’ check-in behavior and complex
motion patterns of different users. Instead of directly applying the recurrent model on training user trajec-
tories, the proposed method introduces a new module for context-aware check-in representation learning
by adaptively incorporating the internal states of the recurrent layers, which is more effective than the
context-independent check-in embedding used in existing social circle inference approaches. To model the
underlying correlations between labels, SCIMAC leverages a more sophisticated label embedding technique
to adjust the penalties for correlated users, enabling a better understanding of the user’s hierarchy in the label
space, and alleviating the inference bias. We empirically demonstrate that our SCIMAC model significantly
outperforms several state-of-the-art baselines on real-world datasets.

INDEX TERMS Social circle inference, self-attention, contextualized embedding, mobility learning,
multi-label classification.

I. INTRODUCTION
The past decade has witnessed a rapid growth of both aca-
demic and practical interest on mining human mobility pat-
terns from location based social networks (LBSN) such as
Twitter, Foursquare and Weibo. Availability of large volumes
of LBSN data has spurred research in studying user behavior
and movement patterns that can be analyzed for various
LBSN services such as point-of-interest (POI) recommenda-
tion [1], tour scheduling [2], associating users with specific
trajectories [3], [4], etc.

In addition to the geographical footprint, users in LBSN
also interact with each other in a virtual world, where the
social connections are usually depicted as the follower/
followee relationships. One of the key applications in social
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networks is identifying the links between users – commonly
referred to as a link prediction problem [5] – either inferring
the links that are likely to occur in the near future or recon-
structing the existing links that are missing in the current
snapshot of the social network. Link prediction can benefit
many downstream services such as item/friend recommenda-
tion [6], [7], scientific recommendation [8], identifying an
online community [9] or predicting possible missing links
between suspects in an organized crime [10].

The most common approaches for inferring links between
the nodes are based on some information about the network
structures [11]–[15]. However, assuming the availability of
such information may not be practical in many applications
settings, since the structural information is too sensitive to be
shared with third-party service providers. Recent studies have
demonstrated that the social relationships can be unveiled
by mining users’ mobility data [16]–[20], which has been
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cast as a Social Circle Inference from Mobility data prob-
lem (SCIM). Using geographical data to infer the underlying
social relations between mobile users is of interest to many
commercial applications such as item recommendation and
suspect identification. While such approaches have demon-
strated advantages in inferring links frommobility data, more
often than not they also require some prior knowledge of
the network structures. For example, vec2link [19] unified
users’ offline check-in behavior and their online structures
for improving the link prediction performance, where the
social relations are exploited by network representation tech-
niques [21]. Recent work [20] proposed the similar solutions
except that it only utilized a smaller (sub)set of the social ties
as the observation of the network.

Complementary to these, walk2friends [22] and TSCI [23]
considered variants of the SCIM problem, i.e., inferring the
social relations solely from the mobility data. The work
in [22] addressed this problem from the perspective of pri-
vacy protection, where an inference attack by learning user’s
mobility features is derived. However, the proposed attack
approach simply relies on the embedding of users’ check-in
histories with word2vec [24] technique – therefore, its effi-
ciency is questionable. TSCI [23] presented a distinct variant
of the problem – inferring the social ties based on a trajectory
of an anonymous user/generator (rather than knowing the
user himself). The inference was formulated as a multi-label
classification problem and the solution presented relied on a
variational auto-encoder [25].

While achieving advantages in social ties prediction, exist-
ing methods suffer from the problem of ‘‘inference bias’’
originated from predicting the links separately, i.e., ignoring
the fact that many users may be implicitly correlated. From
a complementary perspective, different parts of a particular
user’s trajectory may have different impacts on different
links, thereby having varying influence on correct links pre-
diction. In addition to not considering the different impacts
of sub-trajectories, the existing approaches that incorporate
mobility usually model the trajectories with recurrent neu-
ral network (RNN) based models such as LSTM [26] or
GRU [27], combined with POI embedding via pre-training
methods such as word2vec. In turn, the typical representation
of the POIs is with fixed vector, thus failing to capture the
complex characteristics of user check-in behavior and the
different aspects of POIs. For instance, the check-in of a
particular restaurant may appear in many users’ footprints,
whichmay have different meanings for different individuals –
e.g., it may meet the taste of a particular food lover; however,
it may also mean that the restaurant’s location is near to the
user’s place of residence.

In this paper, we propose a novel social circle infer-
ence framework SCIMAC (SCIM via self-Attention and
Contextualized-embedding) that can overcome the limita-
tions for implicit link prediction – focusing on scenarios
where mobility data is available, but there is no explicit
data regarding the social relations. Specifically, we present
a new POI embedding model that learns all the internal states

of the trajectory LSTM model and captures context-aware
aspects of check-in meanings, which can be directly used
for downstream LBSN services. To effectively capture the
implicit user correlationswithout access to any network struc-
tures, we propose a label-correlated classification method,
represented by a label embedding layer operating in the latent
label space. We also propose to calculate the importance of
each POI in a user’s check-in trajectory with a self-attention
module, which can be seamlessly coupled and jointly updated
with the encoder-decoder models, so as to reflect the user
preference on check-ins in multiple aspects. In summary, our
main contributions are:
• We address the SCIM problem in LBSN applications as
a novel learning paradigm by analyzing human mobil-
ity patterns. We propose an approach for encoding
the semantics of trajectories and inferring the trajec-
tory context, which is the first context-aware trajectory
embedding model distinguishing the semantics of POI
embedding in different trajectories, and opens a new
perspective for understanding user check-in behavior.

• We exploit the self-attention mechanism to refine the
representation of a sequence of check-ins against itself
and to better learn various aspects of users’ preference
over POIs, which can efficientlymodel the dependencies
and importance of user long-short term motion patterns.

• We introduce a novel label embedding method by con-
sidering the implicit correlations between users when
inferring the circles, which can largely alleviate the
inference bias in existingmulti-label classification based
approaches and improve the link prediction accuracy.

• To demonstrate the effectiveness of SCIMAC, we con-
ducted extensive experiments on several real-world
datasets. The results show that SCIMAC can both
improve the social circle inference accuracy compared
to the state-of-the-art approaches, and also explain its
behavior.

