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Ensemble clustering, as an important extension of the clustering problem, refers to the problem of combining
different (input) clusterings of a given dataset to generate a final (consensus) clustering that is a better fit in
some sense than existing clusterings. Over the past few years, many ensemble clustering approaches have
been developed. However, most of them are designed for partitional clustering methods, and few research
efforts have been reported for ensemble hierarchical clustering methods. In this article, a hierarchical
ensemble clustering framework that can naturally combine both partitional clustering and hierarchical
clustering results is proposed. In addition, a novel method for learning the ultra-metric distance from the
aggregated distance matrices and generating final hierarchical clustering with enhanced cluster separation is
developed based on the ultra-metric distance for hierarchical clustering. We study three important problems:
dendrogram description, dendrogram combination, and dendrogram selection. We develop two approaches
for dendrogram selection based on tree distances, and we investigate various dendrogram distances for
representing dendrograms. We provide a systematic empirical study of the ensemble hierarchical clustering
problem. Experimental results demonstrate the effectiveness of our proposed approaches.
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1. INTRODUCTION

Data clustering arises in many disciplines and has a wide range of applications. The
general goal of data clustering is to group a finite set of points in a multidimensional
space into clusters so that points in the same cluster are similar to each other, whereas
points in different clusters are dissimilar. The clustering problem has been extensively
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studied in the data mining, database, and machine learning communities, and many
different approaches have been developed from various perspectives with various fo-
cuses. Based on the way the clusters are generated, these clustering methods can be
roughly divided into two categories: partitional clustering and hierarchical clustering
[Tan et al. 2005]. Generally, partitional clustering decomposes the dataset into a
number of disjoint clusters that typically represent a local optimum of some predefined
objective functions. Hierarchical clustering groups the data points into a hierarchical
tree structure using bottom-up or top-down approaches. Also, equivalent dendrogram
representation can be generated based on metric fitting.

Clustering is an inherently difficult problem. Different clustering algorithms and
even multiple trials of the same algorithm may produce different results due to ran-
dom initializations and stochastic learning methods. Recently, ensemble clustering has
emerged as an important extension of the classical clustering problem because it can
overcome the resulting instability and improve clustering performance. It refers to
the following problem: Given a number of different (input) clusterings that have been
generated for a dataset, find a single final (consensus) clustering that is a better fit in
some sense than the existing clusterings [Strehl and Ghosh 2003]. Over the past few
years, many ensemble clustering techniques have been proposed [Li et al. 2007, 2004
Azimi and Fern 2009; Fern and Brodley 2004; Gionis et al. 2005; Li and Ding 2008;
Monti et al. 2003; Topchy et al. 2005; Luo et al. 2011].

However, existing ensemble techniques are primarily designed for partitional meth-
ods, and few research efforts have been reported for ensemble hierarchical clustering
methods. In partitional clustering, the clustering results are “flat” and can be eas-
ily represented using vectors, clustering indicators, or connectivity matrices [Li and
Ding 2008; Strehl and Ghosh 2003]. Different from partitional clustering, hierarchi-
cal clustering results are often more complex, and they are typically represented as
dendrograms or trees.

In this work, we propose a novel Hierarchical Ensemble Clustering (HEC) frame-
work in which the input can be both partitional clusterings and hierarchical clusterings.
The output of the framework is a consensus hierarchical clustering. Three different
cases are described here.

(1) In this case, the input clusterings are partitional clusterings. The aggregate
consensus distance from these partitional clusterings is first constructed, and a
consensus clustering using the consensus distance is then generated. These steps lead
to the usual ensemble clustering. In HEC, a structure hierarchy can be further
generated on top of the consensus clustering using the consensus distance.

Note that a structure hierarchy on top of a clustering solution is useful to organize
and understand the discovered knowledge (topic or pattern). In addition, the cluster
structure hierarchy resolves a problem in the usual ensemble clustering when the input
partitional clusterings have different number of clusters.

In this case, K, the number of clusters in the final clustering solution, is not uniquely
determined (much research has been done on finding the most appropriate number of
clusters in a dataset [Fraley and Raftery 1998; Sugar and James 2003; Tibshirani et al.
2001]). In ensemble clustering, we consider input partitional clusterings, including
the number of clusters in each input partitional clustering, as meaningful results.
Therefore, if the number of clusters of input partitional clusterings has a range of
[K1, K2], then the number of clusters in the final ensemble clustering should be K ∈
[K1, K2]. From this analysis, in the HEC framework, we can set K = K2 for the bottom
clusterings (leaves) of the structure hierarchy. In this way, the “true” number of clusters
is guaranteed to be inside the cluster structure hierarchy.

(2) In this case, the input clusterings are hierarchical clusterings (i.e., a set of dendro-
grams). A dendrogram is defined to be nested family of partitions, usually represented
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Fig. 1. An illustrative example of hierarchical ensemble clustering with both partitional and hierarchical
clusterings as input. The dataset is shown in (A), and their distances are shown in (B). K-means clustering
are performed in (C) and lead to a consensus distance matrix in (E). A hierarchical clustering is done in (D)
and leads to a dendrogram distance matrix in (F). The consensus distance matrix of (E) and the dendrogram
distance matrix in (F) are combined in (G), and the final hierarchical clustering are generated in (H).

graphically as a rooted tree [Podani 2000]. Dendrograms are often used to represent a
hierarchical decomposition of the underlying data set.

The aggregate dendrogram distance is first constructed between objects and then
a hierarchical clustering as the final solution is generated as the final solution.

(3) In this case, the input clusterings contain both partitional clusterings and hi-
erarchical clusterings. The consensus distance from the partitional clusterings and
the dendrogram distance from hierarchical clusterings are first constructed. These
two distances into are then combined into a single distance, and a hierarchical
clustering is generated as the final solution. An illustrative example is shown in
Figure 1. Figure 1(A) shows the example dataset and Figure 1(B) shows the distance
matrix. K-means clustering results with different numbers of clusters are presented
in Figure 1(C) and lead to a consensus distance matrix shown in Figure 1(E). A hier-
archical clustering is performed in Figure 1(D) and generates a dendrogram distance
matrix shown in Figure 1(F). The consensus distance matrix of Figure 1(E) and the
dendrogram distance matrix in Figure 1(F) are combined in Figure 1(G), and the final
hierarchical clustering is generated in Figure 1(H).

