
c12) United States Patent
Zhang et al.

(54) PROGRESSIVE CONTINUOUS RANGE
QUERY FOR MOVING OBJECTS WITH A
TREE-LIKE INDEX

(71) Applicants:Mingjin Zhang, Miami, FL (US);
Naphtali Rishe, Miami Beach, FL
(US); Weitong Liu, Miami, FL (US);
Tao Li, Coral Gables, FL (US)

(72) Inventors: Mingjin Zhang, Miami, FL (US);
Naphtali Rishe, Miami Beach, FL
(US); Weitong Liu, Miami, FL (US);
Tao Li, Coral Gables, FL (US)

(73) Assignee: The Florida International University
Board of Trustees, Miami, FL (US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 15/672,884

(22) Filed: Aug. 9, 2017

(51) Int. Cl.
G06F 7100
G06F 17/30

(52) U.S. Cl.

(2006.01)
(2006.01)

CPC .. G06F 17/30336 (2013.01); G06F 17/30327
(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,008,929 A * 4/1991 Olsen . H04M 15/00
370/524

5,644,763 A * 7/1997 Roy G06F 17/30327

I IIIII IIIIIIII Ill lllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111
US010095724Bl

(10) Patent No.: US 10,095,724 Bl
Oct. 9, 2018 (45) Date of Patent:

5,729,689 A * 3/1998 Allard H04L 29/12132
707/999.01

6,108,704 A * 8/2000 Hutton H04L 1/0083
709/227

6,131,121 A * 10/2000 Mattaway H04L 1/0083
709/227

6,148,295 A * 11/2000 Megiddo G06F 17 /30256
6,199,112 Bl* 3/2001 Wilson H04L 29/12028

340/475
6,411,957 Bl* 6/2002 Dijkstra G06F 17 /30961

707/752
6,711,562 Bl* 3/2004 Ross G06F 17 /303 27

707/741

(Continued)

OTHER PUBLICATIONS

Guttman, "R-trees: a dynamic index structure for spatial searching,"
Proceedings of the 1984 ACM SIGMOD International Conference
on Management of data, Jun. 1984, pp. 47-57, vol. 14, No. 2.

(Continued)

Primary Examiner - Daniel Kuddus
(74) Attorney, Agent, or Firm - Saliwanchik, Lloyd &
Eisenschenk

(57) ABSTRACT

Methods for progressive continuous range query (PCRQ)
are provided. A method can include using branch-and-bound
to index interest points with a tree-index and generating a
nearest enter split-point for a root node in the tree-index and
adding to min-heap. Next, whether min-heap has more
elements and whether a next split-point in min-heap is closer
than a destination can be determined. Whether a query point
has reached a split-point can be investigated followed by
retrieving an entry that has generated the split-point. The
split-point can be then be removed from min-heap.

13 Claims, 5 Drawing Sheets

US 10,095,724 Bl
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

6,834,278 B2 * 12/2004 Yu G06F 17 /30327
707/737

8,090,745 B2 * 1/2012 Hayashi G06F 17 /30241
707/797

8,296,306 Bl* 10/2012 Whang G06F 7/22
707/752

2002/0123987 Al* 9/2002 Cox G06F 17 /30327
2007 /0073897 Al* 3/2007 Sharifzadeh GOlC 21/343

709/238
2010/0057792 Al* 3/2010 Ylonen G06F 12/0253

707 IE 17 .009
2010/0106713 Al* 4/2010 Esuli G06F 17 /30961

707/716
2011/0060748 Al* 3/2011 Tian G06F 7/24

707/752
2011/0061748 Al* 3/2011 Mous Fl6Kl7/30

137 /386
2012/0254251 Al* 10/2012 Barbosa G06F 17/3061

707/797

OTHER PUBLICATIONS

Sellis et al., "The R+-Tree: a dynamic index for multi-dimensional

objects," 1987 International Conference of Very Large Data Bases,
Aug. 1987, pp. 1-24.
Beckmann et al., "The R*-tree: an efficient and robust access
method for points and rectangles," Proceedings of the 1990 ACM

SIGMOD International Conference on Management of Data, Jun.
1990, pp. 322-331, vol. 19, No. 2.
Roussopoulos et al., "Nearest neighbor queries," Proceedings of the
1995 ACM SIGMOD International Conference on Management of
Data, May 1995, pp. 71-79, vol. 24, No. 2 .
Tao et al., "Time-parameterized queries in spatia-temporal data­
bases," Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Jun. 2002, pp. 334-345.
Hjaltason et al., "Incremental distance join algorithms for spatial
databases," Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data, Jun. 1998, pp. 237-248, vol.
27, No. 2.
Bespamyatnikh et al., "Queries with segments in voronoi dia­
grams," Computational Geometry, May 2000, pp. 23-33, vol. 16 .
Tao et al., "Continuous nearest neighbor search," Proceedings of the
28th International Conference on Very Large Data Bases, Aug .
2002, pp. 287-298.
Mouratidis et al., "Conceptual partitioning: an efficient method for
continuous nearest neighbor monitoring," Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data,
Jun. 2005, pp. 634-645 .
Kulik et al., "Incremental rank updates for moving query points,"
4th International Conference on Geographic Information Science,
Sep. 2006, pp. 251-268.
Xuan et al., "Continuous range search query processing in mobile
navigation," 2008 14th IEEE International Conference on Parallel
and Distributed Systems, Dec. 2008, pp. 361-368.
Lee et al., "An efficient algorithm for predictive continuous nearest
neighbor query processing and result maintenance," Proceedings of
the 6th International Conference on Mobile Data Management, May
2005, pp. 178-182.

