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Abstract
Understanding the modularity of functional magnetic resonance imaging (fMRI)-derived brain net-

works or “connectomes” can inform the study of brain function organization. However, fMRI

connectomes additionally involve negative edges, which may not be optimally accounted for by

existing approaches to modularity that variably threshold, binarize, or arbitrarily weight these con-

nections. Consequently, many existing Q maximization-based modularity algorithms yield variable

modular structures. Here, we present an alternative complementary approach that exploits how

frequent the blood-oxygen-level-dependent (BOLD) signal correlation between two nodes is nega-

tive. We validated this novel probability-based modularity approach on two independent publicly-

available resting-state connectome data sets (the Human Connectome Project [HCP] and the

1,000 functional connectomes) and demonstrated that negative correlations alone are sufficient in

understanding resting-state modularity. In fact, this approach (a) permits a dual formulation, lead-

ing to equivalent solutions regardless of whether one considers positive or negative edges; (b) is

theoretically linked to the Ising model defined on the connectome, thus yielding modularity result

that maximizes data likelihood. Additionally, we were able to detect novel and consistent sex dif-

ferences in modularity in both data sets. As data sets like HCP become widely available for

analysis by the neuroscience community at large, alternative and perhaps more advantageous

computational tools to understand the neurobiological information of negative edges in fMRI con-

nectomes are increasingly important.
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1 | INTRODUCTION

Just as social networks can be divided into cliques that describe modes

of association (e.g., family, school), the brain’s connectome can be

divided into modules or communities. Modules contain a series of

nodes that are densely interconnected (via edges) with one another

but weakly connected with nodes in other modules (Meunier, Lam-

biotte, & Bullmore, 2010). Thus, modularity or community structure

best describes the intermediate scale of network organization, rather

than the global or local scale. In many networks, modules can be

divided into smaller sub-modules, thus can be said to demonstrate hier-

archical modularity and near decomposability (the autonomy of modules

from one another), a term first coined by Simon in 1962 (Meunier

et al., 2010; Simon, 2002). Modules in fMRI-derived networks comprise

anatomically and/or functionally related regions, and the presence of

modularity in a network has several advantages, including greater

adaptability and robustness of the function of the network. Under-

standing modularity of brain networks can inform the study of organi-

zation and mechanisms of brain function and dysfunction, thus

potentially the treatment of neuropsychiatric diseases.

Mathematical techniques derived from graph theory (Fornito, Zale-

sky, & Breakspear, 2013) have been developed to measure and

describe the modular organization of neural connectomes (Bullmore &

Sporns, 2009; Sporns & Betzel, 2016). Different methods for module
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detection have been applied in network neuroscience, and offer differ-

ent strengths and weaknesses (reviewed in Sporns & Betzel, 2016).

Optimization algorithms are typically used to maximize the Q modular-

ity metric or its variants (Danon, Diaz-Guilera, Duch, & Arenas, 2005).

These algorithms vary in accuracy as there are tradeoffs made with

computational speed (Rubinov & Sporns, 2010). Simulated annealing

(e.g., Guimera & Amaral, 2005; Guimera, Sales-Pardo, & Amaral, 2004)

is a slower, more accurate method for smaller networks, however,

could be computationally expensive with larger networks (Danon et al.,

2005). The Newman method (Newman, 2006; Newman & Girvan,

2004) reformulates modularity with consideration of the spectral prop-

erties of the network, and is also considered fairly accurate with

adequate speed for smaller networks (Rubinov & Sporns, 2010). More

recently, the Louvain method (Blondel, Guillaume, Lambiotte, & Lefeb-

vre, 2008) has been developed for large networks (millions of nodes

and billions of edges). Its rapid computation and ability to detect modu-

lar hierarchy (Rubinov & Sporns, 2010) has led to it becoming one of

the most widely utilized methods for detecting communities in large

networks. Comparisons with other modularity optimization methods

have found that the Louvain method outperforms numerous other sim-

ilar methods (Aynaud, Blondel, Guillaume, & Lambiotte, 2013; Lancichi-

netti & Fortunato, 2009).

However, these existing methods were mostly originally developed

for networks with only positive connections and may additionally suf-

fer from suboptimal reproducibility (Butts, 2003; Fortunato & Barthe-

lemy, 2007; Guimera & Sales-Pardo, 2009). With the advent of

connectomics, they also have been heuristically applied to fMRI brain

networks, in which we have the additional complication of negative

correlations. To this end, some methods largely ignore fMRI networks’

negative edges (Fornito et al., 2013), only considering the right tail of

the correlation histogram, that is, the positive edges (Schwarz & McGo-

nigle, 2011). However, in functional neuroimaging, negative edges may

be neurobiologically relevant (Sporns & Betzel, 2016), depending on

factors such as data preprocessing steps, particularly the removal of

potentially confounding signal such as head motion, global white-

matter or whole-brain average signal, before calculation of the correla-

tion matrix, because removal of such signal could result in detection of

anticorrelations that were not present in the original data (Schwarz &

McGonigle, 2011). Ignoring negative edges is achieved with binariza-

tion of a network (so-called “hard thresholding”), by selecting a thresh-

old then replacing edge values below this threshold with zeros, and

replacing supra-threshold values with ones (van den Heuvel et al.,

2017). Some researchers retain the weights of the supra-threshold

edge values, which has the effect of compressing the positive edges,

however, the negative edges remain suppressed (Schwarz & McGoni-

gle, 2011). Choice of threshold is important as more severe thresholds

increase the contributions from the strongest edges, but can result in

excessive disconnection of nodes within networks, in comparison to

less stringent thresholds. Rather than binarizing networks, some

researchers choose a “soft thresholding” approach that replaces thresh-

olding with a continuous mapping of correlation values into edge

weights, which had the effect of suppressing, rather than removing

weaker connections (Schwarz & McGonigle, 2011). Linear and

nonlinear adjacency functions can be employed, and the choice can be

made to retain the valence of the edge weights, when appropriate.

