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Abstract Properly incorporating location-uncertainties – which is, fully considering their
impact when processing queries of interest – is a paramount in any application dealing with
spatio-temporal data. Typically, the location-uncertainty is a consequence of the fact that
objects cannot be tracked continuously and the inherent imprecision of localization devices.
Although there is a large body of works tackling various aspects of efficient management
of uncertainty in spatio-temporal data – the settings consider homogeneous localization
devices, e.g., either a Global Positioning System (GPS), or different sensors (roadside,
indoor, etc.).In this work, we take a first step towards combining the uncertain location data
– i.e., fusing the uncertainty of moving objects location – obtained from both GPS devices
and roadside sensors. We develop a formal model for capturing the whereabouts in time in
this setting and propose the Fused Bead (FB) model, extending the bead model based solely
on GPS locations. We also present algorithms for answering traditional spatio-temporal
range queries, as well as a special variant pertaining to objects locations with respect to lanes
on road segments – augmenting the conventional graph based road network with the width
attribute. In addition, pruning techniques are proposed in order to expedite the query pro-
cessing. We evaluated the benefits of the proposed approach on both real (Beijing taxi) and
synthetic (generated from a customized trajectory generator) data. Our experiments demon-
strate that the proposed method of fusing the uncertainties may eliminate up to 26 % of the

Research Supported by the NSF grant III 1213038.

Research Supported by the NSF grants CNS 0910952 and III 1213038, and ONR grant
N00014-14-10215.

� Bing Zhang
bing@u.northwestern.edu

Goce Trajcevski
goce@eecs.northwestern.edu

Liu Liu
leoliu@u.northwestern.edu

1 Northwestern University, 2145 Sheridan Road, Evanston, IL 60201, USA

 November 2015Accepted:

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10707-015-0238-6-x&domain=pdf
mailto:bing@u.northwestern.edu
mailto:goce@eecs.northwestern.edu
mailto:leoliu@u.northwestern.edu


180 Geoinformatica (2016) 20:179–212

false positives in the Beijing taxi data, and up to 40 % of the false positives in the larger
synthetic dataset, when compared to using the traditional bead uncertainty models.

Keywords Uncertainty fusion · Roadside sensors · Beads

1 Introduction

Many applications relying on some forms of Location Based Services (LBS) [39] depend
on efficient techniques for storing, retrieving and querying data which describes the
whereabouts-in-time of moving entities. Traditionally, such topics are studied in the field
of Moving Objects Databases (MOD) [15], and the impacts of the effectiveness of those
techniques are of an extreme importance in many applications of high societal relevance
such as transportation and traffic management [6, 7, 12, 44], disaster remediation [23] and
location-aware social networking [1]. Especially so since, due to the advances in network-
ing and miniaturization of the various GPS-enabled devices, the volume of location-in-time
data exceeds the order of Peta-Bytes per year just from smartphones [32].

Typically, the location of a given moving object at a particular time instant is obtained
either by some GPS (Global Positioning System) based devices [41, 51], or by some type
of a road-side sensor – e.g., lane level positioning [9, 21]. Such sensed location data may
be further combined with data from different on-board sensing devices – e.g., U.S. Xpress
gathers 900 to 970 data elements of various engine/component readings [29].

Due to the inherent imprecision of the sensing devices – be it on-board GPS or other –
typically there is a degree of uncertainty associated with the measurements of the location
of a given moving object at a particular time instant. The problem of capturing the impact of
the location uncertaintyinto the spatio-temporal data models [27] as well adding proper syntactic con-
structs to capture its impact on the MOD queries and the respective processing algorithms
has been recognized and tackled by several earlier works [8, 14, 15, 27, 36, 48, 49].

At the heart of the motivation for this work is the observation that the state of the art –
to the best of our knowledge – has not provided any models and algorithmic approaches
that would combine (i.e., fuse) uncertain location data from two different sources. Specif-
ically, we take a first step towards fusing the uncertain location data from on-board GPS
devices and road-side sensors. We demonstrate that properly considering the joint impact of
the uncertainties from both sources can eliminate portion of the moving objects (trajecto-
ries) from the answer-set. In other words, what may have been considered an answer under
the single (e.g., GPS) source, may become a false-positive after fusing the two location
uncertainties. As an example, consider the following query:

Q1: Retrieve all the vehicles which have crossed the lane in road segment RS1 when
driving less than 50km/h and carrying less than 80% of the maximum load.

Clearly, given the imprecision of the location measurements, Q1 needs to be re-phrased
so that it incorporates uncertainty:

Q1u: Retrieve all the vehicles which have had > � (0 < � ≤ 1) probability of crossing
the lane in road segment RS1 when driving less than 50km/h and carrying less than 80% of
the maximum load.

The answers to such, so called, lane-crossing queries play an important role in applica-
tions related to efficient traffic management [5, 18, 41] for the purpose of regulating the
regime of traffic lights [21, 31].
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The main contribution of this work can be summarized as follows:

– We propose a novel model of spatio-temporal uncertainty for moving objects, which
combines the location data obtained by GPS devices on-board moving objects and the
location data obtained from road-side sensors. We also report our preliminary experi-
mental observations, demonstrating the reduction of false positives from the answers to
certain spatio-temporal queries.

– We discuss the semantic implications of the model, in terms of the basic where at
and when at location-in-time (whereabouts) queries, and we present algorithms for
processing lane-crossing queries (exemplified by Q1u above) and basic range queries.

– We present experimental observations which quantify the benefits of fusing the two
uncertainties for lane-crossing and range queries in terms of the percentage of trajec-
tories which are pruned from the answer-sets when compared to using the traditional
bead-model of uncertainty for GPS-based location data.

We note that an earlier version of a subset of the results in this work was presented
in [56]. The present article extends [56] by providing a deeper analysis of the proposed
model; presenting a new theorem regarding the relationship of the new fusion-based model
in comparison to the existing models [27]; introducing the algorithms for processing the
continuous queries over the new model; and an extended set of experimental results.

The rest of this article is structured as follows. In Section 2 we recollect some
backgrounds in terms of modeling spatio-temporal uncertainty, and introduce the basic ter-
minology used in the rest of the work. Section 3 presents the details of the new uncertainty
model, along with the semantics of the basic whereabouts queries along with lane-crossing
and range queries. Section 6 describes our experimental observations. In Section 7 we com-
pare our work with related literature, and we summarize and outline directions for future
work in Section 8.

2 Preliminaries

We now present an overview of some of the techniques for obtaining location data, which we
assume and rely upon in this work. Specifically, we discuss the main features of road-side
sensors and GPS devices. Subsequently, we proceed with introducing the basic terminology
and notation used in the rest of the paper.

