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(57) ABSTRACT 

Methods for progressive continuous range query (PCRQ) 
are provided. A method can include using branch-and-bound 
to index interest points with a tree-index and generating a 
nearest enter split-point for a root node in the tree-index and 
adding to min-heap. Next, whether min-heap has more 
elements and whether a next split-point in min-heap is closer 
than a destination can be determined. Whether a query point 
has reached a split-point can be investigated followed by 
retrieving an entry that has generated the split-point. The 
split-point can be then be removed from min-heap. 

13 Claims, 5 Drawing Sheets 
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PROGRESSIVE CONTINUOUS RANGE 
QUERY FOR MOVING OBJECTS WITH A 

TREE-LIKE INDEX 

2 
its exit split point, A exits the query range of q. When a query 
point q just passes the enter split point of some point p, p is 
exactly on the border of the query range. When q passes p's 
enter split point, p enters the query range. Likewise, when q 

STATEMENT OF GOVERNMENT SUPPORT 

This invention was made with government support under 
Grant #1213026 awarded by National Science Foundation. 
The government has certain rights in the invention. 

5 encounters p's exit split point, p is exactly on the border of 
the circle with radius r. A query point encounters or reaches 
a split point when the distance between the query point and 
the split point is less than or equal to a specified threshold. 

10 

BACKGROUND 

Contemporary technology allows moving object data to 

When q passes p's exit split point, p exits the query range. 
Continuous range query (CRQ) is a fundamental technol­

ogy spatial database and location-based service (LBS) 
realm. Embodiments of the present invention make CRQ 
more efficient. The first result of CRQ query can be reported 
to a user almost instantly and the rest can be gradually 

15 produced in the order of distance or time. When the result set 
is very large, this progressive approach can be especially 
beneficial since computing and outputting a large result at 
once can inefficient in terms of time and computing 
resources. 

be collected easily and extensively. Applications that deal 
with moving object data ( e.g., traffic monitoring, flight 
control, location-based advertisement and recommendation) 
typically require Location-Based-Service (LBS), involving 
querying for the historical, current, or predictive future 
locations of moving objects. Continuous Range Query 
(CRQ) is a fundamental technique in the spatial database 20 

realm and is very useful in location-based applications. 
However, existing CRQ methods have drawbacks in that 
they require extensive computing resources and are slow to 
return query results. 

In methods of the related art, users may be kept waiting 
for the results for an extended period of time. Furthermore, 
a user's location could change significantly while waiting 
for the result pertaining to the previous location, thus 
possibly making the results irrelevant by the time they are 

BRIEF SUMMARY 

Embodiments of the present invention include methods 
for progressive continuous range query (CRQ). In a pro­
gressive continuous range query (PCRQ) according to 
embodiments of the present invention, the first result of a 
CRQ query can be reported to the user almost instantly and 
the rest can be gradually produced in the order of distance 

25 received. Embodiments of the present invention allow for 
continuous output and maintenance of the predictive query 
results while the query point is moving. Moreover, the 
disclosed solution is more scalable than prior art. Generally, 
a query trajectory (or path) comprises many small line 

or time. In embodiments of the present invention, a PCRQ 
can be resolved by continuously searching for objects within 
range while a query point is moving along a path (referred 
to as the query point's trajectory). Said trajectory has a start 
point and an end point. The start point of said path may be 
the initial position of the query point, i.e., the position of the 
query point at the beginning of the resolution of said PCRQ. 
When the query point is moving along the trajectory, its 
query range with a radius equal to any given range r sweeps 
across an area referred to as a query region. 

30 segments. For each segment, the prior art methods need to 
post a new query, which is inefficient. Unlike said methods, 
embodiments of the present invention only needs to post one 
query, a one-time tree traversal for all segments in the path. 
Embodiments of the present invention can also utilize a 

35 tree-like spatial index. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 shows a flowchart of a Progressive Continuous 
40 Range Query (CRQ) according to an embodiment of the 

In embodiments of the present invention, the set of points 
of interest against which queries are made can be organized 45 

in a tree-like index. The domain region of a node in a 
tree-like index is a region that is generated by expanding the 
boundary of the node, e.g., a minimum bounding rectangle 
(MBR) in an R-Tree, by ranger. When the moving query 
point is outside of the domain region of a node, it can be 50 

safely assumed that the moving point's searching circle does 
not intersect with the inner cell of the node. This means there 

present invention. 
FIG. 2 shows an example of an R-tree index based on 

Euclidean Distance. 
FIG. 3 shows an example of a Continuous Ordered Range 

Query. 
FIG. 4 shows a query region of a Progressive CRQ 

according to an embodiment of the present invention. 
FIG. 5 shows an example of a non-leaf domain region 

