
US010331753B1

(12) United States Patent
Zhang et al .

(10) Patent No . : US 10 , 331 , 753 B1
(45) Date of Patent : Jun . 25 , 2019

(56) References Cited (54) EFFICIENT PROGRESSIVE CONTINUOUS
K - NEAREST NEIGHBOR QUERY
ALGORITHM FOR MOVING OBJECTS
WITH A TREE - LIKE INDEX

U . S . PATENT DOCUMENTS

(71) Applicant : Jing Tong , Coral Gables , FL (US)

(72) Inventors : Mingjin Zhang , Miami , FL (US) ;
Naphtali Rishe , Miami Beach , FL
(US) ; Weitong Liu , Redwood City , CA
(US) ; Jahkell Lazarre , Miami , FL
(US) ; Tao Li , Coral Gables , FL (US)

7 , 016 , 781 B1 * 3 / 2006 Wolfson GO1C 21 / 3415
340 / 988

8 , 566 , 030 B1 * 10 / 2013 Demiryurek GO1C 21 / 3492
701 / 409

2005 / 0071083 Al * 3 / 2005 Chen GO6Q 10 / 08
705 / 28

2005 / 0096841 Al * 5 / 2005 Gedik G06F 17 / 30333
701 / 408

2013 / 0251269 A1 * 9 / 2013 Chehaiber G06F 17 / 30247
382 / 197

(Continued)

OTHER PUBLICATIONS (73) Assignee : The Florida International University
Board of Trustees , Miami , FL (US)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .

(21) Appl . No . : 15 / 945 , 222

(22) Filed : Apr . 4 , 2018 (57)

(51) Int . Ci .
G06F 16 / 9537 (2019 . 01)
G06F 16 / 29 (2019 . 01)
GO6K 9 / 62 (2006 . 01)
H04W 4 / 02 (2018 . 01)

(52) U . S . CI .
CPC G06F 16 / 9537 (2019 . 01) ; G06F 16 / 29

(2019 . 01) ; G06K 9 / 6276 (2013 . 01) ; H04W
4 / 023 (2013 . 01)

(58) Field of Classification Search
None
See application file for complete search history .

Iwerks , Glenn S . , Hanan Samet , and Ken Smith . “ Continuous
k - nearest neighbor queries for continuously moving points with
updates . ” Proceedings of the 29th international conference on Very
large data basesvol . 29 . VLDB Endowment , 2003 . (Year : 2003) . *

(Continued)
Primary Examiner — Alex Gofman
Assistant Examiner — Umar Mian
(74) Attorney , Agent , or Firm — Saliwanchik , Lloyd &
Eisenschenk

ABSTRACT
Methods and systems for computing continuous k nearest
neighbor (CENN) queries in location based services for
moving objects , to produce ordered kNN query results in a
continuous and progressive manner , are provided . One
method comprises receiving a continuous k nearest neighbor
query , computing the initial set comprised of the k interest
points nearest to the reference point and a set of remaining
nodes stored in a distance - priority queue , generating and
storing split points in a min - heap , iteratively moving current
reference point to the nearest split point , swapping interest
points , updating the corresponding split points in the min
heap , and reporting the kNN result progressively until a
termination condition is reached .

18 Claims , 8 Drawing Sheets

KNN Partition

Entry _ 16t | E1 CHELSE
Sulkap (SP20 S24 (SP1321SP5115 701

common Process - Partition
LETTO EMAIL "

TSPH
1510 NULL

W - Z a pid : 98 Sandalyva
ispuistoupisz spise

Entry - Lust LETO E N TE 11610 ENSTO NULL

Steen (820) ŠA / SP131835 SETO 1918
Spid = 20
SoDist 2011

spla 20 I B SDist = 12) sp Dist = sp ? d = nvalio spDisto

Entry - Lise (ELIGETTE
S ' kap (SP20) $ (5P137] SP5 | SPTO 523

EToler _ Etro – AULL
SP18)

Entry - List LE11E ENGE ! 1E1310 11513 NULL

Stear salsa isik881920 et 18

US 10 , 331 , 753 B1
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

2015 / 0039217 A1 * 2 / 2015 Deshpande GO8G 1 / 20
701 / 300

OTHER PUBLICATIONS
Tao , Yufei , Dimitris Papadias , and Qiongmao Shen . “ Continuous
nearest neighbor search . ” Proceedings of the 28th international
conference on Very Large Data Bases . VLDB Endowment , 2002 .
(Year : 2002) . *
Benetis , Rimantas , et al . “ Nearest neighbor and reverse nearest
neighbor queries for moving objects . ” Database Engineering and
Applications Symposium , 2002 . Proceedings . International . IEEE ,
2002 . (Year : 2002) . *
Mouratidis , Kyriakos , Dimitris Papadias , and Marios Hadjieleftheriou .
" Conceptual partitioning : An efficient method for continuous near
est neighbor monitoring . ” Proceedings of the 2005 ACM SIGMOD
international conference on Management of data . ACM , 2005 .
(Year : 2005) . *
Tao , Yufei , and Dimitris Papadias . “ Time - parameterized queries in
spatio - temporal databases . ” Proceedings of the 2002 ACM SIGMOD
international conference on Management of data . ACM , 2002 .
(Year : 2002) . *
Yu , Xiaohui , Ken Q . Pu , and Nick Koudas . “ Monitoring k - nearest
neighbor queries over moving objects . ” Data Engineering , 2005 .
ICDE 2005 . Proceedings . 21st International Conference on . IEEE ,
2005 . (Year : 2005) . *
Xiong , Xiaopeng , Mohamed F . Mokbel , and Walid G . Aref . “ Sea
cnn : Scalable processing of continuous k - nearest neighbor queries
in spatio - temporal databases . ” Data Engineering , 2005 . ICDE 2005 .
Proceedings . 21st International Conference on . IEEE , 2005 . (Year :
2005) *

* cited by examiner

U . S . Patent Jun . 25 , 2019 Sheet 1 of 8 US 10 , 331 , 753 B1

START

USE BRANCH AND BOUND TO INDEX INTEREST POINTS USING TREE INDEX

WENGU NURULU

PERFORM BEST FIRST SEARCH WITH DISTANCE BROWSING ON TREE INDEX TO CALCULATE THE INTIAL KNN
www

K ICK : IN ORDER ADD INTIAL KNN TO THE LEFT PARTITION OF ENTRY - LIST
* * W4444444444444

T ! ST CONTINUALLY POP PRIORITY QUEVE POPULATED DURING THE BEST FIRST SEARCH , AND , IN ORDER ADD THE NODES TO THE RIGHT PARTITION OF ENTRYLIST AUTY 2 LL KU U !

w

GENERATE SWAP SPUIT POINTS FOR ALL ADJACENT ENTRIES AND INSERT THEM INTO MIN - HEAP

MIN - HEAPHAS
MORE ELEMENTS AND NO N O wwwwwwwwwww < NEXT SPLIT POINT IN MIN - HEAP

IS CLOSER THAN
DESTINATION ?