An alternative to optimization methods discussed above, independ-

ent components analysis (ICA) has been applied to functional neuroimag-

ing data (Beckmann, DeLuca, Devlin, & Smith, 2005). This method

assumes that voxel time series are linear combinations of subsets of repre-

sentative time series (Sporns & Betzel, 2016). Patterns of voxels load onto

spatially independent components (modules). Unlike optimization meth-

ods, ICA allows for overlapping communities (Sporns & Betzel, 2016),

although the number of ICA components needs to be pre-specified.

Utilizing a distance-based approach, recently, a new technique for

investigating the hierarchical modularity of structural brain networks

has been developed (GadElkarim et al., 2012, 2014). Rather than maxi-

mizing Q, the path length associated community estimation (PLACE)

uses a unique metric that measures the difference in path length

between versus within modules, to both maximize within-module inte-

gration and between-module separation (GadElkarim et al., 2014). It

utilizes a hierarchically iterative procedure to compute global-to-local

bifurcating trees (i.e., dendrograms), each of which represents a collec-

tion of nodes that form a module.

In this study, we developed a related novel method for functional

brain networks—probability associated community estimation (PACE),

that uses probability, not thresholds or the magnitude of BOLD signal

correlations. We conducted experiments using this method, as well as

six different implementations within the widely used brain connectivity

toolbox (BCT) (http://www.brain-connectivity-toolbox.net/) using data

from the freely accessible 1,000 functional connectomes or F1000 pro-

ject data set (F1000, RRID:SCR_005361) (Biswal et al., 2010) and the

Human Connectome Project (HCP, RRID:SCR_006942) (Van Essen

et al., 2012, 2013), and further examined differences in resting-state

functional connectome’s modularity (i.e., the resting-state networks

[RSNs]) between males and females.

2 | METHODS

The popular Q-based modular structure (Blondel et al., 2008; Reichardt

& Bornholdt, 2006; Ronhovde & Nussinov, 2009; Rubinov & Sporns,

2011; Sun, Danila, Josic, & Bassler, 2009) is extracted by finding the set

of nonoverlapping modules that maximizes the modularity metric Q:

Q Gð Þ5 1
2m

X
i6¼j

Aij2
kikj
2m

� �
d i; jð Þ

For a binary graph G, m is the total number of edges, Aij51 if an

edge links nodes i and j and 0 otherwise, d(i,j)51 if nodes i and j are in

the same community and 0 otherwise, and ki is the node degree of i

(i.e., its number of edges). For weighted graphs, m is the sum of the

weights of all edges while Aij becomes the weight of the edge that links

nodes i and j, and ki is the sum of all weights for node i.

Approaches based on Q-maximization are naturally suitable for

understanding the modularity of structural connectome where all edges

are nonnegative. As an alternative to Q maximization, we previously

developed a graph distance (shortest path length) based modularity
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approach for the structural connectome. By exploiting the structural

connectome’s hierarchical modularity, this path length associated commu-

nity estimation technique (PLACE) is designed to extract global-to-local

hierarchical modular structure in the form of bifurcating dendrograms

(GadElkarim et al., 2012). PLACE has potential advantages over Q

(GadElkarim et al., 2014), as it is hierarchically regular and scalable by

design. Here, the degree to which nodes are separated is measured

using graph distances (Dijkstra, 1959) and the PLACE benefit function

is the WPL metric, defined at each bifurcation as the difference

between the mean inter- and intra-modular graph distances. Thus,

maximizing WPL is equivalent to searching for a partition with stronger

intra-community integration and stronger between-community separa-

tion (GadElkarim et al., 2012, 2014; Lamar et al., 2016; Ye et al., 2015;

Zhang et al., 2016).

2.1 | PACE for functional connectomes

Here, let us describe the PACE-based modularity of a functional con-

nectome mathematically represented as an undirected graph FC V; Eð Þ,
where V is a set of vertices (i.e., nodes) and E is a set of edges (indexed

by considering all pairs of vertices). Each edge of E is associated with a

weight that can be either positive or negative.

Given a collection of functional connectomes S on the same set of

nodes V (but having edges with different weights), we can define the

following aggregation graph G (V, E). For each edge ei;j in E connecting

node i and node j, we consider P2 i;j , the probability of observing a neg-

ative value at this edge in S (i.e., nodes i and j exhibit an ‘anti-activating’

functional relationship). In the case of HCP, for example, S thus consists

of all healthy subjects’ resting-state functional connectome and this

probability can simply be estimated using the ratio between the num-

ber of connectomes in S having the edge ei;j < 0 and the total number

of connectomes in S. Similarly, we define the probability of an edge in

E being nonnegative as P1 i;j (i.e., nodes i and j exhibit a co-activating

relationship). Naturally, the P2- P1 pair satisfies the following

relationship:

P2 i;j1 P1 i;j51; 8 i; jð Þ; i 6¼ j

Then, given C1, C2,. . ., CN that are N subsets (or communities) of V,

we define the mean intra-community edge positivity or negativity

P6 Cnð Þ for the n-th community Cn as:

P6 Cnð Þ5
P

i; j2Cn ; i<j P6 i;j

jCnj jCnj21ð Þ=2

Here, jCnj represents the size (i.e., number of nodes) of the n-th

community. Similarly, we could define the mean inter-community edge

positivity and negativity (between communities Cn and Cm) as:

P6 Cn; Cmð Þ5P6 Cm; Cnð Þ5
P

i2Cn ; j 2Cm P6 i;j

jCnjjCmj

Here, the first equality holds as correlation-based functional con-

nectomes are undirected. The intuition of PACE for fMRI connectomes

is that edges that are most frequently anticorrelations should be placed

across communities.

PACE operates as follows. Given a collection of functional connec-

tomes S, PACE identifies a natural number N and a partition of V,

C1 [ C2 [ . . . [ CN5V; Ci \ Cj51 for all i 6¼ j
�

) which maximizes the

PACE benefit function W. Intuitively, W computes the difference

between mean inter-community edge negativity and mean intra-

community edge negativity. Moreover, considering the duality between

P2 and P1, our optimization problem thus permits an equivalent dual

form.