(rounded rectangle). 
FIG. 6 shows an enter-split-point and exit-split-point in a 

Progressive CRQ query. 
FIG. 7A shows expansion ofa Minimum Bounding Rect­

angle according to an embodiment of the present invention. 
FIG. 78 shows a collapsing process of merging of points 

55 back into a Minimum Bounding Rectangle. 

is no need to search said cell. Only when the moving query 
point is within the domain region does the node's cell's data 
need to be searched to find the data that is located within the 
moving point's searching circle-this is used to speed up the 
searching process. Split points are points on the query 
point's trajectory. The PCRQ result may change only when 
the query point passes these points. Split points can be 
divided into two categories-enter split point and exit split 60 

point. 
Both an enter split point and an exit split point are 

generated by the intersections of the trajectory of the query 
point and the domain region of a node. For an interest point 
A, when the moving query point q passes its enter split point, 65 

A enters the query range of q, which can be equivalently 
stated as: q enters the range of A. Conversely, when q passes 

DETAILED DESCRIPTION 

To adapt to the requirements of different kinds of queries 
in practical applications, there are various query types. For 
example, time-dependent locations and time-dependent 
extent correlations may be of interest. In these situations, 
moving points and moving regions are the abstractions. 
Cars, airplanes, ships, animals and mobile phone users are 
considered moving points, while forest fires and the spread 
of epidemic diseases are considered moving regions. One 
goal of the present invention is to provide a method for a 
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continuous range query (CRQ) for a moving point. CRQ can 
retrieve all objects of interest within a specified range. The 
result should change when objects of interest move in or out 
of range. CRQ is important due to its broad applications. For 
instance, "Ifl continue moving in this direction, what will be 
the gas stations within 0.5 miles for the next 10 minutes?" 
or "What will be the restaurants within 1 mile at any point 
during my route from city A to city B?'' 

Since CRQ is a fundamental query and is useful in 
location-based applications, several approaches have been 
proposed in the past. For example, the R-tree index method 
based on Euclidean Distance (RED) uses an efficient algo­
rithm to support continuous range queries. In FIG. 2, an 
R-tree index is used to find all objects within the gray area. 
Assuming that the query range is radius e, for every object 
that is found, a circle centered with radius e is drawn. The 
result can be output after sorting the split-points, or the 
intersections between the circles and the query line. How­
ever, this approach requires loading and sorting all of the 
candidates at once, which requires extensive memory allo­
cation and CPU overhead. Furthermore, said method is 
inefficient in practical applications because a moving query 
point's trajectory ( or path) generally comprises many small 
segments. For each segment, RED-based methods need to 
post a new query, which is expensive in terms of computing 
resources. Therefore, the cost of these methods is prohibitive 
for large numbers of queries in spatial databases due to CPU 
and memory overhead. 

A progressive continuous range query (PCRQ) of the 
present invention can continuously search for objects within 
a range r while a point is moving along a specified path. A 
PCRQ workflow of the present invention with a tree-like 
index is shown in FIG. 1. FIG. 3 shows a time-slice of a 
point with a query range moving along an interval. When a 
query point moves along a given path, its search circle with 
radius r sweeps across an area defines as the query region. 
In FIG. 4, the area within the outer dashed line is the query 
region. In this example, the query region's area is equivalent 
to the sum of the areas of one rectangle and two semicircles 
( one full circle). Each element in the result set from a PCRQ 
query can be expressed as the following two-component 
tuple: result[i]=<(A, B), (fl, f2, ... , fm)>(i=O, 1, 2, ... ). 

Points A and B are located in the query segment. This 
formula states that for an arbitrary point Q between A and B 
in the query segment, there are m points that fall into the 
ranger (namely, fl, f2, ... , fm). Embodiments of the present 
invention include approaches to answer PCRQ queries pro­
gressively. The concept of a domain region can be applied to 
embodiments of the present invention. The domain region of 
a node is a region that is generated by expanding the 
boundary of the node, e.g., a minimum bounding rectangle 
(MBR) in an R-Tree, by ranger. This can be viewed as the 
Murkowski sum of the node boundary and a circle with 
radius r. There are two situations for domain regions: (1) for 
leaf nodes (a node that presents one data point), the domain 
region is represented as a circle centered at the data point 
with radius r; (2) for non-leaf nodes, the domain region is a 
rounded rectangle with radius r (see FIG. 5). 

