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ABSTRACT
As the trend of autonomous self-driving cars is becoming more
of a reality, High-quality navigation methods and tools become a
paramount. This, in turn, is crucially dependent on High-definition
maps, for which one of the enabling tools is high resolution Digital
Terrain Model (DTM) – the role and values of which have already
been demonstrated even in the settings of manned cars. Traditional
DTM generation methods have insurmountable barriers in creat-
ing centimeter-level resolution. In this paper, we propose a novel
method for fully-automated, high precision DTM generation using
the database generated and maintained in our existed dataset, and
with no additional overheads in terms of extract labor and equip-
ment cost. The input data is a point cloud captured by the vehicle-
mount LiDAR devices which, naturally, has extremely large vol-
ume. We show how with Ground Points Processing and DTM Gen-
eration steps, we can generate a centimeter-resolution DTM and, as
our experiments demonstrate, when compared to DTM form U.S.
Geological Survey (USGS) and altitude data from a third party sur-
veying dataset, our proposed DTM indeed provides a higher preci-
sion.
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1. INTRODUCTION AND MOTIVATION
With the developments of GPS-based autonomously driving cars
and trucks[14] [12], the demand for high-quality navigation and
HD maps is ever increasing and, consequently, high resolution Dig-
ital Terrain Modeling (DTM) is a paramount. To survey a large
area from a county to a country, most of DTM providers, e.g., U.S.
Geological Survey (USGS) and Earth Remote Sensing Data Anal-
ysis Center (ERDAC), use flying platforms such as remote sensing
satellites and airborne laser scanner. These acquisition techniques,
while enabling a large territory to be covered, have certain notable
disadvantages for their use in the context of autonomous vehicles.
Firstly, the data captured by flying platforms has low precision and
introduces measurement errors – typically, the resolution of these
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kinds of DTM are meter-level. Secondly, due to objective survey-
ing methodologies constraints, such as cost and operating altitude,
system error and random error are hard to reduce. Thirdly, the data
captured is originally a Digital Surface Model (DSM), which con-
tains buildings, trees and other objects which, in turn, can distort
the representation of the ground-level that is essential for naviga-
tion purposes.

The computation of DTM relies on two basic methodologies: it
can be automatically computed from DSM [6] or additional labor is
needed to manually remove the objects occluding the terrain. Thus,
a high precision altitudes information can be measured, verified
and/or corrected by manual survey, however, such "control points"
require a lot of manpower and resources, and can only provide a
coverage of a small area with which they are co-located.

Since the airborne LiDAR cannot penetrate through obstacles that
cover the underlying terrain (e.g., trees in a forest), the idea to use
ground-based LiDAR to generate DTM has been proposed in cre-
ating the ground-level DTM [7][11] [16]. We note that there are
other methodologies for removing non-surface objects (cf. [13] and
[10]), however, these approaches can only be applied in the settings
in which which non-surface object areas are much smaller than the
surrounding/detected surface area. Essentially, the techniques de-
scribed in [13, 10] rely on sensors that are fixed on ground, which
is the main reason for the limitation to generate only small clean-
regions. Ground LiDAR also suffers from the problem of being
blocked by non-surface objects and in most cases, an interpolation
is used to generate the data for the non-covered ground data. Sim-
ilarly to the the case for airborn LiDAR, there are techniques [2,
5] that can solve the problem for the settings in which missing re-
gion area is much smaller than the known region area. However, in
many realistic scenarios, non-surface objects are not small objects
– they can even include buildings and other large size objects.

In this paper, we address the problem of creating high resolution
DTM using ground based LiDAR points in a large area, and our
approaches are especially amenable to urban areas. The proposed
methodologies can create centimeter-level using our dataset auto-
matically, with no need for manual interventions. The main contri-
butions of this work are summarized as follows:

1. We extract ground points from huge size of point cloud data,
this step offers reliable input data for DTM generation.

2. Bridges, tunnels and overpasses can be effectively detected
in our method, which makes the proposed DTM approach
much more accurate.



3. We design a region-function based region interpolation
method, which can restore the missing details accurately.

4. We provide experimental observations which provide a quan-
titative demonstration of the advantages of the proposed
methodology.

The rest of this paper is structured as follows. In Section 2 we
present the preliminary background and introduce the notation that
will be used throughout the rest of the paper. Section 3 presents
the issues and solutions related to ground points processing and
Section 4 discussed in detail the aspects of the DTM generation.
Experimental results are presented in Section 5, which is followed
by Section 6 in which we overview the state of the art and position
the proposed work in that context. We summarize the paper and
outline directions for future work in Section 7.