* cited by examiner

U.S. Patent Oct. 9, 2018 Sheet 1 of 5

,/ '\

L·;i~'.~;;;~J
lt'::t~:~¥~0::~~ i

--~- -I ,,,. ,::-::._:_'.:_.':~~~~>o ,,
:··-----------·-------------:
: u:,:r,,;,·r,s:,,.,1-~,;,)!: ,1,·,,se ~-H•» :
i ~·10 ,.;,) •){•'. ~~~<:·:"7(•; :.:,:,!- i

US 10,095,724 Bl

~: __ --[,:.:r~> ~F:
FIGURE 1

U.S. Patent Oct. 9, 2018 Sheet 2 of 5

Query

Domain regions

Srnr; point

Domain regions
,/\

FIGURE2

FIGURE 3

US 10,095,724 Bl

Quet)'.. segment

Querv segment

U.S. Patent Oct. 9, 2018

Query radius
.;.""····--....

Sheet 3 of 5 US 10,095,724 Bl

Sum of al1 domain regions along
query segment

:Sta...~ Point ~ . .:. .. ··· ········· ··-··· ··-······ ··- ··-··· ·· ··· ··-··· ··-······ ··-··· ······ ··-··· ··-······ ··-··· ··
Endpoint

FIGURE4
Que:iy radius

·· .. ., Node
' /

',-,~·····"·········"~'~"···· ··················:;·/\
; ·····-.. : .J }--· ' t y • S S y , •" • • • j .SS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSW 7• > •' .,. ,, -' > •• M •' ••:

. j .l

i
l
l
l
l
l
l
l
)
)

I
i
l
l

•.•.•·.••.·.•.• .. -t ... • ••.·•.••.•.••.·•.••.•·.••.

' ·,
' ' ' ' ' ...

,··
.. ,/

//_./

Domain region

FIGlJRE 5

U.S. Patent Oct. 9, 2018 Sheet 4 of 5 US 10,095,724 Bl

Domain regions
,,/'_ ... ,-.....,_....._ /-lnwrest poinl

' , ' ... ,,<·:.:: ., ,. ,,_'). , , ,:,>,_..,./' ., ,.

Nodes

·-...._

·--.......

,
'

' ' '
I

I
I

I
I

',.,j
I , , , -

I. •
/ exit

split points

FIGURE 6

.,Broken
.Jlf.::

.............. .i/1 . • •. Query region

................. ,,.,;.:~~:;:.::t'.'.i:.'.~.-::.-.:::::.-.~~ .. :(.......................... .,,_. -

.

/.2,.::.-.-·

Interest points Qner)' segmt'nt

FIGURE 7A

U.S. Patent Oct. 9, 2018 Sheet 5 of 5 US 10,095,724 Bl

Nodes

Interest points
·,

Query segment

FIGURE 7B

US 10,095,724 Bl
1

PROGRESSIVE CONTINUOUS RANGE
QUERY FOR MOVING OBJECTS WITH A

TREE-LIKE INDEX

2
its exit split point, A exits the query range of q. When a query
point q just passes the enter split point of some point p, p is
exactly on the border of the query range. When q passes p's
enter split point, p enters the query range. Likewise, when q

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under
Grant #1213026 awarded by National Science Foundation.
The government has certain rights in the invention.

5 encounters p's exit split point, p is exactly on the border of
the circle with radius r. A query point encounters or reaches
a split point when the distance between the query point and
the split point is less than or equal to a specified threshold.

10

BACKGROUND

Contemporary technology allows moving object data to

When q passes p's exit split point, p exits the query range.
Continuous range query (CRQ) is a fundamental technol­

ogy spatial database and location-based service (LBS)
realm. Embodiments of the present invention make CRQ
more efficient. The first result of CRQ query can be reported
to a user almost instantly and the rest can be gradually

15 produced in the order of distance or time. When the result set
is very large, this progressive approach can be especially
beneficial since computing and outputting a large result at
once can inefficient in terms of time and computing
resources.

be collected easily and extensively. Applications that deal
with moving object data (e.g., traffic monitoring, flight
control, location-based advertisement and recommendation)
typically require Location-Based-Service (LBS), involving
querying for the historical, current, or predictive future
locations of moving objects. Continuous Range Query
(CRQ) is a fundamental technique in the spatial database 20

realm and is very useful in location-based applications.
However, existing CRQ methods have drawbacks in that
they require extensive computing resources and are slow to
return query results.

In methods of the related art, users may be kept waiting
for the results for an extended period of time. Furthermore,
a user's location could change significantly while waiting
for the result pertaining to the previous location, thus
possibly making the results irrelevant by the time they are

BRIEF SUMMARY

Embodiments of the present invention include methods
for progressive continuous range query (CRQ). In a pro­
gressive continuous range query (PCRQ) according to
embodiments of the present invention, the first result of a
CRQ query can be reported to the user almost instantly and
the rest can be gradually produced in the order of distance

25 received. Embodiments of the present invention allow for
continuous output and maintenance of the predictive query
results while the query point is moving. Moreover, the
disclosed solution is more scalable than prior art. Generally,
a query trajectory (or path) comprises many small line

or time. In embodiments of the present invention, a PCRQ
can be resolved by continuously searching for objects within
range while a query point is moving along a path (referred
to as the query point's trajectory). Said trajectory has a start
point and an end point. The start point of said path may be
the initial position of the query point, i.e., the position of the
query point at the beginning of the resolution of said PCRQ.
When the query point is moving along the trajectory, its
query range with a radius equal to any given range r sweeps
across an area referred to as a query region.