2.1 Road-side sensors

Starting in the 1920s, when the traffic signals were still manually controlled, several gen-
erations of sensor types have been developed and deployed along road segments in various
states – all for the purpose of more efficient traffic management. The types of such sensors
vary from the older pressure-sensitive ones introduced in 1931, to more modern laser-based
sensors sensors [50] and quite a few different types have been commercialized and used in
day-to-day practical settings. For example, the AMR sensor [18] developed by Honeywell
is a type of magnetic sensor with low cost. The WiEye [10] is a passive infrared sensor
that can be installed on top of motes to sense road condition. The variation of sensing tech-
nologies may affect the manner of how a motion is modeled, in order to capitalize on the
capabilities of a particular type of sensor. In this paper, the data model for roadside sensor
that we adopt is based on TruSense T-Series, manufactured by Laser Technology Inc. [28]
– a kind of active infrared sensor with a very accuracy as well as a high sampling rate.
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Table 1 Comparison among different types of sensors

Sensor technology Count Presence Speed Output Data Classification Multiple lane detection

Inductive loop � � � � � x

Magnetometer � � � � x x

(two axis fluxgate)

Magnetic induction � � � � x x

coil

Microwave radar � � � � � �
Active infrared � � � � � �
Passive infrared � � � � x x

Ultrasonic � � � � x x

Acoustic array � � � � x �
Video image processor � � � � � �

Table 1 provides a summary of features of several different types of roadside sen-
sors [50]. As can be seen, all of the popular and commercially available types can detect
the presence and speed of vehicles, as well as provide a count value for the number of vehi-
cles that have been detected in their sensing range. However, very few types provide more
detailed sensing capabilities, such as classification and multiple lanes detection. We note
that, unlike the GPS-based data, the location-in-time information obtained from the roadside
sensors has not been exploited extensively in MOD context.

2.2 GPS-based spatio-temporal uncertainty

As commonly done in the literature [15], in this paper the trajectory is defined as:

Definition 1 A trajectory T ri of a moving object with a unique identifier (oID) is
a sequence of triplets T roID = [(L1, t1), (L2, t2), vmax1] . . ., [(Ln−1, tn−1), (Ln, tn),
vmax (n−1)] where each Li = (xi, yi) is a point in 2D space in a corresponding reference
coordinate system, and ti denotes the time instant at which the object was at location Li .
When it comes to the time-values, i < j implies ti < tj , and vmax i denotes the maximum
speed of the object between samples at ti and ti+1.

Given the possibility of errors in the discrete location samples (e.g., due to the impreci-
sion of the GPS devices), plus the fact that one attempts to model a continuous phenomenon
(motion, in this case) with a discrete set – uncertainty becomes an inevitable component of
the model. The problem of incorporating the location uncertainty into the syntax and the
respective algorithms for calculating the queries answers has been treated from a couple
perspective in the MOD literature [15, 49].

One approach for modeling spatio-temporal uncertainty of moving objects is the, so
called, sheared cylinder model [49]. The main assumption is that at any time instant ti , the
object’s location is inside a given disk with a fixed radius, centered at the expected loca-
tion at ti . For time values different from sampling ones, the expected location is obtained
via linear interpolation [49]. This model assumes a fully-known trajectory is geared towards
processing continuous queries over past/historic trajectories.

The implications of the fact that the object’s motion was bound by some vmax in-
between two consecutive location updates was analyzed in [35]. Based on the definition as a
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Fig. 1 Bead and ellipse model

geometric set of 2D points, it was demonstrated that the possible whereabouts are bound
by an ellipse, with foci at the respective point-locations of the consecutive samples. Sub-
sequently, [19] presented a spatio-temporal version of the model, naming the volume
in-between two update points a bead, and the entire uncertain trajectory, a necklace. This
model was actually introduced as a space-time prism in the geography literature [16]. How-
ever, the first work to present a formal analysis of the properties of the bead are [27]. An
illustration is provided in Fig. 1. Letting d = √

(x2 − x1)2 + (y2 − y1)2 denote the distance
between the starting location (at t1) and ending location (at t2), the equation of the projected
ellipse (cf. [35]) is:

(2x − x1 − x2)
2

v2
max(t2 − t1)2

(2y − y1 − y2)
2

v2
max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2

= 1 (1)

The corresponding bead (equivalently, space-time prism) is specified with the following
constraints: ⎧

⎪⎨

⎪⎩

ti ≤ t ≤ ti+1

(x − xi)
2 + (y − yi)

2 ≤ [
(t − ti )v

i
max

]2

(x − xi+1)
2 + (y − yi+1)

2 ≤ [
(ti+1 − t)vi

max

]2
(2)

where vmax is the maximal speed that the object can take between ti and ti+1. We note
that, what is commonly called expected speed in the case of crisp trajectories, now becomes
minimal expected speed in-between the updates/samples. As shown in Fig. 1, at any time
instant t between two consecutive samples, the possible locations of the objects are bound by
the lens – i.e., intersection of two circles centered at the respective foci and with respective
radii vmax(t − t1) and vmax(t2 − t).
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In similar spirit to [47, 49] we can define a possible trajectory to be any trajectory which
has its starting point and its ending point coinciding with the foci, and is fully contained
inside the given bead.

2.3 Trajectories and road networks

If the objects are constrained to move along a road network, then one would expect that the
corresponding space-time prisms would somehow be restricted as volumes. Specifically,
if the segments of the road network are assumed to be edges in a graph, then the prisms
become restricted to 2D planar figures (c.f. [11]).

In this work, we define a road network as an augmented graph G = (P,ERS) where
P = {p1, p2, . . . , pn} denotes a set of points (commonly corresponding to intersections)
and ERS = {rS1, ..., rSk} is a collection of triplets of the form rSi = (ei, wei, vei) where:

– ei = (pi1, pi2) (∈ P X P ) is a “regular edge” (i.e., a link between two connected
vertices)

– wei denotes the width of the road segment associated with the edge ei .
– vei denotes the maximum speed associated with rSi .

We assume that the maximum speed in-between two consecutive location samples along
a particular road segment corresponds to the speed-limit of that segment. Geometrically
speaking, the collection of all the rSi’s is the boundary of the Minkowski sum of each
“regular edge” ei and a disk with diameter wei .

We also assume the existence of a collection of sensors S = {s1, s2, ..., sm}, where each
sensor sj is located at a point along the outer boundary of some road segment rSi . Each sj
detects when (i.e., the time instant at which) a moving object crosses the line segment going
through its location and perpendicular to ei . The concepts are illustrated in Fig. 2.

3 Modeling the uncertainties fusion

We now discuss the details of the new uncertainty model resulting from combining the
GPS-based location data and the location data generated by road-side sensors.

Fig. 2 Road segments and sensors



Geoinformatica (2016) 20:179–212 185

The main observation is that the road-side sensors provide additional constraints on the
possible whereabouts in-between two consecutive GPS-based samples (and vice-versa).
More specifically, recall that the “traditional” bead (i.e., space-time prism) was defined by
the system of inequalities (2) (cf. Section 2). In addition to those inequalities, we now have
the constraint that at a particular time instant tsi , the possible locations of a particular mov-
ing object detected by the roadside sensor are also known to be along a given line-segment
determined by:

1. the location of the corresponding road-side sensor, and
2. the direction which is perpendicular to the (boundaries of the) road segment.