UMYWuuuu QUERY POINT
NOT REACHED AS
SPLIT POINT

RETRBVE PAIR OF ENTRIES THAT
GENERATED SPLIT - POINT MAKLUM

YES
YES BOTH ENTRIES IN

RIGHT PARTITION OF
ENTRYLIST ? BOTH ENTRIES

NO / ARE LEAF NODES , WITH
ALEAST ONE BEING IN

YES
www ?????????????????????????

SWAP ENTRIES IN
ENTRY - LIST

SWAP ENTRIES IN
ENTRYUST wwwwwwwwwwwwwwwwwwwwwwwwwwww

EXPAND ENTRY AND INSERT ALL CHILDREN INTO RIGHT PARTITION
WHILE MAINTAINING PROCESS - ORDER THIS CONSISTS OF

REASSIGNING AND RECALCULATING SPLIT POINT IDS AND SPUT
POINT DISTANCES AND COMPARING SPLIT POINT DISTANCES
SPUT POINTS MUST BE REMOVED AND INSERTED AS NEWLY

ADJACENT PAIRS IN ENTRYLIST ARE ESTABLISHED

AWARANN
ADRIA REPORT CHANGE IN KNN AS RESULT

Mamawawa WAWA

COXXXXXXXXX

INC

TO FIG . 1B

FIG . 1A

atent Jun . 25 , 2019 Jun . 25 , 2019 Sheet 2 of 8 US 10 , 331 , 753 B1

FROM FIG . 1A
SAN

ONE OF THE
ENTRIES BEING
SWAPPED OUT XX2R14

A

HEROKEE TR NOTIFY KNN ENTRY ' S PARENT OF
SWAP OUT OPERATION

NO PARENT ENTRY HAS YES
NO MORE CHILDREN

COLLAPSE PARENT
WW

LLLLLA . . . 222222PPOLLLA . . 22222PPI 44124224994 . 4 . 4 . 4 . 4212099994 . - 24 . 4 . 42411119

REMOVE FROM MIN - HEAPANY SPLIT POINTS THAT
REFERENCE BITHER OF THE TWO ENTRES

Wuuuuuuuuuuuuuuuu

WWWWWWWWWWWWWWWWWWWWW

GENERATE SWAP SPUIT POINTS FOR
ALL NEWLY ADJACENT PAIRS OF

ENTRIES IN ENTRY - LIST AND INSERT
THEM INTO MIN - HEAP

XAXXAKI CHEK
+ 424 OCTO MMY

1 : 44 : 4 4 11 : 44ASLI

FIG . IB

atent Jun . 25 , 2019 Sheet 3 of 8 US 10 , 331 , 753 B1

FIG . 2

U . S . Patent Jun . 25 , 2019 Sheet 4 of 8 US 10 , 331 , 753 B1

FIG . 3A

NA

S * *
FIG . 3B

atent Jun . 25 , 2019 Sheet 5 of 8 US 10 , 331 , 753 B1

00
.

1172 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 121212121212

FIG . 4

FA LLLLL
* * * * * * *

* *

FIG . 5

FIG . 6B

- ' r ' rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr ' .

„ Merged osck into MBR

.

FIG . 6A

+

US 10 , 331 , 753 B1 Sheet 6 of 8 Jun . 25 , 2019 U . S . Patent atent

atent Jun . 25 , 2019 Sheet 7 of 8 US 10 , 331 , 753 B1

tooted
*

*

*
*

KNN - Partition *
* Process - Partition KAM - Partition

Entry - List [ETT 11E50 60 LE G
o

at

LEIGTG 646 - 01516 NULL KKKKKKER Swap DI RITION
P

S - Heap SP20 SP4 SP132 SP51 SPZO SP3 - - SP18] * * * * * WWWWWWWWWWWW WWWWWW

spid = 76 spid = 98
spDist = 301) sp Dist = 237 spid = invalid

SpDist = 0) 4

Panou doGER E 15E NULL ODULOVER M
Entry - List E11 6 550 67E22 6144166141185101
S - Heap [SP20] SPA [SP132SP51 | SP70] SP3 - - TSP18]

arow
Yin YYYYY * WWW

H

LOROAnn

spld = 20
sp Dist = 34) E2291

spld = 20
sp Dist = 12

Spid = 98
spDist = 237 spid = invalio

SpDist = 0)

Entry - List I Ana Entgele FEGEISSEPIGELEDENESES , IMDb Tara NULL
Streap SP2) 574 [SP132 / sP51 | SP7o] SP3) TSP18 mwa www

W W WU ULUNMULARUMLULLALLAMANOL LALALALALALMEILLERS OLIMME HALLLLLL LLLLLLLLL

splo = 20
spDist = 34)

spld = 20
spDist = 12

spld = 20
sp Dist = 37

spid = Invalid
spDist = 0) ??

? ????

? w Le

????

SENARAIVUM Entry - list | E1 = 50°CE219 LETO - E1310 , 116 NULL
S - Heap SP20 SP4 SP 132 SP51 SPZOL SP3 - SP18)

om
Wome * *

AMARE .

* * * * * KUKURORTUOUS

FIG . 7A

spid = 20

spid = 20 sp Dist = 34)

spid = 20 SpDist = 37

spld - invalid
spDist = 0)

sp Dist12)

U . S . Patent atent

Am

? Entylist ELICE0 151 _ E210190 OSEBIG , Eich
irth
WO

W

W

* * *

* * *

* * *

M

V UDOMACHOWSUCHUMI

. Mice

EEKENIRU
W

KOOK

wartout
PUOI wwwwwww

S - Heap

SP20 | SP4 | SP432] SP51 | SP70 | SP3 | - | 5P18]

spid = 20
spDist = 12)

spid = 20 sp Dist = 34)

spid = 20 sp Dist - 37

spid = Invalid
SpDist = 0

Jun . 25 , 2019

WWWWWWWWWWW

Entry - List [E11 07

E50 67E227E44

E 2293E185 07

(E11501

NULL

HOWYWWM90
KAK * XKKOK

C

ORE

nowww

Wonwoo X900

poppoon

S - Heap

SP20 SP4 | SP1321 SP51 SP70 SP3 [-

SP18

SAMAN Www

Wwwwwwwwwwww

Vwwwwwwwwwwwwwwwwwwwwwwwwwwww

Sheet 8 of 8

29 dt 015161a

- E115C7 = NULL

OUVIDOMAPOO

:

Kangas

wa

WC

VIIMUUSKUNNE
DO PROCESOR

WWWWWWWWWWWWW

Enty - List En 1c / 550 / 674 _ E2 1994 . 1 a S - Heap SP20 ? SP4 JSP132 [SP51 | SPZO SP3 - SP18]

WOWOWROOM
NORWOOOW

W

wwwpoort
00 : 0

0

od

Live Puzlu

WYYYYYYYu4ur .

Entry - List _ E11

C

E50E7E2210
542

52292 - E185 B

[E115 G

NULL

WWWWWWWWWWWWAARONDERS WAAMU

VO

west

MOOVITAMINO

om

S - Heap

US 10 , 331 , 753 B1

????????

+ ??? : ??? ???

?

??? ?