Our preliminary work was presented at the International Conference on Data Mining
(ICDM) 2010 [Zheng et al. 2010] in which we focused on the ensembles of hierarchical
clustering and the related computational algorithms. In this journal article, we extend
our previous work by systematically studying the following three important problems:

(1) Dendrogram Description: How can we represent the dendrograms so that dif-
ferent hierarchical clustering solutions can be compared and combined?

(2) Dendrogram Combination: How can we aggregate different dendrograms and
generate final hierarchical solution?

(3) Dendrogram Selection: Given a large collection of input hierarchical clusterings,
how can we select a subset from the input collection to effectively build an ensemble
solution that performs as well as or even better than using all available clusterings
[Fern and Lin 2008]?
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In particular, we investigate various descriptor matrices for representing dendrograms
and propose a novel method for deriving a final hierarchical clustering by fitting an
ultra-metric from the aggregated descriptor matrix. Here, we study the problem of
combining both hierarchical and partitional clustering results, whereas our conference
paper only focuses on the combination hierarchical clusterings. In this journal article,
we present a method to first represent multiple partitional clustering results as a dis-
tance matrix and then effectively combine it with dendrogram descriptors. Thus, the
final dendrogram naturally takes both types of clustering results into consideration.
We formalize the ultra-metric transformation problem as an optimization problem and
prove the correctness of our solution. This article also studies the problem of ensem-
ble selection, which was ignored in our conference paper. The dendrogram selection
mechanism, considering both the quality and the diversity of individual hierarchical
clustering results, is presented and two approaches for dendrogram selection based
on tree distances are developed. In addition, more experimental results, including us-
ing large datasets and different hierarchical clustering methods with different sets
of base clusterings, are reported this article. Our experimental evaluation also pro-
vides a systematic empirical study on the ensemble hierarchical clustering problem.
Experimental results have demonstrated the effectiveness of our proposed approaches.

The rest of the article is organized as follows: Section 2 discusses the related work;
Section 3 discusses the ultra-metric and the general algorithm strategy for hierarchical
ensemble clustering; Section 4 investigates various descriptor matrices for representing
dendrograms; Section 5 describes the distance matrix used for representing partitional
clustering results; Section 6 proposes a novel method for deriving final hierarchical
clustering by fitting an ultra-metric from the aggregated distance matrix; Section 7
presents our approaches for dendrogram selection (i.e., selecting a subset of hierarchical
clusterings from the input collection); Section 8 shows experimental evaluations and
result analysis; and, finally, Section 9 concludes the paper and discusses future work.

2. RELATED WORK

2.1. Hierarchical Clustering

Hierarchical clustering algorithms are unsupervised methods to generate tree-like
clustering solutions. They group the data points into a hierarchical tree structure us-
ing bottom-up (agglomerative) or top-down (divisive) approaches [Tan et al. 2005]. The
typical bottom-up approach takes each data point as a single cluster to start with and
then builds bigger clusters by grouping similar data points together until the entire
dataset is encapsulated into one final cluster. The divisive approaches start with all
data points in one cluster and then split the larger clusters recursively. Many research
efforts have been reported on algorithm-level improvements to the hierarchical clus-
tering process and on understanding hierarchical clustering [Wu et al. 2009; Zhao and
Karypis 2002; Zheng and Li 2011].

2.2. Ensemble Clustering

Ensemble clustering refers to the problem of finding a combined clustering result
based on multiple input clusterings of a given dataset. Many techniques can be used to
obtain multiple clusterings, such as applying different clustering algorithms, using re-
sampling to get subsamples of the dataset, utilizing feature selection methods to obtain
different feature spaces, and exploiting the randomness of the clustering algorithm.
Many approaches have been developed to solve ensemble clustering problems over
the past few years [Azimi and Fern 2009; Fern and Brodley 2004; Gionis et al. 2005;
Li and Ding 2008; Monti et al. 2003; Topchy et al. 2005]. However, existing ensemble
clustering techniques are mainly designed for partitional clustering methods. The
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problem of ensemble hierarchical clustering using dendrogram descriptors has been
studied in Mirzaei et al. [2008]. The key difference here is that we present a coherent
algorithm to learn the closest ultra-metric solution (matrix B in Equation (6)) whereas
the approach in Mirzaei et al. [2008] requires many parameters that are selected
in an ad hoc manner. In our approach, there are no parameters. In addition, we
propose a hierarchical ensemble clustering framework that can naturally combine
both partitional clustering and hierarchical clustering results, and we systematically
study the problems related to dendrogram description, selection, and combination.

2.3. Consensus Tree

The problem of finding the consensus tree has been extensively studied in bioinfor-
matics when comparing the evolution of species to reach a consensus or agreement
[Adams 1986; Adams 1972]. Most techniques for solving the problem are based on
agreement subtrees (e.g., the substructures that are common to all the trees) [Farach
et al. 1995; Wilkinson 1994]. It is quite difficult for these consensus tree techniques to
preserve structural information while including all the existing leaves from the input
trees [Swofford 1991]. In our work, a framework based on descriptor matrices is pro-
posed to preserve the common structures from the input clusterings and generate a
full consensus tree.

2.4. Metric Fitting

Fitting a tree metric to the (dis-)similarity data has been studied quite extensively
[Ailon and Charikar 2005]. Ultra-metric is a special kind of tree metric in which all
elements of the input dataset are leaves in the underlying tree, and all leaves are at
the same distance from the root. It naturally corresponds to a hierarchy of clusterings
[Agarwala et al. 1999; Ailon and Charikar 2005]. Given a dissimilarity D on pairs of
objects, the problem of finding the best ultra-metric du such that ||D−du||p is minimized
is NP-hard for L1 and L2 norms (e.g., when p = 1 and p = 2) [Agarwala et al. 1999]. In
our work, a new method for fitting an ultra-metric to the aggregated descriptor matrix
is developed.

2.5. Ensemble Decision Trees

In supervised classification, different decision trees can be combined using bagging
[Breiman and Breiman 1996], boosting [Schapire and Singer 1999], stacking [Wolpert
1992], or random forests [Breiman and Breiman 2001]. Unlike our ensemble hierarchi-
cal clustering, these ensemble methods are designed for supervised classification. In
addition, most of the decision tree ensembles do not generate a final tree and simply
combine the output predictions of base trees.