Formally; W5

argmax
C1[C2[...[CN5V; Ci\Cj51 for all i6¼j

P
1�n<m�N P2 Cn; Cmð Þ

N N21ð Þ=2 2

P
1�n�N P2 Cnð Þ

N

( )
5

argmax
C1[C2[...[CN5V; Ci\Cj51 for all i6¼j

P
1�n�N P1 Cnð Þ

N
2

P
1�n<m�N P1 Cn; Cmð Þ

N N21ð Þ=2

( )

To solve the above PACE optimization problem, we adopt a

PLACE-like algorithm, which has been extensively validated (Ajilore

et al., 2013; GadElkarim et al., 2012, 2014; Lamar et al., 2016; Ye et al.,

2015; Zhang et al., 2016), and computed global-to-local four-level

bifurcating trees (yielding a total of 16 communities at the fourth level;

please refer to GadElkarim et al. (2014) for implementation details).

2.2 | | Theoretical link between PACE and the Ising

model

Here, let us further explore the relationship between PACE and the

Ising model using a mean-field approximation approach. When defined

on the human connectome, the Ising model consists of assigning

atomic spins r to each brain region or node to one of two states (11

or 21). Given a specific ensemble spin configuration r over the entire

brain and assuming the absence of external magnetic field, the corre-

sponding Hamiltonian is thus defined as:

H rð Þ52
X
i;jð Þ2E

Jijrirj

Here, i; jð Þ 2 E indicates that there is an edge connecting nodes

i and j. In classic thermodynamics, the Hamiltonian relates a configura-

tion to its probability via the following Boltzmann distribution

equation:

P rð Þ5 e2bH rð Þ

Z

Where b is the inverse temperature and the normalizing constant

Z is often called the partition function Z5
P

r e
2bH rð Þ. Note, Jij is posi-

tive when the interaction is ferromagnetic Jij > 0, and antiferromag-

netic when Jij < 0.

Given this general set-up, we are now ready to show the general

equivalence between PACE and maximizing the joint likelihood of the

observed resting state fMRI (rs-fMRI) connectome data over some

unknown ferromagnetic/antiferromagnetic ensemble interaction J

defined on the connectome.

First, as one subject’s rs-fMRI connectome is independent of other

subjects’, the joint likelihood over S subjects can be computed by form-

ing the product:
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Likelihood oberseved rs2fMRI data j Jð Þ5e2b
PS

s51
H qsð Þ

Z
5
e2bS

PS

s51
H qð Þ

Z

For convenience of notations, let us work with the negative mean

Hamiltonian

2H qð Þ52

PS
s51 H qsð Þ

S
5

X
i;jð Þ2E

Jij

PS
s51 ri

srj
s

S
5

X
i;jð Þ2E

Jijrirj

While the spin ri
s at a node i for any subject s is unknown, with

PACE we nevertheless could proceed to estimate the expected value

of spin product (across all S subjects) rirj by noting that PACE assigns

rirj51 with probability P1 i;j and 21 with probability P2 i;j. Thus

rirj51 � P1 i;j1 21ð Þ � P2 i;j51 � P1 i;j1 21ð Þ
� 12P1 i;j

� �
52P1 i;j215122P2 i;j

Next, let us compute and simplify H qð Þ using the above equations,

coupled with mean-field approximation, by separately considering fer-

romagnetic versus antiferromagnetic interactions (i.e., with respect to

the sign of Jij):

J15

P
i;jð Þ2E; Jij>0 Jij

j i; jð Þ 2 E; Jij>0j > 0; J252

P
i;jð Þ2E; Jij<0 Jij

j i; jð Þ 2 E; Jij<0j > 0

Thus,

2H qð Þ5
X
i;jð Þ2E

Jijrirj 5
X

i;jð Þ2E; Jij>0

Jijrirj 1
X

i;jð Þ2E; Jij<0

Jijrirj

� J1
X

i;jð Þ2E; Jij>0

rirj 2 J2
X

i;jð Þ2E; Jij<0

rirj

5J1
X

i;jð Þ2E; Jij>0

2P1 i;j21
� �

1 J2
X

i;jð Þ2E; Jij<0

2P2 i;j21
� �

Note, since here “mean-field” is constructed by averaging over fer-

romagnetic/antiferromagnetic interaction terms, our formulation may

instead be called a mean-interaction approach.

Last, realizing that maximizing the joint likelihood of the observed

data with respect to unknown ensemble interactions J (and thus

unknown mean-interaction approximations J1 and J2) is equivalent to

maximizing the negative mean Hamiltonian 2H qð Þ, we examine the

right-hand side of the above equation (and note that both J1 and J2

are nonnegative) and deduct that a general maximization strategy can

be devised by:

1. assigning as much as possible any two nodes i, j that are highly

likely to exhibit co-activation ei;j > 0 (and thus the term [2P1 i;j21�
more likely to be positive) to have ferromagnetic interactions (thus

i, j more likely to be placed in the same community), and at the

same time

2. assigning as much as possible nodes i, j that are highly likely to

exhibit anti-activation ei;j<0 (and thus the term [2P2 i;j21� more

likely to be positive) to have antiferromagnetic interactions (thus i

and j more likely to be placed in different communities).

This is exactly the intuition of PACE, that is, we maximize the differ-

ence between mean inter-community edge negativity & mean intra-

community edge negativity (or equivalently maximizing the difference

between mean intra-community edge positivity & mean inter-

community edge positivity).

2.3 | Relaxation of the powers-of-two constraint:
constructing the PACE null model and testing the

statistical significance of each bifurcation

As PACE attempts, for each branch at a specific PACE level, to further

split nodes within that branch into two subsequent groups, it is thus

natural to ask if a procedure can be constructed in order to determine

the level of statistical significance for such a split. By stopping a branch

from further splitting when there is evidence against it, PACE can in

theory yield any number of communities (no longer restricted to

powers of 2).

