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Abstract—We address the problem of incorporating un-
certain location data in the generation of speed profiles for
vehicles on roads with multiple lanes. Moving objects’ location
data can be obtained from different/multiple sources – e.g.,
GPS on-board the moving objects, roadside sensors, cameras.
However, each source has inherent limitations that affect the
precision – from pure measurement-errors, to sparsity of their
distribution. Incorporating such imprecisions is paramount in
any query/analytics oriented system that deals with location
data. The difficulties multiply when one needs to reason
about localization with lane-awareness and attempts to use the
location-in-time data to enable effective navigation systems.
To tackle this problem, we take a step towards: (a) incor-
porating uncertainty of the objects’ locations into traditional
map-matching processes, thereby augmenting them with its
impact on different lanes; (b) introducing an information-
theoretic distance function that can be used to decide when two
“units” qualify to belong to a same cluster. Our experiments
demonstrate that the proposed approach offers a more effective
way to generate spatio-temporal clusters with similar speed
profiles which, in turn, enables more efficient routes generation.

Keywords-Speed profiles, Uncertain trajectories, Multi-lane
roads

I. INTRODUCTION

Lane level positioning and navigation have been one of

the challenging tasks that have spurred a significant amount

of recent research since accurate navigation is at the very

core of the autonomous driving [6], [29]. Models for lane-

level high-definition maps have been proposed in different

applications’ settings [1], but lane-aware traffic inference

and route planning are still investigated, mostly from two

perspectives: (a) Assuming very accurate positioning data

gathered through Differential GPS (DGPS) or laser scan-

ners [28]. The high cost of sensors prohibits this method

from being widely deployed for production cars; (b) Fusing

heterogeneous data sources, i.e., combining GPS data with

camera and using computer vision for lane recognition [6],

[19]. The bottleneck of this approach is the speed of image

processing, which constrains the use case in a real-time

manner. Routing and navigation in modern traffic systems

have been investigated since the 1980s [20], with techniques

coming from both databases [14], [36] and transportation

communities [26]. Typically, the algorithmic solutions rely

on certain estimated values of the traffic flow – e.g., average

speed – along the segments of the underlying road-networks,

which vary dynamically [36] within a certain period (e.g.,

a day), depending on factors such as: time of day, capacity

(lanes), road surface, etc.

From traditional vehicle routing problem [20] up to recent

Eco-routing works [21], the methodologies (data properties,

algorithms, etc.) proposed in various contexts share the

assumption that on any road segment, at a certain time-

period, vehicles have only one kind of a speed/motion.

However, due to the multiple lanes, vehicles on the same

road segment and at the same time instant/interval, may have

different speeds. This, in turn, implies that using the average

speed as a descriptor may not be good enough for many

routing-based applications. Figure 1 illustrates four different

real life scenarios on highways. When there are few cars on

the road or the highway is fully congested, traffic speeds are

relatively uniform among the lanes (cf. Figure 1a and 1b).

However, Figure 1c, shows how a high-occupancy lane (also

known as carpool lane; restricted traffic lane reserved during

rush hour for the exclusive use of vehicles with one or

more passengers) usually has higher speeds than the other

lanes. Similarly, Figure 1d, shows a highway exit 450B on

U.S. route 101 in California, near Richmond-San Rafael

Bridge. The cars back up at the rightmost lane towards the

bridge, while the left lane on northbound U.S. route 101 has

very low densities. Thus, averaging the observations from

particular (groups of) vehicles, could yield an inaccurate

picture about the traffic distribution – and, yet, most of

the popular traffic speed estimation methods are based on

averaging the samples from vehicles over a period of time or

area — e.g., Time Mean Speed and Space Mean Speed [13].

At the heart of the motivation for this work is the observa-

tion that – to the best of our knowledge – the state of the art

approaches have not provided solutions that would couple

the multi-lane information with location uncertainties, when

designing traffic speed profiles (we note that this is also the

case for the existing works on map-matching GPS points

from moving objects [5], [37]). Consider the following

query:

Q1: What is the distribution of the traffic speed on the
route 101 between San Francisco and Richmond-San Rafael
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(a) Uniform traffic speed with
low congestion

(b) Uniform traffic speed with
high congestion

(c) Nonuniform traffic speed for
carpool lane

(d) Nonuniform traffic speed for
highway exit

Figure 1: Traffic speeds vary among different lanes in different scenarios

Bridge, between 8:00AM and 10:00AM?
Traditional methods [25], [30], [36] would answer Q1

with a single average value, possibly varying it throughout

different time intervals between 8:00AM to 10:00AM (e.g.,

the average speed is updated every 30min.); and along dif-

ferent distances from Marine city on the route 101. However,

this will yield incorrect values because the averaged speed

will be applied within certain distances before/after exit

450B (cf. Figure 1d), yielding incorrect time-estimates for

trip planning. As a complement to our previous work [39],

we propose an approach for multi-lane speed pattern mining

framework which addresses the aforementioned challenges

and incorporates the location uncertainties due to GPS er-

rors. The main contribution of this work can be summarized

as follows:

• We propose a novel probabilistic model to represent

location uncertainties and apply it to spatial temporal data

mining.