30 segments. For each segment, the prior art methods need to
post a new query, which is inefficient. Unlike said methods,
embodiments of the present invention only needs to post one
query, a one-time tree traversal for all segments in the path.
Embodiments of the present invention can also utilize a

35 tree-like spatial index.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a flowchart of a Progressive Continuous
40 Range Query (CRQ) according to an embodiment of the

In embodiments of the present invention, the set of points
of interest against which queries are made can be organized 45

in a tree-like index. The domain region of a node in a
tree-like index is a region that is generated by expanding the
boundary of the node, e.g., a minimum bounding rectangle
(MBR) in an R-Tree, by ranger. When the moving query
point is outside of the domain region of a node, it can be 50

safely assumed that the moving point's searching circle does
not intersect with the inner cell of the node. This means there

present invention.
FIG. 2 shows an example of an R-tree index based on

Euclidean Distance.
FIG. 3 shows an example of a Continuous Ordered Range

Query.
FIG. 4 shows a query region of a Progressive CRQ

according to an embodiment of the present invention.
FIG. 5 shows an example of a non-leaf domain region

(rounded rectangle).
FIG. 6 shows an enter-split-point and exit-split-point in a

Progressive CRQ query.
FIG. 7A shows expansion ofa Minimum Bounding Rect­

angle according to an embodiment of the present invention.
FIG. 78 shows a collapsing process of merging of points

55 back into a Minimum Bounding Rectangle.

is no need to search said cell. Only when the moving query
point is within the domain region does the node's cell's data
need to be searched to find the data that is located within the
moving point's searching circle-this is used to speed up the
searching process. Split points are points on the query
point's trajectory. The PCRQ result may change only when
the query point passes these points. Split points can be
divided into two categories-enter split point and exit split 60

point.
Both an enter split point and an exit split point are

generated by the intersections of the trajectory of the query
point and the domain region of a node. For an interest point
A, when the moving query point q passes its enter split point, 65

A enters the query range of q, which can be equivalently
stated as: q enters the range of A. Conversely, when q passes

DETAILED DESCRIPTION

To adapt to the requirements of different kinds of queries
in practical applications, there are various query types. For
example, time-dependent locations and time-dependent
extent correlations may be of interest. In these situations,
moving points and moving regions are the abstractions.
Cars, airplanes, ships, animals and mobile phone users are
considered moving points, while forest fires and the spread
of epidemic diseases are considered moving regions. One
goal of the present invention is to provide a method for a

US 10,095,724 Bl
3

continuous range query (CRQ) for a moving point. CRQ can
retrieve all objects of interest within a specified range. The
result should change when objects of interest move in or out
of range. CRQ is important due to its broad applications. For
instance, "Ifl continue moving in this direction, what will be
the gas stations within 0.5 miles for the next 10 minutes?"
or "What will be the restaurants within 1 mile at any point
during my route from city A to city B?''

Since CRQ is a fundamental query and is useful in
location-based applications, several approaches have been
proposed in the past. For example, the R-tree index method
based on Euclidean Distance (RED) uses an efficient algo­
rithm to support continuous range queries. In FIG. 2, an
R-tree index is used to find all objects within the gray area.
Assuming that the query range is radius e, for every object
that is found, a circle centered with radius e is drawn. The
result can be output after sorting the split-points, or the
intersections between the circles and the query line. How­
ever, this approach requires loading and sorting all of the
candidates at once, which requires extensive memory allo­
cation and CPU overhead. Furthermore, said method is
inefficient in practical applications because a moving query
point's trajectory (or path) generally comprises many small
segments. For each segment, RED-based methods need to
post a new query, which is expensive in terms of computing
resources. Therefore, the cost of these methods is prohibitive
for large numbers of queries in spatial databases due to CPU
and memory overhead.

A progressive continuous range query (PCRQ) of the
present invention can continuously search for objects within
a range r while a point is moving along a specified path. A
PCRQ workflow of the present invention with a tree-like
index is shown in FIG. 1. FIG. 3 shows a time-slice of a
point with a query range moving along an interval. When a
query point moves along a given path, its search circle with
radius r sweeps across an area defines as the query region.
In FIG. 4, the area within the outer dashed line is the query
region. In this example, the query region's area is equivalent
to the sum of the areas of one rectangle and two semicircles
(one full circle). Each element in the result set from a PCRQ
query can be expressed as the following two-component
tuple: result[i]=<(A, B), (fl, f2, ... , fm)>(i=O, 1, 2, ...).

Points A and B are located in the query segment. This
formula states that for an arbitrary point Q between A and B
in the query segment, there are m points that fall into the
ranger (namely, fl, f2, ... , fm). Embodiments of the present
invention include approaches to answer PCRQ queries pro­
gressively. The concept of a domain region can be applied to
embodiments of the present invention. The domain region of
a node is a region that is generated by expanding the
boundary of the node, e.g., a minimum bounding rectangle
(MBR) in an R-Tree, by ranger. This can be viewed as the
Murkowski sum of the node boundary and a circle with
radius r. There are two situations for domain regions: (1) for
leaf nodes (a node that presents one data point), the domain
region is represented as a circle centered at the data point
with radius r; (2) for non-leaf nodes, the domain region is a
rounded rectangle with radius r (see FIG. 5).

