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ABSTRACT
This work addresses the problem of combining spatio-
temporal uncertainties obtained from heterogeneous loca-
tion sources. Specifically, we take a first step towards for-
malizing the process of fusing the uncertainty of moving
objects locations obtained from on-board GPS devices and
roadside sensors. We develop a model for combining the val-
ues from the different sources and analyze the impact of the
model on the basic spatio-temporal queries pertaining to ob-
ject’s whereabouts in time. As it turns out, combining the
two sources can indeed narrow down the possible locations
of a given object. Our experiments demonstrate that the
proposed method of fusing the uncertainties may eliminate
significant amount of the false positives, when compared to
using the traditional bead (equivalently, space-time prism)
uncertainty models.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Theory

Keywords
Uncertain Trajectory, Uncertainty Fusion, Roadside Sen-
sors, Space-Time Prism

1. INTRODUCTION
Miniaturization of computing and sensing devices and ad-
vances in networking and communications provided a tech-
nological foundation for generating huge volumes of location-
in-time data – order of Peta-Bytes per year just from smart-
phones [13]. Geographic Information Systems (GIS) [27]
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and many applications relying on Location Based Services
(LBS) [25] rely on efficient techniques for storage, retrieval
and query processing for such data – topics studied in the
fields of spatio-temporal databases [15] and Moving Objects
Databases (MOD) [8].

An important feature of the location data in realistic settings
is that due to the inherent imprecision of the sensing devices,
typically there is a degree of uncertainty associated with
the measurements/values. The problem of capturing the
uncertainty into the data-models [16, 18, 19, 24] as well as
queries’ syntax and processing algorithms [5, 7, 22, 30, 29]
has been recognized and tackled by several earlier works1.

Complementary to these efforts in spatio-temporal
databases and MOD, where the location data is (as-
sumed to be) obtained by an on-board Global Positioning
System (GPS) device, in many traffic management applica-
tions [1] the location data is obtained from some types of
road-side sensors. For example, lane level positioning is an
important component in navigation systems widely applied
in smart traffic control, automated vehicle location or
intelligent transportation systems [6, 28, 26]. Such sensors-
data is combined with data from different sensing devices
on-board vehicles – e.g., U.S. Xpress gathers 900 to 970
data elements of various engine/component readings [20],
used planning loading, routing and servicing regimes of its
trucks fleet.

At the heart of the motivation for this work is the obser-
vation that combining the uncertain data from two differ-
ent (heterogeneous) sources – GPS and road-side sensors –
may yield more precise answers to certain spatio-temporal
queries. For example, if a trucking company is interested in
the quality of steering equipment and axles under particular
load, it may be interested in queries such as:

Q1: Retrieve all the vehicles which have crossed the lane
in road segment RS1 when driving less than 50km/h and
carrying less than 80% of the maximum load.

Clearly, given the imprecision of the location measurements,
Q1 needs to be re-phrased so that it incorporates uncer-
tainty:

Q1u: Retrieve all the vehicles which have had > Θ (0 <
Θ ≤ 1) probability of crossing the lane in road segment RS1

1See [3] for comprehensive list of references



when driving less than 50km/h and carrying less than 80%
of the maximum load.

We argue that properly considering the joint impact of –
equivalently fusing – the uncertainties from the GPS sources
and road-side sensors can eliminate some of the moving ob-
jects (trajectories) from the answer-set of Q1u. In other
words, what may have been considered an answer under the
single (e.g., GPS) source, may become a false-positive after
fusing the two location uncertainties. In summary, the main
contributions of this work are:

• We present a novel model of spatio-temporal uncer-
tainty for moving objects, which combines the loca-
tion data obtained by GPS devices on-board moving
objects and the location data obtained from road-side
sensors.

• We discuss the semantic implications of the model, in
terms of the basic where at and when at location-in-
time (whereabouts) queries, as well as lane-crossing
queries (exemplified by Q1u above) and basic range
queries.

• We present experimental observations which quantify
the benefits of fusing the two uncertainties for lane-
crossing and range queries in terms of the percentage
of trajectories which are pruned from the answer-sets
when compared to using the traditional bead-model of
uncertainty for GPS-based location data.