• We propose a novel distance function and an improved

speed cluster mining algorithm for multi-lane road networks.

• We present experimental observations conducted on the

Rome Ring Road to demonstrate the benefits of the proposed

approaches.

II. PRELIMINARIES

We now present a brief overview of the related back-

ground and introduce the basic terminology.

Traditionally, in MOD [16] the motion of an object with

a distinct ID (oID) is represented as a trajectory TroID =
[p1, p2...pn], where each point pi is a triplet pi = (xi, yi, ti);
ti being the time that the object was at location (xi, yi).

A road segment r is a octuple r =
(rID, rDir, rs, re, rtype, rlength, rspeed, rlane), where:

rID is its unique identifier; rDir is a binary value indicating

whether r is one-way or two-way segment; rs and re are

k-tuples (k = number of lanes) representing the starting and

ending points of each lane (centroids); rtype indicates the

type of the road to which the segment belongs (e.g., urban,

rural, etc...); rlength is its length; rspeed is the maximum

speed; and rlane is an integer specifying the number of

lanes in each direction. A road network is an (augmented)

graph GRN = (VRN , ERN ) where VRN is the set of nodes

representing the terminal points of road segments, and ERN

is the collection of road segments.

Table I: Lane Width for Different Types of Road

Type of Roadway: Rural Urban

Freeway 12ft 12ft

Ramps (1-lane) 12-30ft 12-30ft

Arterial 11-12ft 10-12ft

Local 9-12ft 9-12 ft

For types of roads and the width of the lanes, we assume

the classification proposed by the FHWA (Federal High-

way Administration) of the US Department of Transporta-

tion [11] illustrated in Table I, noting that the width is often

associated with the maximum prescribed speed limit. Traffic-

stream studies use different measures to characterize motion

along road segments [13], often coupled with the available

technology. For example, inductive sensors are good for

estimating the flow, however, they cannot characterize the

speed. On-board GPS devices are good at obtaining an

average speed of individual moving objects, however, they

are error-prone in terms of location, and cannot capture

fluctuations in-between samples. We assume that motion-

relevant data is obtained from (a sequence of) GPS points.

In information theory, a classical measure of information

in a stochastic setting is the Shannon Information [17].

The Shannon Information SP (A) (also called the surprisal,

or self-information) of a probability distribution P for an

event A is SP (A) = −log2P (A). The information entropy
(also called Shannon Entropy) is the expected value of the

Shannon information [31].

A. Path Based Map-matching

Map-matching algorithms use information generated from

positioning technologies and supplement with data from

a high resolution spatial road-network map to provide an

enhanced positioning output. It identifies the the correct road

on which vehicles travel and determines vehicles’ location

on that segment [27]. Map-matching approaches can be gen-

erally categorised into four groups: geometric, topological,

probabilistic, and other advanced techniques [27].

In this paper, we apply and implement a path based

map-matching algorithm that uses a Hidden Markov Model

(HMM) to find the most likely road route [23]. Compared

with the traditional point-based map-matching algorithm that

only utilizes the geometric information from GPS points, the

path based map-matching take the connectivity relationship

between consecutive GPS points into consideration. It also
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uses Viterbi algorithm to compute the global optimal path.

Figure 2: Path based map-matching

Figure 2 is a zoom-in view of the highway road network,

which is the environment we developed for experiment.

There are two parallel, directed edges r1 and r2 repre-

senting two directed road segments of the highway. One

car is driving counterclockwise on r2, forming a trajectory

[A,B,C]. The correct map-matching results are [A′, B′, C ′].
When applying point-based map-matching algorithm, that

matches GPS points to line segments with smallest matching

distance [41], point B is map-matched to B′′ due to the GPS

noise and the factor that point B is closer to road segment

r1. However, trajectory [A′, B′′, C ′] is invalid since a jump

between r1 and r2 is not allowed. Path based map-matching

incorporate geometric and topological information between

every two consecutive GPS points, and is able to correct the

map-matching result for point B from B′′ to B′.