??????? : wwwwwwwwwwwww . ODWW1 $ P4 | SP146 [SP144 | | SP51 | SP70] SPTASI . . . SP18]

FIG . 7B

www

US 10 , 331 , 753 B1

EFFICIENT PROGRESSIVE CONTINUOUS FIG . 5 shows a diagram illustrating the split points
K - NEAREST NEIGHBOR QUERY generated by interest points and minimum bounding rect

ALGORITHM FOR MOVING OBJECTS angles (MBRs) .
WITH A TREE - LIKE INDEX FIG . 6A shows a diagram illustrating the expansion of an

5 MBR .
STATEMENT OF GOVERNMENT SUPPORT FIG . 6B shows a diagram illustrating the merging of

points back into an MBR .
This invention was made with government support under FIGS . 7A and 7B illustrates one case of swapping of a leaf

grants # 1213026 , 1429345 , and 1338922 awarded by the node and an internal node in a Progressive CKNN query .
National Science Foundation . The government has certain 11 DETAILED DESCRIPTION rights in the invention .

BACKGROUND Continuous k Nearest Neighbor (CKNN) query is a tech
nology in the spatial database realm and useful in location

15 based applications . The progressive continuous k nearest Contemporary technology allows moving object data to neighbor (PCKNN) query continuously searches for k near be collected easily and extensively . Applications that deal est objects while a query point is moving along a path . For
with moving object data (e . g . , traffic monitoring , flight a PCKNN query , each element in the result set can be
control , and location - based advertisement and recommen - expressed as the following two - component tuple :
dation) typically require location - based services (LBS) . LBS 20
include querying for the historical , current , or predictive result [i] = < [A , B) , (NN1 , NN2 , . . . , NNk) > (i = 0 , 1 ,

2 , . . .) (1) future locations of moving objects and of static objects
proximal to moving objects . K nearest neighbor (kNN) Points A and B are located in the path segment of the
queries find interest points nearest to a location . Continuous query point . This formula states that for an arbitrary point
KNN (CKNN) queries find nearest interest points along an 25 between A and B in the path ' s segment , its k nearest
entire trajectory of a moving object . neighbors are the interest points (NN1 , NN2 , . . . NNk) . The

interest points are ordered by distance to Q . The sequence
BRIEF SUMMARY (NN1 , NN2 , . . . , NNk) is defined as a KNN - Sequence . As

shown in FIG . 2 , the result of this PC3NN query is :
Embodiments of the subject invention can output a first 30

result of a CKNN query to the user almost instantly and result = { { (S , A) , (f1 , f2 , f3)) , gradually update the response to include a sequential order
of distance or time . This progressive approach can reduce ((A , B) , (f2 , f1 , f3)) ,
computation time when outputting a large result .

Embodiments of the subject invention allow for continu - 35 ((B , C) , (F2 , F3 , f1)) ,
ous output and maintenance of the query results while a (C , E) , (83 , F2 , F1)) } .
query point is moving . Using a spatial tree - like index , only
one query post or one - time tree traversal is required for all
segments in a path . Note that for any two adjacent KNN - Sequences , e . g . , (fi ,

Embodiments of the subject invention can retrieve the k 40 f2 , f3) and (f2 , f1 , f3) , the only difference is either the
nearest neighbor interest points to every point on the path of swapping of two adjacent elements (e . g . , f1 and f2) , or
a moving object . The result can be position or time depen - replacement of the last node with a new point .
dent and change when the order of the interest points relative In a PCKNN query result , the KNN - Sequence can change
distances to the query point change . CKNN queries can be with the continuous movement of the query point on query
used for many location - based applications . For example , " If 45 segment SE . Every change of the KNN - Sequence can be the
I continue moving in this direction , what will be my closest result of the swapping of two or more adjacent elements in
restaurants for the next 10 minutes ? ” or “ What will be my the sequence or replacement of the last node with a new
nearest gas station at any point during my route from city A point .
to city B ? ” Proof (by contradiction) : Assume there is a point A on

50 segment SE . The query point Q is moving from S to E . As
BRIEF DESCRIPTION OF DRAWINGS for segment | SAI , the KNN - Sequence is

FIGS . 1A and 1B show a diagram of workflow of a (7 , 12 , . . . fif (i + 1) , . . . , fj - 1) : 7 / j + 1) , . . . fk) . (3)
Progressive CKNN query execution that utilizes a tree - like For segment | AEI , the kNN - Sequence is
index according to certain embodiments . 55

FIG . 2 shows a diagram of the generation of split points (1 . 12 , . . . fi?i + 1) , . . • NV - 1) , fi . f (j + 1) , . . . ?k) ,
using the perpendicular bisectors between interest points in which case the two elements swapped are not adjacent .
with respect to the query trajectory in a Progressive CKNN It can be inferred that when IQAI (Q gets close to A)
query . with SQI < ISAL (Q is still on segment SA) , the KNN

FIG . 3A shows a diagram illustrating swapping adjacent 60 Sequence is (1) . When IQAI > 0 with | SQI > ISAI (Q is on
interest point before the query point passes a particular split segment AE) , the KNN - Sequence is (2) . Since the movement
point in a Progressive CKNN query . of Q is continuous , dist (A , fi) must be equal to dist (A , fj) .

FIG . 3B shows an illustrative diagram of adjacent interest According to the definition of kNN - Sequence , dist (A , fi)
point swapping after the query point passes a particular split < = dist (A , f (i + 1)) < = . . . < = dist (A , fj) . So dist (A , fi) , dist (A , f
point in a Progressive CKNN query . 65 (i + 1)) , . . . , dist (A , fi) must be equal to each other . That

FIG . 4 shows a diagram of a query point before passing means for any two points chosen from fi , f (i + 1) , . . . , fj ,
a split point in a CKNN query . denoted as fu and fv , the perpendicular bisector of segment

(4)

US 10 , 331 , 753 B1

| fufv [must pass A . So when Q passes A , the positions of fu points are then safely collapsed back into the original
and fv in the KNN - Sequence must be reversed , which means minimal bounding rectangle (MBR) . With collapsing , the
any two points from fi , f (i + 1) , . . . , fj must be reversed . Then memory usage can be tightly bounded , no matter how the
the KNN - Sequence should be trajectory of the query point changes over time .

Embodiments of the subject invention can find a sequence
(11 , 12 , . . . fj? (j - 1) , . . . f (i + 1) fi . fij + 1) , . . . fk) of data points , include points which appear in the result of

the query , and continuously maintain that sequence .
instead of Embodiments of the subject invention can progressively

output results . This can be more favorable when the query is
(11 , 12 , . . . fj? (i + 1) , . . . f (j - 1) , fi . f [j + 1) , . . . fk) . 10) 10 expensive to execute or the result set is large . Certain

