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ABSTRACT
We address the problem of efficient spatio-temporal cluster-
ing of speed data in road segments with multiple lanes. We
postulate that the navigation/route plans typically reported
by different providers as a single-value need not be accurate
in multi-lane networks. Our methodology generates lane-
aware distribution of speed from GPS data and agglomerates
the basic space and time units into larger clusters. Thus, we
achieve a compact description of speed variations which can
be subsequently used for more accurate trips planning. We
provide experiments that demonstrate the benefits of our
proposed approaches.
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1. INTRODUCTION
Routing and navigation have been popular applications re-

lying on traffic data since 1980s [6]. Techniques for efficiently
determining driving directions in terms of shortest travelled
distance or shortest travel-time, or even eco-routes (i.e., in
terms of optimizing the fuel consumption and/or CO emis-
sion) have been investigated by many researchers, both in
databases [12] and transportation communities [9], and im-
plemented by various map services providers (e.g., Google,
HERE, etc.). Algorithmic calculations rely on certain esti-
mated values of the traffic flow – equivalently, average speed
along the segments of the underlying road-networks – a value
that changes dynamically [12, 13] within a certain period
(e.g., a day) and may depend on several factors, such as:
time of day, capacity (lanes), road surface, etc. Tradition-
ally, traffic speed estimation is based on an averaged speed
among all observed vehicles as a “characteristic value”, for
which there are two main approaches: (1) Speed samples
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from each vehicle at different timestamps (averaged within
road segment) [8]; (2) Total travel distance divided by the to-
tal travel time along a particular/targeted road segment [12].
Existing route-planning methodologies and tools share one

Figure 1: Belmont Ave. exit on Lake Shore Drive

basic assumption: on any road segment, at a certain time-
period, vehicles have only one kind of motion. However, the
existence of multiple lanes may yield significantly different
speeds on the same road-segment and at same time-intervals.
Thus, using the average speed as a descriptor may not be
good enough for many routing applications. As an illustra-
tion, consider an actual picture from Chicago’s Lake Shore
Drive, near Belmont Avenue exit, shown in Figure 1. The
cars back up at the rightmost lane by Belmont Avenue exit
– used when accessing Wrigley Field baseball stadium, while
the rest of the 3 lanes on northbound Lake Shore have very
low densities. This situation occurs quite frequently dur-
ing non-rush hours throughout the baseball season. Thus,
averaging the observations from particular (groups of) vehi-
cles, could produce an inaccurate picture about the traffic
distribution – and, yet, most of the popular traffic speed es-
timation methods are based on averaging the samples from
vehicles over a period of time or area — e.g., Time Mean
Speed and Space Mean Speed [4].

At the heart of the motivation for this work is the ob-
servation that – to the best of our knowledge – the state
of the art approaches have not incorporated multi-lane in-
formation when designing traffic speed profiles to be used
for routes planning. We note that the research on map-
matching GPS points from moving objects [2] has not fully
exploited the settings of multiple lanes.

As mentioned, route planning is a foundational task for
many Location-Based Services but traditional methods [8,
12] can only vary a single (average) speed value throughout:
(a) different time intervals; and (b) along different (portions



of) road segments. In the context of the example in Fig-
ure 1, this would mean that a request for a route-plan be-
tween Navy Pier and Lawrence Avenue would use the av-
erage speed around Belmont Ave. exit, yielding incorrect
time-estimate for the targeted trip planning. To tackle such
issues, our main contributions are:
• We achieve a compact description of speed variations in
multi-lane road networks that can be used for more accurate
trips planning.
• We propose an agglomerative speed clustering algorithm
to represent the distribution in a more compact manner.
• We present experimental observations based on real data
from highways around Rome to demonstrate the benefits of
our proposed method.

2. PRELIMINARIES
We now present a brief overview of the related back-

ground and introduce the terminology. Traditionally, in
Moving Objects Databases (MOD) [5], the motion of an
object with a distinct ID (oID) is represented as a tra-
jectory TroID = [p1, p2...pn], where each pi is a triplet
pi = (xi, yi, ti); ti being the time that the object was at
location (xi, yi).