2.6. Cluster Ensemble Selection

The problem of selecting a subset of input clusterings to form a smaller but better per-
forming cluster ensemble than using all available solutions has been studied recently
for partitional clustering [Azimi and Fern 2009; Fern and Lin 2008]. In this article, we
develop cluster ensemble selection methods for hierarchical clustering based on tree
distances.

There are also many related researches on combining multiple hierarchical clus-
tering results from different perspectives [Hossain et al. 2012; Jalalat-evakilkandi
and Mirzaei 2010; Koutroumbas et al. 2010; Lu and Wan 2012; Mirzaei and Rahmati
2008; Mirzaei and Rahmati 2010; Rashedi and Mirzaei 2011]. However, our proposed
approach in this article is able to combine both multiple hierarchical clustering and
partitional clustering results. In addition, we studied the problem of dendrogram
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Fig. 2. A ultra-metric space example.

selection and also developed a method for learning the ultra-metric distance from the
aggregated distance.

3. ULTRA-METRIC AND DENDROGRAM RECONSTRUCTION

A dendrogram is defined as a nested family of partitions, usually represented graphi-
cally as a rooted tree where leaves represent data objects and internal nodes represent
clusters at various levels [Podani 2000]. The structural information is kept by pairwise
cophenetic proximity that measures the level at which two data objects are first merged
into a cluster [Jain and Dubes 1998].

Given a dendrogram, our task is to assign distances between leaf nodes. This problem
has been studied in the literature [Mirzaei et al. 2008; Podani 2000]. Several commonly
used dendrogram distances (also called descriptors) are described in Section 4. Note
that each of these dendrogram distance is in fact an ultra-metric distance. This is
important because given an ultra-metric distance matrix D = (dij), we can reconstruct
the original tree.

3.1. Ultra-metric Distance

Definition 1. A distance matrix D = (dij) is a metric, if it has the following
properties: (1) nonnegativity

dij ≥ 0,

if dij = d(xi, xj) = 0, then xi = xj ; (2) symmetry

dij = dji;

and (3) the triangle inequality

dij ≥ 0, dij ≤ dik + dkj, i �= k �= j.

Although non-negativity and symmetry hold for many distance measures in data
mining, the triangle inequality often does not always hold. A more restricted version
of the triangle inequality is called the ultra-metric inequality:

dij ≤ max(dik, djk) (1)

for all triplets of points i, j, k. This is equivalent to saying that for any distinct triple
i, j, k, the largest two distances among dij, dik, djk are equal and not less than the third
one.

Definition 2. A distance measure is an ultra-metric if it satisfies the ultra-metric
inequality, non-negativity, and symmetry.

To illustrate the ultra-metric, four triangles formed by three data points are shown
in Figure 2. Those four triangles clearly satisfy the triangle inequality; however, only
a and b satisfy the ultra-metric inequality. From Equation (1), it can be easily shown
that, for those triangles shown in Figure 2, if the proximity measure is an ultra-metric,
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then the triangle formed by all triples of points must be an isosceles triangle with
the unequal leg no longer than the two legs of equal length. The example shows that
ultra-metric properties impose more restrictions on sample relations.

A distance measure automatically satisfies the triangle inequality if it satisfies the
ultra-metric inequality. Thus, an ultra-metric distance is also a metric distance; but
the converse is not true.

3.2. Dendrogram Reconstruction and Ultra-metric

In Single-Link (SL) and Complete-Link (CL) hierarchical clustering, a dendrogram is
generated by repeatedly picking the closest pair of clusters from the distance matrix,
merging these two clusters into one, and updating the distance matrix. Various schemes
differ in how the distance between a newly formed cluster and the other clusters is
defined. Let d be the final generated distance. It can be easily shown that d is an ultra-
metric. To see why, consider three objects i, j, k. Without loss of generality, assume i
and j merge first. Then we have d(i, j) ≤ d(i, k) = d( j, k). More details can be found in
Jain and Dubes [1998].

In our HEC framework, ultra-metric distance plays a critical role due to its unique
reconstruction property. We have the following proposition:

PROPOSITION 1. From a given ultra-metric distance D, a unique dendrogram G can be
constructed, in the sense that if we construct the distance from G, we recover D exactly.

In fact, there are several ways to model the pairwise distance matrix between in-
stances in a dendrogram (see Section 4). Using different dendrogram distance measures
leads to different ultra-metric distances.

3.3. Hierarchical Ensemble Clustering Algorithm Strategy

With the aforementioned discussions on ultra-metric distances and dendrograms, the
algorithmic strategy of our hierarchical ensemble clustering is outlined here:

(1) Use a dendrogram distance measure to generate an ultra-metric dendrogram dis-
tance for each input dendrogram (see Section 4). We also discuss the consensus
distance matrix for partitional clustering results in Section 5.

(2) Aggregate the ultra-metric dendrogram distances, as well as the consensus distance
for partitional clusterings (see Section 6).

(3) Find the closest ultra-metric distance from the aggregated distance (see Section 6).
(4) Construct the final hierarchical clustering (see Section 6).

4. DENDROGRAM DISTANCES

A dendrogram is usually used to represent the hierarchical clustering results for cluster
analysis, and it is easy to interpret. The ultra-metric information contained in the
pairwise distance matrix can be clearly mapped to dendrogram structural information.
So, for each dendrogram, there is an ultra-metric matrix that uniquely characterizes
it and can be used to recover this dendrogram [Mirzaei et al. 2008].

For instance, a dendrogram obtained from the SL hierarchical clustering algorithm
can be viewed as a weighted dendrogram in which every internal node is associated
with a continuous variable indicating the merge distance within all its covered leaves.
The merge distance is usually called the height. If we replace the height of an internal
node with its rank order (i.e., the level), which is maintained globally with respect to the
whole dendrogram, then a weighted dendrogram becomes a fully ranked dendrogram
[Podani 2000]. A dendrogram descriptor can be viewed as a distance function describing
the relative position of a given pair of leaves in the dendrogram, and it is used to
characterize a corresponding dendrogram.
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Fig. 3. A dendrogram example.

In the following paragraphs, we introduce several dendrogram descriptors used in our
work. The first three dendrogram descriptors are based on a fully ranked dendrogram,
and they all make use of the level information [Mirzaei et al. 2008; Podani 2000]. In
other descriptors, the level information is not directly considered.