We note that our earlier work [23] addressed the trajectory-
based inference of social connections, however, the present
article is substantially different in several aspects:

1) We have improvised the incorporation of the semantics
of the POIs in the learning, by including a self-attention
layer to extract the multi-aspect preference of users
over POIs.

2) We introduce a novel pre-training procedure and
labelling methodology.

3) We propose a novel, more sophisticated architecture,
which enables incorporation of implicit user correla-
tions in the embedded latent space.

4) We provide novel experimental evaluation, comparing
the benefits of SCIMAC against the TSCI method
from [23] (in addition to other approaches).

The remainder of this article is organized as follows.
We review the relevant related works in Section II and
introduce the problem definition in Section III. The details
of our SCIMAC model are presented in Section IV.
Experimental results demonstrating the superiority of our
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model are discussed in Section V, followed by conclusions
and directions for future work in Section VI.

II. RELATED WORK
We now review the relevant literatures in social circle infer-
ence and human mobility mining, and position our work in
the context of the existing results.

A. SOCIAL CIRCLE INFERENCE
The link prediction problem [5] targets the identification of
missing links, or links that are likely to be formed in the
future given the current social network, and is at the core of
many applications, a prominent example of which is ‘‘People
You May Know’’ in online social networks such as Twitter,
Facebook,Weibo, LinkedIn, etc. Link prediction has attracted
significant attentions from both industry and academia based
researchers over the last decade. Recent advances in network
representation learning [11]–[13], [28] and graph neural net-
works [14], [15], [29], [30] have facilitated the link prediction
task from the perspective of network embedding and structure
learning, where the propensity of forming a link is based on
the nodes similarity.

However, accessing social network structures may not be
feasible in practice due to privacy of the sensitive data pos-
sessed by service providers. Often, researchers turn to infer-
ring the social interactions1 from various kinds of auxiliary
information such as communication/call data [32] and user
opinions [33]. Concurrently, as increased amount of mobility
data becomes available due to the development of location
technologies, there is a body of works focusing on inferring
social relationships from user offline mobility data [16], [20],
[22], [34], [35]. As demonstrated in [17]–[19], [22], mobility
data can indeed serve as a strong predictor for inferring social
ties.

For example, informative features capturing local
and global spatio-temporal factors of trajectories were
used in [36] to infer two users’ social relationship.
walk2friends [22] is a word2vec [24] based model that
relies on user mobility features for inferring social links,
although it focuses on the security issues of social inference
attack and proposes defensemechanisms against privacy risks
stemming from mobility data sharing. Matrix factorization,
a well-established technique normally used in recommender
systems, has also been successfully applied in link predic-
tion and friend recommendation [37], [38], and inferring
social network structures in ecology [39]. In a similar spirit,
vec2Link [19] is a hybrid link prediction framework that
captures user offline location preference and online social
preference, respectively learned from user spatial activities
and network representations. In this vein, a most recent work
O2O-Inf [20] proposed the model for inferring the social ties
based on a small set of observed social links and features
characterizing geographical interactions between nodes.

1This problem is synonimously referred to as social link inference [22],
link recommendation [31], social circle inference [23] and social ties infer-
ence [20] in the literature.

The significant progress on social circle/ties inference
from user trajectories enabled by the previous methods,
has the drawback that the proposed solutions either (par-
tially) rely on social network structures [20], or require
hand-craft feature engineering on modeling effective user
co-location features from their footprints [22]. To alleviate
this, in our previous work [23] we addressed a novel prob-
lem – trajectory-based social circle inference (TSCI) – which
predicts the social circle solely from user check-in behaviors
in an end-to-end manner and captures the motion patterns
with the Bayesian generative networks. We re-iterate that
the model proposed in this work is a significant modifica-
tion and extension of TSCI, with three major distinctions:
(1) SCIMAC adds a self-attention layer to extract the multi-
aspect preference of users over POIs compared to the sim-
ple word2vec based check-in embedding used in TSCI and
the previous works such as walk2friends [22]; (2) SCIMAC
simplifies the trajectory semantics learning in TSCI and
substitutes with a novel contextualized pre-training proce-
dure to learn the context-dependent trajectory representa-
tions; (3) Most importantly, SCIMAC improves the inference
performance by considering the implicit user correlations
when inferring the circles, where the inference is performed
in the embedded latent label space in a unified manner, rather
than the respective prediction in TSCI – which is prone to
inconsistent inference and, as we will show, is inferior in
performance.

B. HUMAN MOBILITY MINING
One of the core aspects of the model proposed in this work
is the uncovering of semantic patterns characterizing human
trajectory. Several aspects of related (variants of the) prob-
lems have been studied extensively and, for the purpose of
comparing with our findings, the results can be categorized
into:

(1) statistical patterns learning: measuring and quantify-
ing models such as continuous-time random-walk [40] and
Lévy flight [41], or accounting for characteristics of individ-
ual human trajectories [42].

(2) similarity mining: detecting mobility similarity and
capturing moving patterns [43], [44], along with exploiting
trajectory semantics [38], [45].

(3) periodical pattern mining: finding (sub-)sequences
and periodical motion patterns, enabling travel recommen-
dation [2], life pattern understanding [35], recovering tra-
jectories associated with users [3], [4] and next location
prediction [46], [47].

Recently, deep learning techniques – especially ones based
on recurrent neural networks (RNNs) such as Long-short
Term Memory (LSTM) [26] and Gated Recurrent Units
(GRU) [27] – have been widely used to capture the long
term sequential influence and mobility patterns. Spatial-
temporal RNN models [3], [46]–[48] extend the RNN model
by incorporating temporal and spatial context in each time
unit for various downstream tasks, such as trajectory clas-
sification [3], [4], POI recommendation [1], [49], [50] and
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prediction [46], [47]. However, these methods mostly focus
on capturing the transition dependencies among POIs – and
they neither explicitly model users’ mobility similarity nor
infer their social interactions. In addition, the existing deep
mobility learning models usually embed POIs with low-
dimensional vectors learned from word2vec and use the last
hidden state of RNN to represent the trajectory during train-
ing. This, however, allows only a single context-independent
representation of both POIs and trajectories. In this regard,
SCIMAC is the first spatio-temporal learning model that
considers the context-dependent features and intermediate
interactions of layers for specific tasks such as social circle
inference.