In this work, a road-network is a collection of multi-
lane road segments. A road segment r is a octuple r =
(rID, rDir, rs, re, rtype, rlength, rspeed, rlane), where: rID is
its unique identifier; rDir is a binary value indicating
whether r is one-way or two-way segment; rs and re are k-
tuples (k = number of lanes) representing the starting and
ending points of each lane (centroids); rtype indicates the
type of the road to which the segment belongs (e.g., urban,
rural, etc...); rlength is its length; rspeed is the maximum
speed; and rlane is an integer specifying the number of lanes
in each direction. A road network is an (augmented) graph
GRN = (VRN , ERN ) where VRN is the set of nodes repre-
senting the terminal points of road segments, and ERN is
the collection of road segments.

We note that in traditional traffic-stream studies there are
different measures characterizing the motion along road seg-
ments [4], often coupled with the available technology. For
example, inductive sensors are good for estimating the flow,
however, they cannot characterize the speed. On-board GPS
devices are good at obtaining an average speed of individual
moving objects, however, they are error-prone in terms of
location, and cannot capture fluctuations in-between sam-
ples. In this work, we assume that motion-relevant data
is obtained from (a sequence of) GPS points via a suitable
map-matching algorithm.

3. SPATIAL-TEMPORAL PARTITIONING
AND MERGING

Partition-and-merge framework for clustering trajectories
has been proposed in [7] – however, the work did not consider
the time-dimension (i.e., the speed) and was dealing with
free 2D motion, not constrained to road networks. Mod-
els have been proposed based on trajectories’ geographical
information (including moving objects’ heading and trajec-
tory density) and semantic information. Compared with
conventional trajectory clustering framework, in our prob-
lem of mining traffic speed clusters, GPS sample points are
constrained by road-network. However, map-matching with
uncertain location poses other challenges.

There are three steps for data partitioning: a) map-
matching GPS points to corresponding road segments.
b) Identifying lane information within augmented road-
network. c) Spatial-temporal partitioning to divide road
segments and associated GPS points into basic units for fur-
ther merging.

3.1 Map-matching and Lane Labeling
Map-matching algorithms use information generated from

positioning technologies and supplement it with data from
a high resolution road-network map to provide an enhanced
positioning output. They identify the correct road on which
vehicles travel and determine vehicles’ location on that seg-
ment – and can be categorized into four groups: geomet-
ric, topological, probabilistic, and other advanced tech-
niques [10]. In this work, we extend the most commonly
used geometric map-matching algorithm called “point-based
matching” (or point-to-curve matching).

Figure 2: Lane labeling

An augmented road segment and three GPS sample points
are shown in figure 2. Traditional road segment without
width is merely the central line A2B2. We augment it with
lane width – yielding A1B1 and A3B3 as central line of inner
lane and outer lane accordingly.

The uncertainty area of each GPS sample point is modeled
by a horizontal disk with radius r centered at (x, y, t), where
(x, y) is the expected location at time t ∈ (ti, ti+1) [11]. Let
Dp(x, y, t, r) denote the disk centered at point P (x, y, t) with
radius r, and Ai denote the area of lane i, approximated
by a rectangle. Assuming an uniform distribution of the
location inside Dp, the probability of one GPS point located
within the area of certain lane can be estimated by: Plane =
Dp(x,y,t,r)∩A
Dp(x,y,t,r)

. Then, GPS points are matched to the lane ID

which has the highest probability.