B. Partitioning

The philosophy of clustering traffic speed data is to group

those GPS points that are spatially and temporally close to

each other and with similar speed. The Unit Cell (UC) is

defined as [39]:

Definition 1. (Unit Cell): A Unit Cell UCkl =
(ΔS

kl,Δ
T
kl, Vkl, Dkl) in the lth lane of a given road segment

is the minimal partition in spatial and temporal dimension,

characterized by a spatial range ΔS
kl = d+kl − d−kl, temporal

interval ΔT
kl = t+kl − t−kl, and a set of trajectories Dkl =

[Tr1, T r2, ...T rn] that belong to it. The set Dkl determines

the speed-value Vkl associated with UCkl

We note that the spatial range uses only “1D interval”

– i.e., d+kl − d−kl because the “conventional” 2-D space is

constrained to 1-D along the driving direction, representing

the distance(s) from starting point of the road segment (for

the corresponding lane) until the beginning of the k-th unit

cell (and the width is pre-determined by the road-type).

It is possible that multiple UCs share the similar

speed/speed cluster(if we regard all GPS points within one

UC as a single cluster). A Merging Cell (MC) is the

combination of two or more UCs.

Definition 2. (Merging Cell): A Merging Cell (MC) is a

union of multiple neighboring unit cells MCj = UC1 ∪
UC2∪...∪UCn. Its spatial range is defined as RMC = ∪iΔ

S
i

and its temporal interval TMC = ∪iΔ
T
i .

Figure 3: Unit cell and Merging cell

The merging process follows certain criteria and pro-

cedures, like speed threshold and agglomerative merging

in the previous work [39]. In the following sections, we

will propose a new distance measurement and merging

algorithm.

III. PROBABILISTIC GPS MODEL AND SPEED PROFILE

GPS devices yield measurement error associated with

each GPS-based determined location, even more so for

crowd-sourced GPS data collected from potable devices.

Due to the constraint of device size and cost, average hori-

zontal errors from consumer-grade GPS receiver range from

few meters to tens of meters [38]. Thus, deterministic lane

level computations based on GPS probe data are ambiguous,

so much so that the position may yield a different lane.

In this section, we first introduce a probabilistic model to

describe the location whereabouts for GPS points, followed

by a definition of speed profile for every UC.

A. Probabilistic GPS Weight

The uncertain disk model [33] is the most naive one for

uncertain location data, assuming uniform distribution. Let

Dp(x, y, t, r) denote the disk centered at point P (x, y, t)
with radius r, and Ai denote the area of lane i, which

is a rectangle shape area. The probability of a GPS point

located within a certain lane can be estimated by: Plane =
Dp(x,y,t,r)∩A
Dp(x,y,t,r)

. More sophisticated models describe the GPS

data as a zero-mean Gaussian model [23], [34]. In this

paper, we do not consider the GPS errors along vertical axis,

thus, measurements from GPS receivers follow 2D Gaussian

model. Given a GPS point Pi(xi, yi, ti), the probability

density function (pdf) is:

f(x, y) =
1

πσxσy
exp(−(

(x− xi)
2

2σ2
x

+
(y − yi)

2

2σ2
y

)) (1)

The 2D Gaussian model is illustrated in Figure 4, with

lane-width of 5m and spatial range ΔS
kl is 5m as well.
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Figure 4: GPS point location probability distribution

The location pdf for GPS point (12, 12, 0) spans over

multiple UCs and the probability of the GPS point be-

ing located into one UC is the integral of density func-

tion 1 over the spatial range within the lane width. Given

UC0(Δ
S
k0,Δ

T
k0, Vk0, Dk0) with spatial range [xuc, xuc +

ΔS
k0] and lane width [yuc, yuc + width], the probability of

Pi being inside UC0 is:

Pi =

∫ xuc+ΔS
k0

xuc

∫ yuc+width

yuc

f(x, y)dydx (2)

Definition 3. GPS Contribution CGPS : A GPS point G
contributes to a Unit Cell UC when the probability P for

G being located in UC is greater than ω – a threshold for

the minimum probability value.

We augment each trajectory TroID = [p1, p2...pn] within

a UC by a GPS contribution, thereby making each pi a

quadruplet pi = (xi, yi, ti, CGPSi).