III. PRELIMINARIES
We now proceed with introducing the basic terminology and
formalizing the problem in the context of social ties inference.

A POI is defined as a location of relevance obtained, for
example, as a GPS value. It can correspond to a centroid
of a region; an address of an object, etc. – which can be
uniquely identified in a suitable coordinate system. Let 0 =
{T1,T2, · · · ,TM } denote the set of all the trajectories (cor-
responding to the users) and let Ti = {ci1, · · · , c

i
j, · · · , c

i
N }

denote a trajectory generated by the i-th user, where cij ∈ C
(j ∈ [1,N ]) is the jth check-in for this user. Whenever there is
no ambiguity, we will omit the user’s index in the superscript.

Table 1 summarizes the notations used in this article.

TABLE 1. Notations.

We assume that a social network is represented as an
undirected graph G = (V,E) where V is the set of nodes
corresponding to the individual users, and E is the set of
edges connecting the users. Without loss of generality, for the
purpose of this workwe assume that the edges are unweighted
(i.e., each edge has a weight 1).

A. SOCIAL CIRCLE INFERENCE (SCI) PROBLEM
The goal of the SCI is to reconstruct the social circle of a
particular user ui – i.e., to determine (and/or predict) the links
between a set of users U (U ⊆ V) and the given user ui.
A variant of the SCI that is at the core motivation for this

paper is the Social Circle Inference from Mobility (SCIM)

problem in which we are given a trajectory Ti and the objec-
tive is to infer the unobserved social ties in G based on a few
observations of historical check-in trajectories of all the users
in the network. While the problem of SCIM has been studied
from various aspects, following [23] in this work we focus on
two specific tasks of SCIM:

B. SCIM TASK I (SCIM-I)
Given a trajectory Ti generated by a known user ui, SCIM-I
learns a model M to identify a set of users Ui (Ui ⊆ V)
who are in the same social circle of ui or ui’s friends:
M(Ti) 7→ Ui.
In SCIM-I, we use a subset of trajectories of each user to

learn the latent patterns of mobility and predict the social ties
based on the offline geographical activity.

The second task that we address can be specified as:

C. SCIM TASK II (SCIM-II)
Unlike SCIM-I, in SCIM-II we do not know who generated
the trajectory Ti.

More specifically, the user who generated Ti in SCIM-II is
anonymous and his/her corresponding trajectories may never
appear in the training set. This variant is also known as
prediction of the circle of a trajectory [23] and is suitable for
tackling the cold-start problem for new users.

We formulate the two types of SCIM as the multi-label
classification problem [51], and denote the label space as
V = (u1, u2, ..., u|V|), where |V| refers to the total number
of all users in the network. Obviously, each trajectory Ti is
associated with a subset Ui of V (i.e., Ui ⊆ V). Therefore,
the two tasks of SCIM are to learn classifiers that link trajec-
tories to members who are friends of their owner: Ti(∈ 0) 7→
Ui(⊆ V).

IV. SCIMAC: ARCHITECTURE AND PROCESSING
The overall framework of the proposed model SCIMAC is
shown in Figure 1. In particular, it consists of three main
components: (1) contextualized POI embedding; (2) trajec-
tory modeling with recurrent model and self-attention; and
(3) label embedding and sequential circle member inference.

With this model as a reference, in the rest of this section we
first discuss how the data is pre-processed, followed by the
proposed approach for POI representation in a manner that
will preserve both the sequentiality and the semantics of POI
visits. We conclude this section with a detailed discussion of
how we infer social circles from trajectories, while avoiding
inference bias.

A. DATA PRE-PROCESSING
Recall that each trajectory Ti generated by a user ui, is rep-
resented as a sequence of consecutive check-ins – and we
assume that there is a time-instant associated with each
check-in, i.e., Ti = (ci1,t1 , c

i
2,t2
, · · · , cin,tn ), where cij,tj is

j-th POI visited by user ui at time tj. A given trajectory T
can be segmented as T = (T 1,T 2, · · · ,Tm), meaning that
there are m sub-trajectories within the time interval [t1, tn],
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FIGURE 1. Overview of the SCIMAC model.

ordered along the temporal dimension. The trajectories are
separated from each other by application dependent thresh-
olds δjT (1 ≤ j ≤ m), which could indicate, for exam-
ple: – the time span of each T j is no more than δjT ; – the
last time-stamp of T j is at least δjT time units smaller than
the time-stamp of the first location in T j+1; etc. For each
user, we concatenate all check-in locations to form a single
trajectory – subsequently, we divide it into sub-trajectories
with the time interval of 6 hours each, as it was done in
previous related works [3], [23], [48], [52]. Finally, we add
bos and eos symbols to the front and end of each trajectory
respectively.

B. CONTEXT-DEPENDENT POI REPRESENTATION
Inspired by the success of word embedding (e.g.,
word2vec [24]) in natural language processing, previous
location-basedmodels [3], [23], [46] embedded POIswith the
surrounding information using CBOWor Skip-Grammodels.
These, however, only allow a single context-independent
representation for each POI and thus cannot distinguish
the different contexts information associated with POIs.
In words, the POIs learned by the aforementioned works
are in accordance with check-in concurrency, but not nec-
essarily conformant with the sequentiallity of the visits.
The sequences, though, may reflect different meaning of a
same POI in different trajectories. To address this problem,
we present a novel contextualized POI embedding model
motivated by the ELMo [53] that was originally used for
pre-training the language model.

Given a trajectory Ti = {c1, · · · , cj, · · · , cN } of length N ,
we use a layered bidirectional LSTMs [26] to model the
probability of a check-in ci given the context in the tra-
jectory. More specifically, we first denote the one-hot rep-
resentation of i-th check-in ci as 1(ci). We then embed ci
into low-dimensional vectors ci by multiplying 1(ci) with an
embedding parameter matrix M ∈ R|C|×d where d is the
dimension of embedding vector and |C| is size of check-in

set C. Subsequently, context-independent vectors ci are then
passed through L layers of forward LSTMs and L layers
backward LSTMs for training.

For each check-in position i, the j-th layer of forward
LSTM outputs a context-dependent representation

−→
h i,j.