This contradicts the assumption . (end of proof) embodiments use minimal resources of CPU , IO , and
FIG . 3A shows an example of the swapping of adjacent memory . This can be beneficial for applications on servers

interest points . Given a query segment (sel , four interest handling large amounts of queries , (e . g . , large - scale online
points (a , b , c , d) and query point locations (q ' , q) while the LBS map services) , and applications on devices with limited
query point moves from left to right on sel , the sequence of 15 CPU and memory , (e . g . , GPS navigation devices with
distances between the query point and interest points can be embedded systems) . Certain embodiments only need to post
observed . The sequence of distances from each interest point one query for all segments in a path ; can track and output
in relation to q ' is (a , b , c , d) . Comparatively , q ' s sequence CKNN results when the order of KNN changes ; and are not
of interest points is d , c , b , a . The only split points that need restricted to query trajectories that consist of only line
to be generated initially (at q ') are the ones that result from 20 segments (i . e . capable of handling multiple query trajecto
adjacent interest points , that is why only lab] , [bc] , and (cd ries that consist of curves , loops , etc .) .
are connected . FIG . 4 is a diagram of a query point q before Embodiments of the subject invention provide for a
passing a split point in a CKNN query . Every change to the continuous k nearest neighbor query that outputs query
KNN - Sequence can be the result of swapping of two or more results in a continuous and progressive manner . Given a
adjacent elements in the sequence . These split points are 25 query point q moving along some path g , a set of interest
swap split points , (i . e . , the points on the query trajectory at points I , and a constant k , a subset of I (or less if data set size
which the order of two adjacent interest points is swapped) . is less than k) , in which the points are top k closest distance
Once adjacent elements are swapped , new split points can be to q , is continually returned as part of any tuple in result set
generated in accordance to the newly adjacent elements in R .
the sequence ; whereby split points can be generated as the 30 Path g can be any set of points , in which each point can
query point moves along Isel . be a tuple of coordinates . g can be the trajectory of query
As seen FIG . 3B , q moves to split point x , which results point q represented as a geometric shape , which may be , but

in a and b being swapped . The new sequence of interest is not limited to be , a line segment , a polyline , or a curve .
points is now b , a , c , d . Since previously non - adjacent A query point or moving object q can travel along path g ;
elements (e . g . , a and c) are now adjacent and previously 35 the point is a tuple of coordinates at any given time and can
adjacent elements are now non - adjacent (e . g . , b and c) , Ibel represent an object in physical or virtual multidimensional
is disconnected and lacl is connected . Split point y is space , (e . g . , a person , an animal , a car , a plane , a smart
removed and a new split point y ' is generated between the phone , or a drone) . This can apply to every point p in I ,
newly adjacent elements (e . g . , a and c) . Repeating these although the points in I are not all necessarily represented by
steps on the query interval Isel will output the split points 40 the same object type . It is possible for every point p in I to
and CKNN progressively . have different object types . Every interest point p in I can be

FIG . 5 illustrates the principles of certain embodiments . a stationary object , (e . g . , a gas station , a police station , a
There can be an Entry - List that comprises a set of elements restaurant , hotel , or an objective in a videogame) .
{ a , b , c , d , E1 , E2 } and a heap of split - points that comprises Constant k can be the maximum number of interest points
{ S1 , S2 , S3 , S4 , S5) . The approach of generating and storing 45 returned as part of any tuple in result set R . However , the
split points strictly for adjacent elements in Entry - List yields size may be less than k if the data set size is less than k .
a significantly reduced number of elements in memory PCKNN result set R is a set of tuples wherein each tuple
compared to non - indexed approaches that generate split contains a split point along with a collection of k interest
points for every pair of non - adjacent elements as well . This points ordered by their distance to q . An example is R = { < s1 ,
approach is efficient if k is large because the herein disclosed 50 { p23 , p50 , p11 , p9 } > , < s2 , { p23 , p50 , p11 , p9 } > , < s3 , { p50 ,
method is not sensitive to the size of k and can progressively p23 , p11 , p9 } > } . When query point q passes split point si ,
output the result set . interest point p23 is the 1NN , p50 is the 2NN , and so on . R

Embodiments of the subject invention can “ merge ” chil - is updated and the change in R is progressively returned as
dren nodes into their parent node when they are not included q travels along g .
in the KNN or they do not have a recursive child in the 55 FIGS . 1A and 1B show a diagram of workflow of a
current KNN (i . e . , a process referred to as collapsing) . A Progressive CKNN query execution that utilizes a tree - like
parent node can replace its children nodes in memory , index according to certain embodiments .
effectively reducing memory usage by a factor of the tree - In the following steps , the tree - like index is assumed to be
like index ’ s fan - out . Collapsing only occurs immediately an R - tree to remove the ambiguity between a “ tree node ”
after a leaf node is swapped out from the KNN . The 60 and a “ linked list node " (and to eliminate the verbosity of
collapsing can render certain embodiments capable of han - " linked list node ”) ; however , it is important to note that the
dling not only trajectories that comprise line segments but herein disclosed method is not restricted to the utilization
also many other patterns that may consist of curves , loops , R - trees as the tree - like index . The terms “ root node ” , “ inter
etc . As seen in FIG . 6A , the node that contains the 3rd nal node ” , and “ leaf node ” are used when referring to nodes
nearest neighbor in the result set is expanded . FIG . 6B shows 65 in the R - tree .
that as the query point moves forward , all the points belong - A first step can be to use a branch - and - bound algorithm to
ing to the node are no longer shown in the query result . The index a set of interest points with a spatial tree - like index ,

US 10 , 331 , 753 B1

(e . g . , R - tree) . By using a tree - like index , the approach of the A fourth step can be to continually maintain the Entry - List
present invention can reduce the number of points that are and report kNN progressively . When the query point a
stored in memory (or on - disk) by bounding and grouping encounters or reaches a split point , (i . e . , the distance
interest points that are farther from the query point into between query point q and the top of the S - Heap is less than
MBRs which increases performance . 5 or equal to a specified threshold) , three possible cases can be

A second step can be to calculate the initial kNN and the following :
initialize the Process - Partition (as defined below) . The tree - First , a split point was generated by any two entries in the
like index is traversed , utilizing a search , algorithm (e . g . , a Process - Partition . In this case , a swap operation can be
best - first search heuristic) , to continually expand nodes until performed on the two entries in the list .
the k nearest interest points of the query point are found . A 10 Second , a split point was generated by two leaf nodes ,

with at least one being in the KNN - Partition . In this instance , best - first search is a search algorithm , such that the most the following algorithmic steps can occur : (1) the two entries
promising nodes in a graph are selected for traversal accord are swapped , (2) the change in the KNN - Partition is reported ing to a search heuristic . Finding the closest object to a query as a result , and (3) if one of the leaf nodes is swapped out
point is called distance browsing . A distance browsing of the KNN - Partition , it notifies the parent entry that it has
approach can be utilized as a part of a best - first search to find 15 been swapped out . If the parent entry has no children in the
the most promising node , (i . e . , the node that is closest to the KNN - Partition , its children are collapsed , (i . e . , the children
query point) . entries are removed from the Process - Partition) . Parent