B. Speed Profile

Given a UC with a set of augmented supporting trajecto-

ries, we apply a discretized histogram to estimate the traffic

distribution within each UC. Given a bin size φ and number

of bins n, instead of counting, the frequency for each bucket

is the aggregation of contribution from every GPS point,

reflecting a weighted sum for different points. The number of

bins determines the level of granularity of the speed profile.

We note that using only one bin is equivalent to a single

average speed while too many bins may incur computational

overhead. For a set of GPS points S with speed ranges within

(i ∗ φ, (i+ 1) ∗ φ), the total GPS contribution W is:

W (i) =
∑
s

Ci (3)

The discrete pdf for the speed within range (i ∗ φ, (i +
1) ∗ φ), which we call a Speed Profile, is:

pdfv(v ∈ (i ∗ φ, (i+ 1) ∗ φ)) = Pr(i) =
W (i)∑n
1 W (i)

(4)

Figure 5: Speed profile for a unit cell

An example of a speed profile is shown in Figure 5, where

φ is set to be 5km/h. There is one large peak at 80km/h,

representing majority of GPS contributions; and a small peak

near 20km/h, due to the contributions from slow lanes.

C. Merging Multiple Speed Profiles

Merging multiple UCs is the process to consolidate data

from multiple sources, and we assume that the sources

for GPS data within each UC are independent, because

each UC is unique in spatial-temporal space and GPS

measurements are independent. There are many approaches

to consolidate independent data sources [18], like averaging
the probabilities, and averaging the data, however, they have

disadvantages: either do not take the differences of variances

into consideration, or require averaging of dissimilar data.

Conflation is a method for consolidating a finite num-

ber of probability distributions P1, ..., Pn into a single

probability distribution Q = Q(P1, ..., Pn) [17], denoted

by &(P1, ..., Pn). Given multiple UCs (UC1, UC2...UCm)
with respective speed profile (pdfv1, pdfv2...pdfvm), the

merged probability distribution obtained via conflation is:

pdfMC
v (v ∈ (i ∗ φ, (i+ 1) ∗ φ)) = Pr(i)

=

∏m
1 pdfv(i)∑

y∈n
∏m

1 pdfv(y)

(5)

It has none of the disadvantages of the two averaging

methods described above and has many advantages and

important properties [18]:

(1) Conflation is commutative and associative:

&(pdf1, pdf2) = &(pdf2, pdf1) and

&(&(pdf1, pdf2), pdf3) = &(pdf1,&(pdf2, pdf3))
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(2) Conflation is iterative:

&(pdf1, pdf2, pdf3) = &(&(pdf1, pdf2), pdf3)

(3) Conflation minimizes the loss of Shannon information: If

pdf1 and pdf2 are independent probability distributions, then

the conflation &(pdf1, pdf2) of pdf1 and pdf2 is the unique

probability distribution that minimizes, over all events, the

maximum loss of Shannon information in replacing the pair

pdf1, pdf2 by a merged distribution pdfMC [18].

Properties (1) and (2) ensure that the conflation method

can be used when merging UCs in any order and sequences,

whereas (3) implies that conflation is compatible with en-

tropy related measurement – i.e., given a threshold for the

differences between two distributions in the information

space, merged distribution using conflation minimizes the

loss of Shannon information.

IV. SPEED CLUSTER MINING

After finalizing the pre-processing of the uncertain GPS

data and calculating speed profile for individual UCs, we

now proceed with the mining steps – i.e., detecting the speed

clusters in multi-lane settings.

We note that in our previous work [39] we proposed

a sweep line based method for merging neighboring UCs

by scanning along spatial, temporal and lane dimensions.

While the algorithm proposed in [39] is effective in terms

of reducing the number of UCs via merging, we observed

that different merging sequences will generate different

clustering results. To alleviate this phenomenon, in the rest

of this section, we present an improved merging algorithm

inspired by density based clustering.

(a) Traditional DBSCAN (b) UC as “dummy point”

Figure 6: DBSCAN inspired merging

A. Probabilistic Distance Measurement

The most important criterion for merging two UCs is the

level of similarity between them, in terms of the respec-

tive speed profiles. In the previous work [39], we used a

simple method which compared the average speeds and the

number of trajectories between two UCs with corresponding

thresholds. However, in this work we use the speed profile

as a more comprehensive description for drivers’ behavior

within certain UC and, given that we are catering to the fact

of uncertainty of the locations’ values, we decide whether to

merge two UCs or not by calculating the distance between

the respective discrete probability distributions. However,

the distance between two distributions cannot be easily cap-

tured through geometric distance. Typically, in information

theory, an uncertain object is treated as a random variable

following a particular probability distribution. One popular

measure for calculating the distance between two pdf’s is

the Kullback-Leibler divergence (also called information

gain) – essentially, a measure of the difference between

two probability distributions [22]. In our settings, given two

speed profiles described with the respective pdfi and pdfj ,

the Kullback-Leibler divergence from pdfi to pdfj – denoted

D(pdfi||pdfj), describes the amount of information loss

when pdfi is used to estimate pdfj . The equation defining

the Kullback-Leibler divergence is:

D(pdfi||pdfj) =
∑
v

pdfi(v)log
pdfi(v)

pdfj(v)
(6)

However, one specific property of the Kullback-Leibler

divergence is its asymmetry, which is fine in many applica-

tions settings that rely on Bayesian inference. Contrary to

this, in our settings, we would like to have the merging of

UCs to be an undirected process that can start from any UC

– and this makes the asymmetry an undesirable property.

Another method to measure the similarity between two

probability distributions is the Jensen-Shannon divergence

(JSD) (a.k.a. information radius) [22], which is commonly

used in clustering probability distributions. It is based on the

Kullback-Leibler divergence with the notable properties that

it is symmetric, always a finite value and the square root is a

metric. The Jensen-Shannon divergence between two speed

profiles pdfi and pdfj is denoted as JSDij .

JSDij =
1

2
D(pdfi||pdfi + pdfj

2
)+

1

2
D(pdfj ||pdfi + pdfj

2
)

(7)

In this work, we adopt the Jensen-Shannon divergence as

the distance function between two UCs.

Figure 7: One UC has six neighboring candidates

168168168



B. Mining Speed Clusters

The traditional DBSCAN [10] accepts a radius value ε
based on a (user defined) distance measure, and a value

MinPts for the number of minimal points that should occur

within Eps radius. A simple illustration is shown in Fig-

ure 6a, where ε = 2 and the Euclidean distance is used

as a distance so that, upon comparison with ε, one can

determine whether two points are connected. The points A,

B and C in Figure 6a are considered core points because

the discs with radii ε and centered at each of them, contain

at least 2 neighboring points and they belong to the same

cluster. Points D and E are not core points. However, they

are reachable from A through other core points – and,

consequently, they belong to the same cluster as well. The

point F is a separated/isolated noise point that is neither a

core point nor density reachable [10].

Inspired by DBSCAN, we propose Traffic-Density-

Merging (TDM), a density based clustering algorithm. When

mining the speed cluster based on fine-grained UCs, each

UC is treated as an “artificial point”, as shown in Figure 6b.

They are well-identified in terms of their organization in

the spatio-temporal 3D space and the Euclidean distances

between two spatially-consecutive points are the same. The

candidate-neighbors of a particular such “artificial point”

are defined as UCs which have representative “artificial

points” that are directly connected to the one representing

the particular UC. Thus, each “artificial point” can have at

most 6 candidate neighbors, as shown in Figure 7. As a

specific example, in Figure 6b, the “point” B has 3 candidate

neighbors. However, only “point” A and D have similar

speed profiles compared with “point” B, whose information-

distance JSD is smaller than the (assumed) threshold. There-

fore, B has two neighbors and is a core point (assuming

MinPts = 2). A, B and D can therefore be merged as a speed

cluster. This process is analogous to the one occurring in

the traditional DBSCAN – except, instead of the Euclidean

distance, JSD is used to calculate the respective distances in

the “information space” and a corresponding threshold λ is

defined to determine whether two neighboring UCs belong

to the same speed cluster.

Proceeding formally, and in the spirit of [10], the density

based speed cluster is defined as follows:

Definition 4. (Density-based speed cluster): A cluster C

is a non-empty subset of UCs satisfying the following

“maximality” and “connectivity” requirements:

1) ∀p, q: if q ∈ C and p is density-reachable from q with

respect to (λ) and MinPts, then p ∈ C.

2) ∀p, q ∈ C: p is density-connected to q with respect to

(λ) and MinPts.

The TDM starts with an arbitrary UCa. If it has been

visited, the iteration breaks and proceeds to the next UC.