—Cophenetic Difference (CD): the lowest height (i.e., merge distance) of internal
nodes in the dendrogram where two specified leaves are joined together. For example,
CD between nodes v and x in Figure 3 is 30.

—Maximum Edge Distance (MED): the depth of a node in a bottom-up view. All leaf
nodes are assigned a depth of 0, and the depth of any internal node is generated
in a bottom-up manner. Suppose C3 is the internal node at which C1 and C2 first
merge; then, Depth(C3) = max(Depth(C1), Depth(C2)) + 1. For example, MED of
nodes v and x in Figure 3 is 2. Nodes v and x first merged at internal node c,
so Depth(c) = max(Depth(a), Depth(x)) + 1 = max(1, 0) + 1 = 2, since Depth(a) =
max(Depth(v), Depth(w)) + 1 = 1.

—Partition Membership Divergence (PMD): PMD utilizes the property that a hi-
erarchical clustering result implies a sequence of nested partitions and is defined as
the number of partitions of the hierarchy in which two specified leaves are not in the
same cluster.

—Cluster Membership Divergence (CMD): the size of the smallest cluster in the
hierarchy that contains two specified leaves.

—Subdendrogram Membership Divergence (SMD): the number of sub-
dendrograms in which two specified leaves are not included together.

For illustration purpose, an example dendrogram is given in Figure 3, and its various
descriptor matrices are presented in Table I.

5. DISTANCE MATRICES FOR PARTITIONAL CLUSTERING RESULTS

As discussed in Section 1, our framework can be naturally extended to ensemble both
partitional and hierarchical clustering results by representing the partitional cluster-
ing results with a distance matrix.

Formally let X = {x1, x2, . . . , xn} be a set of ndata points. Given a partitional clustering
C consisting of a set of clusters C = {C1, C2, . . . , Ck} where k is the number of clusters
and X = ⋃k

�=1 C�, we can define the following associated distance matrix D(C) whose
i j-th entry is defined as

dij =
{

0 (i, j) ∈ C�

1 Otherwise,
(2)
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Table I. Dendrogram Descriptors for the Sample Dendrogram in Figure 3

1: CD 2: CMD
v w x y z

v 0 10 30 40 40
w 10 0 30 40 40
x 30 30 0 40 40
y 40 40 40 0 20
z 40 40 40 20 0

v w x y z
v 1 2 3 5 5
w 2 1 3 5 5
x 3 3 1 5 5
y 5 5 5 1 2
z 5 5 5 2 1

3:MED 4: PMD
v w x y z

v 0 1 2 3 3
w 1 0 2 3 3
x 2 2 0 3 3
y 3 3 3 0 1
z 3 3 3 1 0

v w x y z
v 0 1 3 4 4
w 1 0 3 4 4
x 3 3 0 4 4
y 4 4 4 0 2
z 4 4 4 2 0

5:SMD
v w x y z

v 1 1 2 3 3
w 1 1 2 3 3
x 2 2 2 3 3
y 3 3 3 2 2
z 3 3 3 2 2

where (i, j) ∈ C� means that i-th data point and j-th data point are in the same cluster
C�. In other words, if the i-th data point and the j-th data point are in the same cluster,
then the distance between them is 0.

Given a set of s clusterings (or partitions) P = {P1, P2, . . . , Ps} of the data points in
X, the associated consensus distance matrix D can be represented as

D(P) = 1
s

s∑
i=1

D(Pi). (3)

In other words, the i j-th entry of D indicates the average number of times that the i-th
data point and the j-th data point are not in the same cluster.

Equation (3) defines a way to aggregate multiple partitional clustering results into
one consensus distance matrix. Also there are many different ways to define the con-
sensus function, such as co-associations between data points or based on pairwise
agreements between partitions. Some of the criteria are based on the similarity be-
tween data points, and some of them are based on the estimates of similarity between
partitions. The relationship between consensus matrix and other measures is discussed
and summarized in Li et al. [2010].

Note that the distance matrix can be combined with the dendrogram descriptors
to form the aggregated distance matrix for dendrogram combination. A weight can be
assigned to the distance matrix to ensure that it is at the same scale as the dendrogram
descriptors.

6. DENDROGRAM COMBINATION

Given any similarity, we can do any kind of hierarchical clustering. However, there are
many different choices here: SL, CL, average-link, and many other choices. Which one
to choose? Our logic is that since the input individual descriptors are ultra-metric, and
the consensus matrix is not ultra-metric, the most natural approach is to a find an
ultra-metric that is as close to the consensus matrix as possible. Once this ultra-metric
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is learned, the final hierarchical clustering is uniquely determined. There are other
choices here. The entire approach is uniquely deterministic.

Let D(P) be the computed consensus distance from the input partitional cluster-
ings and let D(H) be the aggregated dendrogram distance from the input hierarchical
clusterings. The task of dendrogram combination includes the following steps:

(1) Finding an ultra-metric distance T which is the closest to D = 1
2 × (D(P) + D(H))

(2) Constructing the final hierarchical clustering based on T

Once the ultra-metric T is obtained, the final hierarchical clustering can be generated
by performing the alpha-cut [Meyer et al. 2004]. In the remainder of this section, we
concentrate on (1); that is, how to compute T .

It should be pointed out that the aggregated distance D will not be ultra-metric, even
if each individual dendrogram distance is an ultra-metric. We compute the ultra-metric
distance T that is closest to D, instead of using D directly, due to the following two
reasons. The first reason is for the unique reconstruction of the eventual dendrogram,
the final hierarchical clustering, as discussed in Section 3. The second reason is that we
can use a transitive dissimilarity to construct T that could attract nearby data objects
into a closer proximity.

6.1. Transitive Dissimilarity

Our task is to construct the transitive dissimilarity starting from D. Note that the
nonnegative distance D can be viewed as the edge weight on a graph.

The idea of transitive dissimilarity is to preserve the transitivity of a graph;
more precisely, a social network with n people represented as (V1 . . . , Vn). If person V1
knows person V2, and person V2 knows person V3, transitivity implies that person V1
knows person V3. Turning this into distances, the transitivity of V1 → V2 → V3 can be
enforced as

d13 ≤ max(d12, d23),
that is, the distance d13 should be no greater than either d12 or d23.