A subset of interest points and MBRs in the index are entries can have pointers or references to their children that
maintained in a linked list of entries (leaf and internal nodes reside in the Entry - List . The collapse can be a recursive
in the index) , hereinafter referred to as the Entry - List that is 20 operation . That is , the parent entry and its siblings can be
partitioned into two regions : a left partition , hereinafter collapsed into its parent (the grandparent) if the parent entry
referred to as the KNN - Partition , and a right partition , and its siblings have no recursive children in the KNN
hereinafter referred to as the Process - Partition . A linked list Partition ; this is repeated recursively for the grandparent , its
can be a linear data structure , such that each element is a parent , and so on . Split points that involve (point to or
node that contains data and a pointer or reference to the next 25 reference) any of these removed children are removed from
node . Each entry in the Entry - List can contain additional the S - Heap . The swap split points must be generated for all
states , hereinafter referred to as spDist and spID . The state newly adjacent pairs of entries in the Entry - List .
spDist can be the distance between the entry and a given Third , a split point was generated by a leaf node in the
split point , which is then used to maintain the Process KNN - Partition and an internal node in the Process - Partition .
Partition . The state spID is a split point identification num - 30 This instance does not result in a swap operation and the
ber used to determine for which split point spDist was following algorithmic steps can occur : (1) Removing the
calculated . Each swap split point can have a unique identi internal node entry from Entry - List ; (2) computing the
fication number . Every entry at this step has an spID internal node ' s children nodes distance to the query point ;
initialized to some invalid value as spDist is not calculated (3) starting from and right after the internal node ' s original
initially . 35 position in the Entry - List , inserting all internal node ' s chil

The KNN - Partition can comprise the current kNN , in dren nodes into the Entry - List one by one , maintaining the
which all elements can be strictly leaf nodes in the index entry order in Entry - List by re - computing and comparing
(i . e . , interest points) and are maintained in the order of each internal node ' s children ' s distance (to the new query
distance . That is , the k - th element in the left partition is the point) with the existing entry nodes ' distance (to the new
k + 1 - th nearest neighbor , assuming the oth element is the 40 query point) in the Entry - List one by one .
INN . For each internal node ' s child node c , inserting c right

The Process - Partition comprises both leaf nodes and before the entry node (if any) , whose distance (to the
internal nodes , which can be maintained in the process - reference point) is greater than or equal to c ' s distance (to
order . That is , any entry i that is before any entry i in the new query point) and right after the entry node , whose
Process - Partition is processed first . 45 distance (to the query point) is less than c ’ s distance (to the
When the KNN - Partition is in distance - order and the new reference point) ; if c ' s distance (to the new reference

Process - Partition is in process - order , the Entry - List can be point) is greater than all the exiting entry nodes ' distance (to
considered sorted . The Entry - List can be continually kept in the new query point) then insert c at the tail of the Entry - List .
a sorted order throughout the execution of the algorithm . With the exception of the third case , in both the first and

The root node can be inserted into a priority queue to 50 second case , split points from S - Heap that involve any of the
initialize the best - first search . As the search algorithm is two swapped entries can be removed and discarded . Subse
executed , any leaf nodes that are at the top of the priority quently , generate the swap split points for each newly
queue can be removed and inserted in order into the KNN - adjacent pair of points in the Entry - List and insert them into
Partition . The search algorithm can conclude when k leaf the S - Heap . These actions will be continually performed
nodes have been inserted into the KNN - Partition . The 55 when q reaches a split point until the S - Heap is empty or the
remaining elements in the priority queue are popped and next split point in the S - Heap is farther than the endpoint of
inserted (in order) into the Process - Partition . At this point , the specified trajectory with respect to q . When this termi
the Entry - List can be considered sorted . nation condition is reached , the PCKNN ends .

A third step can be to generate swap split points and Given two entries E ; and E ; + 1 that were retrieved before a
maintain results . Split points can be generated by connecting 60 swap operation and after the query point encounters the next
all adjacent entries from the sorted Entry - List and stored into split point in S - Heap , the set of newly adjacent pairs is
a heap (e . g . a min - heap) of split points , hereinafter referred defined as :
to as S - Heap . It is unnecessary to have a mapping between
each split point and the pair of entries that correspond to the
split point . This is because if a split point references the first 65 { { Ei - 1 , Li + 1) , (Li + 1 , Li) , if 1 < i < n - 3
of the pair , the second can be easily retrieved by accessing (Ei , Ei + 2) }
the first ’ s next node in the Entry - List .

US 10 , 331 , 753 B1

- continued compute the k nearest interest points to the reference point
{ { E : - 1 , Ei + 1) , (Ei + 1 , E ;) } otherwise if 1sisn - 2 and maintain using the algorithm a distance - priority queue

comprised of nodes referencing interest points and a hier
{ { Ei + 1 , E ;) , (E ; , Ei + 2) } Otherwise if (sisn - 3 archy of minimal bounding rectangles partitioning the space
{ { Ei + 1 , E ; } } otherwise if (sisn - 2 of interest points with respect to the query point . A next step

can be to build a list (hereinafter referred to as Candidate
Output - List) to store all the nodes (including leaf nodes and

where n is the number of elements in the IP - List . internal nodes) , where all nodes in the list are ordered by
A partial example of an instance where a split point was their distance to the reference point . The Candidate - Output

generated by a leaf node in the kNN - Partition and an internal 10 List comprises two partitions , the first partition contains
node in the Process - Partition for a PC3NN query can be seen initially the k nearest points (leaf nodes) , and the second
in FIGS . 7A and 7B . When the query point reaches split partition contains the nodes of the priority queue .
point SP20 , the two entries that generated it E22 and E16 are A next step can be to initialize a min - heap data structure
retrieved . Since E22 is a leaf node in the KNN - Partition and (hereinafter referred to as Candidate - Split - Point - Heap) to
E16 is an internal node in Process - Partition , the two entries 15 initially contain candidate split points , computed as follows :
do not swap . Instead , E16 is removed from the list and For each node and its subsequent node (hereinafter referred
expanded and a new entry E229 is generated for one of its to as adjacent node pair) in the Candidate - Output - List ,
children . E229 ' s spID is set to 20 . The minimum distance perform the following procedure (hereinafter referred to as
between E229 and SP20 is calculated and stored into E229 ' s Split - Point - Generation operation) , comprising : (1) given
spDist . Starting from the head of Process - Partition , E44 ' s 20 two nodes , compute the position of points in the trajectory
spID is compared to that of E229 . Since they are not the to which the distances from the given two nodes are equal ;
same , E44 ' s spID is set to 20 and its spDist is set to 12 . add the nearest point to the reference point to the Candidate
E229 ' s spDist is compared to that of E44 . Since E229 ' s 34 Split - Point - Heap ; and (2) maintain the contents of Candi
is greater than E44 ' s 12 , E229 must be inserted somewhere date - Split - Point - Heap ordered by their distance to the ref
after E44 . The next node E185 in Process - Partition is 25 erence point and linking each point in the Candidate - Split
retrieved , and a similar process is performed . E229 ' s spDist Point - Heap to the two nodes in Candidate - Output - List from
of 34 is less than E185 ' s spDist of 37 , so E229 is inserted which the Candidate - Split - Point - Heap point was computed .
immediately before E185 . spIDs and spDists do not need to A next step can be to iteratively , perform the following
be reset or recalculated for subsequent nodes in the list steps until a termination condition is reached : (1) move the
unless E16 has another child that needs to be inserted after 30 reference point to the candidate split point that is popped
E185 . Split points sp20 and sp132 are now invalid because from the Candidate - Split - Point - Heap (the reference point is
of the removal of E16 and the insertion of E229 , so they the hypothetical position of the moving object) ; and (2)
must be removed from S - Heap . Three split points sp144 - conduct a swapping operation , comprising : retrieving from
sp146 are generated because of the newly adjacent pairs of the Candidate - Output - List , the two adjacent nodes (nl , n2)
entries : { < E22 , E44 > , < E44 , E229 > , < E229 , E185 > } . This 35 linked from the Candidate - Split - Point - Heap point (i . e . (n1 ,
example only shows the insertion of one of E16 ' s children . n2) are the two nodes from which the Candidate - Split - Point
The insertion process for subsequent children can be the Heap point was computed .)
same . If both (nl , n2) from the previous step are in the second