Otherwise, we call the Neighbor-Query to retrieve its quali-

Algorithm 1 Traffic-Density-Merging (UCSets, MinPts, λ)

1: ClusterID = NextID(NULL);

2: for UC IN UCSets do
3: if UC.visited == True then
4: continue;

5: end if
6: UC.visited = True;

7: Neighbors = Neighbor-Query(UC, UCSets, λ);

8: if Neighbors.size() <MinPts then
9: Point.CID = Separate;

10: else
11: Point.CID = ClusterID;

12: Cluster = ExpandCluster(UCSets, Neighbors,

UC, ClusterID, MinPts, λ);

13: SpeedCluster.add(Cluster);

14: ClusterID = NextID(ClusterID);

15: end if
16: end for
17: Return SpeedCluster;

Algorithm 2 ExpandCluster (UCSets, Neighbors, UC, Clus-

terID, MinPts, λ)

1: Seeds = Neighbors;

2: Seeds.add(Point);

3: while Seeds.size() > 0 do
4: CurrentUC = Seeds.first();

5: Seeds.pop();

6: if CurrentUC.visited != True then
7: CurrentUC.visited = True;

8: Cluster.add(CurrentUC);

9: Cluster.MergeSpeedProfile(CurrentUC);

10: NewNeighbors = Neighbor-Query(CurrentUC,

UCSets, λ);

11: if NewNeighbors.size() >MinPts then
12: Seeds.Append(NewNeighbors);

13: end if
14: end if
15: if (CurrentUC.CID == NULL) OR (CurrentUC.CID

== Isolated) then
16: CurrentUC.CID = ClusterID;

17: end if
18: end while
19: Return cluster;

fied neighbors. As shown in Figure 7, UCa has six candidate

neighbors. Those candidate neighbors that have JSD less

than λ with the currently considered UC (UCa) become

neighbors that are density reachable from UCa. In the case

that the number of such neighbors is larger than MinPts,

UCa is a core UC and a cluster is identified. If the number of

neighbors is less than MinPts, it cannot form an independent

cluster, and we keep this UC as a separate one.

In Algorithm 1, UCSets is either the whole set of UCs
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Algorithm 3 Neighbor-Query (UC, UCSets, AverageSpeed,

λ)

1: CandidateNeighbors = UCSets.search();

2: for Neighbor in CandidateNeighbors do
3: if JSD(Neighbor, UC) <λ then
4: Neighbors.add(Neighbor);

5: end if
6: end for
7: Return Neighbors;

on certain road segment or a proper subset of them. MinPts

and λ are parameters that are provided as input to TDM and

they can be determined analytically or through experiments,

based on a particular scenario.

When a new/unvisted UC is identified as a core cell,

a new cluster is generated. Following that, the function

ExpandCluster is invoked, for which the pseudo-code is

presented in Algorithm 2, in order to expand the cluster

based on the current UC and its neighbors. The cluster

expansion process is essentially a depth-first kind of a

search. A stack is used to store all the seed UCs. If the

current UC is unvisited, we retrieve its neighbors using

Neighbor-Query in the same way as described above. The

qualified UCs are pushed onto the stack under the condition

that the current UC is identified as a core cell. If the current

UC has not been classified into any cluster or it is previously

marked as Separated, we append it into the current cluster.

If two clusters C1 and C2 are very close to each other

(in JSD sense), there might be scenario that a given UCi

belongs to both clusters – which entails that such UCi is on

the boundary between C1 and C2. If this is the case, UCi

will be assigned to the first discovered cluster. In addition,

we note that there will not be cases in which a particular

cluster partially intersects or if fully contained by another

cluster (otherwise the two clusters will be merged).

Remark: The Neighbor Query can be supported efficiently

by spatial access method like R*-trees [3], which is often

available in spatial database system – however, the issue of

indexing is beyond the scope of this paper and we defer it

for our future work.

Given the results for the original DBSCAN, we note that

the access time for a collection of n UCs is O(logn). As

we discover new clusters, for each of the n points there is at

most one invocation of the Neighbor-Query to be processed.

Therefore the time complexity for TDM is bounded by

O(nlogn) – which, once again, is the time complexity of the

traditional DBSCAN (cf. [10]) since we retain the general

framework for density based searching.

V. EXPERIMENTAL OBSERVATIONS

For our experiments, we used a data obtained from the

Grande Raccordo Anulare (GRA) motorway. It is a toll-

free, ring-shaped orbital motorway that encircles Rome, as

illustrated in Figure 8a, and it is considered to be one of the

most frequently used roads with heavy traffic for the most

of the day. Our experiments are based on a dataset contains

GPS traces of 320 taxi cabs in Rome, collected over 30

days – from February 1, until March 2 of 2014 [4]. The

cardinality of the dataset is 8,368,858 points.