When the moving point is outside of the domain region, 
it can be safely assumed that the moving point's search 
circle does not intersect with the inner cell, meaning there is 
no need to search the cell. Only when the moving point is in 
the domain region does the cell's data need to be searched 
to find data that is located within the moving point's 
searching circle, which can be used to speed up the search­
ing process. Split-points are points on the query point's 
trajectory. The PCRQ result may change only when the 

4 
query point passes these points. Split-points are divided into 
two categories-enter split-points and exit split-points. 

Both an enter split-point and an exit split-point are 
generated by the intersections of the trajectory of the query 

5 point and a domain region of a node, as shown in FIG. 6. For 
a data point A, when the query point q passes the enter 
split-point, A enters the query range of q. This can be 
equivalently stated as q enters the range of A. Conversely, 
when q passes its exit split-point, A exits the query range of 

10 q. When a query point q just passes the enter split-point of 
arbitrary point p, p is exactly on the border of circle r. When 
q passes p's enter split-point, p enters range r. Likewise, 
when q encounters p's exit split-point, p is exactly on the 
border of the circle with radius r. When q passes p's exit 

15 split-point, p exits range r. 
One of the advantages of PCRQ of the present invention 

is that it outputs the result of the CRQ progressively. An 
important approach to getting the result progressively is the 
use and generation of split-points. The split-points can be 

20 stored in a min-heap of split-points S-Heap. A min-heap is 
a binary tree structure in which the data contained in each 
node is less than (or equal to) the data in that node's 
children. The top ofS-Heap has the minimum distance to the 
query point amongst all split-points in the heap. A tree-like 

25 index may be used to reduce the number of elements in 
S-Heap for PCRQ queries. An R-Tree will be used for the 
tree-like index to illustrate the concepts of embodiments of 
the present invention. 

Methods of embodiments of the present invention can 
30 "merge" the points that have already left the region back into 

their respective nodes-a process referred to as collapsing. 
The collapsing process minimizes memory usage and allows 
embodiments of the present invention to work not only with 
trajectories that comprise line segments, but also other 

35 patterns including curves, loops, etc. In FIG. 7A, the mini­
mum bounding rectangle (MBR) intersecting the query 
region is broken and two of the points inside are included in 
the result set. FIG. 78 shows that as the query region moves 
forward, all the points belonging to the MBR are no longer 

40 covered by the query region. After that time, the points will 
not appear in the result set and can be safely "collapsed" 
back into the original MBR. 

Unlike other methods utilizing an R-tree index based on 
Euclidean Distance (RED), embodiments of the present 

45 invention only need to post one query-a one-time tree 
traversal for all segments in the path, thereby lowering CPU 
overhead and memory usage. Traditional RED-based meth­
ods are not progressive, which is a characteristic that is in 
stark contrast to that of the progressive models of embodi-

50 ments of the present invention. That is, according the present 
invention, the first result can be reported to the user instantly 
and the remaining results can gradually be listed in the order 
of distance or time. 

When the result set is very large, the techniques of the 
55 embodiments of present invention are particularly beneficial 

because computing and outputting a large result at one time 
can be time consuming and require a lot of computing 
resources. With the methods of prior art, users may be kept 
waiting for the results for an extended period of time. 

60 Furthermore, a user's location could change significantly 
while waiting for the result pertaining to the previous 
location, thus possibly making the results irrelevant by the 
time they are received. Additionally, the techniques of the 
present invention allow for continuous output of the predic-