In an embodiment of the subject invention , a method for partition of the Candidate - Output - List , then swap the two
performing a continuous k - nearest neighbors (kNN) query in 40 nodes (nl , n2) , into (n2 , n1) , whereby the Candidate - Output
location based services for moving objects , which outputs List will still be ordered by the distance to the new reference
ordered query results in a continuous and progressive man - point .
ner , comprises detecting a moving object and a trajectory of Alternatively , if nl and n2 from the previous step are both
the moving object ; receiving a kNN query (9) , which for a leaf nodes and nl is in the first partition of the Candidate
given reference point , a given integer k , would output k 45 Output - List , perform the following steps :
interest points that are nearest to the reference point . A First , swap the two nodes (nl , n2) into (n2 , nl) . If prior
continuous version of a query with respect to same trajec - to the swap n2 was in the second partition of the Candidate
tory , comprises the query being potentially evaluated at any Output - List , then nl is swapped out the first partition and is
time as referencing the location of the moving object . In swapped into the second partition ; perform a recursive
other words , for any time t , q (t) would result in a set of k 50 parent collapsing procedure for all of nl ' s ancestor nodes
interest points from a universe of interest points that are from nl ' s parent through the root node (including nl ' s
nearest to the location of the moving object at a time t ; a parent p ' , p ' s parent node p " , p " ' s parent p ' " , . . . until the root
querying device posing the continuous query . node) , wherein the parent collapsing procedure is defined as :

In an embodiment of the subject invention , a query for a given node p , if none of leaf nodes ' entry of node p ' s
computing device comprises a computer readable medium 55 sub - branch tree is in the first partition , then all nodes ' entity
storing and indexing interest points by using a spatial of p ' s sub - branch tree that are stored in the second partition
tree - like index and storing instructions that when executed are removed from Second - Partition ; add p into Candidate
(e . g . , by a processor) evaluates the continuous query and Output - List . Second , produce an output by delivering the
determines the split point of the trajectory (defined recur - content of the first partition of the current Candidate - Output
sively as : the first point of the trajectory and all subsequent 60 List (which may include additional information , such as the
points of the trajectory where the ordered list of the k nearest candidate split point as the final output split point , where the
interest points differs from that list for the previous split reference point was moved to) .
point on the trajectory) by performing the following steps : In an embodiment , the querying device is the same device

A first step can be to receive the continuous KNN query as the query - computing device .
from the querying device . A next step can be initially , to let 65 In an embodiment , the computing of the position of the
the reference point be the beginning of the trajectory . A next points in the trajectory to which the distance from the given
step can be to use an incremental nearest neighbor algorithm two nodes are equal , is implemented by solving the equal

US 10 , 331 , 753 B1
10

distance equation , the two sides of which are continuous device , volatile memory , or a hard disk drive (HDD) , such
distance functions that present the continuous distance as an external HDD or the HDD of a computing device ,
changing of a node to the reference point when the reference though embodiments are not limited thereto . A computing
point is moving along the trajectory . device can be , for example , a laptop computer , desktop

In an embodiment , the continuous distance functions that 5 computer , server , cell phone , or tablet , though embodiments
present the continuous distance changing of a node to the are not limited thereto .
reference point when the reference point is moving along the A greater understanding of the present invention and of its
trajectory , is simplified by using the distance from reference many advantages may be had from the following examples , point to the circumscribed circle of the minimum bounding given by way of illustration . The following examples are rectangle (MBR) of the node instead of the original MBR of 10
the node , to avoid the complexity of piecewise distance illustrative of some of the methods , applications , embodi

ments and variants of the present invention . They are , of function computing for the MBR .
In an embodiment , maintaining the linking between each course , not to be considered as limiting the invention .

Numerous changes and modifications can be made with candidate split point in Candidate - Split - Point - Heap and the respect to the invention . corresponding two nodes entries in Candidate - Output - List 15 "
that have generated the split point is achieved by using Example 1
reference pointers in the memory of a computer readable
medium . A user driving in a vehicle with a Global Positioning In an embodiment , the termination condition is one of the System (GPS) application installed on an internet - enabled following situations : the reference point becomes a split 20 20 smartphone may inquire about the closest hotels on an point or a specified point in the trajectory path , or the 18 - hour trip . As the user is driving , the user would like to Candidate - Split - Point - Heap is empty . know , the closest 10 hotels at any point along his planned Algorithms have been disclosed in the foregoing for the route . Using the Sam ' s current geographical location , Sam ' s effective resolution of continuous k nearest neighbor queries driving route , the service determines the 10 closest hotels
and that return results in a progressive fashion (i . e . predic - 25 while 9 hours far into the trip . The hotel names and locations tive , real time , or historical) . While exemplary embodiments are returned to the user ' s GPS app , ordered by their distance and examples are presented , they do not limit the scope of to the user ' s current location . the invention and its use cases but serve as illustrations of
use cases . That is to say that neither a GPS , database , Example 2
smartphone , smartphone application , nor any of the tech - 30
nologies in the exemplary embodiments need to be used in Auser decides to get off the next exit on a highway to rest .
the deployment of embodiments of the present invention . The application indicates that that hotel H is currently
Certain embodiments can be implemented locally , remotely , closest to him , but also that hotel E will be closest after on an internet - enabled or non - Internet - enabled personal exiting the highway . This information is shown within the
computer (PC) , server , smartphone , any device or equip - 35 app easily and quickly because of the present invention ' s
ment , or any combination of the above , all possibly inter capability of efficient progressive re - computation of queries
connected via a wired or wireless network . without reposting them . He informs the app that he would The methods and processes described herein can be like to change his destination to hotel E . He keeps driving
embodied as code and / or data . The software code and data along the same route and decides to get off the aforemen
described herein can be stored on one or more machine - 40 tioned exit to reach hotel E .
readable media (e . g . , computer - readable media) , which may
include any device or medium that can store code and / or Example 3
data for use by a computer system . When a computer system
and / or processor reads and executes the code and / or data After exiting a highway , the user sees a sign of a restau
stored on a computer - readable medium , the computer sys - 45 rant chain , but 5 miles in the opposite direction of travel . The
tem and / or processor performs the methods and processes user performs a U - turn and heads to the restaurant . At this
embodied as data structures and code stored within the point , the application indicates that there has been a change
computer - readable storage medium . as the users has departed from the original driving route .