This can be formalized as:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ti � t � ti+1,

(x − xi)
2 + (y − yi)

2 � (t − ti )
2v2

max,

(x − xi+1)
2 + (y − yi+1)

2 � (ti+1 − t)2v2
max,

y = mix + bi, when t = tsi
ti � tsi � ti+1.

(3)

An illustration of the system of constraints (3) is given in Fig. 3: Specifically, as shown
in Fig. 3a, the original GPS-based locations L1 and L2 would yield a 2D projection which
is an ellipse having them as foci (light-grey shaded shape in Fig. 3a) – denote it El1. Due
to the road-side sensor, the possible locations of the moving object at ts1 can only be along
the portion of line segment originating in (xs1, ys1), perpendicular to the boundaries of the
road segment, and intersecting the corresponding lens ofEl1 – i.e., along the portion of the
line segment L′

1L
′′
1. Clearly, that intersection has an uncountably many points, and we show

3 such points in Fig. 3a: L11, L12 and L13. Each such point, in turn, can be used as a “gen-
erator” for two more space-time prisms: one originating in L1, and the other terminating
at L2. The corresponding 2D projections (ellipses) are shown in Fig. 3a for L11, L12 and
L13. The most important implication is that when combining the original ellipse El1 with
the uncountably infinite collection of the ellipses with one of the foci along the line seg-
ment due to the road-side sensors, the additional constraint induces a significant amount of
a “dead-space” in El1. A more detailed illustration of the valid range for selecting the points
that will generate the infinite collection of (pairs of) new beads is given in Fig. 3b. Recall
that at any ts1 between the sampling times t1 and t2, the object can be located inside of the

(a) GPS + Roadside sensors (b) Determining boundaries

Fig. 3 Fusing GPS and roadside sensors data
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lens obtained as the intersection of the circles with radii vmax(ts1 − t1) and vmax(t2 − ts1).
Hence, although the ray emanating from the roadside sensor s1 would intersect the “global
boundary” (i.e., the ellipse which is the projection of the bead) at L′

1 and L′
1, the only valid

points to be considered as possible whereabouts are the ones along (and inside) the lens. As
shown in Fig. 3b, those are the points along the line segment bounded by L11 and L13.

We note that there is a complementary context of having a single uncertainty source –
i.e., in contrast to having GPS-based points only. Namely, if there were only the roadside
sensors available, then in between two detections by consecutive sensors (say, s1 and s2
from Fig. 2), the whereabouts of a given object is bounded by the infinite union ∪(Elsi,sj )

of uncountably many ellipses for which:

1. The first focus is some point Ls1 located on the line-segment originating at the location
of s1.

2. The second focus is some point Ls2 located on the line-segment originating at the
location of s2;

3. The distance between Ls1 and Ls2 is smaller than vmax(ts2 − ts1) (i.e., the object could
travel the distance within the time-interval [ts1, ts2] for the given speed limit).

Incorporating the GPS-based bead in this context would either amount to the case where
it intersects one (or more) of the line segments originating at the respective sensors loca-
tions, or it has no intersection with any of them. In the latter case, we have a scenario in
which GPS sampling frequency is higher than the sampling frequency obtained by the road-
side sensors. For such settings, the possible whereabouts will be reduced to the intersection
of the ∪(Elsi,sj ) and the bead obtained from the GPS-based samples. In the former case,
the model is a generalization of the one corresponding to the scenario illustrated in Fig. 3
– in the sense that it may be possible to have intersections of the GPS-based bead with > 1
sensor lines, as illustrated in Fig. 4. In the rest of this paper, we focus on detailed discussion
of the scenarios in which a bead is intersected by a line segment emanating from a single
roadside sensor.

We call the spatio-temporal structure induced by combining the two uncertainty sources
– GPS and roadside sensors – a Fused Bead (FB), and it is a sixtuple FB((xi , yi , ti), (xi+1,
yi+1, ti+1), vmax , ts , m, b) consisting of:

– The 2 GPS-based location-in-time samples (xi, yi , ti ), and (xi+1, yi+1, ti+1) along with
the vmax speed bound.

– The time instant of detection of the road-side sensor.

Fig. 4 Multiple roadside sensors
intersecting a bead
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Fig. 5 Proof of fused bead containment

– The parameters of the equation y = mx + b (in a given referent coordinate system) of
the line specifying the corresponding line-segment emanating from the roadside sensor
and specifying the locations of the possible new foci.

When it comes to bounding the possible whereabouts, an intuition may cause one expect
that some of the points along the intersection of the line segment with the ellipse El1 may
yield possible focal points that would generate ellipses which are not fully contained inside
El1. However, the set of constraints in Eq. 3 will eliminate every portion which is outside
the intersection of the original El1.

We now proceed with a formal analysis of an important property of the FB model,
towards which we first recall some of the properties of the bead model presented in [27]. Let
B(xi , yi , ti , xi+1, yi+1, ti+1, vmax) denote1 the bead between two location-samples (xi , yi)
and (xi+1, yi+1) at respective times ti and ti+1, during which the speed is bounded by vmax

Property 1 Given (xi , yi , ti), and (xi+1, yi+1, ti+1) with ti < ti+1 and vmax > 0, any trajec-
tory from (xi , yi , ti) to (xi+1, yi+1, ti+1) for which the speed at any moment ti ≤ t ≤ ti+1
is less than vmax is located within the bead B(xi , yi , ti , xi+1, yi+1, ti+1, vmax) and the pro-
jection of such a trajectory on the (x, y)-plane is located within πx,y(B(xi , yi , te, xi+1, yi+1,
ti+1, vmax)). Furthermore, for any point (x, y, t) in B(xi , yi , ti , xi+1, yi+1, ti+1, vmax), there
exists a trajectory from (xi, yi , ti ) to (xi+1, yi+1, ti+1) which passes through (x, y, t).

Property 1 explains the bounding relationship between trajectory and bead. Taking the
constrain (3) into consideration, one can deduce to the following corollary:

1The original notation in [27] was B(ti , xi , yi , ti+1, xi+1, yi+1, vmax ) and we slightly modified it for
consistency with the rest of the notation in this article.
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Corollary 1 Any trajectory from xi, yi, ti to (xi+1, yi+1, ti+1) which passes through a point
that lies on the boundary of the ellipse

(2x − x1 − x2)
2

v2
max(t2 − t1)2

+ (2y − y1 − y2)
2

v2
max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2

= 1 (4)

is the longest possible trajectory.

In a similar spirit, and based on these properties of the bead model, we now have the
following property regarding the FB model:

Lemma 1 Any bead generated by: (1) a focal point located in the GPS-based sample,
and (2) a point from the line segment P1P2 representing possible locations obtained via a
roadside sensor, is contained within the original bead.