Now consider four people. One can see that our enforcement satisfies associativity:
If both d13 ≤ max(d12, d23) and d24 ≤ max(d23, d34) hold, then

d14 ≤ max(d12, d23, d34).

Generalizing to any path Pij between i and j, on the graph, the transitive dissim-
ilarity on a path Pij (a set of edges connect Vi and Vj) can be defined as

T (Pij) = max(di,k1 , dk1,k2 , dk2,k3 , . . . , dkn−1,kn, dkn, j). (4)

So, for any given pair of vertices Vi and Vj , the transitive dissimilarity varies accord-
ing to different paths chosen between Vi and Vj . The minimal transitive dissimi-
larity is defined as:

mij = min
Pij

(T (Pij)), for given vertices Vi and Vj . (5)

It is clear that mij ≤ dij,∀Vi and Vj , which implies that minimal transitive dissimilarity
brings vertices closer than the original distance matrix.

Thus, the problem of obtaining the ultra-metric transformation of a consensus matrix
can be formulated as the following optimization problem:

PROBLEM 1. A is the consensus distance matrix; B is the desired ultra-metric to be
computed:

min
B

∑
i j

|Aij − Bij |, s.t. Bij ≤ Aij . (6)
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The ultra-metric constraint on B is a hard constraint. The optimal solution is given
by Algorithm 1. In other words, the desired ultra-metric distance is always smaller
than input distance.

ALGORITHM 1: Modified Floyd-Warshall Algorithm to Compute the Minimum Transitive Dis-
similarity of Weighted Graph G
Input: G: Pairwise distance matrix of dataset.
Output: M: Minimum transitive dissimilarity matrix closure of G.
Init: M = G.
1: for k ← 0 to N do
2: for i ← 0 to N do
3: for j ← 0 to N do
4: mij = min(mij, max(mik, mkj))
5: end for
6: end for
7: end for
8: return M

The modified Floyd-Warshall algorithm [Ding et al. 2006] is used to compute the up-
dated transitive dissimilarity of all pairs of vertices in the weighted graph. Algorithm 1
describes the algorithm procedure where the adjacency matrix G of a weighted graph
with N nodes is given as the input.

The following propositions are needed to show the correctness of the modified Floyd-
Warshall algorithm.

PROPOSITION 2. Suppose the edge weights of a given graph satisfy the minimal tran-
sitive dissimilarities as defined in Equation (5). The transitive dissimilarities are equal
to the edge weights.

PROOF. We prove Proposition 2 using dynamic programming. Start from two-hop
paths Vi-Vk-Vj between any given vertices Vi and Vj . As the edge weights d satisfy
the minimal transitive dissimilarities, so dij must be less than or equal to two-hop
transitive weight T (Pikj) for any k. Since we have minimal transitive dissimilarity
mij ≤ dij implied by Equation (5), so mij ≤ dij ≤ T (Pikj) holds. For two-hop minimal
transitive dissimilarity, we get mij = dij .

Given any three-hop path between Vi and Vj , denoted as Vi-Vk-Vl-Vj , we can change
Vi-Vk-Vl to Vi-Vl, or change Vk-Vl-Vj to Vk-Vj based on the destination from two-hop
paths. We apply transitive dissimilarity and the edge weight equivalence property
again on path Vi-Vl-Vj or Vi-Vk-Vj again; then, we get mij = dij , for any path Vi-Vk-Vl-
Vj .

For any n-hop path (n ≥ 2), the same process can be applied. Thus, Proposition 2 is
proved.

PROPOSITION 3. Given node pair Vi and Vj, let Vi-Vk1-· · · -Vkm-Vj) be the path with
the eventual minimal transitive dissimilarity. After successive tightening of edges
Vi-Vk1, Vk1-Vk2, . . . , Vkm-Vj in order, the transitive dissimilarity achieves the final opti-
mal minimal transitive dissimilarity. This holds no matter what other edge relaxations
occur.

PROOF. Since the eventual path between Vi and Vj with minimal transitive dissim-
ilarity is given, the length-2 minimal transitive dissimilarity (optimal solution) can
be easily obtained. Also, the length-3 minimal transitive dissimilarity can be obtained
based on the length-2 solution, and it is obviously the optimal solution. The conclusion
holds when extending to the last edge of the path. Thus, Proposition 3 is proved.
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PROPOSITION 4. Algorithm 1 correctly computes the minimum transitive dissimilarity.

PROOF. The outer loop k = 1 to N guarantees that all paths between any given ver-
tices Vi and Vj will be considered to achieve the eventual optimal path. Proposition 3
ensures that the final correct solution will be reached no matter how internal vertices
along the path are involved. Proposition 2 guarantees that any optimal solution ob-
tained before traversing all the possible solutions will be maintained without change
in the future.

From these propositions, we know that the minimal transitive dissimilarity brings
objects closer than the original distance matrix. Our experimental results in Section 8
show that the final hierarchical solutions arrived at by fitting an ultra-meric using
transitive dissimilarity generally outperform the method that directly performs SL and
CL hierarchical clusterings on the aggregated descriptor matrices. A formal analysis
of cluster separation enhancement requires dedicated work and is one of our future
projects.

7. DENDROGRAM SELECTION

Selecting a subset of input clusterings to form a smaller ensemble has been shown to
achieve better performance than using all available solutions for partitional clustering
methods [Azimi and Fern 2009; Fern and Lin 2008]. The selection is based on the
quality and diversity of each individual clustering solution. For partitional clustering,
since the clustering solutions are naturally represented using vectors or matrices [Li
and Ding 2008; Strehl and Ghosh 2003], the diversity and quality of the clustering
solutions can be easily computed. To perform dendrogram selection, the question is
how to compute the diversity and quality of different hierarchical clustering solutions.

We propose two approaches to perform dendrogram selection based on tree distances.
First, we introduce the tree distances to measure the similarities/differences between
different hierarchies. Two distances are frequently used in the literature to compute
the distance between two evolutionary dendrograms: Branch Score Distance (BSD) of
Kuhner and Felsenstein [1994] and Symmetric Difference (SD) of Robinson and Foulds
[1981]. Both distances are computed by considering all possible branches that could
exist on the two trees. Note that each branch makes a partition of the given dataset
into two groups—the ones connected to one end of the branch (the ones on a subtree)
and the ones connected to the other (the others). BSD uses branch lengths, whereas SD
does not use branch lengths and only uses the tree topologies. For BSD, each partition
on a dendrogram has an associated branch length (i.e., the distance when merging two
subclusters). BSD is then computed by taking the sum of squared differences between
the branch lengths of two dendrograms. SD is calculated as the number of partitions
that only exist in one of the dendrograms.