It should be appreciated by those skilled in the art that Although the route has changed , the user still remains on the
computer - readable media include removable and non - re - 50 same path , so the service does not need to regenerate the
movable structures / devices that can be used for storage of swap points as they remain the same . Hotel E still remains
information , such as computer - readable instructions , data the closest hotel .
structures , program modules , and other data used by a
computing system / environment . A computer - readable Example 4
medium includes , but is not limited to , volatile memory such 55
as random access memories (RAM , DRAM , SRAM) ; and In a particular embodiment , a system or method can
non - volatile memory such as flash memory , various read - predict the 5 nearest gas stations during a drive along a path
only - memories (ROM , PROM , EPROM , EEPROM) , mag - between two locations .
netic and ferromagnetic / ferroelectric memories (MRAM ,
FeRAM) , and magnetic and optical storage devices (hard 60 Example 5
drives , magnetic tape , CDs , DVDs) ; network devices ; or
other media now known or later developed that is capable of In a particular embodiment , a system or method can report
storing computer - readable information / data . Computer - and update in real time the nearest pizzerias during a walk
readable media should not be construed or interpreted to between two locations .
include any propagating signals . A computer - readable 65 It should be understood that the examples and embodi
medium of the subject invention can be , for example , a ments described herein are for illustrative purposes only and
compact disc (CD) , digital video disc (DVD) , flash memory that various modifications or changes in light thereof will be

10

US 10 , 331 , 753 B1
12

suggested to persons skilled in the art and are to be included swap the order of the node nl and the subsequent
within the spirit and purview of this application . adjacent node n2 ;

All patents , patent applications , provisional applications , remove from the first min - heap any split points that are
and publications referred to or cited herein (including those linked to nodes that were swapped ; and
in the “ References ” section) are incorporated by reference in 5 generate new splits points .
their entirety , including all figures and tables , to the extent 3 . The system of claim 2 , the termination condition they are not inconsistent with the explicit teachings of this comprising one of the following : the reference point specification . becomes a split point or a specified point in the trajectory

path , or the first min - heap is empty . What is claimed is : 4 . The system of claim 1 , the computer readable medium 1 . A system for performing a continuous k - nearest neigh that when executed further causes the at least one processor bor (CKNN) query in location based services for moving
objects , the system comprising : to :

a computer readable medium comprising instructions that iteratively perform the following steps until a termination
when executed causes at least one processor to : 15 condition is reached :

receive a k - nearest neighbor query from a mobile device ; move the location of the reference point to a split point
continuously receive a location and trajectory of the that is contained in the first heap ;
mobile device , an initial location of the mobile device in the first list , retrieve the node nl and subsequent
being a reference point , the position of the reference adjacent node n2 linked to the split point that is
point matching the position the mobile device along the 20 contained in the first heap ,
trajectory ; the node nl and the subsequent adjacent node n2 both

access a database containing a plurality of interest points being leaf nodes and the node nl is in the first
surrounding the location and trajectory of the mobile partition ;
device ; swap the order of the node nl and the subsequent

store and index , in computer memory , the plurality of 25 adjacent node n2 ;
interest points in a spatial tree index ; remove from the first min - heap any split points that are

construct a first list to store all nodes of the spatial tree linked to nodes that were swapped ; and
index , each node being ordered by its distance to the generate new splits points .
current location of the reference point , the list com 5 . The system of claim 4 , the computer readable medium
prising a first partition containing the k - nearest interest 30 that when executed further causes the at least one processor
points and a second partition containing each node that to :
references the k - nearest interest points ; prior to the swap , the subsequent adjacent node n2 being

initialize a first min - heap to initially contain split points , contained in the second partition ;
computed as follows : remove the node nl from the first partition and place the

for each node nl and its subsequent adjacent node n2 in 35 node nl into the second partition ;
the first list , perform the following procedure , compris recursively collapse for all parent nodes of the node nl by
ing : the following procedure :
given the node nl and its subsequent adjacent node n2 , for a given node p , if no leaf nodes of node p ' s

detect a split point in the mobile device ' s trajectory , sub - branch tree are in the first partition , then all
a split point being a point whose position has equal 40 nodes of p ' s sub - branch tree that are stored in the
distances from the two nodes nl , n2 respectively ; second partition are removed from second partition ;

add the split point nearest to the current position of the add p to the first list ; and
reference point to the first heap ; and output the first partition .

continuously maintain the split points in the first heap as 6 . The system of claim 4 , the termination condition
ordered by their distance to the current location of the 45 comprising one of the following : the reference point
reference point and link each split point to the two becomes a split point or a specified point in the trajectory
nodes n1 , n2 in first list from which each split point was path , or the first min - heap is empty .
computed ; 7 . The system of claim 1 , the computer readable medium

continuously query the index to compute k - nearest inter - that when executed further causes the at least one processor
est points nearest to the mobile device ;

continuously maintain a queue comprising nodes refer - iteratively perform the following steps until a termination
encing the k - nearest interest points and a hierarchy of condition is reached :
minimal bounding rectangles ; and move the location of the reference point to a split point

continuously return to the moving device , the k - nearest that is contained in the first heap ;
interest points . 55 in the first list , retrieve the node nl and subsequent

2 . The system of claim 1 , the computer readable medium adjacent node n2 linked to the split point that is
that when executed further causes the at least one processor contained in the first heap ;
to : the node nl being a leaf node in the first partition and

iteratively perform the following steps until a termination the subsequent adjacent node n2 being an internal
condition is reached : 60 node in the second partition ;
move the location of the reference point to a split point remove the subsequent adjacent node n2 from the first

that is contained in the first heap ; list ;
in the first list , retrieve the node nl and subsequent compute each distance of each child node of the

adjacent node n2 linked to the split point that is subsequent adjacent node n2 from the current loca
contained in the first heap , tion of the reference point ;

the node nl and the subsequent adjacent node n2 being insert all child nodes of the subsequent adjacent node
both in the second partition ; n2 into the first list ,

50 to :

65

US 10 , 331 , 753 B1
13 14

insertion beginning after the original position of the
subsequent adjacent node n2 ; and

continuously maintaining the order in the first list by
re - computing and comparing each child nodes ' dis
tance to the current location of the reference point 5
and a current entry node ' s distance to the current
location of the reference point ,

each child node being inserted into the first list before an
entry node whose distance to the original location of
the reference point is greater than or equal to respective 10
child node ' s distance to the current location of the
reference point ,

each child node being inserted into the first list after the
entry node whose distance to the original location of
the reference point is less than the respective child 15
node ' s distance to the current location of the reference
point , and

any child node whose distance to the current location of
the reference point is greater than each of the existing
entry node ' s distances to the current location of the 20
reference point being inserted into the end of the first
list .

8 . The system of claim 1 , the mobile device comprising
the computer readable medium .

9 . The system of claim 1 , the computer readable medium 25
that when executed further causes the at least one processor
to :

compute the position of the node nl and subsequent
adjacent node n2 by solving an equal distance equation ,

the two sides of the equation being continuous distance 30
functions that present the current distance between each
node and the current location of the reference point .

10 . The system of claim 1 , the computer readable medium
that when executed further causes the at least one processor
to : 35

compute the position of the node nl and subsequent
adjacent node n2 by solving an equal distance equation ,

the two sides of the equation being continuous distance
functions using the distance from reference point to the
circumscribed circle of a minimum bounding rectangle 40
of each node instead of the original minimum bounding
rectangle of each node , to avoid the complexity of
piecewise distance function computing for the mini
mum bounding rectangle .