When the moving point is outside of the domain region,
it can be safely assumed that the moving point's search
circle does not intersect with the inner cell, meaning there is
no need to search the cell. Only when the moving point is in
the domain region does the cell's data need to be searched
to find data that is located within the moving point's
searching circle, which can be used to speed up the search­
ing process. Split-points are points on the query point's
trajectory. The PCRQ result may change only when the

4
query point passes these points. Split-points are divided into
two categories-enter split-points and exit split-points.

Both an enter split-point and an exit split-point are
generated by the intersections of the trajectory of the query

5 point and a domain region of a node, as shown in FIG. 6. For
a data point A, when the query point q passes the enter
split-point, A enters the query range of q. This can be
equivalently stated as q enters the range of A. Conversely,
when q passes its exit split-point, A exits the query range of

10 q. When a query point q just passes the enter split-point of
arbitrary point p, p is exactly on the border of circle r. When
q passes p's enter split-point, p enters range r. Likewise,
when q encounters p's exit split-point, p is exactly on the
border of the circle with radius r. When q passes p's exit

15 split-point, p exits range r.
One of the advantages of PCRQ of the present invention

is that it outputs the result of the CRQ progressively. An
important approach to getting the result progressively is the
use and generation of split-points. The split-points can be

20 stored in a min-heap of split-points S-Heap. A min-heap is
a binary tree structure in which the data contained in each
node is less than (or equal to) the data in that node's
children. The top ofS-Heap has the minimum distance to the
query point amongst all split-points in the heap. A tree-like

25 index may be used to reduce the number of elements in
S-Heap for PCRQ queries. An R-Tree will be used for the
tree-like index to illustrate the concepts of embodiments of
the present invention.

Methods of embodiments of the present invention can
30 "merge" the points that have already left the region back into

their respective nodes-a process referred to as collapsing.
The collapsing process minimizes memory usage and allows
embodiments of the present invention to work not only with
trajectories that comprise line segments, but also other

35 patterns including curves, loops, etc. In FIG. 7A, the mini­
mum bounding rectangle (MBR) intersecting the query
region is broken and two of the points inside are included in
the result set. FIG. 78 shows that as the query region moves
forward, all the points belonging to the MBR are no longer

40 covered by the query region. After that time, the points will
not appear in the result set and can be safely "collapsed"
back into the original MBR.

Unlike other methods utilizing an R-tree index based on
Euclidean Distance (RED), embodiments of the present

45 invention only need to post one query-a one-time tree
traversal for all segments in the path, thereby lowering CPU
overhead and memory usage. Traditional RED-based meth­
ods are not progressive, which is a characteristic that is in
stark contrast to that of the progressive models of embodi-

50 ments of the present invention. That is, according the present
invention, the first result can be reported to the user instantly
and the remaining results can gradually be listed in the order
of distance or time.

When the result set is very large, the techniques of the
55 embodiments of present invention are particularly beneficial

because computing and outputting a large result at one time
can be time consuming and require a lot of computing
resources. With the methods of prior art, users may be kept
waiting for the results for an extended period of time.

60 Furthermore, a user's location could change significantly
while waiting for the result pertaining to the previous
location, thus possibly making the results irrelevant by the
time they are received. Additionally, the techniques of the
present invention allow for continuous output of the predic-

65 tive query results while the query point is moving.
Techniques embodiments of the present invention can find

the sequence of all objects, including points and Minimum

US 10,095,724 Bl
5

Bounding Rectangles (MBR), and continuously maintain
that sequence. Compared with existing algorithms, the dis­
closed method has several advantages: (1) Progressive­
ness-results can be output progressively, which is particu-
lar advantageous when the query is expensive (in terms of 5

time and/or computing resources) to execute or the result set
is large; (2) Efficiency-the techniques of the embodiments
of present invention require a minimal number of nodes be
accessed to produce the correct result; (3) Scalability­
techniques of the embodiments of present invention can 10

minimize the use of CPU, TO, and memory resources. This
is a critical feature for server applications to handle a large
number of queries (e.g., large-scale online Location Based
Services and related map services and applications on
devices with limited CPU and memory, e.g., GPS navigation 15

devices with embedded systems). Furthermore, in the prior
art, a moving query point's path generally comprises many
small segments and there is a need post a new query for
every segment, which is inefficient, whereas the embodi­
ments of present invention only need to post one query for 20

the entirety of the segments in a path; and (4) Any Trajec­
tory-techniques of the embodiments of present invention
are not restricted to query trajectories that consist of only
line segments, and are capable of handling other query
trajectories that consist of curves, loops, and any other 25

shape.
As illustrated in the Figures, embodiments of the present

invention provide novel range query resolution methods that
output query results in a continuous and progressive manner.
Given a query point q moving along some path g, a set of 30

interest points i, and a range r, the subset of said set of
stationary interest points is continually returned as result R

6
a tuple that comprises the split-point that q reached along
with the interest points that fall outside q's range from the
result set.

The following are steps that can be applied with PCRQ
queries of embodiments of the present invention with the
utilization of R-trees. First, branch-and-bound algorithms
can be used to index interest points. Initially, the branch­
and-bound (BB) range query algorithm can be used to
discover the points falling into the query point q's query
range or searching circle. A query point's searching circle is
a circle centered at said query point with a radius that is
equal to r. The nearest enter or exit split points of all entries,
including internal nodes and leaf nodes, visited during the
regular range query processing are added to S-heap accord­
ing to their distance to the start point. All the internal nodes
and leaf node points that generate no split point are added to
a list referred to as a waiting list. The next nearest enter
split-point for root node can then be generated. The nearest
enter split-point (nearest exit split-point) for a node n is the
enter split-point (exit split-point) that is closest to query
point q. The next nearest enter split-point (next nearest exit
split-point) for a node n is the enter split-point (exit split­
point) that is closest to q out of the set of enter split-points
(exit split-points) that have not been previously generated
for n. Since a query trajectory can consist ofloops or curves,
the root node (or any node) may enter (exit) ranger multiple
times throughout the query. As such, only the next nearest
enter split-point (exit split-point) needs to be calculated.
Subsequent enter split-points (exit split-points) will be cal­
culated in time as it becomes appropriate (e.g., after a node's
exit split-point or enter split-point is reached).