The rest of this paper is structured as follows. In Section 2
we recollect some backgrounds in terms of modeling spatio-
temporal uncertainty, and introduce the basic terminology
used in the rest of the work. Section 3 presents the details
of the new uncertainty model, along with the semantics of
the basic whereabouts queries along with lane-crossing and
range queries. Section 4 describes our experimental obser-
vations. In Section 5 we compare our work with related lit-
erature, and we summarize and outline directions for future
work in Section 6.

2. PRELIMINARIES
We now overview the techniques for location data relevant
for this work, both GPS-based and the ones based on road-
side sensors. Subsequently, we proceed with introducing the
basic notation used in the rest of the paper.

2.1 Road-side Sensors
Starting in the 1920s, when the traffic signals were still man-
ually controlled, several generations of sensor types have
been developed and deployed for traffic management – from
pressure-sensitive sensor in 1931 to modern laser sensors [2].

Contrary to the GPS-based data acquisition techniques
where each data source is isolated, the roadside sensors are
usually connected hierarchically to a server and send their
sampled data to traffic control center [14]. Compared with
GPS system, the roadside sensors have better measurement
accuracy, higher sampling frequency and shorter response
time, which enables their use in real time traffic information
analysis and control.

Figure 1: Bead and Ellipse Model

Several types of roadside sensors have been commercialized
and deployed on roads. For example, the AMR sensor[11]
developed by Honeywell is a type of magnetic sensor with
low cost. The WiEye[21] is a passive infrared sensor that
can be installed on the motes to sense road condition. The
variation of sensing technologies implies different method-
ologies for modeling of motion in order to capitalize on a
particular type of sensors. In this paper, the data model
for roadside sensor that we adopt is based on TruSense T-
Series, manufactured by Laser Technology Inc.[12] – a kind
of active infrared sensor with very high accuracy and repe-
tition/sampling rate.

Table 1 provides a summary of features of several different
types of sensors[2]. As shown, all of the popular and com-
mercially available types can detect the presence and speed
of vehicles, as well as provide a count value for the number
of vehicles that have been detected in their sensing range.
However, very few types provide more detailed sensing capa-
bilities, such as classification and multiple lanes detection.
In this work, we focus on detection of a presence of a moving
object in the sensing range.

2.2 GPS-based Spatio-Temporal Uncertainty
One of the basic approaches for modeling spatio-temporal
uncertainty of moving objects is the, so called, sheared cylin-
der model. The main assumption of the model is that at any
time instant ti, the object’s location is inside a given disk
with a fixed radius, centered at the expected location at ti.
For time values different from sampling ones, the expected
location is obtained via linear interpolation [30]. However,
this model is geared towards past/historic trajectories.

The time-geography [9] ideas from the 1970s (and more re-
cently probabilistic time geography [31]) have also perme-
ated MOD research. The implications of the fact that the
object’s motion was bound by some vmax in-between two
updates was analyzed in [23]. Based on the definition as a
geometric set of 2D points, it was demonstrated that the ob-



Table 1: Comparison among different types of sensor

Sensor technology Count Presence Speed Output Data Classification Multiple Lane detection
Inductive loop 3 3 3 3 3 7

Magnetometer (two axis fluxgate) 3 3 3 3 7 7

Magnetic induction coil 3 3 3 3 7 7

Microwave radar 3 3 3 3 3 3

Active infrared 3 3 3 3 3 3

Passive infrared 3 3 3 3 7 7

Ultrasonic 3 3 7 3 7 7

Acoustic array 3 3 3 3 7 3

Video image processor 3 3 3 3 3 3

jects possible whereabouts are bound by an ellipse, with foci
at the respective point-locations of the consecutive samples
(i.e., samples at consecutive time instants). Subsequently,
[10], presented a spatio-temporal version of the model, nam-
ing the volume in-between two update points a bead2, and
the entire uncertain trajectory, a necklace. However, the
first works to present a formal analysis of the properties
are [17, 18]. An illustration is provided in Figure 1. Letting

d =
√

(x2 − x1)2 + (y2 − y1)2 denote the distance between
the starting location (at t1) and ending location (at t2), the
equation of the projected ellipse (cf. [23]) is:

(2x− x1 − x2)2

v2max(t2 − t1)2
+

(2y − y1 − y2)2

v2max(t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2
= 1

The corresponding space-time prism is specified with the
following constraints:


ti ≤ t ≤ ti+1

(x− xi)
2 + (y − yi)

2 ≤ [(t− ti)v
i
max]2

(x− xi+1)2 + (y − yi+1)2 ≤ [(ti+1 − t)vimax]2
(1)

where vmax is the maximal speed that the object can take
between ti and ti+1. We note that, what is commonly called
expected speed in the case of crisp trajectories, now becomes
minimal expected speed in-between the updates/samples.
As shown in Figure 1, at any time instant t between two
consecutive samples, the possible locations of the objects are
bound by the lens – i.e., intersection of two circles centered
at the respective foci and with respective radii vmax(t− t1)
and vmax(t2 − t).

If the objects are constrained to move along a road net-
work, then the space-time prisms are restricted in their size.
Specifically, if the segments of the road network are assumed
to be edges in a graph, then the prisms become restricted to
planar figures [7, 16].

2.3 Trajectories and Road Networks
2More recently, also called space-time prism as used in time-
geography.

Throughout this paper, we consider the following definition
of a trajectory:

Definition 1. A trajectory Tri of a moving ob-
ject with a unique identifier (oID) “i”, is a se-
quence of triplets Tr = [(L1, t1), (L2, t2), vmax1] . . .,
[(Ln−1, tn−1), (Ln, tn), vmax (n−1)] where each (Li = (xi, yi)
is a point in 2D space in a corresponding reference coordi-
nate system, and ti denotes the time instant at which the
object was at location Li. When it comes to the time-values,
i < j implies ti < tj , and vmax i denotes the maximum speed
of the object between samples at ti and ti+1

Figure 2: Road Segments and Sensors

We define a road network as an augmented graph G =
(P,ERS) where P = {p1, p2, . . . , pn} denotes a set of points
(commonly corresponding to intersections) and ERS =
{rS1, ..., rSk} is a collection of triplets of the form rSi =
(ei, wei, vei) where:

• ei = (pi1, pi2) (∈ P X P ) is a ”regular edge” (i.e., a
link between two connected vertices)

• wei denotes the width of the road segment associated
with the edge ei.

• vei denotes the maximum speed associated with rSi.

Unless otherwise specified, we will assume that the maxi-
mum speed of a given object in-between two consecutive lo-
cation samples along a particular road segment corresponds
to the maximum speed of that segment. We note that, ge-
ometrically speaking, the collection all the rSi’s can be ob-
tained as the boundary of the Minkowski sum of each ”reg-
ular edge” ei and a disk with diameter wei.



Lastly, we also assume the existence of a collection of sen-
sors S = {s1, s2, ..., sm}, where each sensor sj is located
at a point along the outer boundary of some road segment
rSi. Each sj detects when (i.e., the time instant at which) a
moving object crosses the line segment going through its lo-
cation and perpendicular to ei. The concepts are illustrated
in Figure 2.

3. FUSING HETEROGENEOUS LOCA-
TION UNCERTAINTIES

We now introduce the new uncertainty model resulting from
combining the GPS-based location data and the location
data generated by road-side sensors. We follow with a dis-
cussion of the semantics of the basic whereabouts queries,
lane-crossing and range queries.

3.1 Combined Model
When combining the location samples, the main observa-
tion is that the data obtained from the road-side sensors
provides additional constraints on the possible whereabouts
in-between two consecutive GPS-based samples (and vice-
versa). More specifically, in addition to the system of in-
equalities (1) specifying the space-time prism (i.e., bead),
we now have the constraint that at a particular time instant
tsi, the locations of the objects are known to also be along
a given line-segment determined by: (1) the location of the
corresponding road-side sensor; and (2) the direction which
is perpendicular to the (boundaries of the) road segment.
This can be formalized as:



ti 6 t 6 ti+1,

(x− xi)
2 + (y − yi)

2 6 (t− ti)
2v2max,

(x− xi+1)2 + (y − yi+1)2 6 (ti+1 − t)2v2max,

y = mix + bi,when t = tsi

ti 6 tsi 6 ti+1.