65 tive query results while the query point is moving. 
Techniques embodiments of the present invention can find 

the sequence of all objects, including points and Minimum 
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Bounding Rectangles (MBR), and continuously maintain 
that sequence. Compared with existing algorithms, the dis­
closed method has several advantages: (1) Progressive­
ness-results can be output progressively, which is particu-
lar advantageous when the query is expensive (in terms of 5 

time and/or computing resources) to execute or the result set 
is large; (2) Efficiency-the techniques of the embodiments 
of present invention require a minimal number of nodes be 
accessed to produce the correct result; (3) Scalability­
techniques of the embodiments of present invention can 10 

minimize the use of CPU, TO, and memory resources. This 
is a critical feature for server applications to handle a large 
number of queries ( e.g., large-scale online Location Based 
Services and related map services and applications on 
devices with limited CPU and memory, e.g., GPS navigation 15 

devices with embedded systems). Furthermore, in the prior 
art, a moving query point's path generally comprises many 
small segments and there is a need post a new query for 
every segment, which is inefficient, whereas the embodi­
ments of present invention only need to post one query for 20 

the entirety of the segments in a path; and (4) Any Trajec­
tory-techniques of the embodiments of present invention 
are not restricted to query trajectories that consist of only 
line segments, and are capable of handling other query 
trajectories that consist of curves, loops, and any other 25 

shape. 
As illustrated in the Figures, embodiments of the present 

invention provide novel range query resolution methods that 
output query results in a continuous and progressive manner. 
Given a query point q moving along some path g, a set of 30 

interest points i, and a range r, the subset of said set of 
stationary interest points is continually returned as result R 

6 
a tuple that comprises the split-point that q reached along 
with the interest points that fall outside q's range from the 
result set. 

The following are steps that can be applied with PCRQ 
queries of embodiments of the present invention with the 
utilization of R-trees. First, branch-and-bound algorithms 
can be used to index interest points. Initially, the branch­
and-bound (BB) range query algorithm can be used to 
discover the points falling into the query point q's query 
range or searching circle. A query point's searching circle is 
a circle centered at said query point with a radius that is 
equal to r. The nearest enter or exit split points of all entries, 
including internal nodes and leaf nodes, visited during the 
regular range query processing are added to S-heap accord­
ing to their distance to the start point. All the internal nodes 
and leaf node points that generate no split point are added to 
a list referred to as a waiting list. The next nearest enter 
split-point for root node can then be generated. The nearest 
enter split-point (nearest exit split-point) for a node n is the 
enter split-point (exit split-point) that is closest to query 
point q. The next nearest enter split-point (next nearest exit 
split-point) for a node n is the enter split-point (exit split­
point) that is closest to q out of the set of enter split-points 
(exit split-points) that have not been previously generated 
for n. Since a query trajectory can consist ofloops or curves, 
the root node ( or any node) may enter ( exit) ranger multiple 
times throughout the query. As such, only the next nearest 
enter split-point (exit split-point) needs to be calculated. 
Subsequent enter split-points (exit split-points) will be cal­
culated in time as it becomes appropriate (e.g., after a node's 
exit split-point or enter split-point is reached). 

The next nearest enter split-point is generated for the root 
node and inserted to an empty min-heap of split-points 
S-Heap. Initially, the nearest enter split-point for the root 

so that for each pint in the subset, the point's distance to the 
query point q is less than r at the time of production of said 
point within the result. 

Path g is a set of arbitrary points, wherein each point is a 
tuple of coordinates. Path g is the trajectory of a query point 
q represented as a geometric shape, which may be, but is not 
limited to, a line segment, a polyline, or a curve. Examples 

35 node is the same as its next nearest enter split-point because 
no enter split-points were previously generated for the root 
node. S-Heap can be continuously maintained and PCRQ 
the result set can be reported. S-Heap can consist of exactly 

of said trajectories are a walking route (or path), a driving 40 

route, or a flying route. 
A query point or moving object q travels along a path g. 

The point is a tuple of coordinates at any given time and can 
represent an object in physical or virtual multidimensional 
space. For example, the query point can represent a person, 45 

an animal, a car, a plane, a smartphone, or a drone. Each 
point of interest p in i may represent an object of same or 
different type than that of other points of interest in i. Every 
interest point pin i is a stationary object (e.g., a gas station, 
police station, restaurant, hotel, or an objective in a videog- 50 

ame). Ranger is a length that represents the radius of q's 
searching circle, that is, the extent to which interest points 
are within range of q. 