The goal of dendrogram selection is to select a diverse subset of dendrograms where
each of them has good quality. We propose two approaches for dendrogram selection
using tree distances. In both approaches, the size of the selected set of dendorgrams is
given as an input. The first approach is to use a modified K-medoids algorithm (with
the tree distances) to cluster those dendrograms and then select the medoids for each
cluster. The medoid of a cluster is a representative object whose average similarity to
all the other objects in the cluster is maximized; thus, the medoid dendrogram can
be considered to best capture the information contained in the cluster and has good
quality. On the other hand, selecting medoids from different clusters achieves diversity.

The second approach is based on the farthest-point heuristic [Gonzalez 1985]. The
approach starts with the medoid of all the input clustering solutions. Then, pick a
dendrogram that is as far from the selected dendrogram as possible. In general,
the approach picks a dendrogram to maximize the distances to the nearest of all
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Table II. Dataset Descriptions

Name # Samples # Attributes # Classes
Wine 178 13 3

Parkinson Disease 195 22 2
Libras Movement 360 90 15

WebACE 2340 1000 12
Reuters 2787 1000 9

Table III. Experimental Results on Wine Dataset Using
All Input Dendrograms

Descriptor Ultra Single-Link
CD 0.392 0.381

CMD 0.443 0.273
MED 0.292 0.288
PMD 0.267 0.232
SMD 0.299 0.290

The maximum CPCC value for any input dendrogram is 0.407,

and the average value of all input dendrograms is 0.282.

dendrograms picked so far. Specifically, if t1, t2, . . . , ti−1 denote the selected dendro-
grams so far, then we pick ti to maximize

min{dist(si, s1), dist(si, s2), . . . , dist(si, si−1)}. (7)

The approach stops after the required number of dendrogram has been selected.

8. EXPERIMENTS

8.1. Experiment Setup

To evaluate our proposed ensemble framework, we focus on how well the ensemble
hierarchical solution reflects the characteristics of the original dataset. Co-Phenetic
Correlation Co-efficiency (CPCC) is used as the performance measure [Rohlf and
Fisher 1968; Sokal and Rohlf 1962]. It aims to evaluate how faithfully a dendrogram
preserves the pair-wise distances between the original data samples, and it can be
calculated as

c =
∑

i< j(d(i, j) − d)(h(i, j) − h)√
[
∑

i< j(d(i, j) − d)2][
∑

i< j(h(i, j) − h)2]
, (8)

where d(i, j) is the distance between the i-th and j-th data instances, h(i,j) is the height
of lowest common ancestor of the i-th and j-th data instances in ensemble dendrogram,
d is the averages of d(i, j) over all pairs, and h is the average of h(i, j). Generally, the
higher the CPCC value, the better the clustering performance.

We use five datasets from different domains to conduct the experiments: three
datasets (Wine, Parkinson Disease, and Libras Movement) from UCI Machine Learn-
ing Repository,1 and two benchmark text datasets for document clustering (WebACE
and Reuters datasets) [Li and Ding 2008]. The datasets and their characteristics are
summarized in Table II. The two text datasets are represented using the vector space
model, and they are also preprocessed by removing the stop words and unnecessary
tags and headers. All experiments are conducted under the environment of Windows
XP operating system plus Intel P4 1.83GHz CPU and 4GB of RAM.

1The datasets can be downloaded from http://archive.ics.uci.edu/ml/.
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Table IV. Experimental Results on Parkinson
Disease Dataset Using All Input Dendrograms

Descriptor Ultra Single-Link
CD 0.577 0.554

CMD 0.431 0.419
MED 0.485 0.428
PMD 0.402 0.417
SMD 0.448 0.491

The maximum CPCC value for any input dendrogram is 0.381
and the average value of all input dendrograms is 0.201.

Table V. Experimental Results on Libra Movement
Dataset Using All Input Dendrograms

Descriptor Ultra Single-Link
CD 0.423 0.419

CMD 0.411 0.389
MED 0.36 0.363
PMD 0.279 0.266
SMD 0.45 0.438

The maximum CPCC value for any input dendrogram is 0.334
and the average value of all input dendrograms is 0.25.

Table VI. Experimental Results on WebACE Dataset
Using All Input Dendrograms

Descriptor Ultra Complete-Link
CD 0.465 0.4637

CMD 0.4971 0.4963
MED 0.4787 0.4699
PMD 0.4831 0.4896
SMD 0.5056 0.4781

The maximum CPCC value for any input dendrogram is 0.47 and the
average value of all input dendrograms is 0.428.

8.2. Ensemble Hierarchical Clusterings

In this set of experiments, for each dataset, 10 input dendrograms are generated by
using different hierarchical clustering methods on different attribute subsets. In par-
ticular, they are generated as follows: (1) five different attribute subsets are randomly
constructed first, each of which contains 90% of all the attributes; and (2) SL and CL
algorithms are applied to different attribute subsets.

We evaluate our proposed method for generating the final hierarchical solution by
fitting an ultra-meric using all five dendrogram descriptors (i.e., CD, CMD, MED, PMD,
SMD). We also compare our proposed method (denoted as ultra in the experimental
results) with the method that directly performs SL and CL hierarchical clusterings on
the aggregated descriptor matrices (denoted as single-link/complete-link or SL/CL.2

8.2.1. Results Using All Input Dendrograms. Tables III–VII present the experimental re-
sults on six datasets using all input dendrograms, respectively. Note that, unlike en-
semble clustering for partitional clustering results, for hierarchical clustering ensem-
bles, once the set of individual hierarchical clustering results is fixed, then the result
of the ensemble is also determined. From the experimental results, we observe that:

2In our work, we apply SL on the aggregated descriptor matrices for four UCI datasets and apply CL on the
aggregated descriptor matrices for two text datasets.
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Table VII. Experimental Results on Reuters Dataset
Using All Input Dendrograms

Descriptor Ultra Complete-Link
CD 0.7349 0.7312

CMD 0.7822 0.7435
MED 0.7415 0.7176
PMD 0.7624 0.6955
SMD 0.6475 0.6479

The maximum CPCC value for any input den-
drogram is 0.7583 and the average value of all
input dendrograms is 0.633.

