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Abstract Properly incorporating location-uncertainties – which is, fully considering their impact when
processing queries of interest – is a paramount in any application dealing with spatio-temporal data. Typi-
cally, the location-uncertainty is a consequence of the fact that objects cannot be tracked continuously and
the inherent imprecision of localization devices. Although there is a large body of works tackling various
aspects of efficient management of uncertainty in spatio-temporal data – the settings consider homogeneous
localization devices, e.g., either a Global Positioning System (GPS), or different sensors (roadside, indoor,
etc.).

In this work, we take a first step towards combining the uncertain location data – i.e., fusing the
uncertainty of moving objects location – obtained from both GPS devices and roadside sensors. We develop
a formal model for capturing the whereabouts in time in this setting and propose the Fused Bead (FB)
model, extending the bead model based solely on GPS locations. We also present algorithms for answering
traditional spatio-temporal range queries, as well as a special variant pertaining to objects locations with
respect to lanes on road segments – augmenting the conventional graph based road network with the width

attribute. In addition, pruning techniques are proposed in order to expedite the query processing. We
evaluated the benefits of the proposed approach on both real (Beijing taxi) and synthetic (generated from
a customized trajectory generator) data. Our experiments demonstrate that the proposed method of fusing
the uncertainties may eliminate up to 26% of the false positives in the Beijing taxi data, and up to 40% of
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the false positives in the larger synthetic dataset, when compared to using the traditional bead uncertainty
models.

Keywords Uncertainty Fusion, Roadside Sensors, Beads

1 Introduction

Many applications relying on some forms of Location Based Services (LBS) [39] depend on efficient tech-
niques for storing, retrieving and querying data which describes the whereabouts-in-time of moving entities.
Traditionally, such topics are studied in the field of Moving Objects Databases (MOD) [15], and the impacts
of the effectiveness of those techniques are of an extreme importance in many applications of high societal
relevance such as transportation and traffic management [6,7,12,44], disaster remediation [23] and location-
aware social networking [1]. Especially so since, due to the advances in networking and miniaturization of
the various GPS-enabled devices, the volume of location-in-time data exceeds the order of Peta-Bytes per
year just from smartphones [32].

Typically, the location of a given moving object at a particular time instant is obtained either by some
GPS (Global Positioning System) based devices [41, 51], or by some type of a road-side sensor – e.g., lane
level positioning [9, 21]. Such sensed location data may be further combined with data from different on-
board sensing devices – e.g., U.S. Xpress gathers 900 to 970 data elements of various engine/component
readings [29].

Due to the inherent imprecision of the sensing devices – be it on-board GPS or other – typically
there is a degree of uncertainty associated with the measurements of the location of a given moving object
at a particular time instant. The problem of capturing the impact of the location uncertainty into the
spatio-temporal data models [27] as well adding proper syntactic constructs to capture its impact on the
MOD queries and the respective processing algorithms has been recognized and tackled by several earlier
works [8, 14,15,27,36,48,49].

At the heart of the motivation for this work is the observation that the state of the art – to the best
of our knowledge – has not provided any models and algorithmic approaches that would combine (i.e.,

fuse) uncertain location data from two different sources. Specifically, we take a first step towards fusing the
uncertain location data from on-board GPS devices and road-side sensors. We demonstrate that properly
considering the joint impact of the uncertainties from both sources can eliminate portion of the moving
objects (trajectories) from the answer-set. In other words, what may have been considered an answer under
the single (e.g., GPS) source, may become a false-positive after fusing the two location uncertainties. As
an example, consider the following query:

Q1: Retrieve all the vehicles which have crossed the lane in road segment RS1 when driving less than 50km/h

and carrying less than 80% of the maximum load.

Clearly, given the imprecision of the location measurements, Q1 needs to be re-phrased so that it
incorporates uncertainty:

Q1u: Retrieve all the vehicles which have had > Θ (0 < Θ ≤ 1) probability of crossing the lane in road segment

RS1 when driving less than 50km/h and carrying less than 80% of the maximum load.

The answers to such, so called, lane-crossing queries play an important role in applications related to
efficient traffic management [5, 18,41] for the purpose of regulating the regime of traffic lights [21,31].

The main contribution of this work can be summarized as follows:

– We propose a novel model of spatio-temporal uncertainty for moving objects, which combines the lo-
cation data obtained by GPS devices on-board moving objects and the location data obtained from
road-side sensors. We also report our preliminary experimental observations, demonstrating the reduc-
tion of false positives from the answers to certain spatio-temporal queries.
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– We discuss the semantic implications of the model, in terms of the basic where at and when at location-in-
time (whereabouts) queries, and we present algorithms for processing lane-crossing queries (exemplified
by Q1u above) and basic range queries.

– We present experimental observations which quantify the benefits of fusing the two uncertainties for
lane-crossing and range queries in terms of the percentage of trajectories which are pruned from the
answer-sets when compared to using the traditional bead-model of uncertainty for GPS-based location
data.

We note that an earlier version of a subset of the results in this work was presented in [56]. The present
article extends [56] by providing a deeper analysis of the proposed model; presenting a new theorem regard-
ing the relationship of the new fusion-based model in comparison to the existing models [27]; introducing the
algorithms for processing the continuous queries over the new model; and an extended set of experimental
results.

The rest of this article is structured as follows. In Section 2 we recollect some backgrounds in terms of
modeling spatio-temporal uncertainty, and introduce the basic terminology used in the rest of the work. Sec-
tion 3 presents the details of the new uncertainty model, along with the semantics of the basic whereabouts
queries along with lane-crossing and range queries. Section 6 describes our experimental observations. In
Section 7 we compare our work with related literature, and we summarize and outline directions for future
work in Section 8.

2 Preliminaries

We now present an overview of some of the techniques for obtaining location data, which we assume and
rely upon in this work. Specifically, we discuss the main features of road-side sensors and GPS devices.
Subsequently, we proceed with introducing the basic terminology and notation used in the rest of the paper.

2.1 Road-side Sensors

Starting in the 1920s, when the traffic signals were still manually controlled, several generations of sensor
types have been developed and deployed along road segments in various states – all for the purpose of
more efficient traffic management. The types of such sensors vary from the older pressure-sensitive ones
introduced in 1931, to more modern laser-based sensors sensors [50] and quite a few different types have
been commercialized and used in day-to-day practical settings. For example, the AMR sensor [18] developed
by Honeywell is a type of magnetic sensor with low cost. The WiEye [10] is a passive infrared sensor that
can be installed on top of motes to sense road condition. The variation of sensing technologies may affect
the manner of how a motion is modeled, in order to capitalize on the capabilities of a particular type of
sensor. In this paper, the data model for roadside sensor that we adopt is based on TruSense T-Series,
manufactured by Laser Technology Inc. [28] – a kind of active infrared sensor with a very accuracy as well
as a high sampling rate.