Proof We prove Lemma 1 by contradiction. Assume that Pn is a point on the line segment
P1P2 and consider the ellipse El2 with foci Pn and L1. Let A1 denote a point which lies
within El2 but outside the original bead El1, defined by the original bead (i.e., foci L1 and
L2, and vmax bounding speed). Using Fig. 5 as an illustration, we proceed with connecting
the two line segments L1A1 and A1Pn. They intersect El1 at some points, denote them A2
and A3. According to Corollary 1, the polyline with two segments L1A3L2 is the longest
trajectory that the object could possibly move along from L1 to L2. However, by assump-
tion, A1 is bounded to be within El1 which, in turn, implies that L1A1Pn is a route of a valid
trajectory from L1 to Pn and, moreover, L1A1PnL2 is a route of a valid trajectory from
L1 to L2. However, since, based on the triangular inequality, A3A1 + A1Pn > A3Pn and
A3Pn +PnL2 > A3L2, we have A3A1 +A1Pn +PnL2 > A3L2. Based on the last inequal-
ity, we can conclude that L1A3 + A3A1 + A1Pn + PnL2 > L1A3 + A3L2, which implies
that the trajectory L1A1PnL2 is longer than trajectory L1A3L2. This, however, is a contra-
diction to the Corollary 1 which states that no other valid trajectory is longer than L1A3L2,
and we could conclude that assumption on the existence of point A1 is not valid.

Lemma 1 demonstrates that whenever there is a location sampling from a roadside sen-
sor in-between two GPS-based location samples, the possible locations by the FB model
are contained within the set of possible locations bounded by original GPS-based bead.
An illustration of a FB-based segment is shown in Fig. 6, and a visual comparison with
the illustration of the full GPS-based bead (cf. Fig. 1) reveals one of the consequences of
Lemma 1. Another important consequence of Lemma 1 is in the conclusion that the FB will
not introduce any false positives – in comparison with the traditional bead – when deter-
mining an intersection of the possible whereabouts with other (spatial, or spatio-temporal)
entities.

4 Possible locations at time instants

We now proceed with elaborating some basic calculations regarding the boundary of the
possible locations of a given object at a specific time instant under the FB model, as well
as the time-interval during which an object can be at a particular location. Subsequently,
we also discuss the methodology for detecting whether the possible locations of a moving
object are part of a given (spatial) range.
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Fig. 6 Outer boundary of the fused uncertain locations

Recall that the FB model is based on the original bead obtained via GPS-based locations
L1 and L2 (foci of a 2D ellipse El1) and a road-side sensor providing possible locations
along a line-segment perpendicular to a given road at a time instant ts (cf. Fig. 3a).

When it comes to location whereabouts at certain time instant ts1, the regular bead model
has a boundary defined by a lens Le(ts1) which obtained as the intersection of the circles
with radii vmax(ts1 − t1) and vmax(t2 − ts1), centered at L1 and L2 respectively (light blue

Fig. 7 Cross section of fused bead
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shaded area in Fig. 7). If it happens that at that same time instant the object has been detected
by a roadside sensor – then the object must be somewhere along the ray emanating from that
sensors location and perpendicular to the road segment. However, because of the uncertainty
boundary from the GPS-based location data, only the points along that ray which are inside
the lens Le are valid possible-locations – illustrated by the segment P1P2 in Fig. 7.

Let ε ∈ [0, 1] denote a real variable. Any point P(ts1, ε) ∈ P1P2 which is a possible
location of the object at ts1 has coordinates xP(ε) = εxP 1 + (1 − ε)xP 2 and yP(ε) =
εyP 1 + (1 − ε)yP 2

With this in mind, given a time instant ti ∈ [t1, ts1], the possible locations of the moving
object at ti are bounded by the uncountable union of intersections between:

1. The disk centered at L1 and with radius vmax(ti − t1).
2. An infinite collection of disks, each centered at a point P(ts1, ε) along P1P2 and each

with radius vmax(ts − ti )

In Fig. 7, the circles C1, C2 and C3 are examples of the boundaries of the objects where-
abouts at different time-values (ti) due to the GPS-sample at location L1. For a fixed value
of ti Fig. 7 also shows the boundary defined by the “envelope” of the union of the uncount-
ably many disks centered along P1P2 – essentially, the sum of the line segment P1P2 and a
disk with radius vmax(ts − ti ).

Depending on the time value and ε, there are five basic kinds of time-intervals during
which shapes of the unions determining the object’s whereabouts have distinct properties.
We use the phrase significant times to denote the boundaries of those time-intervals.

1. t ∈ [t1, t l1i ) (Occurrence of the first lens): During this interval, the possible locations
are inside a disk centered at L1 – this is the case when ti is very close to t1 – meaning:
regardless of the value of ε, each disk with radius vmax(ts − ti ) centered at any point
along P1, P2, fully covers the disk centered at L1 with radius vmax(ti − t1). Let Pc

and Pf denote points along P1P2 which is geometrically closest and farthest to L1
respectively. Clearly, point Pf will be the one with the earliest change of this kind of
containment with the disk – at some time instant t l1i , the intersection2 will switch from
a full-disk centered at L1 into a lens defined by the intersection of the two disks: one
centered at L1 and one centered at Pf .

2. t ∈ [t l1i , t
lA
i ) (from a single lens, until “lenses All”): During this time interval, depend-

ing on the values of ε, some of the disks centered along P1P2 (each with radius
vmax(ts1 − ti )) are still fully covering the disk centered at L1 with radius vmax(ti − t1).
These are the ones whose centers are closer to P1 (i.e., P(ts1, ε) with ε closer to 0).

3. t ∈ [t lAi , td1
i ) (from lenses All, until the first (full) disk appears): This is the time-period

during which each possible foci along P1P2 is a center of a disk with which yields
a lens-shaped intersection with the disc centered at L1. At the expiration of this time
interval, the disk centered at Pc and with radius vmax(ts −ti ) is about to be fully covered
by the disk centered at L1 and with radius: vmax(ti − t1)

4. t ∈ [td1
i , t

dA

i ) (from a single full disk appearance, until disks All): similarly to the 2nd
case above, during this time interval some of the disks centered along P1P2 have a lens-
shaped intersection with the disk centered at L1, while some are fully contained inside
of it.

5. t ∈ [tdA

i , ts1) (disks All): The last distinct time-interval for the part of the FB between
the first GPS-based foci and the roadside sensor is similar to case “1” above, in the sense

2For clarity, we present the details of calculating t l1i and other significant times in the Appendix.
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that every disk with radius vmax(ts1 − ti ), regardless of where its center is located along
P1P2, is fully contained inside the disk centered at L1 and with radius vmax(ti − t1).

We note that for time-values t ∈ [ts1, t2], the cases are analogous (and in reverse order)
from the ones specified above, in the sense that there are four significant time instants
defining five distinct intervals.