(2)

The system of constraints (2) is illustrated in Figure 3.
Specifically, as shown in Figure 3a, the original GPS-based
locations L1 and L2 would yield a 2D projection which
is an ellipse having them as foci (ligth-grey shade in Fig-
ure reffusing1-1) – denote it El1. However, because of the
road-side sensor, we know that the possible locations of the
moving object at ts1 can only be along the portion of line
segment originating in (xs1,s1 ), perpendicular to the bound-
aries of the road segment, and intersecting El1 – i.e., along
the portion of the line segment L′1L

′′
1 . Clearly, that intersec-

tion has an uncountably many points, and we show 3 such
points in Figre 3a – L11, L12 and L13. The main observation
is that each such point, in turn, can be used as a ”generator”
for two more space-time prisms: one originating in L1, and
the other terminating at L2. The corresponding 2D pro-
jections (ellipses) are shown in Figure 3a for L11, L12 and
L13. The most important implication is that when com-
bining (i.e., taking the intersection of) the original ellipse
El1 with the uncountably infinite collection of the ellipses
with one of the foci along the line segment due to the road-
side sensors, the additional constraint induces a significant
amount of a ”dead-space” in El1. A more detailed illustra-
tion of the valid range for selecting the points that will gen-
erate the infinite collection of (pairs of) new beads is given

in Figure 3b. Recall that (cf. Section 2), at any given time
instant ts1 between the sampling times t1 and t2, the object
can be located inside of the lens obtained as the intersection
of the circles with radii vmax(ts1 − t1) and vmax(t2 − ts1).
Hence, although the ray emanating from the roadside sen-
sor s1 would intersect the ”global boundary” (i.e., the ellipse
which is the projection of the bead) at L′1 and L′′1 , the only
valid points to be considered as possible whereabouts are
the ones along (and inside) the lens. As shown in Figure 3b,
those are the points along the line segment bounded by L11

and L13.

We note that there is the ”flip-side” context of having a sin-
gle uncertainty source. Namely, if we only had the roadside
sensors available, then, in between two detections by con-
secutive sensors (say, s1 and s2 from Figure 2), the where-
abouts of a given object in-between the two sampling time
instants ts1 and ts2 is bounded by the union ∪(Elsi,sj) of
uncountably many ellipses for which:

1. The first focus is some point Ls1 located on the line-
segment originating at the location of s1.

2. The second focus is some point Ls2 located on the line-
segment originating at the location of s2;

3. The distance between Ls1 and Ls2 is smaller than
vmax(ts2 − ts2) (i.e., the object could travel the dis-
tance within the time-interval [ts1, ts2] for the given
speed limit).

Figure 4: Multiple Roadside Sensors Intersecting a Bead

Incorporating the GPS-based bead in this context would ei-
ther amount to the case where it intersects one (or more) of
the line segments originating at the respective sensors loca-
tions, or it has no intersection with any of them. In the latter
case, we have a scenario in which GPS sampling frequency
is higher than the sampling frequency obtained by the road-
side sensors. For such settings, the possible whereabouts
will be reduced to the intersection of the ∪(Elsi,sj) and the
bead obtained from the GPS-based samples. In the former
case, the model is a generalization of the one corresponding
to the scenario illustrated in Figure 3 – in the sense that
it may be possible to have intersections of the GPS-based



(a) GPS + Roadside Sensors (b) Determining Boundaries

Figure 3: Fusing GPS and Roadside Sensors Data

Figure 5: Outer Boundary of the Fused Uncertain Locations

bead with > 1 sensor lines, as illustrated in Figure 4. In
the rest of this paper, we focus on detailed discussion of the
scenarios in which a bead is intersected by a line segment
from a single roadside sensor.

The spatio-temporal structure induced by combining the two
uncertainty sources – GPS and roadside sensors – is called
a Fused Bead (FB), and it is a sixtuple FB ( (xi, yi, ti),
(xi+1, yi+1, ti+1), vmax, ts,m, b) consisting of:

• The 2 GPS-based location-in-time samples and along
with the vmax speed bound.