2. PRELIMINARIES
The field of DTM emerged as a technology attempting to im-
prove the quality of geological photogrammetry [1], and it was
within DTM framework that DEMs – 2D discrete functions of
elevation – became the main source of information on topogra-
phy. In addition to the problem-domain addressed in this work,
DTM is widely used to solve various multiscale problems of ge-
omorphology, hydrology, remote sensing, soil science, geology,
geophysics, geobotany, glaciology, oceanology, climatology, plan-
etology, and other disciplines-see reviews [4][9]. Developing a
DTM for urban regions, especially ones involving mountainous ter-
rain presents a plethora of challenges. Complex geomorphological
shapes, trees/forests, along with unevenly shaped and sized build-
ings, make the classic methods inadequate and non-applicable.

Figure 1: All drives plot in San Francisco area.

Due to its natural topographical and urban features, the city of
San Francisco has been subject to a variety of studies which, in
turn, have provided plenty of credible DEM resources – for ex-
ample: USGS[15], National Oceanic and Atmospheric Adminis-
tration (NOAA)[8], as well as third party survey data. While we
can use each of them to cross-validate our results, in our dataset
we have a point cloud captured by acquisition vehicles, as follows:
for each point, we record its position is World Geodetic System
1984 (WGS84) [3] coordinate, which contains latitude, longitude
and altitude information in fifteen digits of precision. Along with
these, there are other information-items recorded such as, e.g., time
stamp, LiDAR reflected intensity and device information – how-
ever, throughout this paper we only utilize the spatial position in-
formation.

Given a particular acquisition vehicle AVi, we use the term
Drive(AVi) to denote each acquisition operation by that vehicle.
The LiDAR device keeps detecting objects while the vehicle is
moving. Typically, the number of points recorded along a strip of
ten meters road in urban regions is approximately three millions,
whereas for the highway, the corresponding number is approxi-
mately one million. The respective recorded points represent the
surfaces of not only road, but also other objects such as vehicles,
trees, pedestrians, buildings. In our dataset, 248 Drives drive inside
or through San Francisco Region, with the total drive distance of
34,278 km.

The first major challenge addressed in this paper is how to han-
dle the extremely large sized datasets of points collected during the
recording/acquisition. An additional challenge stems from the fact
that, while the acquisition vehicles drive on road surface, it may be
the case that sometimes the roads are not on the terrain surface. An
Example is shown in Figure 1 which shows cases of both below
terrain surface (tunnel) and above terrain surface (bridge). Such
points may introduce various kinds of errors and cause a degree of
a misleading in the outcome of the development of DEMs. Thus,
the second major challenge is how can we detect and remove such
data/points. The last challenge tackled in this paper occurs when
one misses the elevation information of the non-road regions. In
such settings, one needs to interpolate and estimate elevation infor-
mation in the missing regions.

3. GROUND POINTS PROCESSING
We re-iterate that the data size of LiDAR point cloud is extremely
large – as an example, the generation of only 10 meters urban road
chunk occupies approximately 100 MBs. Using entire point cloud
from all the target Drives requires unacceptably large amount of
computational resources – however, we note that the raw point
cloud contains every spatial entity captured, such as buildings, trees
and vehicles. Thus, eliminating redundant information from the
point cloud data and focusing on the subset of relevance for DTM
generation can significantly speed-up the overall process.

Figure 2: Road surface points(purple) are extracted in street
view point cloud

3.1 Road Surface Detection
The first step towards in ground points processing is to retain the
road surface points and filter out all the other points. This step
in not a novel contribution of the present paper and has already
been solved as part of the projects in our road features extraction



pipeline – however, we describe it here for completeness. The ba-
sic idea of this step is to first find the trajectory points (which is,
the points right under the acquisition vehicle with a certain time
interval) recorded with the correlated point cloud data, and then
use region growing method to search neighbor points until a non-
surface structure is intersected. These may include curbs, guard
rails, building, other vehicles and grass. Then the connected ground
points will be filtered out from entire point cloud. An illustration
of extracted surface points in 3 chunks point cloud is shown in Fig-
ure 2.

3.2 Ground Points Selection and Projection
The number of road surface points after road surface detection is
still too large for practical applications – however, it provides the
superset (i.e., candidates) of all the ground points needed. To fur-
ther reduce the number of points, a sampling process needs to be
applied, and the sampling rate depends on the DTM resolution.