Fig. 4. The performance variation on different numbers of selected dendrograms over 20 trials.
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Fig. 5. The performance variation on different numbers of selected dendrograms over 20 trials.

(1) Our proposed method ultra generally outperforms hierarchical clustering (SL or
CL) across various descriptors on most counts, especially on large datasets (e.g., We-
bACE and Reuters), and (2) the ensemble solution using all input dendrograms may be
worse than the best individual dendrogram, thus demonstrating the need for ensemble
selection.

8.2.2. Results on Different Input Dendrograms. In order to provide more insights into
our proposed method, we also conduct experiments with different sets of input
dendrograms. Figures 4 and 5 show the experimental results on the three UCI datasets
(Wine, Parkinsons, and Libra Movement) and the two text datasets (WebACE and
Reuters), respectively, with different sets of input dendrograms. In particular, for a
given size, we randomly select a set of input dendrograms, and then perform the ex-
periments. The reported results are averaged over 20 different runs.

Based on our observation, the best performance is often obtained when the number
of input dendrograms is around 4 or 5. Although this experiment is conducted by
randomly selecting input dendrograms, it still demonstrates that using a subset of
input dendrograms (rather than using all dendrograms) may improve the ensemble
performance. The issue of using dendrogram selection strategies to form the candidate
subset is discussed in Section 8.2.3 and Section 8.2.4, respectively.

8.2.3. Experiments on Ensemble Selection. We also conducted experiments to demon-
strate the effects of ensemble selection. Note that dendrogram selection can be per-
formed using two different approaches ( K-medoid and Farthest neighbor, denoted as
K and F) with two different distances (Branch Length Score Distance or Symmetric
Distance, denoted as B and S). Tables VIII–Table XII present the experimental results
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Table VIII. Experimental Results on Wine Dataset
Using Six Selected Input Dendrograms

Desc. Sel Dis max ave ultra SL
CD F B 0.292 0.245 0.352 0.331

K B 0.306 0.251 0.373 0.357
F S 0.281 0.229 0.329 0.292
K S 0.299 0.238 0.336 0.344

CMD F B 0.292 0.245 0.387 0.378
K B 0.306 0.251 0.373 0.365
F S 0.281 0.229 0.361 0.329
K S 0.299 0.238 0.35 0.337

MED F B 0.292 0.245 0.369 0.348
K B 0.306 0.251 0.355 0.316
F S 0.281 0.229 0.339 0.318
K S 0.299 0.238 0.357 0.323

PMD F B 0.292 0.245 0.296 0.284
K B 0.306 0.251 0.315 0.331
F S 0.281 0.229 0.316 0.302
K S 0.299 0.238 0.305 0.32

SMD F B 0.292 0.245 0.321 0.307
K B 0.306 0.251 0.338 0.32
F S 0.281 0.229 0.317 0.293
K S 0.299 0.238 0.309 0.304

K and F denote K-medoid and Farthest Neighbor of ensemble selection methods, respec-
tively, and B and S denote Branch Length Score Distance and Symmetric Distance of den-
drogram distances, respectively.

Table IX. Experimental Results on Parkinson Disease Dataset Using Four
Selected Input Dendrograms

Desc. Sel Dis max ave ultra SL
CD F B 0.438 0.256 0.549 0.521

K B 0.467 0.251 0.538 0.544
F S 0.493 0.273 0.537 0.505
K S 0.452 0.235 0.526 0.524

CMD F B 0.438 0.256 0.56 0.512
K B 0.467 0.251 0.572 0.542
F S 0.493 0.273 0.553 0.527
K S 0.452 0.235 0.524 0.536

MED F B 0.438 0.256 0.574 0.539
K B 0.467 0.251 0.595 0.532
F S 0.493 0.273 0.54 0.537
K S 0.452 0.235 0.589 0.527

PMD F B 0.438 0.256 0.517 0.492
K B 0.467 0.251 0.523 0.531
F S 0.493 0.273 0.502 0.499
K S 0.452 0.235 0.544 0.507

SMD F B 0.438 0.256 0.529 0.529
K B 0.467 0.251 0.551 0.504
F S 0.493 0.273 0.547 0.516
K S 0.452 0.235 0.498 0.511

K and F denote K-medoid and Farthest Neighbor of ensemble selection methods, respec-
tively, and B and S denote Branch Length Score Distance and Symmetric Distance of den-
drogram distances, respectively.
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Table X. Experimental Results on Libra Movement Dataset Using Four Selected
Input Dendrograms

Desc. Sel Dis max ave ultra SL
CD F B 0.287 0.199 0.392 0.433

K B 0.291 0.185 0.441 0.408
F S 0.274 0.167 0.4 0.396
K S 0.303 0.158 0.398 0.385

CMD F B 0.287 0.199 0.432 0.424
K B 0.291 0.185 0.446 0.418
F S 0.274 0.167 0.410 0.402
K S 0.303 0.158 0.453 0.391

MED F B 0.287 0.199 0.49 0.458
K B 0.291 0.185 0.442 0.476
F S 0.274 0.167 0.483 0.472
K S 0.303 0.158 0.453 0.461

PMD F B 0.287 0.199 0.397 0.346
K B 0.291 0.185 0.383 0.315
F S 0.274 0.167 0.401 0.359
K S 0.303 0.158 0.394 0.329

SMD F B 0.287 0.199 0.437 0.384
K B 0.291 0.185 0.462 0.391
F S 0.274 0.167 0.423 0.439
K S 0.303 0.158 0.468 0.379

K and F denote K-medoid and Farthest Neighbor of ensemble selection methods, respec-
tively, and B and S denote Branch Length Score Distance and Symmetric Distance of den-
drogram distances, respectively.