• The time instant of detection of the road-side sensor.

• The parameters of the equation of the line specify-
ing the corresponding line-segment of the possible new
foci.

When it comes to bounding the possible whereabouts, an ad-
ditional observation is in order. Namely, some of the points
along the intersection of the line segment with the ellipse El1
may yield possible focal points that would generate ellipses
which are not fully contained inside El1. An example of such
extreme-case scenario is when the time (resp. location) of

Figure 6: Whereabouts at Time Instant

the roadside sensor intersecting the ellipse from the bead is
equal to (t1 + t2)/2, where t1 and t2 are the time instants
in which the GPS-based locations were taken – equivalently,
to foci of the projection of the bead, El1. However, the set
of constraints in (2) will eliminate every portion which is
outside the intersection of the original El1. Hence, in some
sense, the original space-time prism obtained from the GPS
samples, is an outer-boundary of the volume (2D+Time) of
the objects possible (location, time) values – as illustrated
in Figure 5

3.2 Basic Queries
The first query that we consider pertains to obtaining the
possible whereabouts of the object at a given time instant
– i.e., where at(oID, t) query. Recall that for the bead ob-
tained by GPS-based samples, one could determine the pos-
sible whereabouts of the moving object at time t by inter-
secting the corresponding bead with a horizontal plane at t
(cf. Figure 1) – i.e., an intersection of two circles centered
at L1 and L2 with the radii corresponding to vmax(t − t1)
and vmax(t2 − t).

Similarly to the GPS-based bead, in order to determine the



(a) Bead Model (b) Fused Bead Model

Figure 7: MATLAB Visualization

whereabouts at a given time instant t for a fused bead, we
need to obtain the intersection of FB with the horizontal
plane Tme = t. The corresponding illustration of the volume
in 2D space + Time, along with the 2D projection, is shown
in Figure 6. We note that the boundary of the 2D projection
is obtained as the ”envelope” of the union of two collections
of uncountably many infinite pairs of arcs. Each pair of
arcs represents the boundaries of the intersections of the
corresponding pairs of disks – one centered at the focus of
the GPS-based bead (e.g., L1) and the other centered at a
point along the intersection chord (exemplified by L11L13 in
Figure 3) resulting from secant due to he roadside sensor and
the arc from the lens of the original GPS-based bead. Thus,
one of the boundaries is always a circular arc originating at
the focal point of the ”original” GPS-based bead, centered
at focus of the GPS-based bead (say, L1) and with radius
vmax(t− t1). The other part of the boundary is actually the
boundary of the union of uncountably many disks with radii
vmax(ts1− t), and with centers along the intersection-chord.

The complementary query, when at(oID, L) returns the
times during which it is possible for the object oID to be
at the location L(xL, yL), i.e., a time-interval [t1L, t

2
L]. The

time-interval can be defined as the two intersections between
the boundary of the fused bead FB and the vertical line (i.e.,
ray) emanating from L. To calculate the values, we have the
following observations:

1. t2L is the latest time that a circle located at the GPS-
based focus from the sample at t1 will ”reach” L –
hence, it can be obtained as a solution to the equation:

L1L = vmax(t2L − t1)

2. t1L, on the other hand, is the earliest time that any
circle with the center on the intersection chord and
radius vmax(ts − t1L) would pass through L.

Assuming uniform pdfs of the possible objects locations
within the uncertainty zone defined by the FB model for
a given time instant, we now discuss the lane-crossing
and range query. Without loss of generality, we will
consider an input consisting of a a single fused bead
FB((xi, yi, ti), (xi+1, yi+1, ti+1), vmax, ts,m, b) and a region
Rq.

The lane-crossing query is a minor variation of Q1u (cf.
Section 1):

Figure 8: Evaluating lane-crossing query at ti

Qu
lc: Retrieve all the vehicles which have > Θ (0 < Θ ≤ 1)

probability of crossing the lane in road segment RS1.