Table 1 provides a summary of features of several different types of roadside sensors [50]. As can be
seen, all of the popular and commercially available types can detect the presence and speed of vehicles, as
well as provide a count value for the number of vehicles that have been detected in their sensing range.
However, very few types provide more detailed sensing capabilities, such as classification and multiple lanes
detection. We note that, unlike the GPS-based data, the location-in-time information obtained from the
roadside sensors has not been exploited extensively in MOD context.
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Table 1: Comparison among different types of sensors

Sensor technology Count Presence Speed Output Data Classification Multiple Lane detection
Inductive loop 3 3 3 3 3 7

Magnetometer (two axis fluxgate) 3 3 3 3 7 7

Magnetic induction coil 3 3 3 3 7 7

Microwave radar 3 3 3 3 3 3

Active infrared 3 3 3 3 3 3

Passive infrared 3 3 3 3 7 7

Ultrasonic 3 3 7 3 7 7

Acoustic array 3 3 3 3 7 3

Video image processor 3 3 3 3 3 3

Fig. 1: Bead and ellipse model

2.2 GPS-based Spatio-Temporal Uncertainty

The problem of incorporating the location uncertainty into the syntax and the respective algorithms for
calculating the queries answers has been treated from a couple perspective in the MOD literature.

One approach for modeling spatio-temporal uncertainty of moving objects is the, so called, sheared
cylinder model. The main assumption is that at any time instant ti, the object’s location is inside a given
disk with a fixed radius, centered at the expected location at ti. For time values different from sampling
ones, the expected location is obtained via linear interpolation [49]. This model assumes a fully-known
trajectory is geared towards processing continuous queries over past/historic trajectories.

The implications of the fact that the object’s motion was bound by some vmax in-between two con-
secutive location updates was analyzed in [35]. Based on the definition as a geometric set of 2D points, it
was demonstrated that the possible whereabouts are bound by an ellipse, with foci at the respective point-
locations of the consecutive samples. Subsequently, [19] presented a spatio-temporal version of the model,
naming the volume in-between two update points a bead, and the entire uncertain trajectory, a necklace.
This model was actually introduced as a space-time prism in the geography literature [16]. However, the
first work to present a formal analysis of the properties of the bead are [27]. An illustration is provided in
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Figure 1. Letting d =
√

(x2 − x1)2 + (y2 − y1)2 denote the distance between the starting location (at t1)
and ending location (at t2), the equation of the projected ellipse (cf. [35]) is:

(2x− x1 − x2)2

v2max(t2 − t1)2
(2y − y1 − y2)2

v2max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2
= 1 (1)

The corresponding bead (equivalently, space-time prism) is specified with the following constraints:
ti ≤ t ≤ ti+1

(x− xi)2 + (y − yi)2 ≤ [(t− ti)vimax]2

(x− xi+1)2 + (y − yi+1)2 ≤ [(ti+1 − t)vimax]2
(2)

where vmax is the maximal speed that the object can take between ti and ti+1. We note that, what is
commonly called expected speed in the case of crisp trajectories, now becomes minimal expected speed in-
between the updates/samples. As shown in Figure 1, at any time instant t between two consecutive samples,
the possible locations of the objects are bound by the lens – i.e., intersection of two circles centered at the
respective foci and with respective radii vmax(t− t1) and vmax(t2 − t).

If the objects are constrained to move along a road network, then the space-time prisms are restricted
in their size. Specifically, if the segments of the road network are assumed to be edges in a graph, then the
prisms become restricted to planar figures [11].

2.3 Trajectories and Road Networks

Throughout this paper, we consider the following definition of a trajectory:

Definition 1 A trajectory Tri of a moving object with a unique identifier (oID) is a sequence of triplets
TroID = [(L1, t1), (L2, t2), vmax1] . . ., [(Ln−1, tn−1), (Ln, tn), vmax (n−1)] where each Li = (xi, yi) is a point
in 2D space in a corresponding reference coordinate system, and ti denotes the time instant at which the
object was at location Li. When it comes to the time-values, i < j implies ti < tj , and vmax i denotes the
maximum speed of the object between samples at ti and ti+1

Fig. 2: Road segments and sensors

We define a road network as an augmented graph G = (P,ERS) where P = {p1, p2, . . . , pn} denotes a set
of points (commonly corresponding to intersections) and ERS = {rS1, ..., rSk} is a collection of triplets of
the form rSi = (ei, wei, vei) where:

– ei = (pi1, pi2) (∈ P X P ) is a “regular edge” (i.e., a link between two connected vertices)
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(a) GPS + Roadside sensors (b) Determining boundaries

Fig. 3: Fusing GPS and roadside sensors data

– wei denotes the width of the road segment associated with the edge ei.
– vei denotes the maximum speed associated with rSi.

We assume that the maximum speed in-between two consecutive location samples along a particular
road segment corresponds to the speed-limit of that segment. Geometrically speaking, the collection of all
the rSi’s is the boundary of the Minkowski sum of each “regular edge” ei and a disk with diameter wei.

We also assume the existence of a collection of sensors S = {s1, s2, ..., sm}, where each sensor sj is
located at a point along the outer boundary of some road segment rSi. Each sj detects when (i.e., the time
instant at which) a moving object crosses the line segment going through its location and perpendicular to
ei. The concepts are illustrated in Figure 2.

3 Modeling the Uncertainties Fusion

We now discuss the details of the new uncertainty model resulting from combining the GPS-based location
data and the location data generated by road-side sensors.

The main observation is that the road-side sensors provide additional constraints on the possible where-
abouts in-between two consecutive GPS-based samples (and vice-versa). More specifically, recall that the
“traditional” bead (i.e., space-time prism) was defined by the system of inequalities (2) (cf. Section 2). In
addition to those inequalities, we now have the constraint that at a particular time instant tsi, the possible
locations of a particular moving object detected by the roadside sensor are also known to be along a given
line-segment determined by:

1. the location of the corresponding road-side sensor, and
2. the direction which is perpendicular to the (boundaries of the) road segment.

This can be formalized as:
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ti 6 t 6 ti+1,

(x− xi)2 + (y − yi)2 6 (t− ti)2v2max,
(x− xi+1)2 + (y − yi+1)2 6 (ti+1 − t)2v2max,
y = mix+ bi,when t = tsi

ti 6 tsi 6 ti+1.