The next nearest enter split-point is generated for the root
node and inserted to an empty min-heap of split-points
S-Heap. Initially, the nearest enter split-point for the root

so that for each pint in the subset, the point's distance to the
query point q is less than r at the time of production of said
point within the result.

Path g is a set of arbitrary points, wherein each point is a
tuple of coordinates. Path g is the trajectory of a query point
q represented as a geometric shape, which may be, but is not
limited to, a line segment, a polyline, or a curve. Examples

35 node is the same as its next nearest enter split-point because
no enter split-points were previously generated for the root
node. S-Heap can be continuously maintained and PCRQ
the result set can be reported. S-Heap can consist of exactly

of said trajectories are a walking route (or path), a driving 40

route, or a flying route.
A query point or moving object q travels along a path g.

The point is a tuple of coordinates at any given time and can
represent an object in physical or virtual multidimensional
space. For example, the query point can represent a person, 45

an animal, a car, a plane, a smartphone, or a drone. Each
point of interest p in i may represent an object of same or
different type than that of other points of interest in i. Every
interest point pin i is a stationary object (e.g., a gas station,
police station, restaurant, hotel, or an objective in a videog- 50

ame). Ranger is a length that represents the radius of q's
searching circle, that is, the extent to which interest points
are within range of q.

PCRQ result set R can include a set of tuples in which
each tuple contains a split-point along with an ordered 55

collection of interest points that are within query point q's
searching circle when q is at said split-point. An example is
R={<sl, {p23, p50, pll, p9}>, <s2, {p23, p50, pll, p9,
p44}>, <s3, {p50, p23, pll, p9, p44}>}. In this example,
when query point q passes split-point sl, then p23 is the 60

closest interest point within range, p50 is the next closest
interest point within range, and so on. R is progressively
returned as q travels along g, possibly returning a different
result than what was returned previously. Updating the
PCRQ result set consists of inserting a tuple that comprises 65

the split-point that q reached along with the interest points
that fall within q's range into the result set or of removing

one element-the root node's next nearest enter split-point.
Both enter and exit split-points contain a pointer or reference
to its generating node. If at any point in the PCRQ S-Heap
is empty or the distance between query point q and the top
of S-Heap is less than or equal to a specified threshold (i.e.,
q encounters or reaches a split-point), this can be the end of
the PCRQ. Alternatively, S-Heap can be continually main­
tained and the PCRQ result set can be reported until the
termination condition is met. That is, when q reaches a
split-point, it is popped from S-Heap and the node E that
generated the split-point can be retrieved. If the split-point
is an enter split-point, E's nearest exit split-point can be
generated and added to S-Heap. If E is an internal node, it
can be expanded, the next nearest enter split-points can be
generated for each of its children, and they can be inserted
into S-Heap. IfE is a leaf node, the PCRQ result set R can
be updated and reported. Assuming the split-point is an exit
split-point, ifE enters q's searching circle during some point
again during the query, E's next nearest enter split-point can
be generated inserted into S-Heap. And, if E is an internal
node, it can be collapsed (i.e., its children can be removed
from N-Buffer, and added to N-Buffer. If E is an interest
point, the PCRQ result set R can be updated and reported.

The methods and processes described herein can be
embodied as code and/or data. The software code and data
described herein can be stored on one or more machine­
readable media (e.g., computer-readable media), which may
include any device or medium that can store code and/or
data for use by a computer system. When a computer system

US 10,095,724 Bl
7 8

into the S-heap; alternatively, if the obtained node is a leaf
node, adding the obtained node to a list of points of interest,
and reporting the list as a result (to a user);

(f) if the split point is an exit split point (if the obtained

and/or processer reads and executes the code and/or data
stored on a computer-readable medium, the computer sys­
tem and/or processer performs the methods and processes
embodied as data structures and code stored within the
computer-readable storage medium.

It should be appreciated by those skilled in the art that
computer-readable media include removable and non-re­
movable structures/devices that can be used for storage of
information, such as computer-readable instructions, data
structures, program modules, and other data used by a
computing system/environment. A computer-readable
medium includes, but is not limited to, volatile memory such

5 node's domain region intersects with the query trajectory at
least one more time) determining its next nearest enter split
point or exit split point, adding the next nearest enter split
point or exit split point to the S-heap; wherein if the obtained
node is an internal node, collapsing the internal node by

10 removing the internal node's children from a temporary
buffer of nodes, and adding the internal node to the tempo­
rary buffer; wherein if the obtained node is a leaf node,
removing the leaf node from the list of points of interest, and
reporting the list as a result; and

15
(g) repeating steps (c) through (f) until the S-heap is

as random access memories (RAM, DRAM, SRAM); and
non-volatile memory such as flash memory, various read­
only-memories (ROM, PROM, EPROM, EEPROM), mag­
netic and ferromagnetic/ferroelectric memories (MRAM,
FeRAM), and magnetic and optical storage devices (hard
drives, magnetic tape, CDs, DVDs); network devices; or
other media now known or later developed that is capable of
storing computer-readable information/data. Computer­
readable media should not be construed or interpreted to
include any propagating signals. A computer-readable
medium of the subject invention can be, for example, a
compact disc (CD), digital video disc (DVD), flash memory
device, volatile memory, or a hard disk drive (HDD), such 25

as an external HDD or the HDD of a computing device,
though embodiments are not limited thereto. A computing
device can be, for example, a laptop computer, desktop
computer, server, cell phone, or tablet, though embodiments
are not limited thereto.