Let Ct denote the planar region corresponding to the an-
swer of the where at(oID, t) and let fL and fe denote the
two curves defining the boundary of Ct. Also, let (xa, ya)
and (xb, yb) denote the intersection points between fL and
fe (i.e., the cusps of the boundary of Ct). To calculate the
probability that the object oID is crossing the lane at time
instant t, one needs to calculate the area of Ct (A(Ct)) and
the area of the portion of Ct on ”the other side” of the lane.
While in some special cases – e.g., when the GPS-based loca-
tion samples are along the line parallel to the lane-separator
line (cf. Figure 8) and both are axis-parallel – it may be pos-
sible to have closed-form formula, we note that, in general
one would need to rely on numerical integration.

When it comes to the range query, the methodologies applied
for the lane-crossing query would require a minor modifica-
tion in order to cater to the boundary of the region of interest
for a given query (e.g., polygon, circle, etc...).

4. EXPERIMENTAL OBSERVATIONS
In order to get quantitative evaluation of the proposed
model, we examined how many answers obtained when us-
ing the GPS-based bead model actually become false pos-
itive when the FB model is employed. Towards that, we
used a MATLAB implementation of the numerical integra-
tion3 for evaluating the probabilities of an object satisfying
the lane-crossing query and range query for a simple case of
a disk.

In the first settings, we evaluated the range query for a sim-
ple trajectory to detect how much the FB model reduces
the location whereabouts. The setup for the experiment
is shown in Figure 9. The GPS-based bead model returns

3We discretize both temporal and spatial axis and
use numerical method to approximate the areas
corresponding to the respective probabilities. The
source code(s) and the data are publicly available at
http://www.eecs.northwestern.edu/∼bvz686/FusedBeads



(a) GPS-based Bead Model (b) Fused Bead Model

Figure 9: Range Query

Figure 10: Lane-Crossing Visualization

true for the second bead(9a). However, the FB model re-
turns false for the same trajectory(9b), due to the additional
constraints provided by the roadside sensor data. The inter-
section between ”global boundary” and query range for FB
model is much smaller than that for GPS-based model.

In the second experimental settings, we investigated the im-
pact of FB model on lane-crossing query in road network.
To increase the number of possible lane-crossing instances,
we simulated a vehicle moving along a road (cf. Figure 2)
and having multiple crossings of the lane. The vehicle’s
motion has two direction-components: one parallel to the
boundary of the road (i.e., lane), denoted as Mx, and the
other one perpendicular to it, which is denoted as My. The
width of each lane of the road segment was set to 4m. As
a reference coordinate system, the central lane was set as
x-axis so the full range for My is [-4m, 4m]. We considered
densely depolyed sensors – located at every 10m along the
road. Vehicle’s GPS positions were also sampled every 1s
and the movement along Mx was set to a constant speed,
less than 50km/h. Vehicle’s perpendicular movement My is
generated by a random generator with uniform distribution
given a movement interval. We generated two data sets. In
the first one DS1, My has a [-50%, 12.5%] movement in-
terval, which means it will be uniformly distributed in the
interval [-2m, 0.5m] – which implies that DS1 contains more
instances of boundary conditions. In data second dataset,
DS2, My has a full range of motion values – [-100%, 100%].

For each data set, we perform experiments with different tra-
jectory length – 1km, 5km and 10km, on both GPS-based
bead model and FB model. During the experiment, the
series of FB is formed in spatial-temporal coordinate. Fig-
ure 10 is a visualization of our experimental setup, repre-
senting a snapshot of multiple FB on road network.

Figure 11: Lane-Crossing—Data Set One

Figure 12: Lane-Crossing—Data Set Two

Figure 11 shows the benefit of FB. The number of lane-
crossing incidents is reduced by around 30% by using FB
model. The reductions are the result of correctly classifica-
tion for those boundary scenarios that would misclassified
as false positive by GPS-based bead model.

The result of a vehicle allowing full random movement per-
pendicular to the road is shown in Figure 12. Even though
the number of boundary situations is less than the data set
one, we could still see a reduction of intersections.