Let D1(t) denote the disk centered at L1 and with radius vmax(t − t1). Also, let DP (t, ε)

denote the disk centered at the point P(ts1, ε) with radius vmax(ts1−t). For a given 2D shape
S, let A(S) denote its area. Assuming a uniform distribution in each time-interval between
two consecutive significant times,3 we obtain that the corresponding pdf s (probability
density functions) are:

1. t ∈ [t1, t l1i ):

f (x, y, t) =
{

1
π(vmax(t−t1))

2 if(x, y) ∈ D1(t)

0 otherwise

2. t ∈ [t l1i , t
lA
i )

f (x, y, t) = 1

π(vmax(t − t1))2 + A(∪ε>δ1(t)(D1(t) ∩ DP (t, ε)))

where δ1(t) is the smallest value of ε at a given t for which DP (t, ε) �⊆ D1(t).
3. t ∈ [t lAi , td1

i )

f (x, y, t) = 1

A(∪ε(D1(t) ∩ DP (t, ε)))

4. t ∈ [td1
i , t

dA

i )

f (x, y, t) = 1

π(vmax(ts1 − t))2 + A(∪ε>δ2(t)(D1(t) ∩ DP (t, ε)))

where δ2(t) is the smallest value of ε at the given t for which D1(t) �⊆ DP (t, ε).
5. t ∈ [tdA

i , ts1)

f (x, y, t) =
{

1
π(vmax(ts1−t))2+P1P2·(vmax(ts1−t))

if(∀ε)DP (t, ε) ⊆ D1(t)

0 otherwise

When calculating the probability that a given moving object whose motion is modelled
as an FB is inside a given spatial range at a given time instant, we need the area of the
intersection. However, given the complexity of the boundary of the objects whereabouts, the
calculation of overlapping area may necessitate relying on numerical integration methods.

4.1 Numerical method for complex area calculation

Selecting an approximate evaluation method, i.e., numerical method, depends on the task at
hand. If we aim at calculating the intersection of two curves, the Newton-Raphson Method
is the most widely used one, whereas calculating the area bounded by a given curve may
rely upon Trapezoid Rule, Gaussian Quadrature Method or Monte Carlo Integration [13].

As an example, in a GPS-based bead, the location whereabouts given time instant are
relatively straightforward to compute since they are either a circular disk or a lens formed by

3Throughout this work, we assume independence between location-values in successive location samples
(cf. [4, 11]).
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Fig. 8 Area calculation in GPS-based bead

intersection of two circles. Moreover, finding the points where the boundary of the object’s
whereabouts intersect a given polygon is still achievable analytically, since the possibilities
amount to calculate an intersection between a circle and a line(segment) is limited, as shown
with P1 and P4 in Fig. 8. However, even in such cases, one may need to use numerical
methods for calculating the area of the intersection.

Given the complexity of the FB structure at a particular time instant, in this work we
resort to approximate computations based on a spatial grid, as shown in Fig. 9. Clearly, the

Fig. 9 Grid based numerical approximation
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size of the grid cell will affect the running time of the (execution of the) corresponding
algorithms. However, there is another aspect to consider – the (im)precision. By the very
definition of the FB, it is a union of uncountably many (subsets of) disks. Hence, we need to
discretize the number of such disks, for which a basic unit �d is introduced, specifying the
locations of the centers of the disks that will be accounted for when calculating a particular
area. These impacts are analyzed in Section 6.

5 Query processing

We now turn our attention to processing spatio-temporal queries under the FB model. We
start with the basic where at and when at location-in-time queries, followed by a range
query and lane-crossing query. Lastly, we discuss the possibility of speeding up the query
processing via pruning.

Without loss of generality, the presentation will use the setting of a single fused bead.
However, when necessary, the issues that may arise due to considering the entire necklace
will be explicitly addressed.

5.1 Basic queries

Similarly to the GPS-based bead, in order to determine the whereabouts at a given time
instant t for a fused bead, we need to obtain the intersection of FB with the horizontal plane
Time = t. The corresponding illustration of the volume in 2D space + Time, along with
the 2D projection, is shown in Fig. 10. The boundary of the 2D projection is obtained as
the “envelope” of the union of two collections of uncountably many intersections of disks
centered along the line-segment originating at the roadside sensor, with the disk centered at
L1. The details were elaborated in Section 4.

Fig. 10 Whereabouts at time instant
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Fig. 11 Range query for a given prism

The GPS-based bead (e.g., L1) and the other centered at a point along the intersection
chord (cf. L11L13 in Fig. 3) resulting from secant due to the roadside sensor and the arc
from the lens of the GPS-based bead. Thus, one of the boundaries is always a circular arc
originating at the focal point of the “original” GPS-based bead, centered at focus of the GPS-
based bead (say, L1) and with radius vmax(t − t1). The boundary is actually the boundary
of the union of uncountably many disks with radii vmax(ts1 − t), with centers along the
intersection-chord (Fig. 11).

The complementary query, when at(oID, L) returns the times during which it is pos-
sible for the object oID to be at the location L(xL, yL), i.e., a time-interval [tL1, tL2].
The time-interval can be defined as the two intersections between the boundary of the fused
bead FB and the vertical line (i.e., ray) emanating from L. To calculate the values, we have
the following observations:

1. tL2 is the latest time that a circle located at the GPS-based focus from the sample at t1
will “reach” L – hence, it can be obtained as a solution to the equation:

L1L = vmax(tL2 − t1)

2. tL1, on the other hand, is the earliest time that any circle with the center on the
intersection chord(P1P2 in Fig. 7) and radius vmax(ts − tL1) would pass through L.

5.2 Range query processing

A typical spatial range query aims at retrieving the spatial (static) objects which have a
particular topological relationship (e.g., inside, intersect, etc...) with a given range, which
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is, an entity with spatial extent [42]. A distinct feature of spatio-temporal range queries is
that they are continuous – i.e., the answer may change with time: for example, an object that
was inside a given query region may subsequently exit it, and vice versa. In our settings,
the key observation is that we need to take into account the uncertainty of the object’s
location at a given time instant when formulating the syntactic variants of the range query
[43, 49].

In this work, we assume that the spatial region of interest for the range query is bounded
by a simple polygon R (Fig. 11) and we also assume [tbq, teq] values indicating the
bounds of interest in the temporal dimension. We denote the set {∀(x, y, t)|(x, y ∈ R and
t ∈ [tbq , teq ])} for QPR (query prism). Earlier works [47, 49] have provided qualitative vari-
ants regarding the domains of space and time in the sense of uncertain object being inside
R: (1) sometimes or always throughout the time-interval of interest; and (2) possibly or
definitely so.

For a given uncertain trajectory represented as a sequence of FBs, Tr = [FB1, FB2, . . .,
FBn], where each FBi = ((xi , yi , ti), (xi+1, yi+1, ti+1), vmax , ts , m, b), we are interested in
answering the following type of a range query:

Qu
R: Does the moving object have a probability ≥ � of being inside R at least φ of the

time-interval [tbq , teq ].
We use the generic notation Inside (FB,R, tbq , teq , θ, φ) to denote the (parameterized

version of the) queries like Qu
R , with the intended meaning ∃φ – a sum of time-intervals

(not necessarily contiguous) during which the ratio of the intersection of the FB and
QPR is greater than �. We note that [47] proposed analytical solutions for answering
existential/universal variants by verifying intersecting conditions between ellipses and cir-
cles in the traditional bead model. Thus, for example, one could verify whether Sometime
Inside (FB,R, tbq, teq) based on an existence of a time instant at which the intersection
between R and FB is not empty – which corresponds to any � > 0 in the current context.
Similarly, the predicate Always Inside (FB,R, tbq , teq) would amount to � = 1 throughout
the entire time-interval of interest for the query.