The subject invention includes, but is not limited to, the
following exemplified embodiments.

Embodiment 1

A progressive continuous range query (PCRQ) OR a
method to evaluate and progressively produce query outputs

20

30

35

(commonly referred to as continuous range queries) that are
related to a dataset of points of interest, wherein each query
references a moving object along a trajectory and requests to 40

report a list of points of interest satisfying and/or sorted by
certain criteria, at least one of which criteria references the
distance to the actual or expected location of the moving
object at the time of evaluation of the query, the method
comprising: 45

(a) applying a branch-and-bound range query algorithm to
determine points of interest within a query point's range as
the initial result set;

(b) generating a next nearest enter split point for a root
node (that is, calculate a first intersection between a domain 50

region of the root node and the query trajectory); wherein the
domain region of a node is a region that is generated by
expanding a boundary of the root node by a specified range;
inserting the generated split point into a min-heap of split
points; 55

(c) obtaining a next split point in the S-heap when a
distance between the moving object (i.e., the query point)
and the split point is below a given threshold;

(d) retrieving the node that generated the split point before
removing the split point from the S-heap, 60

(e) if the split point is an enter split point, generating the
node's exit split point (that is, determining the next inter­
section between the domain region of the node); inserting
the generated exit split point into the S-heap, and, if the
obtained node is an internal node, expanding the obtained 65

node, and generating the next nearest enter split points for
each of its children, and inserting the generated split points

empty or the distance between the moving object (or query
point) and next split point in the min-heap exceeds the
distance between the query point and the end of the query
trajectory.

Embodiment 2

The method of Embodiment 1, wherein the query trajec­
tory is not limited to reposting said range query per segment
in the query trajectory (i.e., only one range query is gener­
ated per trajectory).

Embodiment 3

The method of any of Embodiments 1 to 2, wherein the
query trajectory can be any shape, including, but not limited
to, a line segment, a polyline, a curve, and an ellipse.

Embodiment 4

The method of any of Embodiments 1 to 3, wherein the
results are continually predicted and maintained considering
the query range as a measurement in any (one or more) of
the following metrics: time, direct distance, distance of
polylines traversable by the moving object (including driv­
ing distance or walking distance); and/or a top-k list of
results wherein each result entry in the list is one of the top-k
incoming interest points.

Embodiment 5

The method of any of Embodiments 1 to 4, wherein each
node in the tree-like index that said query point passes is
collapsed (i.e., their children entries are removed from said
queue), wherein overcoming the typical deficiency of tradi­
tional algorithms breaks when the query point traverses a
previously-traveled path in reverse (resulting in reducing the
amount of memory utilized).

Embodiment 101

A progressive continuous range query (PCRQ) method
comprising:

using branch-and-bound to index interest points with a
tree-index;

generating a nearest enter split point for a root node in the
tree-index and adding to min-heap;

determining whether min-heap has more elements and
whether a next split point in min-heap is closer than a
destination;

determining whether a query point has reached a split
point;

US 10,095,724 Bl
9

retrieving an entry that has generated the split point;
removing the split point from min-heap; and
determining whether the split point is an enter split point.

Embodiment 102

The method of Embodiment 101, wherein if the split point
is an enter split point, an exit split point is generated and
added to min-heap.

Embodiment 103

The method of any of Embodiments 101 to 102, wherein

10
smartphone may inquire about the closest hotels as he
embarks on an 18-hour trip between his home in Miami, Fla.
and his parents' home in Newark, N.J. As he is driving, he
would like to know, in real time, the closest hotels within a

5 15 mile range.

Using Sam's current geographical location, Sam's driving
route and the data indexed in the R-tree index, the service
(utilizing techniques of the present invention) determines

10 that there will be 102 hotels close to Sam after he is 9 hours
into his trip. The names and locations of the hotels are
returned to Sam's GPS app, ordered by their distance to his
current location.

if the entry is a node, the node is expanded by generated
children entries' nearest enter split points and adding nearest 15

enter split points to min-heap.

Sam decides he will get off the next exit on the highway
as he is tired and wants to rest. He looks at his app, which
tells him that hotel H is closest to him. However, he also
notices on his app that, once he gets off at the next highway
exit, hotel E will be closest to him. This information is
shown within the app easily and quickly because of the

Embodiment 104

20
The method of any of Embodiments 101 to 103, wherein present invention's efficient and progressive re-computation

of queries that does not require reposting. Sam instructs the
app that he would like to change his destination to hotel E.
He then keeps driving along the same route and decides to

if the entry is not a node, the entry is added to the result.

Embodiment 105

The method of any of Embodiments 101 to 104, wherein
if the split point is not an enter split point, the entry's nearest
enter split point is generated and added to min-heap.

Embodiment 106

The method of any of Embodiments 101 to 105, wherein
if the entry is a node, it is determined whether the entry has
an enter split point in min-heap.

Embodiment 107

The method of any of Embodiments 101 to 106, wherein
if the entry does not have (or alternatively, has) an enter split
point in S-heap, the entry is collapsed by removing its
children entries from a waiting-list and adding the entry to
the waiting list.