A softmax layer is added on the top of the L-th forward LSTM
layer to model the probability that predicts the next check-in
ci given the history of Ti:

p (c1, c2, . . . , cN ) =
N∏
i=1

p (ci|c1, c2, . . . , ci−1) (1)

The backward LSTM is very similar to the forward LSTM
except that it process check-ins in a reverse way, e.g., the
j-th layer of backward LSTM outputs a context-dependent
representation

←−
h i,j and a softmax layer based on the L-th

layer of backward LSTM predicts ci given future trajectory
{ci+1, ci+2, ..., cN }:

p (c1, c2, . . . , cN ) =
N∏
i=1

p (ci|ci+1, ci+2, . . . , cN ) (2)

The bi-directional LSTMs model is trained to maximize
the log-likelihood of both the forward and backward direc-
tions in an unsupervised way:

LPOI =
N∑
i=1

log p
(
ci|c1, . . . , ci−1;8M ,

−→
8 LSTM,8s

)
+ log p

(
ci|ci+1, . . . , cN ;8M ,

←−
8 LSTM,8s

)
(3)

where 8M ,
−→
8 LSTM (

←−
8 LSTM) and 8s are the parameters of

embedding matrix, forward (backward) LSTMs and softmax
layer, respectively.
For each check-in ci, 2L + 1 representations are computed

by bi-directional LSTMs at the pre-training stage:

{ci,
−→
h i,j,
←−
h i,j|j ∈ [1,L]} = {

−→
h i,j,
←−
h i,j|j ∈ [0,L]} (4)
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where {
−→
h i,0 =

←−
h i,0 = ci} is the embedding layer

and {
−→
h i,j,
←−
h i,j} are the POI context-dependent representa-

tions. Note that one can immediately simplify the model by
removing the backward LSTM layers to obtain a lightweight
model. However, we empiricially found that the bi-directional
embedding described above can obtain better performance on
social circle inference.

For simplicity, we use hi,j to denote [
−→
h i,j :

←−
h i,j], which is

the concatenation of forward and backward LSTM represen-
tation. We use {hi,j|j = 1, . . . ,L} to denote the embedding
vectors of check-in ci – which will be fed into the next stage
of supervised learning, where friends label information is
utilized.

C. SOCIAL CIRCLE INFERENCE
We now focus on the social circle inference approach via
learning the friend labels.

1) ENCODING TRAJECTORY SEMANTICS
The embedded vectors {hi,j|j = 1, . . . ,L} are trained by
L-layers bidirectional LSTMs consisting of the context infor-
mation regarding the check-in sequence around the i-th
position. Instead of leveraging the final layer hi,L as the
representation – in contrast to the previous RNN-based trajec-
tory training models [23], [46], [47] – we utilize a weighted
linear combination of all layers in learning the context-aware
patterns for the purpose of adaptive trajectory representation.

Since we already have embedding vectors {hi,j|j =
1, . . . ,L} for each check-in ci, we can calculate the weighted
average embedding vector at position i (with a note that
they are fixed in subsequent supervised learning) as ẑi =∑L

j=1 sjhi,j, where sj are softmax-normalized weights. Obvi-
ously, ẑi contains information of all 2L layers bi-directional
LSTMs that can well capture the context-dependent infor-
mation. This is subsequently concatenated with ci – the low
dimensional embedding vector of check-in ci – to obtain
the representation zi = [ci : ωiẑi], where ωi is a scaling
factor. Figure 2 depicts the basic idea of learning the context-
dependent features from trajectories in an unsupervised
manner.

We then utilize a forward LSTM to encode the embedded
trajectory and compute sequentially for each check-in with
the hidden state h̃i:

h̃i = LSTM(h̃i−1, zi) (5)

Due to the diversity of personal behaviors, different users
may access particular check-in locations in different orders
within the sequence of visits corresponding to their respective
trajectories. When processing a particular check-in sequence
from a given trajectory, taking the rest of the (relevant) check-
in points and their relative distribution to each other into
account, will enable capturing implicit information regarding
user’s motion patterns. This inspires us to incorporate self-
attention into trajectory encoder. Self-attention is an attention
mechanism relating different positions of a single sequence so

FIGURE 2. Overview of context-aware trajectory learning.

as to compute a representation of the sequence, and has been
successfully applied in a variety of tasks including reading
comprehension, sentiment classification, machine translation
and POI recommendation [50], [54], [55].

The standard self-attention mechanism employs a single
attention function with one set query/key/value vector when
computing the check-in point corresponding self-attention
value. However, we found it beneficial to linearly project
the query/key/value vector r times with different and learned
linear projections. For each hidden represention of single
check-in, we respectively multiply it with three parameter
matrices to create the query qji, key kji and value vji vectors
in each layer of LSTM:

qji = h̃iWj
q

kji = h̃iW
j
k

vji = h̃iWj
v (6)

where Wj
q, W

j
k , and Wj

v are parameter matrices in each
hidden layer h̃i.

Subsequently, we calculate the scores by taking the dot
product of query vector of each check-in and key vectors of
other related check-ins, which determines how much focus
should be placed on other parts of current trajectory when
we encode a particular check-in point at a certain position.
The next step is to divide the scores by the square root of
key vectors’ dimension, and then transfer this scalar vector
to a softmax function. Now, we obtain the output of current
self-attention layer at this position bymultiplying the softmax
score with value vector:

oji = softmax(
qji · k

j
i

√
d ′

)vji (7)

where d ′ is the dimension of key vectors. After obtaining oji,
which can be computed in parallel, we concatenate the output
vectors andmultiply them by an additional weights matrixW.
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Here, we denote the final representation of each check-in
passing multi-layers self-attention as fi, which can be calcu-
lated by:

fi = [o1i , ..., o
r
i ]W (8)

Intuitively, not all check-ins make the same contribution
in predicting friend labels. In natural language processing,
the attention mechanism [56] computes context vector focus-
ing on a set of positions where the most relevant information
is concentrated. Similarly, we compute the context vector at
which focuses on a set of most relevant check-ins at time-step
t as follows:

uti = Wᵀ
3 tanh(W1fi +W2st )

αti = softmax(uti)

at =
∑
i

αtifi (9)

where W1, W2 and W3 are weight parameters to be learned,
fi is the representation of self-attention and st is the hidden
states of the decoder at time-step t . Weight αti is the i-th
hidden state of the encoder used for computing the context
vector at , which is then passed to the decoder at time-step t .