(a) The GRA (b) Experiment environment

Figure 8: The Grande Raccordo Anulare and experiment

environment

To evaluate the benefit of our proposed speed cluster

mining algorithm, an augmented road network of GRA is

built based on OpenStreetMap data, where road segments

are augmented with three lanes. Figure 8b is a simple

visualization of such augmented road networks. Blue dots

represent GPS points that originated from two vehicles’

trajectories driving along the GRA.

The experimental evaluation consists of two parts – train-

ing and validation; and there are two steps in the training

process as well: (1) building speed profile for each UC, and

(2) mining speed clusters. We first train the model from

GPS traces collected from Rome taxi cabs. Subsequently,

we validate our model by predicting the travel time using

trained speed clusters.

The experiments were conducted on a MacOS machine

with 2.7 GHz Intel CPU with 8GB 1867MHz DDR3 RAM

and the implementation1 was done in Python 2.7.

Parameter Estimation and System Implementation: Our

probabilistic GPS uncertainty model calculating the GPS

contribution for each UC requires two parameters σx and σy .

They are the values of the corresponding standard deviation

of the Gaussion GPS noise in longitudinal and latitudinal

directions. This parameter can be affected by the measure-

ment devices and measurement environment. According to

experiments conducted/reported in the related literature [23],

we estimate the standard deviation of Gaussion GPS noise

to be 5 meters.

In the Traffic-Density-Merging algorithm, there are two

important parameters – MinPts, which determines whether

a given UC is a “core point”, and λ – which is the threshold

to determine the neighboring relationship between two UCs.

1We note that the code and the datasets are publicly available at
www.eecs.northwestern.edu/˜bzv686.
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MinPts is an integer in the range [1, 6] and λ is a real number

from the interval [0, 1].
There are many different ways of choosing data structure

to implement our proposed traffic speed cluster mining

algorithm. In our experiments, we used a simple scheme –

i.e., we built a three dimensional matrix in spatial-temporal

coordinates to index UCs on each road segments, which is

similar to the structure shown in Figure 3. The respective

dimensions in spatio-temporal coordinates are indexed to

UCs that are stored in a key-value map. While the overall

efficiency is not a topic of this work, we note that the

structure used in this experimental setup allows for a fast

query processing when inferring the traffic speed from

trained speed clusters.

Figure 9: Relative error for predicted travel time

Estimated Travel Time Query: Our first set of experiments

aims at illustrating how the speed clusters mining in the lane

level granularity can provides a more accurate, yet compact

description of the traffic distribution for road networks.

Many applications could benefit from it – e.g., adaptive

navigation, route planning and travel time prediction. In this

experiment, we implemented the travel time prediction to

demonstrate the advantage of our proposed method.

The Rome taxi dataset is divided into four folds according

to sample time. Each of them contains GPS points within

one week. We used three weeks data for training purpose,

and the remaining one was used for validation.

GPS points in validation trajectories are assigned to corre-

sponding lanes using the lane labeling process in [39]. Given

a validation trajectory Trval = [p1, p2...pn], the traffic speed

for certain GPS points Pi = (xi, yi, ti) can be inferred from

the speed profile of the corresponding speed cluster. Thus,

the predicted travel time Tpredict =
∑n−1

1
distance(Pi,Pi+1)
speed(xi,yi,ti)

.

Since the ground true driving time Ttrue = tn − t1, we

use relative prediction error e =
abs(Ttrue−Tpredict)

Ttrue
to

quantitatively measure the prediction power of the proposed

model.

The baseline method we compared with is the agglom-

erative mining method we proposed previously [39]. It

is a bottom-up clustering method with sweep line styled

merging. The experimental results are shown in Figure 9.

When the parameter MinPts is 3 and λ equals 0.1, the prob-

abilistic speed profiling with density based merging method

reduces prediction error by more than 20%. Compared with

the simple agglomerative method, the new model describes

the multi-lane traffic speed information with a probabilistic

speed profile and is able to make a more accurate travel time

prediction.

Figure 10: Percentage of UC reduction when changing

parameter

UC Reduction: As described in Section 2.3, we partition

the spatio-temporal space into fine-grained UCs. Since lots

of them will share similar speed profiles, it is not necessary

to store every UCs into the database. Therefore, merging is

a beneficial operation in the cluster mining process. We re-

iterate that the sweep line styled merging, proposed in [39],

has three possible merging directions for each UC and each

direction is processed sequentially. The disadvantage for this

merging method is its instability — the merging results

are affected by different merging sequences. The density-

based merging algorithm proposed in this paper overcomes

this issue. Due to the nature of depth first search within

the cluster expanding process, the density-based merging is

independent of merging direction and merging sequences.