(3)

An illustration of the system of constraints (3) is given in Figure 3: Specifically, as shown in Figure 3a,
the original GPS-based locations L1 and L2 would yield a 2D projection which is an ellipse having them
as foci (light-grey shaded shape in Figure 3a) – denote it El1. Due to the road-side sensor, the possible
locations of the moving object at ts1 can only be along the portion of line segment originating in (xs1, ys1),
perpendicular to the boundaries of the road segment, and intersecting the corresponding lens ofEl1 – i.e.,
along the portion of the line segment L′1L

′′
1 . Clearly, that intersection has an uncountably many points,

and we show 3 such points in Figure 3a: L11, L12 and L13. Each such point, in turn, can be used as a
“generator” for two more space-time prisms: one originating in L1, and the other terminating at L2. The
corresponding 2D projections (ellipses) are shown in Figure 3a for L11, L12 and L13. The most important
implication is that when combining the original ellipse El1 with the uncountably infinite collection of the
ellipses with one of the foci along the line segment due to the road-side sensors, the additional constraint
induces a significant amount of a “dead-space” in El1. A more detailed illustration of the valid range for
selecting the points that will generate the infinite collection of (pairs of) new beads is given in Figure 3b.
Recall that at any ts1 between the sampling times t1 and t2, the object can be located inside of the lens
obtained as the intersection of the circles with radii vmax(ts1 − t1) and vmax(t2 − ts1). Hence, although the
ray emanating from the roadside sensor s1 would intersect the “global boundary” (i.e., the ellipse which is
the projection of the bead) at L′1 and L′′1 , the only valid points to be considered as possible whereabouts
are the ones along (and inside) the lens. As shown in Figure 3b, those are the points along the line segment
bounded by L11 and L13.

We note that there is a complementary context of having a single uncertainty source – i.e., in contrast
to having GPS-based points only. Namely, if there were only the roadside sensors available, then in between
two detections by consecutive sensors (say, s1 and s2 from Figure 2), the whereabouts of a given object is
bounded by the infinite union ∪(Elsi,sj) of uncountably many ellipses for which:

1. The first focus is some point Ls1 located on the line-segment originating at the location of s1.
2. The second focus is some point Ls2 located on the line-segment originating at the location of s2;
3. The distance between Ls1 and Ls2 is smaller than vmax(ts2 − ts1) (i.e., the object could travel the

distance within the time-interval [ts1, ts2] for the given speed limit).

Incorporating the GPS-based bead in this context would either amount to the case where it intersects
one (or more) of the line segments originating at the respective sensors locations, or it has no intersection
with any of them. In the latter case, we have a scenario in which GPS sampling frequency is higher than
the sampling frequency obtained by the roadside sensors. For such settings, the possible whereabouts will
be reduced to the intersection of the ∪(Elsi,sj) and the bead obtained from the GPS-based samples. In the
former case, the model is a generalization of the one corresponding to the scenario illustrated in Figure 3 –
in the sense that it may be possible to have intersections of the GPS-based bead with > 1 sensor lines, as
illustrated in Figure 4. In the rest of this paper, we focus on detailed discussion of the scenarios in which
a bead is intersected by a line segment emanating from a single roadside sensor.

We call the spatio-temporal structure induced by combining the two uncertainty sources – GPS and
roadside sensors – a Fused Bead (FB), and it is a sixtuple FB ( (xi, yi, ti), (xi+1, yi+1, ti+1), vmax, ts,m, b)
consisting of:
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– The 2 GPS-based location-in-time samples (xi, yi, ti), and (xi+1, yi+1, ti+1) along with the vmax speed
bound.

– The time instant of detection of the road-side sensor.
– The parameters of the equation y = mx+ b (in a given referent coordinate system) of the line specifying

the corresponding line-segment emanating from the roadside sensor and specifying the locations of the
possible new foci.

When it comes to bounding the possible whereabouts, an intuition may cause one expect that some of
the points along the intersection of the line segment with the ellipse El1 may yield possible focal points
that would generate ellipses which are not fully contained inside El1. However, the set of constraints in (3)
will eliminate every portion which is outside the intersection of the original El1.

We now proceed with a formal analysis of an important property of the FB model, towards which we
first recall some of the properties of the bead model presented in [27]. Let B(xi, yi, ti, xi+1, yi+1, ti+1, vmax)

Fig. 4: Multiple roadside sensors intersecting a bead

Fig. 5: Outer boundary of the fused uncertain locations
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Fig. 6: Proof of fused bead containment

denote1 the bead between two location-samples (xi, yi) and (xi+1, yi+1) at respective times ti and ti+1,
during which the speed is bounded by vmax

Property 1 Given (xi, yi, ti), and (xi+1, yi+1, ti+1) with ti < ti+1 and vmax > 0, any trajectory from
(xi, yi, ti) to (xi+1, yi+1, ti+1) for which the speed at any moment ti ≤ t ≤ ti+1 is less than vmax is lo-
cated within the bead B(xi, yi, ti, xi+1, yi+1, ti+1, vmax) and the projection of such a trajectory on the
(x, y)-plane is located within πx,y(B(xi, yi, te, xi+1, yi+1, ti+1, vmax)). Furthermore, for any point (x, y, t) in
B(xi, yi, ti, xi+1, yi+1, ti+1, vmax), there exists a trajectory from (xi, yi, ti) to (xi+1, yi+1, ti+1) which passes
through (x, y, t).

Property 1 explains the bounding relationship between trajectory and bead. Taking the constrain (3)
into consideration, one can deduce to the following corollary:

Corollary 1 Any trajectory from xi, yi, ti to (xi+1, yi+1, ti+1) which passes through a point that lies on the

boundary of the ellipse

(2x− x1 − x2)2

v2max(t2 − t1)2
+

(2y − y1 − y2)2

v2max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2
= 1 (4)

is the longest possible trajectory.

In a similar spirit, and based on these properties of the bead model, we now have the following property
regarding the FB model:

Lemma 1 Any bead generated by: (1) a focal point located in the GPS-based sample, and (2) a point from the

line segment P1P2 representing possible locations obtained via a roadside sensor, is contained within the original

bead.

Proof. We prove Lemma 1 by contradiction. Assume that Pn is a point on the line segment P1P2 and
consider the ellipse El2 with foci Pn and L1. Let A1 denote a point which lies within El2 but outside the
original bead El1, defined by the original bead (i.e., foci L1 and L2, and vmax bounding speed). Connect the

1 The original notation in [27] was B(ti, xi, yi, ti+1, xi+1, yi+1, vmax) and we slightly modified it for consistency with
the rest of the notation in this article.
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two line segments L1A1 and A1Pn. They intersect El1 at some points, denote them A2 and A3. According to
Corollary 1, the polyline with two segments L1A3L2 is the longest trajectory that the object could possibly
move along from L1 to L2. However, by assumption, A1 is bounded to be within El1 which, in turn, implies
that L1A1Pn is a route of a valid trajectory from L1 to Pn and, moreover, L1A1PnL2 is a route of a valid
trajectory from L1 to L2. However, since, based on the triangular inequality, A3A1 + A1Pn > A3Pn and
A3Pn+PnL2 > A3L2, we have A3A1 +A1Pn+PnL2 > A3L2. Based on the last inequality, we can conclude
that L1A3 + A3A1 + A1Pn + PnL2 > L1A3 + A3L2, which implies that the trajectory L1A1PnL2 is longer
than trajectory L1A3L2. This, however, is a contradiction to the Corollary 1 which states that no other
valid trajectory is longer than L1A3L2, and we could conclude that assumption on the existence of point
A1 is not valid.