2) CIRCLE INFERENCE
The decoder uses another LSTM to compute the hidden
states st and utilizes softmax to infer the users’ probability
distribution over the label space. Rather than treating each
label independently in TSCI [23], SCIMAC explicitly models
the label correlations and performs the circle inference in a
unified manner.

For all users (label space) V = (u1, u2, ..., u|V|), we first
sort them according to their frequency in a descending order
and add bol and eol symbols at the beginning and the
end of the sequence respectively. We embed all the user
labels in a low dimensional space by an embedding matrix
M ∈ R|V|×d ′′ , where d ′′ is the dimension of the embedded
vectors.We denote the probability distribution vector over the
label space at time-step t as ut and it is computed as follows:

st = LSTM (st−1, [ût−1; at−1]) (10)

gt = Wg tanh(W4at +W5st ) (11)

ut = softmax(gt +Mt ) (12)

where st is the hidden state; Wg, W4 and W5 are weight
parameters; ût−1 is the embedding of the user that has highest
probability under the distribution ut−1 predicted at time-step
t − 1; [ût−1; at−1] is the concatenation of ût−1 and attention
vector at−1 at previous time step; and Mt is the mask vector
at time-step t and is used to prevent predicting repeated labels
in ut .

During training, the i-th element in vector ut is the pre-
dicted probability that user ui is the friend for current trajec-
tory at time-step t . In addition, we compute the mask vector
Mt in this way: M1 is initialized as all zero vector and then
at time-step t the i-th element of Mt is set to ∞ if label
ui has been predicted in the previous t-1 steps. This label

sequence embedding has been successfully used in text clas-
sification [57]. However, we note that the SCIM problem is
more complex than multi-label text classification, where the
number of classes is usually small. In contrast, we encounter
large number of labels in SCIM, i.e., the label space for each
trajectory is the entire label set.

Finally, the objective of training is to minimize the cate-
gorical cross-entropy loss on the labeled trajectories:

L(θ ) = −
1
M

M∑
i=1

|V|∑
j=1

1(uj ∈ Ui) log p(uj ∈ Ui) (13)

where indicator function 1(·) means the j-th user is the friend
of trajectory Ti – it equals 1 if uj is one of the labels of Ti and
equals 0 otherwise, and p(·) is the probability based on ut that
predicted label uj belongs to Ti.

At the inference stage, beam search is utilized to find top-
ranked prediction path. In many seq2seq encoder-decoder
models such as neural machine translation [56], beam search
is the de facto method employed for decoder at inference
time. Beam search maintains B top-ranked prediction beams
which are a sequence of user labels that are predicted at t − 1
time step. At time step t , every possible user label, except
those already in the beams, is added to each existing beam.
We select B top-ranked beams from these expanded beams
according to probability distribution of the trained model.
We repeat the procedure until an eol symbol is predicted
or the beam length reaches the preset maximum length for
all the B top-ranked beams, and then move the beam to the
candidate beam set. Finally, we choose the one with highest
probability from the candidate beam set that contains top-
ranked beam ending with eol. Algorithm 1 illustrates the
training of SCIMAC.

3) OVERCOMING THE INFERENCE BIAS
In Eq.(10), ût−1 is the embedding of the user label with the
highest probability according to the probability distribution
vector ut−1 but other less likely users are not considered.
If there is a wrong prediction at time-step t , it would result
in wrong predictions at the following time steps. This phe-
nomeno is also known as exposure bias problem in multi-
label text classification [57]. Obviously, the beam search
mechanism mentioned above could, to certain extent, allevi-
ate the bias by selecting from a number of prediction paths at
the inference stage. However, it cannot fundamentally solve
the problem due to the choice of highest probability label at
each time step. As a result, the bias prediction could occur
for every possible inference path. On the other hand, this
problem could be largely mitigated if we take all elements
in probability distribution vector ut−1 into account at the
training stage [57], as illustrated in Figure 3. Let ūt−1 denote
the weighted average label embedding computed as follows:

ūt−1 =
|V|∑
i=1

u(i)t−1ûi (14)
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Algorithm 1 Training of SCIMAC
Input: Trajectory: Ti ∈ 0; User set Ui ⊆ V.
/* Contextualized Embedding */

1 foreach check-in cj ∈ Ti do
2 Get the one-hot representation 1(cj);
3 Multiply a embedding matrix to compute the low

dimensional embedding ci;
4 Feed the vector ci to L layers Bi-LSTMs to obtain

{hi,j|j = 1, . . . ,L};
5 Maximize LPOI (Eq.(3)).
6 end
/* Initial User Label Embedding */

7 foreach user label ui ∈ V do
8 Multiply the embedding matrix to get corresponding

vector ûi.
9 end
/* Training */

10 Training dataset D← ∅.
11 foreach Ui ⊆ V do
12 D←< Ti,Ui >.
13 end
14 repeat
15 foreach < Ti,Ui >∈ D do
16 foreach cj ∈ Ti do
17 Calculate the weighted average embedding

vector zi by concatenating ci and ẑi;
18 Encode the embeded check-in zi to obtain

hidden state h̃i;
19 Employ self-attention to learn various

aspects of users’ preference via r sets of
query/key/value vector computing the
multi-layers representation fi.

20 end
21 Compute the context vector at which focuses on

a set of most relevant check-ins at time step t .
22 Predict label ui via LSTM(Eq.(10)-(12)).
23 Minimize L(θ ) (Eq.(13)).
24 end
25 until converge

Output: Training ModelM.

where u(i)t−1 is the i-th element of ut−1 and ûi is the embedding
vector of i-th user label. Obviously, ūt contains information
of all possible labels and probability distribution of these
labels at time-step t − 1. Therefore, instead of only passing
ût−1 to decoder, we reformulate Eq.(10) by considering all
informative labels:

st = LSTM(st−1, [(1− λ)ût−1 + λūt−1; at−1]) (15)

where λ is a hyper-parameter controlling the compromise
between weighted average label embedding and individual
label embedding. The hidden state st is computed based on
information of all possible labels. By considering every label
and their possibilities, the impact of single mis-prediction can

FIGURE 3. Illustration of label embedding.