PCRQ result set R can include a set of tuples in which 
each tuple contains a split-point along with an ordered 55 

collection of interest points that are within query point q's 
searching circle when q is at said split-point. An example is 
R={<sl, {p23, p50, pll, p9}>, <s2, {p23, p50, pll, p9, 
p44}>, <s3, {p50, p23, pll, p9, p44}>}. In this example, 
when query point q passes split-point sl, then p23 is the 60 

closest interest point within range, p50 is the next closest 
interest point within range, and so on. R is progressively 
returned as q travels along g, possibly returning a different 
result than what was returned previously. Updating the 
PCRQ result set consists of inserting a tuple that comprises 65 

the split-point that q reached along with the interest points 
that fall within q's range into the result set or of removing 

one element-the root node's next nearest enter split-point. 
Both enter and exit split-points contain a pointer or reference 
to its generating node. If at any point in the PCRQ S-Heap 
is empty or the distance between query point q and the top 
of S-Heap is less than or equal to a specified threshold (i.e., 
q encounters or reaches a split-point), this can be the end of 
the PCRQ. Alternatively, S-Heap can be continually main­
tained and the PCRQ result set can be reported until the 
termination condition is met. That is, when q reaches a 
split-point, it is popped from S-Heap and the node E that 
generated the split-point can be retrieved. If the split-point 
is an enter split-point, E's nearest exit split-point can be 
generated and added to S-Heap. If E is an internal node, it 
can be expanded, the next nearest enter split-points can be 
generated for each of its children, and they can be inserted 
into S-Heap. IfE is a leaf node, the PCRQ result set R can 
be updated and reported. Assuming the split-point is an exit 
split-point, ifE enters q's searching circle during some point 
again during the query, E's next nearest enter split-point can 
be generated inserted into S-Heap. And, if E is an internal 
node, it can be collapsed (i.e., its children can be removed 
from N-Buffer, and added to N-Buffer. If E is an interest 
point, the PCRQ result set R can be updated and reported. 

The methods and processes described herein can be 
embodied as code and/or data. The software code and data 
described herein can be stored on one or more machine­
readable media (e.g., computer-readable media), which may 
include any device or medium that can store code and/or 
data for use by a computer system. When a computer system 
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into the S-heap; alternatively, if the obtained node is a leaf 
node, adding the obtained node to a list of points of interest, 
and reporting the list as a result (to a user); 

(f) if the split point is an exit split point (if the obtained 

and/or processer reads and executes the code and/or data 
stored on a computer-readable medium, the computer sys­
tem and/or processer performs the methods and processes 
embodied as data structures and code stored within the 
computer-readable storage medium. 

It should be appreciated by those skilled in the art that 
computer-readable media include removable and non-re­
movable structures/devices that can be used for storage of 
information, such as computer-readable instructions, data 
structures, program modules, and other data used by a 
computing system/environment. A computer-readable 
medium includes, but is not limited to, volatile memory such 

5 node's domain region intersects with the query trajectory at 
least one more time) determining its next nearest enter split 
point or exit split point, adding the next nearest enter split 
point or exit split point to the S-heap; wherein if the obtained 
node is an internal node, collapsing the internal node by 

10 removing the internal node's children from a temporary 
buffer of nodes, and adding the internal node to the tempo­
rary buffer; wherein if the obtained node is a leaf node, 
removing the leaf node from the list of points of interest, and 
reporting the list as a result; and 

15 
(g) repeating steps (c) through (f) until the S-heap is 

as random access memories (RAM, DRAM, SRAM); and 
non-volatile memory such as flash memory, various read­
only-memories (ROM, PROM, EPROM, EEPROM), mag­
netic and ferromagnetic/ferroelectric memories (MRAM, 
FeRAM), and magnetic and optical storage devices (hard 
drives, magnetic tape, CDs, DVDs); network devices; or 
other media now known or later developed that is capable of 
storing computer-readable information/data. Computer­
readable media should not be construed or interpreted to 
include any propagating signals. A computer-readable 
medium of the subject invention can be, for example, a 
compact disc (CD), digital video disc (DVD), flash memory 
device, volatile memory, or a hard disk drive (HDD), such 25 

as an external HDD or the HDD of a computing device, 
though embodiments are not limited thereto. A computing 
device can be, for example, a laptop computer, desktop 
computer, server, cell phone, or tablet, though embodiments 
are not limited thereto. 

The subject invention includes, but is not limited to, the 
following exemplified embodiments. 