Embodiment 108

25 get off at the aforementioned exit to reach hotel E.

At this point, however, Sam feels hungry. He sees a bright
sign that displays the name of his favorite fast-food restau­
rant chain after he exits, but it is 5 miles in the opposite
direction of his previous travels. He turns around and head

30 toward the restaurant. At this point, his app notifies him that
there has been a change as he has departed from his original
course. Although his route has changed, he still remains on
the same path, so the service does not need to regenerate the
swap points as they remain the same. Hotel E still remains

35
the closest hotel. Furthermore, an app that implements the
present invention can predict gas stations that will be within
1 mile while driving and report and update in real time
restaurants within 0.5 miles during a walk from one place to

40 another.

The method of any of Embodiments 101 to 107, wherein 45

if the entry point is not a node, the entry point is removed
from the result.

An algorithm has been disclosed in the foregoing for the
effective resolution of continuous range queries and returns
results in a progressive fashion, i.e. in real time. While the
foregoing exemplary embodiment and examples of the pres­
ent invention have been presented, they do not limit to the
scope of the invention and its use cases but serve as
illustrations of use cases. That is to say that neither a GPS,
database, smartphone, smartphone application, nor any of
the technologies in the exemplary embodiment need to be Embodiment 109

The method of any of Embodiments 101 to 108, further
comprising determining again whether min-heap has more
elements and whether a next split point in min-heap is closer
than the destination.

50 used in the deployment of the present invention. The present
invention can be implemented locally, remotely, on an
Internet-enabled or non-Internet-enabled personal computer
(PC), server, smartphone, any device or equipment, or any
combination of the above-all possibly interconnected via a

55 wired or wireless network. A greater understanding of the present invention and of its
many advantages may be had from the following examples,
given by way of illustration. The following examples are
illustrative of some of the methods, applications, embodi­
ments and variants of the present invention. They are, of
course, not to be considered as limiting the invention. 60

Numerous changes and modifications can be made with
respect to the invention.

It should be understood that the examples and embodi­
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application.

All patents, patent applications, provisional applications,
and publications referred to or cited herein (including those
in the "References" section) are incorporated by reference in

65 their entirety, including all figures and tables, to the extent
they are not inconsistent with the explicit teachings of this
specification.

Example 1

A user Sam driving in a vehicle with a Global Positioning
System (GPS) application installed on his internet-enabled

US 10,095,724 Bl
11

REFERENCES

[1] Guttman, Antonin. R-trees: a dynamic index structure for
spatial searching. Vol. 14. No. 2. ACM, 1984.

[2] Sellis, Timas, Nick Roussopoulos, and Christos Falout- 5

sos. "The R+-tree: A dynamic index for multidimensional
objects." (1987).

[3] Beckmann, Norbert, et al. The R *-tree: an efficient and
robust access method for points and rectangles. Vol. 19.
No. 2. ACM, 1990.

[4] Roussopoulos, Nick, Stephen Kelley, and Frederic Vin­
cent. "Nearest neighbor queries." ACM sigmod record.
Vol. 24. No. 2. ACM, 1995.

10

[5] Xuan, Kefeng, et al. "Continuous range search query
processing in mobile navigation." Parallel and Distrib- 15

uted Systems, 2008. ICPADS'OS. 14th IEEE International
Conference on. IEEE, 2008.

[6] Tao, Yufei, and Dimitris Papadias. "Time-parameterized
queries in spatio-temporal databases." Proceedings of the
2002 ACM SIGMOD international conference on Man- 20

agement of data. ACM, 2002.
[7] Hjaltason, Gisli R., and Hanan Samet. "Incremental

distance join algorithms for spatial databases." ACM
SIGMOD Record. Vol. 27. No. 2. ACM, 1998.

[8] Bespamyatnikh, Sergei, and Jack Snoeyink. "Queries 25

with segments in Voronoi diagrams." Computational
Geometry 16.1 (2000): 23-33.

12
obtained node is a leaf node, removing the leaf node
from the list of points of interest, and reporting the list
as a result;

determining whether min-heap has more elements and
whether a next split point in min-heap is closer than a
destination;

receiving a geographical location of a moving object;
generating a query point representing the geographical

location of the moving object;
determining whether the query point has reached a split

point;
retrieving an entry that has generated the split point;
removing the split point from min-heap;
determining whether the split point is an enter split point;

and
determining again whether min-heap has more elements

and whether a next split point in min-heap is closer than
the destination.

2. The method of claim 1, further comprising, after
determining that the split point is an enter split point,
generating an exit split point and adding the exit split point
to min-heap.

3. The method of claim 2, further comprising, after
determining that the enter split point is a node, expanding
the node by generating children entries' nearest enter split
points and adding the nearest enter split points to min-heap.

[9] Okabe, Atsuyuki, et al. Spatial tessellations: concepts
and applications of Voronoi diagrams. Vol. 501. John
Wiley & Sons, 2009.

4. The method of claim 1, further comprising, after
determining that the enter split point is not a node, adding

30 the enter split point to a result.
[10] Tao, Yufei, Dimitris Papadias, and Qiongmao Shen.

"Continuous nearest neighbor search." Proceedings of the
28th international conference on Very Large Data Bases.
VLDB Endowment, 2002.

[11] Lee, Ken C K, et al. "An efficient algorithm for 35

predictive continuous nearest neighbor query processing
and result maintenance." Proceedings of the 6th interna­
tional conference on Mobile data management. ACM,
2005.