Algorithm 2 Label Embedding
Input: Predicted probability distribution vector ut−1 at

time step t − 1; embedding vector ûi of each user
label.

1 Initialize the average label embedding vector ūt−1
with 0.

2 foreach u(i)t−1 ∈ ut−1 do
3 Update ūt−1← ūt−1 + u

(i)
t−1ûi.

4 end
5 Find the embedding ût−1 of label with the highest
probability according to ut−1.

6 Balance ūt and ût−1 in Eq.(15) with λ.
Output: Label embedding (1− λ)ût−1 + λūt−1.

be attenuated in subsequent friend inference. The procedure
for contextualized POI embedding is listed in Algorithm 2.

V. EVALUATION
We now present the details of the evaluation of the perfor-
mance of our SCIMAC model in comparison with the state-
of-the-art social circle inference methods on four real-world
datasets. Specifically, we focus on the following three main
quantitative observations:
• QO1. What is the effectiveness of SCIMAC – i.e., does
it provide better circle inference performance compared
to the existing approaches/baselines?

• QO2. How important is the impact of the three com-
ponents – context-aware embedding, self-attention and
label embedding – in our SCIMAC model?

• QO3. How do the parameter settings affect the perfor-
mance of our model?

A. DATASETS
We conduct experiments on four publicly available
datasets: Brightkite, Gowalla [58], Tokyo@Foursquare and
New York@Foursquare, where the two most popular cities
Tokyo and New York are extracted from Foursquare
dataset [38], [59]. All datasets consist of user check-in history
and social relations.

We evaluate the methods on both of the SCIM tasks:
SCIM-I and SCIM-II ( cf.Section III): (1) we chose 50% of
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sub-trajectories of each user for training, and the remainder
for testing for SCIM-I task; and (2) for SCIM-II task, we infer
the social circle members for anonymous trajectories which
have not appeared in the training set. The data pre-processing
is exactly the same in [23]:
• For Brightkite and Gowalla datasets, we linked the label
set (circle members) to each sub-trajectory and ran-
domly selected 201 and 92 users for SCIM-I, respec-
tively. In the SCIM-II task, we selected the users having
at least 5 friends and obtained 199 users for Brightkite
and 514 users for Gowalla.

• For Tokyo and New York @ Foursquare, we constructed
the social relations using the method proposed in [38]:
we randomly chose 60 seeding users for Tokyo and
40 for NewYork, which therefore becomes the seed-user
set. We then explored the social network to find users
who have at least 5 friends in the user set. Among these
users, we then randomly chose 200 and 150, as well as
their motion traces, as the final data for the two datasets.
The trajectories generated by users who have at least
5 friends but not used in SCIM-I task would be used in
SCIM-II task.

The statistics of datasets after pre-processing are shown
in Table 2.

TABLE 2. Dataset statistics. |V|: The number of users; UI: The number of
users for SCIM-I task; UII: The number of users for SCIM-II task;
Ttrain/Ttest : The number of trajectories in training vs. the number of
trajectories in testing for SCIM-I task; TII: The number of sub-trajectories
for SCIM-II task.

B. METRICS
Following the existing related works [23], [60], [61],
we selected three standard metrics to comparatively evaluate
the multi-label classification performance of our model and
baselines:macro-Recall (macro-R), macro-F1 and Accuracy.
While macro-R is the average proportion of predicted circle
members that are also in the ground truth, macro-F1 is defined
as the harmonic mean of macro-Precision (macro-P) and
macro-R. Accuracy reflects the correctly predicted friends.
Specifically, they are formally defined as:

macro-P =
1
Q

∑ # correctly predicted friends
# predicted friends

macro-R =
1
Q

∑ # correctly predicted friends
# True friends

macro-F1 =
2× (macro-P)× (macro-R)
(macro-P)+ (macro-R)

Accuracy =
1
Q

∑ # correctly predicted friends
# True Friends ∪ # predicted friends

where Q denotes the number of trajectories in the testing
set Ttest.

C. BASELINES
The comparison of the advantages of our model was done
with respect to the following baselines:
• SVM for multi-label classification: In accordance
with [23], [62], we trained a linear kernel based SVM
model for circle inference.

• Matrix Factorization (MF):We construct a friend check-
in frequency matrix where each cell represents the num-
ber of times the corresponding check-in has been visited
by that user in all trajectories. To obtain the friend list
for a new testing trajectory, we calculate the similarity
between its vector and every friend vector which are
obtained from the matrix factorization [37].

• Co-visit [38]: For training data, we concatenate the
trajectories which have the same friendship label set,
assuring that each user associates with a trajectory.
Then for a new testing trajectory, we identify its friends
from similar trajectories in terms of common check-
ins in the training data, where Longest Common Sub-
sequence (LCS) technique is used to find user common
interest or locations. The threshold for the number of
co-visits is manually optimized.

• MLP: To show the performance of deep learning based
approach in terms of capturing the spatio-temporal infor-
mation and multi-label classification, a multi-layer per-
ceptron (MLP) based model proposed in [52] is trained
in terms of social circle inference.

• DeepMIML [52]: DeepMIML is a multi-instance multi-
label classification method originally developed for lan-
guage and image classification. Since the corresponding
codes have not been published yet, we re-implement it
using Auto-encoder to obtain the representation vector
of trajectories and a 2D sub-concept layer proposed in
DeepMIML to learn social circles for a given trajectory.

• TULER [3]: One of the most successful model on
identifying human mobility patterns proposed in [3],
which leverages RNNs to capture the sequential pat-
terns of human trajectories and to predict the generators
of unknown trajectories. We train the TULER using a
stacked GRU for the multi-label classification problem.

• walk2friends [22] is a word2vec-based model that
employs mobility information for inferring social links,
relying on neural networks to learn the location and
trajectory representation. It utilizes pairwise similarity
measures to compare two users’ mobility patterns and
judge whether they are socially related or not.

• O2O-Inf [20] is to infer online social ties using offline
geographical activities of users by feature modeling and
link prediction. Feature modeling is to characterize both
direct and indirect geographical interactions between
nodes from co-location and graph features, while link
prediction is performed to infer the social ties based on
the observed social links.