Lemma 1 demonstrates that whenever there is a location sampling from a roadside sensor in-between
two GPS-based location samples, the possible locations by the FB model are contained within the set
of possible locations bounded by original GPS-based bead. The main implication of Lemma 1 is in the
conclusion that the FB will not introduce any false positives – in comparison with the traditional bead
– when determining an intersection of the possible whereabouts with other (spatial, or spatio-temporal)
entities.

4 Possible Locations at Time Instants

We now proceed with elaborating some basic calculations regarding the boundary of the possible locations
of a given object at a specific time instant under the FB model, as well as the time-interval during which an
object can be at a particular location. Subsequently, we also discuss the methodology for detecting whether
the possible locations of a moving object are part of a given (spatial) range.

Recall that the FB model is based on the original bead obtained via GPS-based locations L1 and L2 (foci
of a 2D ellipse El1) and a road-side sensor providing possible locations along a line-segment perpendicular
to a given road at a time instant ts (cf. Figure 3a).

When it comes to location whereabouts at certain time instant ts1, the regular bead model has a
boundary defined by a lens Le(ts1) which obtained as the intersection of the circles with radii vmax(ts1− t1)
and vmax(t2 − ts1), centered at L1 and L2 respectively (light blue shaded area in Figure 7). If it happens
that at that same time instant the object has been detected by a roadside sensor – then the object must
be somewhere along the ray emanating from that sensors location and perpendicular to the road segment.
However, because of the uncertainty boundary from the GPS-based location data, only the points along
that ray which are inside the lens Le are valid possible-locations – illustrated by the segment P1P2 in
Figure 7.

Let ε ∈ [0, 1] denote a real variable. Any point P (ts1, ε) ∈ P1P2 which is a possible location of the object
at ts1 has coordinates xP (ε) = εxP1 + (1− ε)xP2 and yP (ε) = εyP1 + (1− ε)yP2

With this in mind, given a time instant ti ∈ [t1, ts1], the possible locations of the moving object at ti
are bounded by the uncountable union of intersections between:

1. The disk centered at L1 and with radius vmax(ti − t1).
2. An infinite collection of disks, each centered at a point P (ts1, ε) along P1P2 and each with radius

vmax(ts − ti)

In Figure 7, the circles C1, C2 and C3 are examples of the boundaries of the objects whereabouts at
different time-values (ti) due to the GPS-sample at location L1. For a fixed value of ti Figure 7 also shows
the boundary defined by the “envelope” of the union of the uncountably many disks centered along P1P2

– essentially, the sum of the line segment P1P2 and a disk with radius vmax(ts − ti).
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Fig. 7: Cross section of fused bead

Depending on the time value and ε, there are five basic kinds of time-intervals during which shapes
of the unions determining the object’s whereabouts have distinct properties. We use the phrase significant

times to denote the boundaries of those time-intervals.

1. t ∈ [t1, t
l1
i ) (Occurrence of the first lens): During this interval, the possible locations are inside a disk

centered at L1 – this is the case when ti is very close to t1 – meaning: regardless of the value of ε,
each disk with radius vmax(ts − ti) centered at any point along P1, P2, fully covers the disk centered
at L1 with radius vmax(ti − t1). Let Pc and Pf denote points along P1P2 which is geometrically closest
and farthest to L1 respectively. Clearly, point Pf will be the one with the earliest change of this kind

of containment with the disk – at some time instant tl1i , the intersection2 will switch from a full-disk
centered at L1 into a lens defined by the intersection of the two disks: one centered at L1 and one
centered at Pf .

2. t ∈ [tl1i , t
lA
i ) (from a single lens, until “lenses All”): During this time interval, depending on the values of

ε, some of the disks centered along P1P2 (each with radius vmax(ts1 − ti)) are still fully covering the
disk centered at L1 with radius vmax(ti − t1). These are the ones whose centers are closer to P1 (i.e.,
P (ts1, ε) with ε closer to 0).

3. t ∈ [tlAi , t
d1
i ) (from lenses All, until the first (full) disk appears): This is the time-period during which each

possible foci along P1P2 is a center of a disk with which yields a lens-shaped intersection with the
disc centered at L1. At the expiration of this time interval, the disk centered at Pc and with radius
vmax(ts − ti) is about to be fully covered by the disk centered at L1 and with radius: vmax(ti − t1)

4. t ∈ [td1i , t
dA
i ) (from a single full disk appearance, until disks All): similarly to the 2nd case above, during

this time interval some of the disks centered along P1P2 have a lens-shaped intersection with the disk
centered at L1, while some are fully contained inside of it.

5. t ∈ [tdAi , ts1) (disks All): The last distinct time-interval for the part of the FB between the first GPS-
based foci and the roadside sensor is similar to case “1” above, in the sense that every disk with radius
vmax(ts1 − ti), regardless of where its center is located along P1P2, is fully contained inside the disk
centered at L1 and with radius vmax(ti − t1).

We note that for time-values t ∈ [ts1, t2], the cases are analogous (and in reverse order) from the ones
specified above, in the sense that there are four significant time instants defining five distinct intervals.

2 For clarity, we present the details of calculating tl1i and other significant times in the Appendix.
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Let D1(t) denote the disk centered at L1 and with radius vmax(t − t1). Also, let DP (t, ε) denote the
disk centered at the point P (ts1, ε) with radius vmax(ts1 − t). For a given 2D shape S, let A(S) denote its
area. Assuming a uniform distribution in each time-interval between two consecutive significant times3, we
obtain that the corresponding pdfs (probability density functions) are:

1. t ∈ [t1, t
l1
i ):

f(x, y, t) =

{
1

π(vmax(t−t1))2 if(x, y) ∈ D1(t)

0 otherwise

2. t ∈ [tl1i , t
lA
i )

f(x, y, t) =
1

π(vmax(t− t1))2 +A(∪ε>δ1(t)(D1(t) ∩DP (t, ε)))

where δ1(t) is the smallest value of ε at a given t for which DP (t, ε) 6⊆ D1(t).
3. t ∈ [tlAi , t

d1
i )

f(x, y, t) =
1

A(∪ε(D1(t) ∩DP (t, ε)))

4. t ∈ [td1i , t
dA
i )

f(x, y, t) =
1

π(vmax(ts1 − t))2 +A(∪ε>δ2(t)(D1(t) ∩DP (t, ε)))

where δ2(t) is the smallest value of ε at the given t for which D1(t) 6⊆ DP (t, ε).
5. t ∈ [tdAi , ts1)

f(x, y, t) =

{
1

π(vmax(ts1−t))2+P1P2·(vmax(ts1−t))
if(∀ε)DP (t, ε) ⊆ D1(t)

0 otherwise

When calculating the probability that a given moving object whose motion is modelled as an FB is
inside a given spatial range at a given time instant, we need the area of the intersection. However, given the
complexity of the boundary of the objects whereabouts, the calculation of overlapping area may necessitate
relying on numerical integration methods.