Following our discussions in Section 4, the probability Prob(X,Y,T) (i.e., the probability
that the object is inside a region bounded by implicit curves “X”, “Y” throughout a time-
interval “T”) is defined as triple integral on 2D+time:

Prob(X, Y, T ) =
∫

T

∫

Y

∫

X

f (x, y, t)

The grid based numerical method provides an estimation regarding areas of loca-
tion whereabouts at a certain time instant. Assuming a uniform pdf at any time instant,
we have:

Prob(X, Y, T ) =
∫
T

Overlapping Area between FB and R (t)
∫
T

Possible FB Whereabouts (t)

= Overlapping Volume between FB and QPR

Overall volume of FB
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Let AFB(t) denote the area of the possible whereabouts of the object at time t (i.e., the
area of the region corresponding to the answer of where at(t) query) and let A(R) denote
the area of the query region R. We have the following algorithm:

Algorithm 1, without checking the value of the “time-accumulator” and with a minor
addition to sum up the values ((AF B(T ) ∩ A(R))/(AFB)(T )) × �, can be used to calculate
the ratio of the volume (i.e., the corresponding probability) of the object being inside R. We
note that, if one simply wants to calculate the probability of an object being inside QPR ,
without any concerns about � or φ (i.e., overloading the argument-signature), then the “If()”
test in Algorithm 1 can be eliminated, and the corresponding approximations summed up.

As our experimental results in Section 6 will illustrate, applying Algorithm 1 to process
range queries over uncertain trajectories modeled with FB consistently yields fewer false
positives, in comparison to the case of applying it to a collection of uncertain trajectories
represented via regular beads.

5.3 Lane-crossing query processing

Lane-crossing query can be perceived as a special case of a range query where the query
prism is degenerated from a polygon into a half plane. Figure 12, illustrates the lane-crossing
query for the regular bead and FB models. As mentioned in Section 1, the lane-crossing
query is important in applications related to fleet management and efficient traffic manage-
ment. We reiterate the statement explaining such queries:
Qu

LC : Given a fused bead FB(((xi, yi, ti ), (xi+1, yi+1, ti+1), vmax, ts , m, b)), does the
moving object have > � (0 < � ≤ 1) probability of crossing the lane and entering
half-plane R.

We use the generic notation Lane-Cross (FB,L, tbq, teq , θ) to specify the correspond-
ing predicate expressing the fact that an uncertain moving object represented via FB has
crossed the lane L on a given road segment (cf. Section 2) with a probability ≥ �, some-
time between [tbq , teq ]. If we wish to calculate the total probability of an object crossing
the lane L throughout the entire time-interval of interest of the query, then we can obtain
an approximate value by applying similar ideas as in Algorithm 1 – i.e., summing up the
products of the intersection area with �.
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(a) Bead model (b) Fused bead model

Fig. 12 Beads and lane-crossing query

5.4 Pruning techniques

Typically, spatio-temporal query processing proceeds in three “stages” [15]:

(1) Filtering, where an index is used to eliminate those data items that are guaranteed not
to satisfy the query [45]; followed by:

(2) Pruning, where some properties might be used to further reduce the set of the possible
candidates for the answer, portion without introducing any false negatives;

(3) Refinement, where algorithmic checks and calculations are used to eliminate false
positives that were not eliminated during the previous stage(s).

While the problem of efficient and effective indexing structures for processing spatio-
temporal queries over the FB model is outside the scope of this work, we note that for the
specific queries discussed here, there may be pruning approaches that can speed up the
overall execution of the spatio-temporal queries on FB model. In the sequel we discuss few
such strategies:

A. Definitely Outside – Individual Fused Bead Bounds (IBb)

Proposed in [47], this pruning strategy is designed for GPS-based bead. It approxi-
mates each GPS-based bead with its minimum bounding vertical cylinder. According to
the Lemma 1, FB is bounded by GPS-based bead, which justifies its application to FB
as well. In effect, the ellipse – which is the projection of a bead, formed by two GPS
points belongs to FB, on (X,Y) plane, becomes a circle centered in the center of the respec-
tive ellipse, as shown in Fig. 13. The radius of the approximation-disk Adi is: r(Adi) =
1/2(vi

max)(ti+1 − ti ).

B. Definitely Inside – GPS points pre-screening

This pruning technique is specially designed for lane-crossing query, where the predicate
determines if it is possible for a lane-cross to occur. The technique is based on the following
observation: if two consecutive GPS points are located on two different sides of the central
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Fig. 13 Cylinder-based pruning approximation

line, there must be at least one time instant at which the moving object crosses the road, in
which case we are able to prune the FB and direct return true.

C. Sometime Inside – fine grained dead-space removal

We are interested in finding the time instant(s) when uncertain trajectories enter/exit the
query region R – call them critical points. By doing so, we eliminate some redundant time-
intervals with respect to the time-bounds of a particular query. The general case for time
t ∈ [ti , ti+1] being a critical point occurs when the intersection of the uncertain region
at t with a query rectangle is a single point. In the time interval [ti , ts], the single-point-
intersection between disk centered at the first GPS point and query region stands for the
entering moment. Similarly, in the time interval [ts , ti+1], the single-point-intersection rep-
resents exiting moment. Since the query region is represented as polygon in the (X, Y )

plane, each edge of the polygon is defined as a segment of 2D line y = ax + b. The
calculation of the critical times is presented in the Appendix.

6 Experimental observations

We now present the experimental observations regarding the traded-offs between the ben-
efits of the FB model in terms of reducing the number of false positives in the queries’
answers vs. the computational costs. More specifically, we implemented the proposed
approach and tested it for lane-crossing query and range query, comparing the beads
obtained using only GPS data against the FB model, and ran comprehensive experimental
comparisons based on correctness, robustness and efficiency. In addition, we present two
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types of pruning techniques which we applied as part of the query processing and discuss
their impact.

6.1 Dataset description

In our experiments we used both synthetic and real-life datasets.

Synthetic Data The synthetic data was generated by a modified version of Brinkhoff
network-based generator, representing vehicles’ movements on road network. GPS points
are generated on the map of Oldenburg, which are available at the Brinkhoff generator
official website (http://iapg.jade-hs.de/personen/brinkhoff/generator/).

Real-life Data The real world dataset we used in our experiments is based on Beijing taxi
data from the T-Drive project [54, 55]. Essentially, the Beijing road network is built based
on OpenStreetMap data, containing 140207 vertices and 155997 road segments. GPS points
are map-matched to road network using point-to-curve matching approach [38]. Figure 14
illustrates the map matching process, where green dots correspond to the raw GPS points,
and the blue dots are the points obtained after map-matching process. To minimize the
impact of the measurement errors, we filtered out the low speed GPS points (i.e., ones with
speed less than 1m/s).

Following is the description of the setups that were applied in order to run the
experiments for each of the queries:

1. Vehicles are allowed to move along the road network with a speed ≤ 50km/h.
2. We add a width parameter to the road network, the value of which is set to be ≤ 4m [40].
3. At each time instant of the object’s motion along the road, its width location is generated

by a python-based random generator within a given random interval based on the width
parameter used in that location. The values are selected such that 0 represents the center
of the road; negative values represent left lane; and positive values represent the right
lane – with respect to the direction of the object’s motion.