Table XI. Experimental Results on WebACE Dataset Using Four Selected
Input Dendrograms

Desc. Sel Dis max ave ultra CL
CD F B 0.483 0.41 0.491 0.49

K B 0.474 0.409 0.505 0.499
F S 0.465 0.417 0.492 0.492
K S 0.487 0.405 0.501 0.494

CMD F B 0.483 0.41 0.511 0.501
K B 0.474 0.409 0.509 0.507
F S 0.465 0.417 0.498 0.503
K S 0.487 0.405 0.505 0.497

MED F B 0.483 0.41 0.513 0.502
K B 0.474 0.409 0.504 0.497
F S 0.465 0.417 0.5 0.497
K S 0.487 0.405 0.507 0.489

PMD F B 0.483 0.41 0.496 0.498
K B 0.474 0.409 0.492 0.497
F S 0.465 0.417 0.501 0.5
K S 0.487 0.405 0.498 0.49

SMD F B 0.483 0.41 0.503 0.491
K B 0.474 0.409 0.5 0.493
F S 0.465 0.417 0.499 0.484
K S 0.487 0.405 0.507 0.495

K and F denote K-medoid and Farthest Neighbor of ensemble selection methods, respectively, and B and
S denote Branch Length Score Distance and Symmetric Distance of dendrogram distances, respectively.
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Table XII. Experimental Results on Reuters Dataset Using Four Selected
Input Dendrograms

Desc. Sel Dis max ave ultra CL
CD F B 0.73 0.682 0.747 0.739

K B 0.741 0.635 0.785 0.794
F S 0.737 0.696 0.792 0.786
K S 0.729 0.64 0.769 0.75

CMD F B 0.73 0.682 0.793 0.767
K B 0.741 0.635 0.798 0.752
F S 0.737 0.696 0.794 0.755
K S 0.729 0.64 0.782 0.751

MED F B 0.73 0.682 0.779 0.754
K B 0.741 0.635 0.783 0.781
F S 0.737 0.696 0.765 0.77
K S 0.729 0.64 0.752 0.75

PMD F B 0.73 0.682 0.782 0.763
K B 0.741 0.635 0.775 0.755
F S 0.737 0.696 0.787 0.761
K S 0.729 0.64 0.74 0.745

SMD F B 0.742 0.726 0.797 0.784
K B 0.744 0.727 0.782 0.753
F S 0.736 0.730 0.771 0.767
K S 0.731 0.722 0.75 0.75

K and F denote K-medoid and Farthest Neighbor of ensemble selection methods, respectively, and B and
S denote Branch Length Score Distance and Symmetric Distance of dendrogram distances, respectively.

Fig. 6. The performance variation on all datasets with different numbers of candidate dendrograms.

on the six datasets using four selected input dendrograms, respectively.3 In these ta-
bles, Sel denotes the ensemble selection approaches, Dis represents the tree distances,
max represents the maximum CPCC value for any input dendrogram, and ave repre-
sents the average CPCC value for the input dendrograms. The experiments show that:
(1) with ensemble selection, the results of both ultra and hierarchical clustering (SL
or CL) have improved; (2) ultra still outperforms hierarchical clustering (SL or CL)
in most cases; and (3) in many cases, the experiment results of ultra and hierarchical

3The value of 4 is chosen based on our experiments on ensemble size selection, and it seems to provide good
results in our experiments. How to come up with a principled way to determine ensemble size selection is
one of our future projects.
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Fig. 7. The performance comparison of combining 10 partitional clustering results with five selected dendro-
grams. max represents the maximum CPCC value for any input dendrogram, and ave represents the average
CPCC value for the input dendrograms. ultra and SL/CL represent the recovery approaches for ensemble
dendrograms by using ultra-matrix transformation and hierarchical clustering, respectively. ultra+K and
SL/CL+K represent the combination of K-means clustering results and the previous two methods.

clustering (SL or CL) outperform the best dendrogram in the candidate set, which
means those ensemble dendrograms could be more representative of the original set.

8.2.4. Experiments on Ensemble Size. To demonstrate the effect of the size of the en-
semble, Figures 4 and 5 show the performance variation on different numbers of
selected dendrograms on all datasets. We apply K-Medoid selection methods on SD
to choose candidate dendrograms. For each dataset, we vary the group size of can-
didate dendrograms and use CMD as the descriptor to conduct the dendrogram
selection.

Figure 6 shows the CPCC value for each dendrogram group, averaging over 20 runs.
Note that for better readability, the plotted value of the Madelon dataset is 10 times
its actual value. The performance slightly decreases once the number of ensemble
dendrograms reaches a certain size. So selecting a relatively smaller subset is likely to
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produce better ensemble results. It also shows that ensemble selection can influence
the ensemble results and can be used to produce better hierarchical solutions.

8.3. Ensemble Partitional and Hierarchical Clusterings

In this set of experiments, we evaluate our proposed method for combining both par-
titional and hierarchical clusterings on all datasets. For each dataset, 10 partitional
clustering results are obtained by running K-means 10 times, and they are combined
with five input dendrograms. Figure 7 presents the experimental results. From the
experimental results, we conclude that our ensemble framework is able to combine
both partitional and hierarchical clusterings and improve the performance on most
datasets. The results also show that our proposed method ultra clearly outperforms
SL/CL on all datasets, and ultra+K generally outperforms SL/CL+K in most cases.

9. CONCLUSION AND FUTURE WORK

A framework for ensemble hierarchical clusterings based on descriptor matrices is
proposed in this article. Three important components of the framework (dendrogram
selection, dendrogram description, and dendrogram combination) are studied. In par-
ticular, two ensemble selection schemes based on tree distances are proposed, five
different dendrogram descriptor matrices are investigated, and a novel method for
fitting an ultra-metric from the aggregated descriptor matrix is developed. Since parti-
tional clustering results can be easily represented using distance matrices, our de-
scriptor matrices-based framework can be naturally generalized to ensemble both
partitional clustering and hierarchical clustering results as partitional clustering re-
sults. Experiments are conducted to demonstrate the effectiveness of our proposed
approaches.

There are several avenues for future work. First, we plan to investigate the
techniques for scaling up the ensemble process to large-scale datasets. Second, our
studies show that selecting a relatively smaller subset is likely to produce better
ensemble results. One interesting question is how to determine the ensemble size.
Another interesting yet related direction is that, rather than picking representative
dendrograms, we can associate every generated dendrogram with a weight. So, when
considering the ensemble, dendrograms with larger weights can contribute more
than can dendrograms with smaller weights. Third, another aspect of interest is
to provide a formal analysis on cluster separation enhancement using transitive
dissimilarity.
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