Here, we propose such a procedure by first constructing the null

distribution based on the observed data. Indeed, we can sample the

null distribution (i.e., there is no modular patterns of co-/antiactivation)

of the PACE benefit function W by first randomly permuting the pair

P1 i;j=P2 i;j for all (i, j) (i.e., randomly exchanging edge positivity with neg-

ativity, or simply put a probability value is replaced by 1 minus this

value), followed by re-running PACE with shuffled edge positivity/neg-

ative. Then, at each split the actual W achieved by the original data is

compared to the W values of the reshuffled data at the same PACE

level; if the former lies within the top 5% of the latter, such a split is

determined to be significant (p< .05).

In sum, using this data-informed permutation procedure, we relax

the powers-of-two constraint during PACE optimization, thus letting

the observed data to inform us the statistically most meaningful num-

ber of modules. This number can now be any positive integer which is

no longer constrained to be a power of two.

3 | RESULTS

3.1 | Data description

We tested our PACE framework on two publicly available connectome

data sets (Biswal et al., 2010; Brown, Rudie, Bandrowski, Van Horn, &

Bookheimer, 2012). The first one is a 986-subject resting state fMRI

connectome data set from the 1,000 functional connectome project

(17 subjects’ connectomes were discarded due to corrupted files),

downloaded from the USC multimodal connectivity database (http://

umcd.humanconnectomeproject.org). The dimension of the network is

177 3 177. The second data set is 820 subjects’ resting state fMRI

connectome from the HCP (released in December 2015, named as

HCP900 Parcellation1Timeseries1Netmats, https://db.humancon-

nectome.org/data/projects/HCP_900). The dimension of the network

is 200 3 200, derived using ICA. For details of these two data sets,

please refer to their respective websites and references.

3.2 | Simulation study

Here, we created a 100 3 100 edge-negativity probability map, which

contains five modules (each module has 20 nodes; Figure 1a). The edge

negativity values within each module are uniformly randomly
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generated between 0 and 0.5 (less likely antiactivation within module)

and the values across modules are uniformly randomly assigned from

0.5 to 1. Then, three-level PACE was applied to generate eight modules

(Figure 1b), followed by sampling the null distribution of W with 1,000

permutations using the procedure described in Section 2.3.

Results indicated that PACE correctly recovered the five-module

ground truth, and the null distribution procedure indeed rejected any

further splitting beyond five modules (Figure 1c; blue lines indicate

statistically meaningful bifurcations). Figure 1d further shows the per-

formance of PACE across different levels of noise (the exact procedure

of how noise is applied is discussed in the Supporting Information).

3.3 | Stability analysis

To better understand the stability of the PACE with respect to the num-

ber of subjects used in estimating edge negativity/positivity, we tested

PACE on subsets of HCP and F1000 randomly generated with a boot-

strapping procedure (Chung, Lu, & Henry, 2006) (sampling with replace-

ment) to investigate the reproducibility of the extracted community

structure as a function of the sample size (from N550 to 900 for F1000

and 50 to 800 for HCP; in increments of 50). For each N, 1,000 boot-

strap samples were generated and the resulting 1,000 community struc-

tures were compared to the community structure derived from the

entire HCP/F1000 sample using the normalized mutual information

(NMI; Alexander-Bloch et al., 2012). NMI values are between 0 and 1,

with 1 indicating two modular structures are identical. Figure 2 illustrates

the mean NMI (y axis) as a function of sample size N (x axis), for all levels

of PACE. Careful examinations of these NMI values suggest that stable

PACE-derived modularity can be obtained with as few as �100 subjects

(note here we include all subjects, regardless of age and sex, during boot-

strapping. it is likely that the NMI values would be even higher if we

restrict the analysis to a narrower age range and/or one specific sex).

3.4 | Optimal number of PACE bifurcations informed
by the null model in F1000 and HCP

To determine the significance of PACE-derived hierarchical modularity

at each bifurcation, for HCP and F1000, we generated 1000 samples

of W under the null hypothesis using the procedure in Section 2.3, and

tested the significance of each split up to the fourth level. For both

data sets, all bifurcations up to the third level were significant. At the

FIGURE 1 Simulation study for PACE. (a) A 100 3 100 5-community edge-negative probability map was generated, where each module
has 20 nodes. Within-community, the edge negativity value is uniformly randomly selected from 0 to 0.5 and between-community, the
value from 0.5 to 1; (b) three-level PACE was computed and eight communities were generated; (c) using 1,000 permutations randomly
exchanging edge positivity with negativity, we constructed the null distribution of W, using which we tested the significance of each bifur-
cation. For the four possible bifurcations at the third-level PACE, only one was significant (significant bifurcations highlighted in blue), thus
yielding a total of five modules, each of which matches the corresponding module in the ground truth (highlighted by the red square; from
top to bottom, module correspondence is 3, 5, 4, 1, 2); (d) the performance of PACE in this toy example under different noise levels
(L50.1, 0.3, 0.5, 0.7, and 0.9; the exact procedure of how L is applied is discussed in the Supporting Information) [Color figure can be
viewed at wileyonlinelibrary.com]

ZHAN ET AL. The Journal of
Comparative Neurology

| 5

http://wileyonlinelibrary.com


fourth level, in F1000 none of the eight possible bifurcations was sig-

nificant (thus resulting in a total eight of modules) and in HCP only one

of the eight bifurcations was (p5 .002, which remained significant after

Bonferroni correction with a cut-off of 0.05/8), thus yielding a total of

nine modules. Figure 3 illustrates the whole procedure in HCP. (Please

refer to Supporting Information Figure S2 for the final community

structures for F1000 and HCP.)

3.5 | Modular structures revealed using PACE versus

weighted-Q maximization based methods

In this section, we compared PACE-derived modularity with Q-based

modularity computed from the mean F1000 or HCP functional connec-

tome (mean connectome is computed by element-wise averaging). As

the optimal number of PACE-derived communities is eight in F1000 and

nine in HCP (with a relatively small fifth community, C5, shown in Figure

3e) while Q-based methods primarily yield three to five communities, we

selected a comparable PACE level, up to level 3, for our analyses.