Let x and y denote the location in two dimension DTM coordinate,
and DEM(x, y) denote the altitude information at location (x, y).
Given the upper left latitude and longitude of DTM in WGS84 co-
ordinate, we have:[
lat lon

]
, resolution

[
rlat rlon

]
are latitude per pixel and lon-

gitude per pixel and the DTM size
[
height width

]
, we can

project ground point to our model by using Equation 1:

DTM(x, y) =

[
height
width

]
+

(P −
[
lat
lon

]
)[

−rlat
rlon

]′ (1)

Depending on the DTM resolution, typically, we have millions of
pixels for a given one meter/pixel resolution urban model, with al-
most two orders of magnitude larger input-set of points. This, in
turn, implies that some points will inevitably be projected onto a
same pixel in the model. These points which are collectively as-
signed to a particular pixel have height difference distribution and
for each road surface pixel the altitude information is assumed to
have a distribution normal distribution, to capture the impact of the
errors of measurements instrumentation [?]. As often done in the
literature, we select the median value for of all these road-surface
points to determine the value associated with a particular pixel,
with a bounded error.

4. DTM GENERATION
Our GPs data have been aligned and corrected when stored in sys-
tem, so the point cloud from each drive has nearly no device error.
To develop the urban DTM, only using road region altitude infor-
mation directly is not enough. There are still two problems need to
solve. First of all, some of the road surfaces are not built right on
terrain surface, for example, tunnels and bridges. At same time, fly-
over (multi-layer bridge) will also confuse the DEM development.
Second, we do not have the altitude information "off-road", for ex-
ample, buildings, parks and other un-drivable regions. So that we
need to estimate the missing altitude information in these regions.

4.1 Bridge, Tunnel, Flyover Detection

Bridges, tunnels and flyovers will always give us wrong terrain al-
titude information under or above them. Hence finding them then
correcting these kinds of road structures are important and neces-
sary before interpolate the missing regions. To detect a multi-layer
bridge structure, we need to analyze the histogram and standard
deviation of the GP set which project onto one pixel, instead of
selecting the median value of GP set directly. The solution is for
each GP set P (x, y) = {GP1, GP2, GPn}, we calculate a stan-
dard deviation map

S(x, y) = STD(P (x, y)) (2)

In map S, higher value means the road passes this pixel may have
multiple layers, other pixels which have lower standard deviations
are only have altitude errors. In Figure 3, we visualize a normal-
ized standard deviation intensity map. The brighter pixels are the
chunks where bridge goes over the road which can been validated
from Figure 3b, a 3D map from HERE 3D map. The red pixel in
Figure 3a is the pixel which has the most standard deviation, the
normalized values in a 7 by 7 neighborhood region are show in fig-
ure 3c. The reason causes this result is we have several vehicles
acquire LiDAR data on both two layer drives. Figure 3d shows the
altitude histogram of points which project onto red pixel. Com-
paring to the neighbor road altitude information, we can select the
median value of left peak as the altitude information at this pixel.

Bridge and tunnel detection need extra DEM from other resources,
such as USGS. We assume that although the altitude information
at a certain location are different from our DTM and other DTMs
because of the error, the altitude differences (relative terrain) in a
small area still have referential meanings. Based on this assump-
tion, we can use other DTMs to help us detecting bridges and tun-
nels.

(a) (b)

(c) (d)

Figure 3: A bridge sample with its normalized standard de-
viation intensity map(a), the real view of bridge(b), intensities
around red pixel(c) and altitude histogram of red pixel(d)



(a) (b)

(c) (d)

Figure 4: A bridge sample with its normalized standard de-
viation intensity map(a), the real view of bridge(b), intensities
around red pixel(c) and altitude histogram of red pixel(d)

In a small region, the DTMs from two development methods have
measurement error, hence the altitude difference of each pixel
should almost the same. In Figure 4, we visualize two examples
of the normalized altitude differential maps and original satellite
images. Giving a region, altitude difference of each pixel should
around a certain value, while the difference of tunnel or bridge pix-
els will show significant contrast. For example, in Figure 4a, we
normalize the intensities of a region which contains a tunnel. The
majority of altitude differences are round 0.3 meter and follow nor-
mal distribution as the most dark gray road pixels show, while the
highlighted pixels have more than 30 meters difference. In satellite
image Figure 4c, we validate our detection. Figure 4c and d show
a bridge example.