Figure 10 shows the percentage of UC reduction with

various parameter choices. The highest compression ratio

reaches more then 96%, while the lowest one is still more

than 70% when MinPts is 5 and λ equals 0.1. The larger

λ values and smaller MinPts values (which correspond to

lessening the constraints for merging neighboring UCs) will

incur higher compression ratio.

Training and Validation Time:In the last experiment that

we report, we consider the respective execution times for

the model training and validation. The system for this

experiment is designed to run in an offline mode, where

the speed clusters are mined from historical GPS data. As

shown in Figure 11, the training process fo mining speed

clusters takes relatively long time. We note that the training
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Figure 11: Execution time for speed cluster training

time is related not only to the size of the raw data, but also to

the level of granularity of the partitioning. The smaller size

of UC (i.e., more granular representation) yields a longer

training time.

Figure 12: Execution time for travel time prediction

The main advantage for this offline trained model is that

processing queries that depend on the traffic speed distri-

bution is fast. When we validate the model by calculating

predicted travel time, all queries are finished within a second.

We note that this kind of an executional behavior is suitable

for many OLAP kinds of applications.

VI. RELATED WORK

Lane level positioning, routing and navigation are cor-

related research areas with high societal impacts. There

are two main categories of related works in this realm.

The first one attempts to directly map-match GPS points

to corresponding lanes [8]. This method usually requires

the use of Differential Global Positioning System (DGPS)

for data collection so that the GPS errors are smaller

than the usual lane width. However, because of the high

cost, DGPS has not been widely available in consumer

grade mobile devices. Other researchers choose to pursue

external calibration through computer visions [35], vehicle-

to-vehicle (V2V) communication or vehicle-to-infrastructure

(V2I) communication [2], [9]. These approaches require

additional hardware or infrastructure and cannot be applied

in large scale quickly.

Multiple models have been proposed to answer queries re-

lated to GPS uncertainties. From disk model of location un-

certainty (yielding sheared cylinder model in spatio-temporal

space) [33], through beads model [32], to adaptation of

the bead model on road networks [24]. More recently, an

attempt to combine heterogeneous location data sources in

the context of multi-lane road networks, called fused bead

model was presented in [40].

A complementary body of related works stems from the

literature addressing problems related to trajectories cluster-

ing, for both online and offline settings. Various clustering

algorithms and frameworks have been proposed, including

regression [12], partitioning and grouping [15] and density

based clustering [7]. However, most of these works are

targeting the, so called, macroscopic model and focus on

large scale pattern mining, which lead to application like

popular region discovery, event detection or route analysis.

In addition, very few of them combine the trajectories

clustering techniques with the constraint of road networks

and use it as a tool to analyze the traffic on the lane level

granularity.

VII. CONCLUDING REMARKS

We proposed a methodology for mining speed clusters

in multi-lane road networks, incorporating the uncertainty

of the moving objects location to capture the GPS errors

within the model. We proposed a novel distance function and

a variant of the DBSCAN algorithm for mining multi-lane

speed clusters. We used the Rome taxi data to demonstrate

that, compared with the agglomerative approach (cf. [39]),

our proposed method yields both a more compact represen-

tation of the clusters, as well as a more accurate travel time

calculation for trajectories.

There are several extensions to our work. Firstly, we plan

to tackle several efficiency-related aspects – namely, data

structures that will enable efficient storage and retrieval

of the elementary UCs. Our next aim is to incorporate a

few distinct contexts: (1) we would like to investigate the

impact of changes in the type of the road (i.e., from 4 lanes

expressway into a single lane local street); (2) we believe

that the an attribute with a stronger impact may be the kind

of a vehicle (e.g., passenger car vs. trucks); and (3) we

plan investigate the impact of speed/travel-time clustering in

the settings of multi-modal transportation. Our longer term

vision is to develop a model that will balance the trade-offs

between the precision of the clustering vs. the cost (both in

terms of access as well as execution time), when multiple

data sources can be combined – e.g., roadside sensors and

cameras – with the GPS-based location data.
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[24] J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis,
L. Chen, and H.-P. Kriegel. Probabilistic nearest neighbor
queries on uncertain moving object trajectories. PVLDB,
7(3):205–216, 2013.

[25] A. Pascale, F. Deflorio, M. Nicoli, B. D. Chiara, and M. Pe-
droli. Motorway speed pattern identification from floating
vehicle data for freight applications. Transportation Research
Part C: Emerging Technologies, 51:104 – 119, 2015.

[26] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia.
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