Table 1 lists six Q-based methods adopted in this study (five

weighted and one binarized). We conducted 100 runs for each of the

six methods as well as PACE, and quantified pairwise similarity

between two modular structures using NMI. We report summary sta-

tistics of these pairwise NMI values in Table 2 (the total number of

NMI values are 49505100 3 99/2). As shown in this table, Q-based

methods produced substantially variable modular structures across

runs (and the number of communities across runs is also variable). By

contrast, PACE produced identical results up to the third level (i.e.,

eight communities) for HCP and F1000.

To visualize these modularity results, we show axial slices of repre-

sentative modular structures, for the HCP data set, generated using dif-

ferent methods (Figure 4, also see Figure 3e for rearranged

connectome matrices based on PACE).

As Q-based methods yielded variable results (with variable number

of communities, see Table 2), for a fair comparison, we randomly select

a 4-community modular structure to visualize each of the five Q-based

methods. Visually, except for the Q-amplitude and Q-negative-only, Q-

based results shared strong similarities with results generated using

second-level PACE (variability among Q-based methods notwithstand-

ing). Table 3 summarizes, for each Q-based method, the mean and

standard deviation of NMI between the 100 runs and second-level

PACE-derived modularity.

Last, to better visualize the effect of variable numbers of modules

in Q-based methods, we randomly selected one 3-community and one

4-community Q-derived HCP modular structure and compared them

(Figure 5), with the visualizations supporting the potential issue of

reproducibility with Q (for comparison, the first-level 2-community and

second-level 4-community PACE HCP results are also shown).

3.6 | Variability in the modular structure computed

using Q-based thresholding-binarizing method

For the sixth Q-based modularity method, which applies an arbitrary

nonnegative threshold to the mean connectome followed by binariza-

tion (all edges below threshold set to zero, and above threshold to

one), we again conducted 100 runs for each threshold (starting, as a

fraction of the maximum value in the mean functional connectome,

from 0 to 0.5 with increments of 0.02) using the unweighted Louvain

method routine implemented in the BCT toolbox. Figure 6 plots the

mean pairwise NMI6 SD as a function of the threshold, between each

of the 100 runs and those generated using the Q-Comb-Sym or Q-

Comb-Asym methods. Results again demonstrated the substantial vari-

ability in Q as we vary the threshold, especially in the case of HCP.

3.7 | Comparison between PACE modularity and

spectral graph cut

Last, for completeness, we also evaluated a network clustering algo-

rithm derived from spectral graph theory (the normalized spectral cut

FIGURE 2 Stability of PACE as a function of the number of
subjects used in estimating edge negativity (x axis; N550–900 for
F1000 and N550–800 for HCP) using a bootstrapping procedure.
For each N, we generated 1,000 copies (random sampling with
replacement) and computed the NMI between each of the 1,000
corresponding PACE modular structures and that derived from the
full sample. y axis plots the mean of these 1,000 NMI values, for
each N and each of PACE levels [Color figure can be viewed at
wileyonlinelibrary.com]
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or Ncut) (Ng, Jordan, & Weiss, 2001). Since the Ncut algorithm only

deals with positive edges and one needs to pre-specify the value of “k”

(the number of clusters to be generated), we artificially set all negative

edges to zero in the network and ran Ncut 100 times for k52, 4, and

8. Our results revealed that clustering derived from Ncut was also vari-

able, as evidenced by the mean/standard deviation of pairwise NMI

between any two of the 100 runs (Table 4). Note this should not come

as a surprise, since the Ncut algorithm requires a random initialization

step during the k-means step (i.e., even after k is determined, results

are still dependent on how one initializes the center locations of the k

clusters).

Further, we also computed the NMI between each of the

100 Ncut-derived modularity and that from PACE and reported the

results in Table 5, which suggests substantial differences between the

two.

3.8 | Sex differences in RSNs using a PACE-based

hierarchical permutation procedure

Because the HCP data set has a better spatial resolution (2 mm3) and

thus better suited for detecting modularity differences at a granular

level (Van Essen et al., 2012, 2013), we demonstrate here that the sta-

bility of PACE makes it possible to pinpoint modularity differences

between males and females in the HCP data set, while minimizing

potential confounding influences of age. As PACE uses a hierarchical

permutation procedure to create trees, controlling for multiple compar-

isons is straightforward. Here, if two modular structures exhibit signifi-

cant differences at each of the m most-local levels of modular

hierarchy (each of them controlled at 0.05), collectively it would yield a

combined false positive rate of 0.05 to the power of m. For the actual

permutation procedure, we first computed the NMI between the two

FIGURE 3 Constructing the PACE null model in HCP. (a) Original HCP edge-negativity frequency map; (b) generating 1,000 samples of the
same map under the null hypothesis, by randomly permuting the edge positivity/negativity pair (i.e., for each element of the matrix, its

edge-negativity value p is randomly reassigned to 12p with a probability of 50%); (c) Testing the significance of each PACE bifurcation in
HCP up to the fourth-level tree structure. The w values achieved by the original data are shown at each bifurcation point, along with their
statistical significance. (d) Histograms of the 1,000 PACE benefit function w values generated under the null model for each level. Only
bifurcations with observed w values ranked in the top 50 (with respect to the 1,000 null-model values from the same PACE level) is consid-
ered “significant” (blue lines in c). At the fourth level, only one out of eight possible bifurcations was meaningful, resulting in nine final com-
munities (C1–C9). (e) Rearranged matrix to show how these communities (C1–C9) are formed from level 1 to level 4 [Color figure can be
viewed at wileyonlinelibrary.com]
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PACE-derived modular structures generated from the 367 males and

the 453 females in the HCP data set. Then, under the null hypothesis

(no sex effect), we randomly shuffled subjects between male and

female groups and recomputed the NMI between the permuted groups

across all three levels of PACE-derived modularity. This shuffling proce-

dure was repeated 10,000 times and the resampled NMI values were

recorded.