3.2 Partitioning and Merging
The philosophy of clustering traffic speed data is to group

those GPS points that are spatially and temporally close to
each other and with similar speed. Thus, based on a suit-
able minimum unit, larger clusters can be formed through
merging and reorganizing. We define the Unit Cell (UC) as:
Unit Cell: A Unit Cell UCkl = (∆S

kl,∆
T
kl, Vkl, Dkl) in the

lth lane of a given road segment is the minimal partition in
spatial and temporal dimension, characterized by a spatial
range ∆S

kl = d+kl−d
−
kl, temporal interval ∆T

kl = t+kl− t
−
kl, and

a set of trajectories Dkl = [Tr1, T r2, ...T rn] that belong to
it. The set Dkl determines the speed-value Vkl associated
with UCkl – i.e., it is a set of trajectories such that they
all have values of their speed that is within [vmin

k,l , vmax
k,l ]

throughout the spatial and temporal boundaries of UCkl.
More importantly, vmax

k,l − vmin
k,l ≤ δ′v – tolerance threshold

– and Vkl = (vmax
k,l + vmin

k,l )/2 . We note that the spatial

range uses only “1D interval” – i.e., d+kl − d−kl because the



“conventional” 2-D space is restructured as 1-D along the
driving direction. However, this is only representing the
distance(s) from starting point of the road segment (i.e., the
corresponding lane) until the beginning of the k-th unit cell
and the width is pre-determined by the width of the lanes
for a given road-type. Figure 3 shows a scenario of six such
unit cells distributed in two lanes, splitting each lane in 3
components, and with one temporal component.

Figure 3: Merging mechanism

Merged Cell: Intuitively, a Merged Cell (MC) is a union of
multiple neighboring unit cellsMCj = UC1∪UC2∪...∪UCn.
Its spatial range is defined as RMC = ∪i∆

S
i and its temporal

interval TMC = ∪i∆
T
i .

However, the more important criteria that we require for
merging two neighboring unit cells, inspired by [3, 7], are:
(1) V(k+1)l−Vkl ≤ δ′′v – i.e., the speed-values in the cells are
close enough to each other, and
(2) ||D(k+1)l| − |Dkl|| ≤ τ – i.e., the cells need to have close
enough number of trajectories in their support-set.

An illustration of a merging cell MC formed by two neigh-
boring UCs is shown in figure 3, in the (space, time, lane#)
dimensionality. We constrain the union to consist of neigh-
boring UC’s in order to keep the spatial and temporal conti-
nuity. The first observation that, depending on the merging
order chosen, a given collection of UCs need not yield a
unique (collection of) MCs. A slight generalization of the
scenario illustrated in Figure 3 can easily demonstrate that
a particular cell can participate in as many as six different
mergings, provided that there are ≥ 3 lanes. One can envi-
sion cells as being nodes in a graph and edges existing be-
tween neighboring cells. Upon merging, two nodes coalesce
into one – and, to select a criterion for merging, a priority
needs to be assigned among the adjacent vertices. Figure 3
illustrates merging of two neighboring edges from two lanes,
sharing the same time-interval and distance from the start of
the road-segment. However, in the current implementation,
this is the 3rd criterion:
(3.1) First we check whether cells can be merged along the
spatial dimension within the same lane.
(3.2) If not, we check next whether two cells with the same
spatial extent can be merged along the temporal dimension.
(3.3) Lastly, we check whether two cells can be merged along
neighboring lanes.

For every iteration of merging process there are three basic
steps that are followed when processing each node.

I If there are no neighbors along the merging direction,
the current cell is skipped and marked as visited.

II We check the cross-section coordinates between current
cell and its neighbor in the order of preferences of merg-
ing directions. If cross-section coordinates are aligned and
they satisfy the merging criteria, a merged cell is formed to
replace them. One example is shown in figure 3–I. When
we merge UC3 with UC4 along lane width dimension, their
cross-section are aligned and a new MC3 is formed. If we
try to merge MC3 with UC5 along spatial range dimension
in figure 3–II, their cross-section cannot match, and the cell
will be skipped.

III Newly merged cell inherits all the neighboring rela-
tionship from merged cells. At the same time, all neighbors
of two merged cells update their neighbor lists, by replacing
original cells with the new one.
Speed Cluster: When the merging process for a particular
(unit or merged) cell can no longer continue, we call that cell
a Speed Clusters (SC)

Algorithm 1 formalizes the above description.