Embodiment 1 

A progressive continuous range query (PCRQ) OR a 
method to evaluate and progressively produce query outputs 

20 

30 

35 

( commonly referred to as continuous range queries) that are 
related to a dataset of points of interest, wherein each query 
references a moving object along a trajectory and requests to 40 

report a list of points of interest satisfying and/or sorted by 
certain criteria, at least one of which criteria references the 
distance to the actual or expected location of the moving 
object at the time of evaluation of the query, the method 
comprising: 45 

(a) applying a branch-and-bound range query algorithm to 
determine points of interest within a query point's range as 
the initial result set; 

(b) generating a next nearest enter split point for a root 
node (that is, calculate a first intersection between a domain 50 

region of the root node and the query trajectory); wherein the 
domain region of a node is a region that is generated by 
expanding a boundary of the root node by a specified range; 
inserting the generated split point into a min-heap of split 
points; 55 

(c) obtaining a next split point in the S-heap when a 
distance between the moving object (i.e., the query point) 
and the split point is below a given threshold; 

( d) retrieving the node that generated the split point before 
removing the split point from the S-heap, 60 

( e) if the split point is an enter split point, generating the 
node's exit split point (that is, determining the next inter­
section between the domain region of the node); inserting 
the generated exit split point into the S-heap, and, if the 
obtained node is an internal node, expanding the obtained 65 

node, and generating the next nearest enter split points for 
each of its children, and inserting the generated split points 

empty or the distance between the moving object ( or query 
point) and next split point in the min-heap exceeds the 
distance between the query point and the end of the query 
trajectory. 

Embodiment 2 

The method of Embodiment 1, wherein the query trajec­
tory is not limited to reposting said range query per segment 
in the query trajectory (i.e., only one range query is gener­
ated per trajectory). 

Embodiment 3 

The method of any of Embodiments 1 to 2, wherein the 
query trajectory can be any shape, including, but not limited 
to, a line segment, a polyline, a curve, and an ellipse. 

Embodiment 4 

The method of any of Embodiments 1 to 3, wherein the 
results are continually predicted and maintained considering 
the query range as a measurement in any ( one or more) of 
the following metrics: time, direct distance, distance of 
polylines traversable by the moving object (including driv­
ing distance or walking distance); and/or a top-k list of 
results wherein each result entry in the list is one of the top-k 
incoming interest points. 

Embodiment 5 

The method of any of Embodiments 1 to 4, wherein each 
node in the tree-like index that said query point passes is 
collapsed (i.e., their children entries are removed from said 
queue), wherein overcoming the typical deficiency of tradi­
tional algorithms breaks when the query point traverses a 
previously-traveled path in reverse (resulting in reducing the 
amount of memory utilized). 

Embodiment 101 

A progressive continuous range query (PCRQ) method 
comprising: 

using branch-and-bound to index interest points with a 
tree-index; 

generating a nearest enter split point for a root node in the 
tree-index and adding to min-heap; 

determining whether min-heap has more elements and 
whether a next split point in min-heap is closer than a 
destination; 

determining whether a query point has reached a split 
point; 
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retrieving an entry that has generated the split point; 
removing the split point from min-heap; and 
determining whether the split point is an enter split point. 

Embodiment 102 

The method of Embodiment 101, wherein if the split point 
is an enter split point, an exit split point is generated and 
added to min-heap. 

Embodiment 103 

The method of any of Embodiments 101 to 102, wherein 

10 
smartphone may inquire about the closest hotels as he 
embarks on an 18-hour trip between his home in Miami, Fla. 
and his parents' home in Newark, N.J. As he is driving, he 
would like to know, in real time, the closest hotels within a 

5 15 mile range. 

Using Sam's current geographical location, Sam's driving 
route and the data indexed in the R-tree index, the service 
(utilizing techniques of the present invention) determines 

10 that there will be 102 hotels close to Sam after he is 9 hours 
into his trip. The names and locations of the hotels are 
returned to Sam's GPS app, ordered by their distance to his 
current location. 

if the entry is a node, the node is expanded by generated 
children entries' nearest enter split points and adding nearest 15 

enter split points to min-heap. 

Sam decides he will get off the next exit on the highway 
as he is tired and wants to rest. He looks at his app, which 
tells him that hotel H is closest to him. However, he also 
notices on his app that, once he gets off at the next highway 
exit, hotel E will be closest to him. This information is 
shown within the app easily and quickly because of the 

Embodiment 104 

20 
The method of any of Embodiments 101 to 103, wherein present invention's efficient and progressive re-computation 

of queries that does not require reposting. Sam instructs the 
app that he would like to change his destination to hotel E. 
He then keeps driving along the same route and decides to 

if the entry is not a node, the entry is added to the result. 