By ranking our observed NMI among the re-sampled 10,000 NMI

values, we detected significant sex differences in modularity starting at

the first-level (p values:<1e204, 1e204, and 1.4e203 for hierarchical

level 1–3, respectively; a combined p value would thus be in the scale

of 10211). By contrast, a similar strategy to detect sex effect using any

of the Q-based methods failed to identify significant differences in the

two sex-specific modular structures. Figure 7 visualizes the PACE-

identified modular structure sex differences (highlighted using blue

arrows and rectangles) in HCP.

Figure 7 shows sex differences primarily in the bilateral temporal

lobes, which was not detected using Q-based methods. These differen-

ces extended to the hippocampus and amygdala, which in females,

were part of the green module, and in males formed part of the red

module.

Last, to validate these modularity findings, we further replicated

our hierarchical permutation procedure using a subset of F1000 in the

age range of 20–30 (319 females at 23.2562.26 years of age and 233

males at: 23.1962.35), with results yielding not only visually highly

similar PACE modularity (despite that F1000 and HCP are based on

completely different brain parcellation techniques), but also similar sex

differences (Figure 8; statistically significant at PACE level 1; p5 .0378)

in the limbic system (including the hippocampus) and the frontotempo-

ral junction (including the pars opercularis as part of the inferior frontal

gyrus), here primarily lateralized to the right hemisphere.

4 | DISCUSSION

In this study, we proposed PACE, a novel way of understanding how

anticorrelations help define modularity of the resting-state fMRI con-

nectome. The benefit function to be optimized exploits the intuition

that a higher probability of an edge being anticorrelated indicates a

higher probability of it connecting regions in different modules. Impor-

tantly, PACE permits a symmetric equivalent dual form, such that it can

be equally conceived as placing edges that are most consistently posi-

tive within modules. Thus, PACE is intrinsically symmetrized.

Conventional Q-maximization methods take a variable approach at

negative edges. For example, many studies to date simply ignore anti-

correlations by setting any values below a threshold (usually positive)

to be zero (Sporns & Betzel, 2016), while others have proposed to

TABLE 1 Summarizes the six Q-based methods, as implemented in
the BCT toolbox, tested and compared in this study (Betzel et al.,
2016; Rubinov & Sporns, 2011; Schwarz & McGonigle, 2011)

Method Equation

Weighted
version

Q-Comb-
Sym

Q5C1Q12C2Q2 C15C2

Q15f W1
ij

� �
W1

ij 5
Wij if Wij>0

0 otherwise

(

Q25f W2
ij

� �
W2

ij 5
2Wij if Wij<0

0 otherwise

(

Q-Comb-
Asym

Q5C1Q12C2Q2 C1 6¼ C2

Q-Positive-
only Q5f W1

ij

� �
W1

ij 5
Wij if Wij>0

0 otherwise

(

Q-Amplitude
Q5f jWijj

� � jWijj5
Wij if Wij>0

2Wij otherwise

(

Q-Negative-
only Q5f W2

ij

� �
W2

ij 5
2Wij if Wij<0

0 otherwise

(

Binarizing Thresholding
Q5f Bij

� �
Bij5

1 if Wij>thres

0 otherwise

(

TABLE 2 Mean and standard deviation of pair-wise normalized mutual information (NMI) across 100 repeated runs within each method

Method F1000 HCP

NMI
Number of modules
(number of runs) NMI

Number of modules
(number of runs)

PACE level 1 1.060.0 2 (100) 1.060.0 2 (100)

PACE level 2 1.060.0 4 (100) 1.060.0 4 (100)

PACE level 3 1.060.0 8 (100) 1.060.0 8 (100)

Q-Comb-Sym 0.89660.093 3 (97),4 (3) 0.7316 0.160 3 (38), 4 (62)

Q-Comb-Asym 0.83560.091 3 (63),4 (37) 0.7726 0.134 3 (31),4 (69)

Q-Positive-only 0.84460.103 3 (1),4 (99) 0.8346 0.079 3 (41),4 (59)

Q-Amplitude 0.81960.108 4 (18),5 (74),6 (8) 0.6146 0.135 3 (1),4 (49),5 (36),6 (14)

Q-Negative-only 0.61760.158 3 (66),4 (34) 0.4606 0.129 3 (3),4 (61),5 (36)

The first three rows are from PACE and the rest from Q. For Q-based methods, the most reproducible methods are highlighted in bold (for F1000 it
was the Q-Comb-Sym, and for HCP the Q-Positive-only).
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down-weight negative edges in a somewhat heuristic fashion. The

PACE method offers a novel and theoretically advantageous interpreta-

tion of left-tail fMRI networks, as traditionally, the left-tail network,

that is, those formed by negative edges alone, has been at times con-

sidered to be weak correlations that may “compromise” network attrib-

utes. For example, Schwarz and McGonigle (2011) argued that the left

tail networks may not be biologically meaningful, despite noting that

some connections were consistently observed in the negative-most tail

networks, both with and without global signal removal. Schwarz and

McGonigle (2011) thus recommended a “soft thresholding” approach

be taken by replacing the hard thresholding or binarization operation

with a continuous mapping of all correlation values to edge weights,

suppressing rather than removing weaker connections and avoiding

issues related to network fragmentation.

Rather than taking an approach that interprets the magnitude of

correlations as the strength of connectivity, PACE determines the

probability of a correlation being positive or negative. Interestingly,

PACE can also be thought of as a different way of binarizing, with a

“two-way” thresholding at zero. Although thresholding at a different

value is possible, it would compromise the equivalence of the PACE

dual forms. Indeed, one could theoretically generalize PACE by setting

Pa6 i;j to compute the probability of ei;j being larger or smaller than an

arbitrary threshold a. However, in the case of a positive a, the left tail

is no longer strictly anticorrelations.