4.1 Numerical Method for Complex Area Calculation

Selecting an approximate evaluation method, i.e., numerical method, depends on the task at hand. If we
aim at calculating the intersection of two curves, the Newton-Raphson Method is the most widely used one,
whereas calculating the area bounded by a given curve may rely upon Trapezoid Rule, Gaussian Quadrature
Method or Monte Carlo Integration [13].

As an example, in a GPS-based bead, the location whereabouts given time instant are relatively straight-
forward to compute since they are either a circular disk or a lens formed by intersection of two circles.
Moreover, finding the points where the boundary of the object’s whereabouts intersect a given polygon is
still achievable analytically, since the possibilities amount to calculate an intersection between a circle and
a line(segment) is limited, as shown with P1 and P4 in Figure 8. However, even in such cases, one may need
to use numerical methods for calculating the area of the intersection.

3 Throughout this work, we assume independence between location-values in successive location samples (cf. [4, 11]).
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Fig. 8: Area calculation in GPS-based bead

Fig. 9: Grid based numerical approximation

Given the complexity of the FB structure at a particular time instant, in this work we resort to approxi-
mate computations based on a spatial grid, as shown in Figure 9. Clearly, the size of the grid cell will affect
the running time of the (execution of the) corresponding algorithms. However, there is another aspect to
consider – the (im)precision. By the very definition of the FB, it is a union of uncountably many (subsets
of) disks. Hence, we need to discretize the number of such disks, for which a basic unit ∆d is introduced,
specifying the locations of the centers of the disks that will be accounted for when calculating a particular
area. These impacts are analyzed in Section 6.
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Fig. 10: Whereabouts at Time Instant

5 Query Processing

We now turn our attention to processing spatio-temporal queries under the FB model. We start with the
basic where at and when at location-in-time queries, followed by a range query and lane-crossing query.
Lastly, we discuss the possibility of speeding up the query processing via pruning.

Without loss of generality, the presentation will use the setting of a single fused bead. However, when
necessary, the issues that may arise due to considering the entire necklace will be explicitly addressed.

5.1 Basic Queries

Similarly to the GPS-based bead, in order to determine the whereabouts at a given time instant t for a
fused bead, we need to obtain the intersection of FB with the horizontal plane Time = t. The corresponding
illustration of the volume in 2D space + Time, along with the 2D projection, is shown in Figure 10. The
boundary of the 2D projection is obtained as the “envelope” of the union of two collections of uncountably
many intersections of disks centered along the line-segment originating at the roadside sensor, with the disk
centered at L1. The details were elaborated in Section 4.

The GPS-based bead (e.g., L1) and the other centered at a point along the intersection chord (cf. L11L13

in Figure 3) resulting from secant due to the roadside sensor and the arc from the lens of the GPS-based
bead. Thus, one of the boundaries is always a circular arc originating at the focal point of the “original”
GPS-based bead, centered at focus of the GPS-based bead (say, L1) and with radius vmax(t − t1). The
boundary is actually the boundary of the union of uncountably many disks with radii vmax(ts1 − t), with
centers along the intersection-chord.

The complementary query, when at(oID, L) returns the times during which it is possible for the object
oID to be at the location L(xL, yL), i.e., a time-interval [tL1, tL2]. The time-interval can be defined as the
two intersections between the boundary of the fused bead FB and the vertical line (i.e., ray) emanating
from L. To calculate the values, we have the following observations:

1. tL2 is the latest time that a circle located at the GPS-based focus from the sample at t1 will “reach” L
– hence, it can be obtained as a solution to the equation:
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Fig. 11: Range query for a given prism

L1L = vmax(tL2 − t1)
2. tL1, on the other hand, is the earliest time that any circle with the center on the intersection chord(P1P2

in Figure 7) and radius vmax(ts − tL1) would pass through L.

5.2 Range Query Processing

A typical spatial range query aims at retrieving the spatial (static) objects which have a particular topolog-
ical relationship (e.g., inside, intersect, etc...) with a given range, which is, an entity with spatial extent [42].
A distinct feature of spatio-temporal range queries is that they are continuous – i.e., the answer may change
with time: for example, an object that was inside a given query region may subsequently exit it, and vice
versa. In our settings, the key observation is that we need to take into account the uncertainty of the
object’s location at a given time instant when formulating the syntactic variants of the range query [43,49].

In this work, we assume that the spatial region of interest for the range query is bounded by a simple
polygon R and we also assume [tbq, teq] values indicating the bounds of interest in the temporal dimension.
We denote the set {∀(x, y, t)|(x, y ∈ R and t ∈ [tbq, teq])} for QPR (query prism). Earlier works [47,49] have
provided qualitative variants regarding the domains of space and time in the sense of uncertain object being
inside R: (1) sometimes or always throughout the time-interval of interest; and (2) possibly or definitely so.

For a given uncertain trajectory represented as a sequence of FBs, Tr = [FB1, FB2, . . . , FBn], where
each FBi = ((xi, yi, ti), (xi+1, yi+1, ti+1), vmax, ts,m, b), we are interested in answering the following type of
a range query:
Qu
R: Does the moving object have a probability ≥ Θ of being inside R at least φ of the time-interval [tbq, teq].

We use the generic notation Inside (FB,R, tbq, teq, θ, φ) to denote the (parameterized version of the)
queries like Qu

R, with the intended meaning ∃φ – a sum of time-intervals (not necessarily contiguous)
during which the ratio of the intersection of the FB and QPR is greater than Θ. We note that [47] proposed
analytical solutions for answering existential/universal variants by verifying intersecting conditions between
ellipses and circles in the traditional bead model. Thus, for example, one could verify whether Sometime

Inside (FB,R, tbq, teq) based on an existence of a time instant at which the intersection between R and FB
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is not empty – which corresponds to any Θ > 0 in the current context. Similarly, the predicate Always Inside

(FB,R, tbq, teq) would amount to Θ = 1 throughout the entire time-interval of interest for the query.
Following our discussions in Section 4, the probability Prob(X,Y,T ) (i.e., the probability that the object

is inside a region bounded by implicit curves “X”, “Y” throughout a time-interval “T”) is defined as triple
integral on 2D+time:

Prob(X,Y, T ) =

∫
T

∫
Y

∫
X

f(x, y, t)

The grid based numerical method provides an estimation regarding areas of location whereabouts at a
certain time instant. Assuming a uniform pdf at any time instant, we have :

Prob(X,Y, T ) =

∫
T

Overlapping Area between FB and R(t)∫
T

Possible FB Whereabouts(t)
=

Overlapping Volume between FB and QPR
Overall volume of FB

Let AFB(t) denote the area of the possible whereabouts of the object at time t (i.e., the area of the
region corresponding to the answer of where at(t) query) and let A(R) denote the area of the query region
R. We have the following algorithm:

Algorithm 1 Inside (TrFB , R, tbq, teq, θ, φ)

1: float T = 0, ttotal = 0;
2: int k = 0;
3: while (tq + k · 4) < teq do
4: T = T +4;
5: if ((AFB(T ) ∩A(R))/ AFB)(T ) ≥ θ then
6: ttotal = ttotal +4
7: if ttotal ≥ φ then
8: The trajectory satisfies the predicate;
9: Exit;

10: end if
11: end if
12: k + +;
13: end while
14: Trajectory satisfies the predicate only ttotal of the [tbq , teq ];

Algorithm 1, without checking the value of the “time-accumulator” and with a minor addition to
sum up the values ((AFB(T ) ∩ A(R))/(AFB)(T )) × 4, can be used to calculate the ratio of the volume
(i.e., the corresponding probability) of the object being inside R. We note that, if one simply wants to
calculate the probability of an object being inside QPR, without any concerns about Θ or φ (i.e., overloading
the argument-signature), then the “If()” test in Algorithm 1 can be eliminated, and the corresponding
approximations summed up.