When one of these structures are detected, we need to correct the
road pixels of this structure. For each pixel which has significant
altitude difference compares to the majority of altitude difference
in one region, we refresh their value with following equation 3:

DTM(x, y) = DTMr(x, y)− δh (3)

Where DTMr is a third party reference model and δh is the ma-
jority of altitude difference.

4.2 Block classification and Interpolation
We have two methods to fill up the blank regions in each close road
loop (block) which are depended on their types. The first method
is called terrain transfer. The idea is copy a local DTM inside the
closed loop from USGS or other DTM resources then paste to our
DTM with correcting the altitude shift. Altitude shift is the majority
of altitude differences in the local region of known pixels. The
second one is use bilinear interpolation to fit a plane.

The interpolation method is based on the block classification. For
the pixels inside each block boundary, we can fit a plane in 3D
space: row, column and altitude. Block can be classified by the
standard deviation of the distances to fitted plane of all known pix-

(a)

(b)

Figure 5: Visualization of the block types of a small region(a)
and related aerial image(b).

els in the block from referenced DEM source. If the standard de-
viation is larger than a threshold, we can assume this region may
contain a hill or a basin which will be classified as park block then
use copy-paste interpolation. Otherwise, the block will be classi-
fied as resident block then use bilinear interpolation. In Figure 5a,
we colorize the class of each block, red for resident block, green
for park block and white pixels are road.

5. EXPERIMENTAL RESULTS
We tested our algorithm on the data pertaining to San Francisco ur-
ban region. The latitude range from south to north is 37.7067789
to 37.811017 and longitude range from west to east is -122.519654
to -122.349709. There are total of 248 drives completed through
the said urban region which, in turn, generates 30,000 km of road-
segments data in the LiDAR point cloud. To reduce the data size
while keeping it consistent with USGS DTM resolution, we ex-
tracted and subsampled ground points from the original data by
1 meter per pixel in order to develop a 5 meter per pixel resolu-
tion DTM. With this, the number of final ground points became
12,681,310. To cross validate our DEM and USGS DTM, we also
imported 102 control points (CP102) from a third party artificial
survey. In San Francisco, we detected 6,887 blocks and 6,376 of
them are classified as resident blocks. Figure 6 shows the type of
each block, while blue region is sea mask, and dark regions are the
regions with no closed loop, we will interpolate this kind of region
by using copy-paste method. After interpolation, our DTM height
map is shown in figure 7a compares to USGS DTM 7b.

Similar to clock problem, although we prove our DEM develop-



Figure 6: Visualization of the block types of San Francisco:
sea(blue), resident(red), park(green) and undetected(black).

ment is close to USGS, we have altitude difference between these
two models. So we need "the third clock" to cross validate them.
We compare each control point from CP102 with our and USGS
DTMs, and visualize the comparisons in figure 8. Green boxes
are the point close to CP102 with 0.5 meter difference; red ones
mean the altitude at that pixel, ours or USGS altitude is higher than
CP102; otherwise we use blue boxes. The table 1 presents the de-
tail altitude information at each control point. From figure 9, we
count the percentage of total number of points which below some
altitude differences, and prove that our DEM is close to âĂIJabso-
luteâĂİ altitude. In statistics, 55% of points in our DTM is closer
to CP102 while USGS is 45%, 69% of our points have lower than
1 meter altitude difference while USGS is 64%.