Embodiment 105 

The method of any of Embodiments 101 to 104, wherein 
if the split point is not an enter split point, the entry's nearest 
enter split point is generated and added to min-heap. 

Embodiment 106 

The method of any of Embodiments 101 to 105, wherein 
if the entry is a node, it is determined whether the entry has 
an enter split point in min-heap. 

Embodiment 107 

The method of any of Embodiments 101 to 106, wherein 
if the entry does not have ( or alternatively, has) an enter split 
point in S-heap, the entry is collapsed by removing its 
children entries from a waiting-list and adding the entry to 
the waiting list. 

Embodiment 108 

25 get off at the aforementioned exit to reach hotel E. 

At this point, however, Sam feels hungry. He sees a bright 
sign that displays the name of his favorite fast-food restau­
rant chain after he exits, but it is 5 miles in the opposite 
direction of his previous travels. He turns around and head 

30 toward the restaurant. At this point, his app notifies him that 
there has been a change as he has departed from his original 
course. Although his route has changed, he still remains on 
the same path, so the service does not need to regenerate the 
swap points as they remain the same. Hotel E still remains 

35 
the closest hotel. Furthermore, an app that implements the 
present invention can predict gas stations that will be within 
1 mile while driving and report and update in real time 
restaurants within 0.5 miles during a walk from one place to 

40 another. 

The method of any of Embodiments 101 to 107, wherein 45 

if the entry point is not a node, the entry point is removed 
from the result. 

An algorithm has been disclosed in the foregoing for the 
effective resolution of continuous range queries and returns 
results in a progressive fashion, i.e. in real time. While the 
foregoing exemplary embodiment and examples of the pres­
ent invention have been presented, they do not limit to the 
scope of the invention and its use cases but serve as 
illustrations of use cases. That is to say that neither a GPS, 
database, smartphone, smartphone application, nor any of 
the technologies in the exemplary embodiment need to be Embodiment 109 

The method of any of Embodiments 101 to 108, further 
comprising determining again whether min-heap has more 
elements and whether a next split point in min-heap is closer 
than the destination. 

50 used in the deployment of the present invention. The present 
invention can be implemented locally, remotely, on an 
Internet-enabled or non-Internet-enabled personal computer 
(PC), server, smartphone, any device or equipment, or any 
combination of the above-all possibly interconnected via a 

55 wired or wireless network. A greater understanding of the present invention and of its 
many advantages may be had from the following examples, 
given by way of illustration. The following examples are 
illustrative of some of the methods, applications, embodi­
ments and variants of the present invention. They are, of 
course, not to be considered as limiting the invention. 60 

Numerous changes and modifications can be made with 
respect to the invention. 

It should be understood that the examples and embodi­
ments described herein are for illustrative purposes only and 
that various modifications or changes in light thereof will be 
suggested to persons skilled in the art and are to be included 
within the spirit and purview of this application. 

All patents, patent applications, provisional applications, 
and publications referred to or cited herein (including those 
in the "References" section) are incorporated by reference in 

65 their entirety, including all figures and tables, to the extent 
they are not inconsistent with the explicit teachings of this 
specification. 

Example 1 

A user Sam driving in a vehicle with a Global Positioning 
System (GPS) application installed on his internet-enabled 
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generating a query point representing the geographical 

location of the moving object; 
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What is claimed is: 

5. The method of claim 4, further comprising, after 
determining that the split point is not an enter split point, 
generating the entry's nearest enter split point and adding 
the entry's nearest enter split point to min-heap. 

6. The method of claim 4, further comprising, after 
determining that the entry is a node, determining whether the 
entry has an enter split point in min-heap. 

7. The method of claim 6, further comprising, after 
determining that the entry does not have an enter split point 
in S-heap, collapsing the entry by removing the entry's 
children from a waiting-list and adding the entry to the 
waiting list. 

8. The method of claim 4, further comprising, after 
determining that the entry is not a node, removing the entry 
from the result. 