As our experimental results in Section 6 will illustrate, applying Algorithm 1 to process range queries
over uncertain trajectories modeled with FB consistently yields fewer false positives, in comparison to the
case of applying it to a collection of uncertain trajectories represented via regular beads.

5.3 Lane-crossing Query Processing

Lane-crossing query can be perceived as a special case of a range query where the query prism is degenerated
from a polygon into a half plane. Figure 12, illustrates the lane-crossing query for the regular bead and FB
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models. As mentioned in Section 1., the lane-crossing query is important in applications related to fleet
management and efficient traffic management. We reiterate the statement explaining such queries:
Qu
LC : Given a fused bead FB(((xi, yi, ti), (xi+1, yi+1, ti+1), vmax, ts,m, b)), does the moving object have > Θ

(0 < Θ ≤ 1) probability of crossing the lane and entering half-plane R.
We use the generic notation Lane-Cross (FB,L, tbq, teq, θ) to specify the corresponding predicate ex-

pressing the fact that an uncertain moving object represented via FB has crossed the lane L on a given
road segment (cf. Section 2.) with a probability ≥ Θ, sometime between [tbq, teq]. If we wish to calculate
the total probability of an object crossing the lane L throughout the entire time-interval of interest of the
query, then we can obtain an approximate value by applying similar ideas as in Algorithm 1 – i.e., summing
up the products of the intersection area with 4.

5.4 Pruning Techniques

Typically, spatio-temporal query processing proceeds in three “stages” [15]:

(1) Filtering, where an index is used to eliminate those data items that are guaranteed not to satisfy the
query [45]; followed by:
(2) Pruning, where some properties might be used to further reduce the set of the possible candidates for
the answer, portion without introducing any false negatives;
(3) Refinement, where algorithmic checks and calculations are used to eliminate false positives that were
not eliminated during the previous stage(s).

While the problem of efficient and effective indexing structures for processing spatio-temporal queries
over the FB model is outside the scope of this work, we note that for the specific queries discussed here,
there may be pruning approaches that can speed up the overall execution of the spatio-temporal queries
on FB model. In the sequel we discuss few such strategies:
A. Definitely Outside – Individual Fused Bead Bounds (IBb)

Proposed in [47], this pruning strategy is designed for GPS-based bead. It approximates each GPS-
based bead with its minimum bounding vertical cylinder. According to the Lemma 1, FB is bounded
by GPS-based bead, which justifies its application to FB as well. In effect, the ellipse – which is the
projection of a bead, formed by two GPS points belongs to FB, on (X,Y ) plane, becomes a circle centered
in the center of the respective ellipse, as shown in figure 13. The radius of the approximation-disk Adi is:
r(Adi) = 1/2(vimax)(ti+1 − ti).
B. Definitely Inside – GPS points pre-screening

(a) Bead model (b) Fused bead model

Fig. 12: Beads and lane-crossing query
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Fig. 13: Cylinder-based pruning approximation

This pruning technique is specially designed for lane-crossing query, where the predicate determines if it
is possible for a lane-cross to occur. The technique is based on the following observation: if two consecutive
GPS points are located on two different sides of the central line, there must be at least one time instant
at which the moving object crosses the road, in which case we are able to prune the FB and direct return
true.
C. Sometime Inside – fine grained dead-space removal

We are interested in finding the time instant(s) when uncertain trajectories enter/exit the query region
R – call them critical points. By doing so, we eliminate some redundant time-intervals with respect to the
time-bounds of a particular query. The general case for time t ∈ [ti, ti+1] being a critical point occurs when
the intersection of the uncertain region at t with a query rectangle is a single point. In the time interval
[ti, ts], the single-point-intersection between disk centered at the first GPS point and query region stands
for the entering moment. Similarly, in the time interval [ts, ti+1], the single-point-intersection represents
exiting moment. Since the query region is represented as polygon in the (X,Y ) plane, each edge of the
polygon is defined as a segment of 2D line y = ax+ b. The calculation of the critical times is presented in
the Appendix.

6 Experimental Observations

We now present the experimental observations regarding the traded-offs between the benefits of the FB
model in terms of reducing the number of false positives in the queries’ answers vs. the computational costs.
More specifically, we implemented the proposed approach and tested it for lane-crossing query and range
query, comparing the beads obtained using only GPS data against the FB model, and ran comprehensive
experimental comparisons based on correctness, robustness and efficiency. In addition, we present two types
of pruning techniques which we applied as part of the query processing and discuss their impact.

6.1 Dataset Description

In our experiments we used both synthetic and real-life datasets.
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Fig. 14: Beijing road network and taxi dataset

Synthetic Data: The synthetic data was generated by a modified version of Brinkhoff network-
based generator, representing vehicles’ movements on road network. GPS points are generated on the
map of Oldenburg, which are available at the Brinkhoff generator official website (http://iapg.jade-
hs.de/personen/brinkhoff/generator/).

Real-life Data: The real world dataset we used in our experiments is based on Beijing taxi data from
the T-Drive project [54, 55]. Essentially, the Beijing road network is built based on OpenStreetMap data,
containing 140207 vertices and 155997 road segments. GPS points are map-matched to road network using
point-to-curve matching approach [38]. Figure 14 illustrates the map matching process, where green dots
correspond to the raw GPS points, and the blue dots are the points obtained after map-matching process.
To minimize the impact of the measurement errors, we filtered out the low speed GPS points (i.e., ones
with speed less than 1m/s).

Following is the description of the setups that were applied in order to run the experiments for each of the
queries:

1. Vehicles are allowed to move along the road network with a speed ≤ 50km/h.
2. We add a width parameter to the road network, the value of which is set to be ≤ 4m [40].
3. At each time instant of the object’s motion along the road, its width location is generated by a python-

based random generator within a given random interval based on the width parameter used in that
location. The values are selected such that 0 represents the center of the road; negative values represent
left lane; and positive values represent the right lane – with respect to the direction of the object’s
motion.