11 . The system of claim 1 , the computer readable medium 45
that when executed further causes the at least one processor
to :

link each point in the first heap to the two nodes in first
list from which each split point was computed by using
reference pointers in the memory of a computer read - 50
able medium .

12 . A method for performing a continuous k - nearest
neighbor (CKNN) query in location based services for mov
ing objects , the method comprising :

provide a computer readable medium comprising instruc - 55
tions that when executed causes at least one processor
to :
receive a k - nearest neighbor query from a mobile

device ;
continuously receive a location and trajectory of the 60
mobile device , an initial location of the mobile
device being a reference point ,

the position of the reference point matching the posi
tion the mobile device along the trajectory ;

access a database containing a plurality of interest 65
points surrounding the location and trajectory of the
mobile device ;

store and index , in computer memory , the plurality of
interest points in a spatial tree index ;

continuously query the index to compute k - nearest
interest points nearest to the reference point ;

continuously maintain a queue comprising nodes ref
erencing the k - nearest interest points and a hierarchy
of minimal bounding rectangles ;

construct a first list to store all nodes of the spatial tree
index , each node being ordered by its distance to the
current location of the reference point , the list com
prising a first partition containing the k - nearest inter
est points and a second partition containing each
node of the queue ;

initialize a first min - heap to initially contain split
points , computed as follows :
for each node nl and its subsequent adjacent node n2

in the first list , perform the following procedure ,
comprising :
given the node nl and its subsequent adjacent
node n2 , detect a split point in the mobile
device ' s trajectory , a split point being a point
whose position has equal distances from the
two nodes respectively ;

add the split point nearest to the current position of
the reference point to the first heap ; and

continuously maintain the split points in the first
heap as ordered by their distance to the current
location of the reference point and link each
split point to each pair of two nodes in first list
from which each split point was computed ; and

continuously return to the mobile device , the k - nearest
interest points .

13 . The method of claim 12 , further comprising :
iteratively perform the following steps until a termination

condition is reached :
move the location of the reference point to a split point

that is contained in the first heap ;
in the first list , retrieve the node nl and subsequent

adjacent node n2 linked to the split point that is
contained in the first heap ,

the node nl and the subsequent adjacent node n2 being
both in the second partition ;

swap the order of the node nl and the subsequent
adjacent node n2 ;

remove from the first min - heap any split points that are
linked to nodes that were swapped ; and

generate new splits points .
14 . The method of claim 13 , further comprising :
prior to the swap , the subsequent adjacent node n2 being

contained in the second partition ;
remove the node nl from the first partition and place the
node nl into the second partition ;

recursively collapse for all parent nodes of the node by the
following procedure :
for a given node p , if no leaf nodes of node p ' s

sub - branch tree are in the first partition , then all
nodes of p ' s sub - branch tree that are stored in the
second partition are removed from second partition ;

add p to the first list ; and
output the first partition .

15 . The method of claim 12 , further comprising :
iteratively , perform the following steps until a termination

condition is reached :
move the location of the reference point to a split point

that is contained in the first heap ;

16

15

US 10 , 331 , 753 B1
15

in the first list , retrieve the node nl and subsequent a computer readable medium comprising instructions that
adjacent node n2 linked to the split point that is when executed causes at least one processor to :
contained in the first heap , receive a k - nearest neighbor query from a mobile

the node nl and the subsequent adjacent node both device , the mobile device comprising the computer
being leaf nodes and the node is in the first partition ; 5 readable medium ;

swap the order of the node and the subsequent adjacent continuously receive a location and trajectory of the
node ; mobile device , an initial location of the mobile

remove from the first min - heap any split points that are device being a reference point , the position of the

linked to the nodes that were swapped ; and reference point matching the position the mobile
and generate new splits points . 10 device along the trajectory ;
16 . The method of claim 12 , further comprising : access a database containing a plurality of interest
iteratively perform the following steps until a termination points surrounding the location and trajectory of the

condition is reached : mobile device ;
move the location of the reference point to a split point store and index , in computer memory , the plurality of

that is contained in the first heap ; interest points in a spatial tree index ;
in the first list , retrieve the node nl and subsequent continuously query the index to compute k - nearest

adjacent node n2 linked to the split point that is interest points nearest to the reference point ;
contained in the first heap ; continuously maintain a queue comprising nodes ref

the node nl being a leaf node in the first partition and erencing the k - nearest interest points and a hierarchy
the subsequent adjacent node n2 being an internal 20 of minimal bounding rectangles ;
node in the second partition ; construct a first list to store all nodes of the spatial tree

remove the subsequent adjacent node n2 from the first index , each node being ordered by its distance to the
list ; current location of the reference point , the list com

compute each distance of each child node of the prising a first partition containing the k - nearest inter
subsequent adjacent node n2 from the current loca - 25 est points and a second partition containing each
tion of the reference point ; node of the queue ;

insert all child nodes of the subsequent adjacent node initialize a first min - heap to initially contain split
n2 into the first list , points , computed as follows :

insertion beginning after the original position of the for each node nl and its subsequent adjacent node n2
subsequent adjacent node ; and in the first list , perform the following procedure ,

continuously maintaining the order in the first list by comprising :
re - computing and comparing each child nodes ' dis given the node nl and its subsequent adjacent
tance to the current location of the reference point node n2 , detect a split point in the mobile
and a current entry node ' s distance to the current device ' s trajectory , a split point being a point
location of the reference point , 35 whose position has equal distances from the

each child node being inserted into the first list before an two nodes nl , n2 respectively ;
entry node whose distance to the original location of add the split point nearest to the current position of
the reference point is greater than or equal to respective the reference point to the first heap ; and
child node ' s distance to the current location of the continuously maintain the split points in the first
reference point , 40 heap as ordered by their distance to the current

each child node being inserted into the first list after the location of the reference point and link each
entry node whose distance to the original location of split point to each pair of nodes in first list from

which each split point was computed ; the reference point is less than the respective child
node ' s distance to the current location of the reference iteratively perform the following steps until a termina
point , and tion condition is reached :

any child node whose distance to the current location of move the location of the reference point to a split
the reference point is greater than each of the existing point that is contained in the first heap ;
entry node ' s distances to the current location of the in the first list , retrieve the node nl and subsequent
reference point being inserted into the end of the first adjacent node n2 linked to the split point that is

50 contained in the first heap , the node nl and the
17 . The method of claim 12 , further comprising : subsequent adjacent node n2 being both in the
compute the position of the node nl and subsequent second partition ;

adjacent node n2 by solving an equal distance equation , swap the order of the node nl and the subsequent
the two sides of the equation being continuous distance adjacent node n2 ;

functions that present the current distance between each 55 remove from the first min - heap any split points that
node nl , n2 and the current location of the reference are linked to the nodes that were swapped ; and
point . generate new splits points ; and

18 . A system for performing a continuous k - nearest neigh continuously return to the mobile device , the k - nearest
bor (CENN) query in location based services for moving interest points .
objects , the system comprising :

30

45

list .

* * * * *