[12] Mouratidis, Kyriakos, Dimitris Papadias, and Marios 40

Hadjieleftheriou. "Conceptual partitioning: an efficient
method for continuous nearest neighbor monitoring."
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. ACM, 2005.

[13] Kulik, Lars, and Egemen Tanin. "Incremental rank 45

updates for moving query points." Geographic Informa­
tion Science. Springer Berlin Heidelberg, 2006. 251-268.

What is claimed is:

5. The method of claim 4, further comprising, after
determining that the split point is not an enter split point,
generating the entry's nearest enter split point and adding
the entry's nearest enter split point to min-heap.

6. The method of claim 4, further comprising, after
determining that the entry is a node, determining whether the
entry has an enter split point in min-heap.

7. The method of claim 6, further comprising, after
determining that the entry does not have an enter split point
in S-heap, collapsing the entry by removing the entry's
children from a waiting-list and adding the entry to the
waiting list.

8. The method of claim 4, further comprising, after
determining that the entry is not a node, removing the entry
from the result.

9. A progressive continuous range query (PCRQ) method,
the method being performed by a system comprising a
processor and a computer-readable medium having instruc­
tions stored thereon that perform the method when executed

1. A progressive continuous range query (PCRQ) method,
the method being performed by a system comprising a
processor and a computer-readable medium having instruc­
tions stored thereon that perform the method when executed

50 by the processor, the method comprising:

by the processor, the method comprising:
using branch-and-bound to index interest points with a 55

tree-index;
generating a nearest enter split point for a root node in the

tree-index and adding to min-heap;
generating a next nearest enter split point for the root

node, a domain region of a node being a region that is 60

generated by expanding a boundary of the root node by
a specified range;

inserting the generated split point into min-heap;
when the obtained node is an internal node, collapsing the

internal node by removing the internal node's children 65

from a temporary buffer of nodes, and adding the
internal node to the temporary buffer; and when the

(a) applying a branch-and-bound algorithm to determine
points of interest within a query point's range as an
initial result set, receiving a geographical location of a
moving object, and generating a query point represent­
ing the geographical location of the moving object;

(b) generating a next nearest enter split point for a root
node; calculating a first intersection between a domain
region of the root node and a query trajectory, the
domain region of a node being a region that is gener­
ated by expanding a boundary of the root node by a
specified range; and inserting the generated split point
into a min-heap of split points;

(c) obtaining a next split point in the S-heap when a
distance between the query point and the split point is
below a threshold;

(d) retrieving the node that generated the split point before
removing the split point from the S-heap,

US 10,095,724 Bl
13

(e) when the split point is an enter split point, generating
the node's exit split point; inserting the generated exit
split point into the S-heap and, when the node is an
internal node, expanding the internal node, and gener­
ating the next nearest enter split points for each of the 5

internal node's children, and inserting the generated
split points into the S-heap; and, when the node is a leaf
node, adding the node to a list of points of interest, and
reporting the list as a result to a user;

(f) when the split point is an exit split point as the node's 10

domain region intersects with the query trajectory at
least once, determining a next nearest enter split point
or exit split point, and adding the next nearest enter
split point or exit split point to the S-heap; and, when
the obtained node is an internal node, collapsing the 15

internal node by removing the internal node's children
from a temporary buffer of nodes, and adding the
internal node to the temporary buffer; and, when the
node is a leaf node, removing the leaf node from the list
of points of interest, and reporting the list as a result; 20

and
(g) repeating steps (c) through (f) until the S-heap is

empty or the distance between the query point and next
split point in the min-heap exceeds a distance between
the query point and an end of the query trajectory, 25

the result being continually predicted and maintained
considering the query range as a measurement in one or
more of the following metrics: time, direct distance,
distance of polylines traversable by the query point,
and a top-k list of results in which each result entry in 30

a list is one of the top-k incoming interest points.
10. The method of claim 9, the query trajectory not being

limited to reporting said range query per segment in the
query trajectory.

11. The method of claim 9, the query trajectory being any 35

shape, including, but not limited to, a line segment, a
polyline, a curve, and an ellipse.

12. The method claim 9, further comprising collapsing
node in the tree-like index that the query point passes.

13. A progressive continuous range query (PCRQ) 40

method, the method being performed by a system compris-

14
!ng a p_rocessor and a computer-readable medium having
mstruct10ns stored thereon that perform the method when
exec1;1ted by the processor, the method comprising:

usmg branch-and-bound to index interest points with a
tree-index;

generating a nearest enter split point for a root node in the
tree-index and adding to min-heap;

generating a next nearest enter split point for the root
node, the domain region of a node being a region that
is generated by expanding a boundary of the root node
by a specified range;

inserting the generated split point into min-heap;
when the obtained node is an internal node, collapsing the

internal node by removing the internal node's children
from a temporary buffer of nodes, and adding the
internal node to the temporary buffer; and when the
obtained node is a leaf node, removing the leaf node
from the list of points of interest, and reporting the list
as a result;

determining whether min-heap has more elements and
whether a next split point in min-heap is closer than a
destination;

receiving a geographical location of a moving object;
generating a query point representing the geographical

location of the moving object;
determining whether the query point has reached a split

point;
retrieving an entry that has generated the split point;
removing the split point from min-heap;
determining whether the split point is an enter split point

and, when the split point is an enter split point, gener­
ating an exit split point that is added to min-heap;

determining whether the enter split point is a node and,
when the enter split point is a node, expanding the node
by generating children entries' nearest enter split points
and adding the nearest enter split points to min-heap;
and

determining again whether min-heap has more elements
and whether a next split point in min-heap is closer than
the destination.

* * * * *