4. We apply additional post-processing to the trajectories by adding roadside sensor data. As mentioned,
for a given location on the right (i.e., in the direction of object’s motion) side of the road, we generate
a ray perpendicular to the road’s boundary.

5. To cater to the variations of the speed, we vary the actual time at which the moving object crosses the
ray corresponding to a particular roadside sensor. Given a bead B(xi, yi, ti, xi+1, yi+1, vmax) and the ray
y = mx+ b from a given roadside sensor, we calculate the time interval during which a moving object
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Fig. 15: Impact of grid size on the estimation accuracy

can cross the (ray generated at the) location of the sensor as:

[Tsmin, Tsmax] = [ti +
distance from (xi, yi) to sensor

vmax
, ti+1 −

distance from (xi+1, yi+1) to sensor

vmax
]

Then we calculate the sensor time ts following normal distribution between Tsmin and Tsmax with
average µ = (Tsmin + Tsmax)/2 and standard deviation σ = ((Tsmax + Tsmin)/2− Tsmin)/2.5.

Experiments are conducted based on the synthesized dataset described above, and the executional
environment was a 64 bit jdk running on a Linux system with 4-core i7-3770 CPU with 3.40GHz, and 8GB
of memory.

6.2 Granularity of the Numerical Solution

As mentioned in Section 4, a grid based numerical method is used to measure the cross section area of
FB given a certain time instant. Since the cell size significantly influences the area estimation accuracy, we
measured the number of grids between two GPS points as a metric to determine the level of granularity.
In the experiment, a traditional bead is formed by two GPS sample points with a maximum speed. We
pick an arbitrary query time and calculate the location, which acts as a true value At. The estimated area

is denoted as Ae, and the relative error is defined as: δA = |Ae−At|
At

as the ratio between residual and true
value.

When determining the grid size, a 1% tolerance was chosen as a threshold and multiple runs of the
experiment were performed for beads with different distance between two GPS sample points.

As expected, we observe in Figure 15 that the estimation errors decrease as the grid size increases, and
the numerical estimations for different size of beads – with distance ranging from 1m to 1000m – have
identical errors given the same grid size. Hence, to reach 1% error tolerance, we choose grid size to be such
that there are 100 units between two successive GPS points.



Towards Fusing Uncertain Location Data From Heterogeneous Sources 21

Fig. 16: Lane-crossing query — FB reduces number of false positives

Fig. 17: Percentage of roadside sensor deployed influence the number of false positives

6.3 Lane-Crossing Query Experiment

We assume road networks are composed of two-lane roads. A sequence of trajectories with different lengths
are generated and the data sets we used in experiments are not correlated - that is, we generate each dataset
separately.

Correctness improvement:

Figure 16 illustrates the number of false positives when lane-crossing query are applied to trajectories,
under the bead and FB model. As we can see, the FB eliminates around 40% of the false positives from
GPS-based bead model, due to its reduction of “dead-space”.
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Fig. 18: Lane-crossing query on Beijing taxi data set

As a follow-up experiment, we reduced the percentages of FBs contained in trajectories to five levels
(0%, 25%, 50%, 75% and 100%), in order to mimic real situations when roadside sensors are not fully and
densely deployed on a given road network. Figure 17 reveals the relationship between percentages of FBs
and number of false positives. Clearly, the more FBs contained as components of a trajectory, the smaller
the overall number of false positives.

When we apply the same experiment to Beijing Taxi data, its outcome indicates the same effect, where
26.6% false positives are reduced, as shown in Figure 18. The real life scenarios contained in Beijing
taxi data is highly complicated, with continuously changing speed, compared with Brinkhoff trajectory
generator where vehicles drive under a constant speed within each road segment. Despite the varieties and
complications in real life data, our algorithm is adaptive and effective in reducing location uncertainties.

Sensor deployment in real world applications is largely constrained by factors such as budget, terrain,
infrastructure, etc. To add to the realistic aspects of the experiments, we examined the influence of sensor
deployment density. The effects of executing the lane-crossing query for the same dataset but for different
sensor densities are illustrated in Figure 19. As shown, the higher the sensor deployment density is, the
more false positive we are able to reduce with the FB model.

Efficiency:

Next, we compare the performance of GPS-based bead and FB in terms of the respective execution times.
An important parameter affecting the execution time is the number of points chosen to approximate the
line segment from roadside sensor (intersecting with lens), which are used to construct sub-beads. Recall
from Section 3, that the FB is the union of uncountably many sub-beads, with one of the foci located
along the ray emanating from the roadside sensor, within the width of the road. When approximating the
uncountably many sub-beads, the trade-off is the precision (i.e., using as many points as possible to have
an accurate approximation) vs. the computational overheads. Two experiments were performed to compare
both execution efficiency and approximation accuracy, executing lane-crossing queries on trajectories with
lenght ≤ 5000m, varying the number of points chosen on the roadside sensor line segment. The total
execution times for each of the GPS-based bead model and FB model are displayed in Figure 20. On a
complementary note, taking maximum number of points allowed in a given grid setting as true value, their
corresponding approximation errors regarding location whereabouts areas are shown in Figure 21.
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Fig. 19: Road-side sensor deployment density influences the number of false positives

Fig. 20: Execution time comparison

To discuss one specific setting explicitly: in the case when six points were used on the sensor line
segment as a parameter for constructing the FB, in comparison with GPS-based bead model: (1) we have
an overhead of a 30% latency in time to complete the query; (2) however, in return, we reduce more than
26% false positives and gain a much more narrow possible locations boundary (modulo the accuracy of the
area approximation).
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Fig. 21: Number of points on the line segment from roadside sensor affects estimation accuracy

Fig. 22: Range query — FB reduces number of false positives

6.4 Range-query Experiment

The datasets used in range query are generated in the same fashion as the ones for the lane-crossing query,
and the query regions we used were squares and disks with respective areas covering 12.5% of the total map
area. As shown in Figure 22, similarly to the results for the lane-crossing query, FB outperforms GPS-based
bead model by reducing 30% false positives .
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(a) Number of data pruned in lane-crossing query (b) Execution time for lane-crossing query

Fig. 23: Pruning techniques applied to lane-crossing query

Fig. 24: Pruning — Individual Fused Bead Bounds

6.5 Impact of Pruning

As discussed in section 5, we postulated that pruning techniques can significantly improve the efficiency
of the queries processing. In addition, during the early stages of our experiments, we also observed that
the fine grained dead-space removal method did not provide any significant performance boost. Thus, we
introduced the Individual Fused Bead boundary (IBb) as a volume corresponding to a cylinder in 2D +
time space, since in Algorithm 1 the most computationally expensive part is to aggregate the total volume
in in the respective 2D + time space. Even though the redundant time removal method eliminates some
time-intervals with no intersections between FB and query prism from the refinement, we note that one
still needs to calculate the volume for those parts.