These boundary scenarios in data set two corresponding to
the real world situation when a car’s trajectory is slightly
deflected from the center of the lane and quickly return back,
mainly because of driving under the influence. The FB
model will be able to differentiate these activities from lane-
crossing.

In our second experiment, FB model is applied on range
query.

We try to answer the following query:

Q2r
u: Retrieve all the vehicles which have > Θ (0 < Θ ≤ 1)

probability of going through the range Rc.

The vehicle’s movement set up is similar to lane-crossing
query and My range of values was set to be [-62.5%, 62.5%].
The query region Rc was set to be a circle with a 15m radius
as shown in Figure 13.



Figure 13: Range Query Setting

Figure 14: Range Query Result

In sequence, we let 10, 20, 30 and 40 vehicles move along the
road, and the experimental results are shown in Figure 14,
demonstrating that fewer ”possible trajectories” would sat-
isfy the range query under the FB model.

5. RELATED WORK
There are two main bodies of research literature that are
related to, and were used as foundation for, our work.

The first one consists of results from GIS, MOD and spatio-
temporal databases communities, where the problem of cap-
turing the uncertainty of motion has been studied exten-
sively. Starting with [9], and more recently [31], the issue of
uncertain whereabouts from the perspective of probabilistic
time geography has been tackled by a model of emanating
cones-in-time, with a vertex at the last location sample. The
2D boundary of the possible locations of moving objects with
bounded speed was formalized by an ellipse in [23], and its
2D+time version – beads – was presented in [10]. Subse-
quently, [17, 18] provided a full formalization of the beads
model and also provided extensions to capture the impact of
road networks [16]. Majority of the works dealing with un-
certainty (either in free-space motion or road networks con-
strained) from MOD and spatio-temporal databases com-
munity have focused on efficient processing of the popular
spatio-temporal queries (range, (k)NN, reverse-NN) under
various models of uncertainty [8, 3].

Unlike majority of the works so far, in this paper we incor-
porated an additional source of location data – the roadside

sensors, and considered the road network which has a width
as a parameter, instead of simple edges.

The second body of works originates in the transporation
and traffic management communities. Substantial efforts
have been made to tackle the lane-crossing query and several
works have focused on building novel system to overcome
the shortcoming of single GPS receivers which yields unsta-
ble measurements with large uncertainty [4, 6]. Attempts
have been made to acquire location data using commercially
available smartphones [26], however, nearly 50% of the data
failed to fall within the road network region. Other efforts
include the use of integrated sensor like gyroscope to fill the
unknown values between two GPS sample updates [28].

However, the works did not consider the uncertainty in-
between consecutive GPS-based updates and sensor-based
location detections.

Some of the works [6, 28], use map matching algorithms
to determine which lane the vehicle belongs to and, sub-
sequently, try to revise the measurement error using post-
processing. However, the bead (or, space-time prism) model
has not been exploited.

6. CONCLUDING REMARKS
We addressed the problem of combining the uncertain loca-
tion data from two different sources: GPS on-board mov-
ing objects and roadside sensors. We proposed a formal
model – fused bead – for the possible locations at given
time-instant(s) when the location data from both sources
is combined, and demonstrated that “two uncertainties are
better than one”, in the sense that fusing the data from both
sources would narrow the possible whereabouts when com-
pared to individual location data source. We analyzed the
impact of the model on the basic spatio-temporal queries
and we presented experimental observations illustrating the
benefits of the fused bead approach.

There are a few directions that we plan to pursue in the near
future. Firstly, we would like to work on generating efficient
algorithms for continuous versions of the spatio-temporal
queries for which we discussed the instantaneous variants
here – and, of course, to extend the results to other popu-
lar queries such as (reverse) Nearest Neighbor. Our second
avenue is to investigate the scalability and efficiency aspects
of the query processing algorithms – for instance, as we ob-
served in Section 3, one could rely on the ”regular” space-
time prisms for prunning, since the fused beads are always
bound by the ”regular” bead. A complementary objective
is to extend the model/formalism so that it captures the
uncertainty/imprecision in the very samples [24], not only
the intermediate whereabouts, and to include other kinds of
semantic information (e.g., type of a vehicle, size, etc.).
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