Fig. 14 Beijing road network and taxi dataset
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4. We apply additional post-processing to the trajectories by adding roadside sensor data.
As mentioned, for a given location on the right (i.e., in the direction of object’s motion)
side of the road, we generate a ray perpendicular to the road’s boundary.

5. To cater to the variations of the speed, we vary the actual time at which the mov-
ing object crosses the ray corresponding to a particular roadside sensor. Given a bead
B(xi, yi, ti , xi+1, yi+1, vmax) and the ray y = mx +b from a given roadside sensor, we
calculate the time interval during which a moving object can cross the (ray generated at
the) location of the sensor as:

[Tsmin, Tsmax] =
[
ti + distance from (xi, yi) to sensor

vmax

, ti+1

− distance from (xi+1, yi+1) to sensor

vmax

]

Then we calculate the sensor time ts following normal distribution between Tsmin and
Tsmax with average μ = (Tsmin + Tsmax)/2 and standard deviation σ = ((Tsmax +
Tsmin)/2 − Tsmin)/2.5.

Experiments are conducted based on the synthesized dataset described above, and the
executional environment was a 64 bit jdk running on a Linux system with 4-core i7-3770
CPU with 3.40GHz, and 8GB of memory.

6.2 Granularity of the numerical solution

As mentioned in Section 4, a grid based numerical method is used to measure the cross
section area of FB given a certain time instant. Since the cell size significantly influences
the area estimation accuracy, we measured the number of grids between two GPS points as
a metric to determine the level of granularity. In the experiment, a traditional bead is formed
by two GPS sample points with a maximum speed. We pick an arbitrary query time and
calculate the location, which acts as a true value At . The estimated area is denoted as Ae,
and the relative error is defined as: δA = |Ae−At |

At
as the ratio between residual and true

value.
When determining the grid size, a 1 % tolerance was chosen as a threshold and multiple

runs of the experiment were performed for beads with different distance between two GPS
sample points.

As expected, we observe in Fig. 15 that the estimation errors decrease as the grid size
increases, and the numerical estimations for different size of beads – with distance ranging
from 1m to 1000m – have identical errors given the same grid size. Hence, to reach 1 % error
tolerance, we choose grid size to be such that there are 100 units between two successive
GPS points.

6.3 Lane-crossing query experiment

We assume road networks are composed of two-lane roads. A sequence of trajectories with
different lengths are generated and the data sets we used in experiments are not correlated -
that is, we generate each dataset separately.

Correctness improvement:
Figure 16 illustrates the number of false positives when lane-crossing query are applied

to trajectories, under the bead and FB model. As we can see, the FB eliminates around 40 %
of the false positives from GPS-based bead model, due to its reduction of “dead-space”.
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Fig. 15 Impact of grid size on the estimation accuracy

As a follow-up experiment, we reduced the percentages of FBs contained in trajectories
to five levels (0 %, 25 %, 50 %, 75 % and 100 %), in order to mimic real situations when
roadside sensors are not fully and densely deployed on a given road network. Figure 17
reveals the relationship between percentages of FBs and number of false positives. Clearly,
the more FBs contained as components of a trajectory, the smaller the overall number of
false positives.

When we apply the same experiment to Beijing Taxi data, its outcome indicates the
same effect, where 26.6 % false positives are reduced, as shown in Fig. 18. The real life

Fig. 16 Lane-crossing query — FB reduces number of false positives
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Fig. 17 Percentage of roadside sensor deployed influence the number of false positives

scenarios contained in Beijing taxi data is highly complicated, with continuously changing
speed, compared with Brinkhoff trajectory generator where vehicles drive under a constant
speed within each road segment. Despite the varieties and complications in real life data,
our algorithm is adaptive and effective in reducing location uncertainties.

Sensor deployment in real world applications is largely constrained by factors such as
budget, terrain, infrastructure, etc. To add to the realistic aspects of the experiments, we
examined the influence of sensor deployment density. The effects of executing the lane-
crossing query for the same dataset but for different sensor densities are illustrated in

Fig. 18 Lane-crossing query on Beijing taxi data set
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Fig. 19 Road-side sensor deployment density influences the number of false positives

Fig. 19. As shown, the higher the sensor deployment density is, the more false positive we
are able to reduce with the FB model.

Efficiency:
Next, we compare the performance of GPS-based bead and FB in terms of the respec-

tive execution times. An important parameter affecting the execution time is the number of
points chosen to approximate the line segment from roadside sensor (intersecting with lens),
which are used to construct sub-beads. Recall from Section 3, that the FB is the union of

Fig. 20 Execution time comparison
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Fig. 21 Number of points on the line segment from roadside sensor affects estimation accuracy

uncountably many sub-beads, with one of the foci located along the ray emanating from the
roadside sensor, within the width of the road. When approximating the uncountably many
sub-beads, the trade-off is the precision (i.e., using as many points as possible to have an
accurate approximation) vs. the computational overheads. Two experiments were performed
to compare both execution efficiency and approximation accuracy, executing lane-crossing
queries on trajectories with lenght ≤ 5000m, varying the number of points chosen on the
roadside sensor line segment. The total execution times for each of the GPS-based bead
model and FB model are displayed in Fig. 20. On a complementary note, taking maxi-
mum number of points allowed in a given grid setting as true value, their corresponding
approximation errors regarding location whereabouts areas are shown in Fig. 21.

To discuss one specific setting explicitly: in the case when six points were used on the
sensor line segment as a parameter for constructing the FB, in comparison with GPS-based
bead model: (1) we have an overhead of a 30 % latency in time to complete the query; (2)
however, in return, we reduce more than 26 % false positives and gain a much more narrow
possible locations boundary (modulo the accuracy of the area approximation).

6.4 Range-query experiment

The datasets used in range query are generated in the same fashion as the ones for the lane-
crossing query, and the query regions we used were squares and disks with respective areas
covering 12.5 % of the total map area. As shown in Fig. 22, similarly to the results for
the lane-crossing query, FB outperforms GPS-based bead model by reducing 30 % false
positives.

6.5 Impact of pruning

As discussed in Section 5, we postulated that pruning techniques can significantly improve
the efficiency of the queries processing. In addition, during the early stages of our experi-
ments, we also observed that the fine grained dead-space removal method did not provide
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Fig. 22 Range query — FB reduces number of false positives

any significant performance boost. Thus, we introduced the Individual Fused Bead bound-
ary (IBb) as a volume corresponding to a cylinder in 2D + time space, since in Algorithm 1
the most computationally expensive part is to aggregate the total volume in in the respective
2D + time space. Even though the redundant time removal method eliminates some time-
intervals with no intersections between FB and query prism from the refinement, we note
that one still needs to calculate the volume for those parts.

Figure 23 shows the effects of pre-processing based pruning. As the Fig. 23b indicates,
around 30 % of other total time have been saved via pruning. Figure 23a shows that as the
trajectory length increases, the number of FB that can be pruned increase accordingly.