26 Bing Zhang∗ et al.

Figure 23 shows the effects of pre-processing based pruning. As the Figure 23b indicates, around 30%
of other total time have been saved via pruning. Figure 23a shows that as the trajectory length increases,
the number of FB that can be pruned increase accordingly.

Our experiment for the effects of pruning in the case of range query were conducted with a data set
containing trajectories with a total length of 55km. IBb rules out large amount of data points that definitely
have no intersections with query prism. In Figure 24, x-axis represents the ratio of the areas of the query
region and the entire map. It indicates the relationship between the pruning effect and the size of query
region. As we expected, when the query area decrease, the IBb prunes more data points.

7 Related Work

There are three main bodies of research literature that are related to the work presented in this article and,
in one way or another, were used as foundation for our work.

The first body of works consists of the results from the GIS, MOD and spatio-temporal databases
communities, where the problem of capturing the uncertainty of motion has been studied extensively.
Starting with [16], and more recently [53], the issue of uncertain whereabouts from the perspective of
probabilistic time geography has been tackled by a model of emanating cones-in-time, with a vertex at
the last location sample. The 2D boundary of the possible locations of moving objects with bounded
speed was formalized by an ellipse in [35], and its 2D+time version – beads – was presented in [19].
Subsequently, [26, 27] provided a full formalization of the beads model and also provided extensions to
capture the impact of road networks [24]. A plethora of the works dealing with uncertainty (either in free-
space motion or road networks constrained) from MOD and spatio-temporal databases community have
also addressed the efficient processing of popular spatio-temporal queries (range, (k)NN, reverse-NN) under
various models of uncertainty [4, 15].

Unlike these works, we focused on fusing the uncertain location data from two sources – GPS and the
roadside sensors. In addition, to illustrate some of the features of the new model and its use in query
processing, unlike the traditional MOD-based works we considered the road network which has a width as
a parameter, instead of graph edges.

The second body of works originates in the transportation and traffic management communities. Sub-
stantial efforts have been made to tackle the lane-crossing query and several works have focused on building
novel system to overcome the shortcoming of single GPS receivers which yields unstable measurements with
large uncertainty [5, 9]. Complementary attempts have been made to acquire location data using commer-
cially available smartphones [41], but nearly 50% of the data failed to fall within the road network region.
Other efforts include the use of integrated sensor like gyroscope to fill the unknown values between two
GPS sample updates [46]. However, the works did not consider the uncertainty in-between consecutive
GPS-based updates and sensor-based location detections.

Some of the works [9, 46], use map matching algorithms to determine which lane the vehicle belongs
to and, subsequently, try to revise the measurement error using post-processing. However, the bead (or,
space-time prism) model has not been exploited.

The third body of works originates from the Wireless Sensor Networks (WSN) community. Tracking
of moving objects is considered to be a canonical research problem in WSN settings. Various facets of
the problem have been investigated: from the trade-off between energy consumption and the accuracy of
the tracking process, to routing protocols for conveying location-in-time information to a given sink (see,
e.g., [2, 3, 20, 34, 52]). Typically, the location of a given object is determined by some form of collaborative
trilateration among the tracking sensors equipped with different distance-estimation devices (e.g., vibra-
tions, audio-strength, etc.). However, to the best of our knowledge, there have been no results on fusing
the location data from heterogeneous sources.



Towards Fusing Uncertain Location Data From Heterogeneous Sources 27

8 Concluding Remarks and Future Works

We proposed a formal model – FB (fused bead) – for capturing the possible whereabouts of a moving object
whose location data is obtained at discrete time-instants, either by a GPS-device, or by a roadside sensor.
Each of them entails a specific kind of uncertainty for the location-in-time data, however, we demonstrated
that when combining the values from the two sources it turns out that “two uncertainties are better than
one”. In other words, integrating/fusing the data from both sources narrows the possible whereabouts when
compared to each individual location data source. We analyzed the details of the FB model, and its impact
on the lane-crossing query and range query, and conducted a collection of experiments to compare the
overall performance between GPS-based bead model and FB model. We demonstrated that, by accepting
a small amount overhead in the processing time, our FB model reduces the number of false positives.

There are a few directions that we plan to pursue in the near future. Firstly, we would like to investigate
the impact of incorporating other types of sensors and location sources – e.g., the ones obtained via cellular
networks [17] or indoor-localization – and develop a formal model capable of multisensor fusion [22]. A
particular challenge in these settings is that different data sources may have different horizons of spatial
and temporal validity. Our second extension is to consider the processing of other popular spatio-temporal
queries (e.g., Nearest Neighbor) under the new model of location uncertainty. Yet another avenue is to
extend the model/formalism so that it captures the uncertainty/imprecision in the very samples [37] as
well as the possibility of accelerated motion [25]. Lastly, we are also planning to investigate the impact
that incorporating other kinds of semantic information in the model – both in the representation of the
trajectories [33], e.g., type of a vehicle (for fuel consumption, size, etc.), as well as the type of roads [30] –
can have on the processing of spatio-temporal queries.
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Appendices
A Significant times in instantaneous possible location query

In section 4 we analyze the boundary of the possible locations at a given time instant under the FB model. The detailed
significant times calculation will be presented here. Let dmin and dmax denote the shortest and longest distance from L1

to any point P (ts1, ε) ∈ P1P2.

tl1i =
t1 + ts

2
−

dmax

2vmax

tlAi =
t1 + ts

2
−

dmin

2vmax

td1i =
t1 + ts

2
+

dmin

2vmax

tdAi =
t1 + ts

2
+

dmax

2vmax

B Enter/exit time calculation for range query

The general case for time t ∈ [ti, ti+1] being a critical point occurs when the intersection of the uncertain region at t with
a query rectangle is a single point. In the time interval [ti, ts], the single-point-intersection between disk centered at the
first GPS point and query region stands for the entering moment. Similarly, in the time interval [ts, ti+1], the single-point-
intersection represents exiting moment. Since the query region is represented as polygon in the (X,Y ) plane, each edge of
the polygon is defined as a segment of 2D line y = ax+ b.

The entry boundary of FB is:

(x− xi)2 + (y − yi)2 = (t− ti)2v2max

Substituting for y for the equation of the line, we have:

(x− xi)2 + (ax+ b− yi)2 = (t− ti)2v2max

This yields an equation in x and t:

A ∗ x2 + x ∗ (B + C ∗ t) +D ∗ t2 + E = 0

Where A,B,C,D,E are constant. Solving for x, as a function of t, we have:

x1,2 =
−(B + C ∗ t)±

√
(B + C ∗ t)2 − 4 ∗A ∗ (D ∗ t2 + E)

2 ∗A
To be noted that, we need to check the solution for x against the boundaries of the respect edge of the query region.

To find the time for critical point, we set the discriminant to be zero:√
(B + C ∗ t)2 − 4 ∗A ∗ (D ∗ t2 + E) = 0

The real root tin is the time instant when the uncertain trajectory start to enter the query prism.
In the time interval [ts, ti+1], we can use the similar method to find the exiting time tout.
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