• DeepTSCI [23] is a SCIM model using human mobility
patterns for inferring corresponding social circles.While
the original DeepTSCI used bi-LSTM, Autoencoder and

61942 VOLUME 7, 2019



T. Zhong et al.: Motion Based Inference of Social Circles via Self-Attention and Contextualized Embedding

TABLE 3. Performance comparison among different algorithms for SCIM-I on four datasets.

TABLE 4. Performance comparison among different algorithms for SCIM-II on four datasets.

VAE to learn the latent representations of trajectories,
respectively, we choose the the best performed one
(based on VAE) for comparisons in our experiments.

The deep learning based models, including DeepTSCI,
TULER,MLP, Co-visit, walk2friends, O2O-Inf, DeepMIML
and our SCIMAC, were implemented on PyTorch with
a GTX1080Ti GPU, while the traditional methods (SVM
and MF) were implemented with scikit-learn library.
Parameter Settings: The learning rate of all models is

initialized with 0.001 and decays with a rate of 0.9. The
activation function for all methods is ReLU, and the dropout
rate is set to 0.5 while the batch size is 16 for all RNN based
models following [23].We embed each POI into a 512 dimen-
sional vector, and use two one-hot vectors for representing
the temporal and spatial information. Furthermore, we use
300 neuron units for the classifier, and 256 units for encoders
and 512 units decoders for DeepTSCI and SCIMAC. The
hyper-parameter λ in SCIMAC is empirically tuned to 0.5 in
all experiments.

D. OVERALL PERFORMANCE (QO 1)
Table 3 and Table 4 show the performance comparison among
our model and baselines for the two SCIM tasks in terms of
the three metrics defined (cf. Section V-B), where the best

performance is shown in boldface, while the second best in
underlined font.

1) ON SCIM-I
We can observe in Table 3 that the proposed SCIMAC signifi-
cantly outperforms the other 9 approaches across all datasets.
For example, compared to DeepTSCI – the best approach in
baselines, it achieves 16.43%, 10.58% and 20.62% higher
(on average) over the best DeepTSCI in terms of macro-R,
macro-F1 and accuracy on Brightkite dataset. The reason
SCIMAC achieved significant improvements on circle pre-
diction is three-fold. First, it uses a contextualized check-in
representationmodel which distinguishes the POI embedding
in different trajectories. Second, a self-attention module is
utilized in SCIMAC to learn different aspects of users’ prefer-
ence over POIs. Third, SCIMAC explicitly models the latent
correlations among the users when inferring the circles.

Among the baselines, DeepTSCI shows the best per-
formance which demonstrates the effectiveness of learn-
ing stochastic latent factors with variational autoencoders.
Two recent works walk2friends and O2O-inf did not
show competitive results, which is not surprise because:
(1) walk2friends is a model using representation learning
for measuring the mobility similarity, which, however, uses
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context-independent embedding and fails to learn the con-
textualized semantics in different contexts; and (2) O2O-inf,
in contrast, is a traditional feature-based method requiring
hand-craft feature engineering and partial social interactions
for learning human mobility, and therefore cannot exhibit
competitive performance without social information in our
implements.

FIGURE 4. Visualization of a SCIM-II result on New York dataset. Left:
The trajectory needs to be classified. Upper right: The ground-truth circle;
Middle right: The results of DeepTSCI; Bottom right: The results of SCIMAC.

2) ON SCIM-II
As illustrated in Table 4, SCIMAC also consistently exhibits
superior performance on SCIM-II task over the baselines
across four datasets. Obviously, SCIM-II task is more diffi-
cult than SCIM-I, since the owners of the testing trajectories
are anonymous – i.e., there is no training data for these users.
Figure 4 plots a SCIM-II result on New York dataset using
DeepTSCI and SCIMAC, where we used Baidu Map2 for
locating the POIs. We can see that SCIMAC infers the circle
member sequentially while DeepTSCI predicts the labels
independently. Apparently, by modeling the implicit corre-
lations between labels, SCIMAC outperforms DeepTSCI on
social circle inference. The improvement is straightforward:
while the test trajectory is a cold-start data sample, the social
circle members are not, which means their mobility patterns
have been learned by the model and their correlations can
be implicitly constructed through learning the motion pattern
similarity.

Essentially, the task of SCIM-II is tomeasure the capability
of learning mobility patterns and to infer the circles based
only on the motion similarity among users – the motiva-
tion is that two online friends should share similar offline
geographical activities. Although it can be used to address
the cold-start problem for SCIM, we note that there is a
bottleneck in SCIM-II task: the online users whole are in the
same community or social circle may not have similar motion
patterns, which has also been observed in spatio-temporal
mining works [58]. An immediate solution to improve the
performance on SCIM-II is to impose more spatio-temporal
constraints on possible circle inference, e.g., two friends may
have similar geographical motions if they are living in a same
city, which, however, is beyond the scope of this work and is
left for our future work.

3) EFFICIENCY
Efficiency is another important criteria in social circle infer-
ence. Here we compare the efficiency of SCIMAC against

2https://map.baidu.com

FIGURE 5. Efficiency comparison between SCIMAC and DeepTSCI.

FIGURE 6. Training procedure of SCIMAC on SCIM-I task. The trend on
SCIM-II task is similar and is omitted for simplicity.

DeepTSCI empirically. Both of the two models require
pre-training, trajectory learning and multi-label classifica-
tion. However, they are quite different in each part. Dur-
ing pre-training, DeepTSCI leverages VAE, combined with
bi-directional LSTM to learn probabilistic latent patterns in
trajectories, which requires significant more time for training.
In contrast, SCIMAC uses bi-directional LSTM to learn the
context-dependent features and hierarchical motion patterns
for POI representation, which is more efficient compared
to stochastic inference in DeepTSCI. When learning users’
mobility patterns, DeepTSCI employs a self-attention layer
for intra-motion pattern learning requiring slightly more time
which is negligible by utilizing the parallel computation
of GPU. Finally, DeepTSCI explicitly models correlations
among labels when inferring the circles, which requires addi-
tional computation on label embedding and sequential infer-
ence. As illustrated in Figure 5, the computational cost for two
models remains in the same level, while SCIMAC is slightly
efficient than DeepTSCI. Note that we omit the comparison
to other models since they are either too simple on learning
trajectory patterns (e.g., walk2friend and MLP), or require
considerable too much time on training (e.g., SVM and MF)
due to without the acceleration with GPUs.