9. A progressive continuous range query (PCRQ) method, 
the method being performed by a system comprising a 
processor and a computer-readable medium having instruc­
tions stored thereon that perform the method when executed 

1. A progressive continuous range query (PCRQ) method, 
the method being performed by a system comprising a 
processor and a computer-readable medium having instruc­
tions stored thereon that perform the method when executed 

50 by the processor, the method comprising: 

by the processor, the method comprising: 
using branch-and-bound to index interest points with a 55 

tree-index; 
generating a nearest enter split point for a root node in the 

tree-index and adding to min-heap; 
generating a next nearest enter split point for the root 

node, a domain region of a node being a region that is 60 

generated by expanding a boundary of the root node by 
a specified range; 

inserting the generated split point into min-heap; 
when the obtained node is an internal node, collapsing the 

internal node by removing the internal node's children 65 

from a temporary buffer of nodes, and adding the 
internal node to the temporary buffer; and when the 

(a) applying a branch-and-bound algorithm to determine 
points of interest within a query point's range as an 
initial result set, receiving a geographical location of a 
moving object, and generating a query point represent­
ing the geographical location of the moving object; 

(b) generating a next nearest enter split point for a root 
node; calculating a first intersection between a domain 
region of the root node and a query trajectory, the 
domain region of a node being a region that is gener­
ated by expanding a boundary of the root node by a 
specified range; and inserting the generated split point 
into a min-heap of split points; 

(c) obtaining a next split point in the S-heap when a 
distance between the query point and the split point is 
below a threshold; 

( d) retrieving the node that generated the split point before 
removing the split point from the S-heap, 
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( e) when the split point is an enter split point, generating 
the node's exit split point; inserting the generated exit 
split point into the S-heap and, when the node is an 
internal node, expanding the internal node, and gener­
ating the next nearest enter split points for each of the 5 

internal node's children, and inserting the generated 
split points into the S-heap; and, when the node is a leaf 
node, adding the node to a list of points of interest, and 
reporting the list as a result to a user; 

(f) when the split point is an exit split point as the node's 10 

domain region intersects with the query trajectory at 
least once, determining a next nearest enter split point 
or exit split point, and adding the next nearest enter 
split point or exit split point to the S-heap; and, when 
the obtained node is an internal node, collapsing the 15 

internal node by removing the internal node's children 
from a temporary buffer of nodes, and adding the 
internal node to the temporary buffer; and, when the 
node is a leaf node, removing the leaf node from the list 
of points of interest, and reporting the list as a result; 20 

and 
(g) repeating steps (c) through (f) until the S-heap is 

empty or the distance between the query point and next 
split point in the min-heap exceeds a distance between 
the query point and an end of the query trajectory, 25 

the result being continually predicted and maintained 
considering the query range as a measurement in one or 
more of the following metrics: time, direct distance, 
distance of polylines traversable by the query point, 
and a top-k list of results in which each result entry in 30 

a list is one of the top-k incoming interest points. 
10. The method of claim 9, the query trajectory not being 

limited to reporting said range query per segment in the 
query trajectory. 

11. The method of claim 9, the query trajectory being any 35 

shape, including, but not limited to, a line segment, a 
polyline, a curve, and an ellipse. 

12. The method claim 9, further comprising collapsing 
node in the tree-like index that the query point passes. 

13. A progressive continuous range query (PCRQ) 40 

method, the method being performed by a system compris-

14 
!ng a p_rocessor and a computer-readable medium having 
mstruct10ns stored thereon that perform the method when 
exec1;1ted by the processor, the method comprising: 

usmg branch-and-bound to index interest points with a 
tree-index; 

generating a nearest enter split point for a root node in the 
tree-index and adding to min-heap; 

generating a next nearest enter split point for the root 
node, the domain region of a node being a region that 
is generated by expanding a boundary of the root node 
by a specified range; 

inserting the generated split point into min-heap; 
when the obtained node is an internal node, collapsing the 

internal node by removing the internal node's children 
from a temporary buffer of nodes, and adding the 
internal node to the temporary buffer; and when the 
obtained node is a leaf node, removing the leaf node 
from the list of points of interest, and reporting the list 
as a result; 

determining whether min-heap has more elements and 
whether a next split point in min-heap is closer than a 
destination; 

receiving a geographical location of a moving object; 
generating a query point representing the geographical 

location of the moving object; 
determining whether the query point has reached a split 

point; 
retrieving an entry that has generated the split point; 
removing the split point from min-heap; 
determining whether the split point is an enter split point 

and, when the split point is an enter split point, gener­
ating an exit split point that is added to min-heap; 

determining whether the enter split point is a node and, 
when the enter split point is a node, expanding the node 
by generating children entries' nearest enter split points 
and adding the nearest enter split points to min-heap; 
and 

determining again whether min-heap has more elements 
and whether a next split point in min-heap is closer than 
the destination. 

* * * * * 