Algorithm 1 Cluster Mining (CellSets, DirectionSets)

1: ClusterID = NextID(NULL);
2: for Merging Direction MD IN DirectionList do
3: while Cell in CellSets is unvisited do
4: Neighbor = Cell.Neighbors(i) along MD;
5: if Neighbor.size() == 0 then
6: Cell.visited = True;
7: Continue;
8: else if Align(Cell, Neighbor) == True AND Can-

Merge(Cell, Neighbor) == True then
9: NewCell = merge(Cell, Neighbor);

10: NewCell.Neighbors = mergeNeighbor(Cell,
Neighbor);

11: updateNeighbor(Cell, Neighbor, NewCell);
12: delete Cell, Neighbor;
13: else
14: Cell.visited = True;
15: end if
16: end while
17: CellSets.visited = False;
18: end for
19: Return CellSets;

Assume that there are a total of n GPS points in the
database, and (on the average) a road segment is com-
posed of O(K) spatial intervals in each lane and O(M) in-
tervals in the temporal dimension, defining the unit cells.
Under a uniform distribution, each unit cell will consist of
O(n/(KM)) GPS points from various trajectories. Calcu-
lating the merged cells and clusters along a road segment
can have an upper bound of O((KM)2) provided each one
of the K ·M cells is taken as a starting point to obtain the
best possible clustering in terms of the minimal final number
of clusters.

4. EXPERIMENTS AND CONCLUDING
REMARKS

Dataset: The Grande Raccordo Anulare (GRA) is a toll-
free, ring-shaped orbital motorway that encircles Rome. It
is one of the most important roads with heavy traffic for the
most of the day. The dataset contains GPS trace of 320 taxi



cabs in Rome, collected over 30 days in the Rome area, from
February 1 to March 2 of 2014 [1]. The cardinality of the
dataset is 8,368,858.
Baseline: The baseline approach we compared with is a tra-
ditional traffic speed estimation method (cf. Section 1), by
calculating the average speed among all speed samples. In
order to incorporate the variation along temporal dimension,
we divide speed samples into 24 subsets, which represent 24
hours in a day. Average speed within each hour is calculated
accordingly.
Evaluation: The data was divided into four folds accord-
ing to sample time, each containing GPS points within one
week. We used three weeks data to train our model, and
we randomly pick trajectories from the remaining set to es-
timate the travel time, by using both baseline method and
traffic speed clustering model.

The experiment was repeated 15 times and the average
of all the runs is shown in Figure 4. The x-axis represents
the aggregated travel distance, and y-axis stands for aver-
age estimated travel. On average, the travel time by using
speed clustering method is reduced by 20%, compared with
baseline approach. For the entire road networks, there are
8,328,960 UCs before merging, and 414,982 MCs after merg-
ing, which is a 95% reduction.

Figure 4: Travel time estimation using baseline approach
and agglomerative method

We proposed a speed clustering approach that incorpo-
rate multi-lane information with partitioning and merging.
We postulate that incorporating such information will yield
a more precise calculation for route planning. We use
Rome taxi data to demonstrate that, compared with baseline
approach, our method yields faster trajectories for longer
routes.

There are multiple extensions to our work. Firstly, we
need to investigate the trade-offs in terms of complexity
overheads (both space and time). Secondly, we note that
partitioning and merging requires a choice of (fixed) merging
rule. Even if this choice can be determined through experi-
ment, additional computation is made. We plan to consider
other kinds of learning approaches in conjunction with differ-
ent clustering techniques. We also plan for a more thorough
treatment of the (impact of the) GPS uncertainty/error [14]
to the speed cluster mining algorithm. During the lane la-
beling process, large GPS errors will incur potential misla-
beling, which later lead to noise points in the merging phase.
One possible direction is to soft allocate the weight of GPS
points to different lanes based on certain probabilities.
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