To validate PACE, we used full rather than partial correlations. We

chose this method because recent literature has suggested that in

FIGURE 4 Representative modular structures generated using different methods for the HCP data set. Regions coded in the same color
(out of four: green, blue, red, and violet) form a distinct community or module. Note that unlike F1000, which uses structure parcellation to
partition networks into nonoverlapping communities, HCP utilizes an ICA-based parcellation, which allows components (modules) to overlap
(Sporns & Betzel, 2016), resulting in regions with mixed colors (e.g., yellow) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 For each Q-based method, this table summarizes the
pair-wise NMI’s mean and standard deviation between any of the
repeated 100 runs and the second-level PACE-derived modularity

Method F1000 HCP

Q-Comb-Sym 0.72560.026 0.57660.051

Q-Comb-Asym 0.70560.043 0.60360.047

Q-Positive-only 0.74060.061 0.53960.035

Q-Amplitude 0.60660.064 0.23560.027

Q-Negative-only 0.17060.013 0.11360.017
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general, partial correlation matrices need to be very sparse (Peng,

Wang, Zhou, & Zhu, 2009), and partial correlations have a tendency to

reduce more connections than necessary. In dense networks such as

fMRI-based brain networks, partial correlations have not been shown

to be necessarily better than the Pearson correlation. Thus, partial cor-

relations are often used in small networks that (a) have small numbers

of connections or (b) have been forced to be sparse by introducing a

penalty term during whole-brain network generation (Lee, Lee, Kang,

Kim, & Chung, 2011).

Following current practice in the literature, we compared PACE to

Q maximization based modular structures in both the HCP and F1000

data sets using the default setting in the BCT toolbox (the Louvain

method). Notably, for Q-maximization, we observed more variable

modular structure, not only across different Q-based formulations (right

tail, left tail, absolute value, and symmetric and asymmetric combined),

but also across multiple runs within each formulation.

A secondary analysis further applied PACE to the investigation of

potential sex differences in the resting functional connectome. Note,

while sex differences have been reported in the structural connectome

of the human brain (e.g., Szalkai, Varga, & Grolmusz, 2015), few studies

have examined sex differences in the functional connectome in healthy

individuals, and no studies to our knowledge have examined sex differ-

ences in higher-level connectome properties such as network modular-

ity. Previously, one large study (Biswal et al., 2010) examined the

functional connectome of the F1000 data set using three methods:

seed-based connectivity, independent component analysis (ICA) and

frequency domain analyses. Across the three analytic methods, they

found consistent effects of sex, with evidence of greater connectivity

in males than females in the temporal lobes, more so in the right hemi-

sphere, and particularly when using ICA. Our results (Figure 8) are con-

sistent with these reported findings.

Using the HCP data set, our study also revealed higher-level sex-

specific connectome modularity differences in the temporal lobes,

including the middle temporal gyrus, amygdala, and hippocampus. The

amygdala (Cahill, 2010) and hippocampus (Addis, Moscovitch, Crawley,

& McAndrews, 2004) are important for emotional and autobiographic

memory, while previous studies have reported sex differences in their

activities in this context (Davis, 1999; Seidlitz & Diener, 1998; St.

FIGURE 5 Visualization of randomly selected 3-community and 4-community Q maximization-derived modular structures in HCP, demon-
strating the suboptimal reproducibility with Q maximization. For comparison, the first-level 2-community and second-level 4-community
PACE results are also shown [Color figure can be viewed at wileyonlinelibrary.com]
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Jacques, Conway, & Cabeza, 2011; Young, Bellgowan, Bodurka, & Dre-

vets, 2013). In line with these findings that likely reflect differential,

sex-specific cognitive strategies for recalling memories related to self,

we found that in female, the amygdala and hippocampus are within the

module that also contains the default mode network, whereas in males

they belong to the module largely consisting of the visual and

somatomotor networks. It is also consistent with Damoiseaux, Viviano,

Yuan, and Raz (2016), which found that females had greater connectiv-

ity between the hippocampus and medial PFC than males, and Kogler

et al. (2016) which found that females had greater connectivity

between the left amygdala and left middle temporal gyrus than males.

These medial prefrontal and lateral temporal regions form part of the

FIGURE 6 Mean and standard deviation of pair-wise similarity metric NMI, as a function of the threshold (x axis, as a fraction of the maxi-
mal value in the mean group connectome), between the modularity extracted using Q-based thresholding-binarizing and the weighted Q-
Comb-Sym method or the Q-Comb-Asym method for F1000 (top) and HCP (bottom) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 The stability/variability of the Ncut algorithm, which was run 100 times for a k value of 2, 4, and 8 (each run is different due to
the random initialization during the k-means step)

F1000 HCP

2 modules 4 modules 8 modules 2 modules 4 modules 8 modules

Ncut 0.930860.0612 0.937460.0814 0.696360.0703 0.946960.0520 0.683060.1614 0.718460.0735

We reported the pairwise NMI’s mean and standard deviation between any two of the 100 runs for each k value.
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brains default mode network (Fox et al., 2005). Thus, these recent and

preliminary findings may reflect stronger coupling within the default

mode network and between the amygdala and the default mode net-

work in females than in males, supporting previous reports of greater

regional homogeneity in the right hippocampus and amygdala in

females than males (Lopez-Larson, Anderson, Ferguson, & Yurgelun-

Todd, 2011).

5 | L IMITATIONS AND FUTURE
DIRECTIONS

First, we note that the proposed PACE framework is based on the esti-

mation of edge positivity/negativity frequency, which encodes details

of functional co-activation/antiactivation. Unlike Q-based methods

that encode such details using correlation magnitudes, PACE procedure

discards edge weights, which may be part of the reason why it yields

more stable results by discarding otherwise useful details and reducing

accuracy. However, a counter argument can also be made in that a

majority of noisy features tend to be close to zero with arbitrary signs;

thus Q-based methods that employ thresholding can simply remove

these noisy features and probably yield more stable results (although

this is not supported by our thresholding-binarization experiments in

Section 3.6).