Our experiment for the effects of pruning in the case of range query were conducted with
a data set containing trajectories with a total length of 55km. IBb rules out large amount
of data points that definitely have no intersections with query prism. In Fig. 24, x-axis
represents the ratio of the areas of the query region and the entire map. It indicates the

(a) Number of data pruned in lane-crossing query (b) Execution time for lane-crossing query

Fig. 23 Pruning techniques applied to lane-crossing query
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Fig. 24 Pruning — Individual fused bead bounds

relationship between the pruning effect and the size of query region. As we expected, when
the query area decrease, the IBb prunes more data points.

7 Related work

There are three main bodies of research literature that are related to the work presented in
this article and, in one way or another, were used as foundation for our work.

The first body of works consists of the results from the GIS, MOD and spatio-temporal
databases communities, where the problem of capturing the uncertainty of motion has
been studied extensively. Starting with [16], and more recently [53], the issue of uncertain
whereabouts from the perspective of probabilistic time geography has been tackled by a
model of emanating cones-in-time, with a vertex at the last location sample. The 2D bound-
ary of the possible locations of moving objects with bounded speed was formalized by an
ellipse in [35], and its 2D+time version – beads – was presented in [19]. Subsequently, [26,
27] provided a full formalization of the beads model and also provided extensions to capture
the impact of road networks [24]. A plethora of the works dealing with uncertainty (either in
free-space motion or road networks constrained) from MOD and spatio-temporal databases
community have also addressed the efficient processing of popular spatio-temporal queries
(range, (k)NN, reverse-NN) under various models of uncertainty [4, 15].

Unlike these works, we focused on fusing the uncertain location data from two sources –
GPS and the roadside sensors. In addition, to illustrate some of the features of the new model
and its use in query processing, unlike the traditional MOD-based works we considered the
road network which has a width as a parameter, instead of graph edges.

The second body of works originates in the transportation and traffic management com-
munities. Substantial efforts have been made to tackle the lane-crossing query and several
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works have focused on building novel system to overcome the shortcoming of single GPS
receivers which yields unstable measurements with large uncertainty [5, 9]. Complementary
attempts have been made to acquire location data using commercially available smart-
phones [41], but nearly 50 % of the data failed to fall within the road network region.
Other efforts include the use of integrated sensor like gyroscope to fill the unknown values
between two GPS sample updates [46]. However, the works did not consider the uncertainty
in-between consecutive GPS-based updates and sensor-based location detections.

Some of the works [9, 46], use map matching algorithms to determine which lane the
vehicle belongs to and, subsequently, try to revise the measurement error using post-
processing. However, the bead (or, space-time prism) model has not been exploited.

The third body of works originates from the Wireless Sensor Networks (WSN) com-
munity. Tracking of moving objects is considered to be a canonical research problem in
WSN settings. Various facets of the problem have been investigated: from the trade-off
between energy consumption and the accuracy of the tracking process, to routing protocols
for conveying location-in-time information to a given sink (see, e.g., [2, 3, 20, 34, 52]).
Typically, the location of a given object is determined by some form of collaborative trilater-
ation among the tracking sensors equipped with different distance-estimation devices (e.g.,
vibrations, audio-strength, etc.). However, to the best of our knowledge, there have been no
results on fusing the location data from heterogeneous sources.

8 Concluding remarks and future works

We proposed a formal model – FB (fused bead) – for capturing the possible whereabouts of
a moving object whose location data is obtained at discrete time-instants, either by a GPS-
device, or by a roadside sensor. Each of them entails a specific kind of uncertainty for the
location-in-time data, however, we demonstrated that when combining the values from the
two sources it turns out that “two uncertainties are better than one. In other words, integrat-
ing/fusing the data from both sources narrows the possible whereabouts when compared
to each individual location data source. We analyzed the details of the FB model, and its
impact on the lane-crossing query and range query, and conducted a collection of experi-
ments to compare the overall performance between GPS-based bead model and FB model.
We demonstrated that, by accepting a small amount overhead in the processing time, our
FB model reduces the number of false positives.

There are a few directions that we plan to pursue in the near future. Firstly, we would
like to investigate the impact of incorporating other types of sensors and location sources
– e.g., the ones obtained via cellular networks [17] or indoor-localization – and develop a
formal model capable of multisensor fusion [22]. A particular challenge in these settings
is that different data sources may have different horizons of spatial and temporal validity.
Our second extension is to consider the processing of other popular spatio-temporal queries
(e.g., Nearest Neighbor) under the new model of location uncertainty. Yet another avenue
is to extend the model/formalism so that it captures the uncertainty/imprecision in the very
samples [37] as well as the possibility of accelerated motion [25]. Lastly, we are also plan-
ning to investigate the impact that incorporating other kinds of semantic information in the
model – both in the representation of the trajectories [33], e.g., type of a vehicle (for fuel
consumption, size, etc.), as well as the type of roads [30] – can have on the processing of
spatio-temporal queries.
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Appendix A: Significant times in instantaneous possible location query

In Section 4 we analyze the boundary of the possible locations at a given time instant under
the FB model. The detailed significant times calculation will be presented here. Let dmin

and dmax denote the shortest and longest distance from L1 to any point P(ts1, ε) ∈ P1P2.

t l1i = t1 + ts

2
− dmax

2vmax

t lAi = t1 + ts

2
− dmin

2vmax

td1
i = t1 + ts

2
+ dmin

2vmax

tdA
i = t1 + ts

2
+ dmax

2vmax

Appendix B: Enter/exit time calculation for range query

The general case for time t ∈ [ti , ti+1] being a critical point occurs when the intersection of
the uncertain region at t with a query rectangle is a single point. In the time interval [ti , ts],
the single-point-intersection between disk centered at the first GPS point and query region
stands for the entering moment. Similarly, in the time interval [ts , ti+1], the single-point-
intersection represents exiting moment. Since the query region is represented as polygon in
the (X, Y ) plane, each edge of the polygon is defined as a segment of 2D line y = ax + b.

The entry boundary of FB is:

(x − xi)
2 + (y − yi)

2 = (t − ti )
2v2

max

Substituting for y for the equation of the line, we have:

(x − xi)
2 + (ax + b − yi)

2 = (t − ti )
2v2

max

This yields an equation in x and t:

A ∗ x2 + x ∗ (B + C ∗ t) + D ∗ t2 + E = 0

Where A,B, C,D, E are constant. Solving for x, as a function of t, we have:

x1,2 = −(B + C ∗ t) ± √
(B + C ∗ t)2 − 4 ∗ A ∗ (D ∗ t2 + E)

2 ∗ A

To be noted that, we need to check the solution for x against the boundaries of the respect
edge of the query region. To find the time for critical point, we set the discriminant to be
zero:

√
(B + C ∗ t)2 − 4 ∗ A ∗ (D ∗ t2 + E) = 0

The real root tin is the time instant when the uncertain trajectory start to enter the query
prism.

In the time interval [ts , ti+1], we can use the similar method to find the exiting time tout .
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