4) MODEL TRAINING
Figure 6 plots the training procedure of SCIMAC on four
datasets, from which we can clearly see that our model
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FIGURE 7. Impact of parameters on SCIM-I task. The impact on SCIM-II task is similar and is omitted for simplicity. (a) Brightkite (R).
(b) Brightkite (F1). (c) Brightkite (Acc). (d) Gowalla (R). (e) Gowalla (F1). (f) Gowalla (Acc). (g) Tokyo (R). (h) Tokyo (F1). (i) Tokyo (Acc). (j) NY (R).
(k) NY (F1). (l) NY (Acc).

converge very fast, e.g., usually 10 epochs are enough for it
to achieve the best performance. The main reason behind this
phenomena is that pre-training stage can learn a good POI
representation in a context-aware manner and has captured
the transition patterns in trajectories and adequately reflects
the long-short dependencies among check-ins. Consequently,
the trajectory learning module (LSTM) requires less time
to train the model. In addition, the self-attention layer also
helps reducing the training timemainly due to that the various
aspects of user’s preference over POIs have been combined
for training the model.

5) PARAMETER SENSITIVITY (QO 3)
We optimized our SCIMAC model by varying some impor-
tant parameters, e.g., the sizes of the POI embedding,
the number of LSTM layers and batch size, etc. When tuning
these parameters, we did not observe too much improve-
ment by stacking deeper layers and a 2-layer LSTM is suf-
ficient for SCIMAC to model the user sequential check-ins.
We also empirically found that 512-dimension is sufficient
for our model and it may suffer from slight over-fitting prob-
lem (c.f Figure 7) when the embedding size beyond 512,
e.g., on New York dataset.

E. ABLATION STUDY (QO 2)
To study the utility of each component in the SCIMACmodel,
we decomposed our model with a set of variants, including
the following:
• Without contextualized embedding (SCIMA):
It prunes the context-dependent pretraining for POI rep-
resentation and substitutes with a word2vec embedding
for POIs, as in previous works [22], [23].

• The impact of label embedding and self-attention:
To investigate the effect of the two components,
we design an experiment that showing their impact
respectively.

The utility of contextualized embedding are illustrated
in Figure 8. As we can see, SCIMAC, the model with
contextualized embedding, performs better than the pruned

FIGURE 8. Effect of contextualized embedding in SCIMAC. (a) Results on
Brightkite. (b) Results on Gowalla. (c) Results on Tokyo. (d) Results on
New York.

version SCIMA that utilizing context-independent represen-
tation, which demonstrates the effect of learning context-
aware embedding of POIs in the pre-training stage. Recall
that SCIMAC used stacked bi-directional LSTM for learning
hierarchical representation for POIs with the similar structure
of ELMo [53], where the syntactic information is better repre-
sented at lower layers while semantic information is captured
by higher layers. In contrast, there is no such explicit differ-
ence in POI representation and mobility learning, although
the same check-ins have different meanings for different peo-
ple and the contextualized embedding indeed helps learning
better representations.

Figure 9 illustrates the impact of label embedding and self-
attention on the performance of SCIMAC, where we used
contextualized embedding in this experiment. Obviously,
both of the two components play important but different roles
in inferring the circle. Label embedding is to infer the mem-
bers sequentially by considering the implicit correlations
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FIGURE 9. Impact of label embedding and self-attention. Letters ‘‘TF’’ in ‘‘L_A_TF’’ are True and False meaning whether using Label embedding
and self-Attention in SCIMAC, respectively. (a) SCIM-I on Brightkite. (b) SCIM-I on Gowalla. (c) SCIM-I on Tokyo. (d) SCIM-I on New York.
(e) SCIM-II on Brightkite. (f) SCIM-II on Gowalla. (g) SCIM-II on Tokyo. (h) SCIM-II on New York.

among the members, while self-attention allows the model
to extract different aspects of a motion trace into multi-
ple vector-representations. The gap between ‘‘L_A_TT’’ and
‘‘L_A_FT’’ shows the performance gain of label embedding,
which is not apparent for datasets with larger value of nodes;
however, it becomes significant for datasets with smaller
nodes, e.g., New York dataset. This is reasonable due to the
sequential inference in SCIMAC, which, as we discussed
in Section IV-C.3, may result in bias problem if there is
a wrong prediction. This phenomena becomes more severe
when there are more circle members need to be inferred,
and therefore to certain extent compromises the performance
gain of modeling implicit correlations among users with label
embedding. On the other hand, we can observe the effect of
self-attention by investigating the gap between ‘‘L_A_TT’’
and ‘‘L_A_TF’’, which validates our motivation of focusing
on the most relevant check-ins in a trajectory and capturing
semantic features with (self-)attention mechanism.

VI. CONCLUDING REMARKS
We presented a new social circle inference framework, which
is built upon the readily available user mobility data, without
requiring any explicit online network kind of information.
Comparing with the ubiquitous social circle inference meth-
ods that require users’ online interaction data, our method has
the significant advantage of inferring the user relationships
from auxiliary information, which can also complement the
previous approaches – i.e., in order to improve the infer-
ence performance in certain settings in which the network
information is available. Using pre-trained trajectory mod-
els to combine the hierarchical layered semantics of RNN
to represent context-dependent POIs, our model is capable
of incorporating multiple meanings of user check-ins. Our
proposed framework seamlessly integrates various aspects

of users’ preference over POIs with a self-attention module,
which significantly improves the effectiveness on learning
human mobility patterns by distinguishing the importance of
check-ins in both intra- and inter-trajectory learning. With
embedding the labels in a low-dimensional space, we con-
struct our model on the implicit user space to alleviate the
problem of inference bias when classifying the trajectories.
Extensive experiments have been conducted to show the
superior performance of our model compared with previous
SCIM methods.

One of our immediate future work is to learn other user
contents for inferring the social circles, such as profile and
published data (e.g., text and pictures). In addition, an open
question is how to defend against the inference attack raised
by SCIM. Common solutions, such as random perturbation
or filtering out important check-in observations, may degrade
the performance of beneficial machine learning tasks. As of
our future work, we plan to investigate the novel defense
mechanisms against the inference attack by leveraging the
deep generative models to generate learning performance
guaranteed synthesis mobility data while preserving the
anonymization of online social relations.
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