Further, the idea that correlation magnitudes always encode mean-

ingful details is also not universally accepted in the imaging community,

as evidenced by studies that instead adopted a thresholding-

binarization approach. For example, in (van den Heuvel et al., 2017),

the authors extensively tested a proportional threshold (PT) approach

that “includes the selection of the strongest PT% of connections in

each individual network, setting all (in the binary case) surviving con-

nections to 1 and other connections to 0” in order to “remove spurious

connections and to obtain sparsely connected matrices, a prerequisite

for the computation of many graph theoretical metrics.”

Second, with the PACE benefit function cast as a difference

between inter-modular versus intra-modular mean edge negativity, the

optimization problem is non-deterministic polynomial-time hard or NP-

hard and thus the global solution is not computable in realistic terms.

Thus, we instead used a top-down hierarchical bifurcating solver that

was previously extensively tested in PLACE. Despite this limitation, we

(a) outlined a theoretical connection between PACE and the Ising

TABLE 5 Comparing modularity derived from the Ncut algorithm and from PACE

F1000 HCP

2 modules 4 modules 8 modules 2 modules 4 modules 8 modules

NMI between Ncut and PACE 0.436960.0065 0.663560.0322 0.63886 0.0580 0.374560.0133 0.528460.0395 0.452960.0199

Ncut was run 100 times with random initialization for a k value of 2, 4, and 8. We reported the pairwise NMI (mean and standard deviation) between
any of the 100 runs and the corresponding PACE output (level 1–3, corresponding to 2, 4, and 8 modules).

FIGURE 7 Visualization of PACE-identified sex-specific resting-state network (RSN) modularity in females (left) and males (right) from the
HCP data set. Using permutation testing, sex-specific modularity differences are confirmed to be statistically significant throughout the
entire PACE modular hierarchy starting at the first level. Here, the results are visualized at first-level PACE, yielding two modules coded in
red (module 1) and green (module 2). As HCP utilizes an ICA-based parcellation, modules thus overlap, in this case resulting in some regions
colored in yellow [Color figure can be viewed at wileyonlinelibrary.com]
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model, demonstrating that the PACE algorithm is a maximum likelihood

estimation algorithm, (b) showed that PACE results were robust and

insensitive to multiple runs while recovering known RSNs, and (c)

showed that PACE-derived number of communities is not restricted to

powers of 2, due to a permutation procedure that constructs the null

distribution of the observed data allowing us to determine, at each

branch, if further bifurcation is statistically meaningful.

Although the novel PACE-based symmetrized functional modular-

ity is shown to be a powerful and mathematically elegant approach to

understanding anticorrelations in fMRI connectomes, it cannot be com-

puted without robust estimates of edge negativity/positivity frequen-

cies, and thus there may be instances where Q yields more biologically

meaningful results. Here, we tested PACE using large-N cohorts of

HCP and F1000 functional connectomes. Although theoretically feasi-

ble, individual-level PACE would require multiple runs for each individ-

ual or alternatively a completely different mathematical formulation

(e.g., noncorrelation based, see below) for estimating these frequencies.

Along this line, we note that recently several more sophisticated

approaches for rigorous null modeling of correlation matrices and for

multilayer multiscale Q maximization have been proposed (Bazzi et al.,

2016; Betzel, Fukushima, He, Zuo, & Sporns, 2016; Betzel et al., 2015;

MacMahon & Garlaschelli, 2015). For example, in MacMahon and Gar-

laschelli (2015), the authors used random matrix theory to identify non-

random properties of empirical correlation matrices, leading to the

decomposition of a correlation matrix into a “structured” and a “ran-

dom” component. While beyond the scope of this study, we note that

(a) such a decomposition requires strong assumptions that have been

criticized and may not hold for the human brain, (b) PACE extracts

modularity given some estimation of functional co-activation/antiactiva-

tion via edge positivity/negativity, which can be based on time series

correlation (an approach we adopted here due to its conventional pop-

ularity), based on more advanced null modeling as in this cited study, or

based on other information-theoretical approaches that we are cur-

rently exploring and are completely noncorrelation-based. Thus, indi-

vidual subject-level PACE becomes possible.

Last, a new multi-scale modularity maximization approach has been

recently investigated that seeks to generalize the Q modularity metric,

and is thus likely to outperform the Q methods we studied here. How-

ever, in contrast to the simplicity of the PACE model (that does not

require any parameter tuning) and in addition to the several caveats

and nuances of the existing Q methods, this multi-scale approach intro-

duces additional resolution parameter (g) that needs to be further tuned

(a range from 1022.0 to 100 was studied in Betzel et al., 2015)

Notwithstanding the several limitations of correlation-based PACE

noted above, we demonstrated that testing specific effects (e.g., sex)

can be achieved with careful permutation testing while controlling for

other variables (such as age), as in our secondary analyses showing sig-

nificant sex effects in the temporal lobes. Last, a recent study has uti-

lized the rich data set provided by the HCP to develop a new

multimodal method for parcellating the human cerebral cortex into 180

areas per hemisphere (Glasser et al., 2016). This semi-automated

method incorporates machine-learning classification to detect cortical

areas. It would be interesting to apply PACE to this new parcellation

once the classifier becomes publicly available.

6 | CONCLUSIONS

This methodological report outlines a novel PACE framework that com-

plements the existing Q-based methods of defining modularity for

brain networks in which negative edges naturally occur. When applied

FIGURE 8 Visualization of PACE-identified RSN modularity and its sex differences between females (left) and males (right) from the
F1000 data set. The difference in spatial resolutions notwithstanding, note the visually highly similar PACE-derived modularity in HCP (Fig-
ure 7) and F1000, even though these two data sets utilize completely different brain parcellation techniques [Color figure can be viewed at
wileyonlinelibrary.com]
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to the HCP and the F1000 data sets, we showed that PACE yielded

stable reproducible results that are consistent with those derived from

existing methods, providing evidence for convergent validity. Further-

more, given the high reliability of this new method, we have been able

to demonstrate sex differences in resting state connectivity that are

not detected with traditional methods.
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