6. CONCLUDING REMARKS AND FU-
TURE WORKS

In this paper, we proposed a DEM development method using
LiDAR point cloud. Evaluation results demonstrated that we
achieved better accuracy and faster processing time compared with
known classic DEM development approaches. The success of this
method is based on two main aspects: firstly, since the vehicle-
mount LiDAR is close to the terrain, our method is able to filter out
non-ground objects and retain only the ground points; secondly,
due to multiple times acquisition, we were able to minimize the
measurement errors. At the time being, we are planning to focus
our effort on one big challenge that needs to be addressed – namely,
we need additional DEM sources to further correct our DEM. At
the current settings, our method can develop HD DEM for the cities
already available in the HERE point cloud dataset. However, as
part of the future extensions of this work, when high precision GPS
devices are mounted on most of personal vehicles, we plan to in-
vestigate how to efficiently generate HD DTM via coupling LiDAR
data with other real-time data sources.
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X Y CP102 Ours USGS X Y CP102 Ours USGS
511 1236 -4.373 -4.1085 -5.5767 835 247 -8.911 -9.0733 -10.093
737 1219 -10.513 -10.257 -7.5845 835 255 -6.611 -6.7074 -8.2585
763 1205 -14.572 -14.721 -9.2058 835 257 -5.881 -6.1521 -7.6087
850 960 12.341 9.659 11.603 830 224 -13.22 -13.257 -14.847
856 929 22.322 22.086 18.486 830 223 -13.172 -13.35 -14.861
868 885 19.145 18.915 27.163 191 1306 -29.607 -27.574 -29.437
941 777 33.841 33.714 38.788 193 1307 -29.354 -28.527 -29.437
607 176 -11.683 -11.984 -12.36 193 1305 -29.307 -27.68 -29.374
567 195 -6.031 -6.6798 -3.869 194 1294 -28.855 -27.873 -28.831
565 196 -5.935 -6.831 -3.6631 194 1294 -29.04 -27.873 -28.831
566 197 -5.936 -6.0948 -3.4722 193 1294 -29.075 -27.608 -28.828
567 196 -5.953 -6.8033 -3.8089 193 1294 -29.159 -27.608 -28.828
566 216 3.965 3.5429 3.1162 194 1286 -28.492 -26.113 -28.281
565 218 4.882 4.8025 4.1296 196 1281 -28.335 -25.618 -27.913
564 217 4.976 4.2134 3.622 196 1281 -28.171 -25.618 -27.913
565 218 5.035 4.8025 4.1296 195 1281 -28.227 -25.893 -27.915
563 220 5.084 5.1412 5.1447 194 1280 -28.143 -26.726 -27.911
566 218 5.013 4.505 4.132 194 1279 -28.224 -25.386 -27.92
567 183 -6.817 -7.0624 -7.7012 197 1264 -27.359 -25.23 -26.397
566 184 -6.857 -6.8564 -7.4463 197 1262 -27.418 -25.444 -25.973
567 185 -6.872 -6.9713 -7.2187 197 1261 -27.101 -21.057 -25.729
569 186 -5.657 -7.5192 -6.7848 227 1269 -22.25 -22.452 -21.975
568 186 -6.843 -7.5737 -6.9691 228 1267 -22.04 -20.841 -21.488
606 175 -11.923 -11.953 -12.503 228 1267 -21.99 -20.841 -21.488
608 174 -12.417 -12.783 -12.959 228 1268 -22.249 -21.368 -21.749
609 175 -12.009 -12.14 -12.709 225 1288 -26.075 -23.641 -25.483
599 173 -10.959 -11.674 -12.618 226 1289 -25.979 -25.269 -25.577
626 178 -13.706 -14.142 -13.449 227 1289 -25.736 -25 -25.426
626 175 -14.164 -14.329 -14.517 225 1284 -25.61 -24.914 -24.658
622 175 -12.833 -13.64 -14.164 232 1238 -14.967 -13.482 -13.48
650 165 -20.092 -20.482 -20.343 243 1237 -15.971 -13.072 -14.765
650 167 -19.859 -20.569 -19.6 243 1235 -15.745 -13.072 -13.963
648 168 -19.355 -19.411 -19.292 242 1235 -15.758 -13.644 -13.892
647 168 -19.239 -19.394 -19.1 252 1239 -17.376 -16.778 -17.036
647 167 -19.824 -19.838 -19.462 252 1237 -17.152 -16.594 -16.485
660 180 -16.229 -16.148 -16.271 253 1237 -17.204 -16.11 -16.503
707 205 -5.618 -5.4471 -7.0605 249 1257 -19.232 -10.682 -19.505
707 206 -5.351 -5.4422 -6.1485 250 1254 -19.053 -18.177 -19.045
708 206 -5.31 -6.2701 -5.9686 252 1254 -19.097 -19.041 -19.285
708 205 -5.704 -5.7565 -6.7734 255 1223 -14.451 -13.403 -12.936
696 204 -6.546 -6.8003 -7.2256 254 1223 -14.407 -14.174 -12.381
721 230 6.97 6.9197 7.0414 256 1205 -11.914 -10.764 -10.81
733 232 7.231 6.2772 8.8334 257 1205 -11.961 -11.28 -11.122
734 232 7.044 5.9996 6.3618 257 1205 -12.051 -11.28 -11.122
757 211 -1.954 -2.0649 -0.93676 289 1246 -22.36 -22.531 -21.825
769 211 -0.453 -0.39786 -1.5466 287 1248 -22.407 -21.611 -21.823
767 211 -0.442 -0.29495 -1.3932 215 1335 -29.244 -28.189 -29.436
767 209 -0.364 -0.64899 -1.8803 167 1275 -28.804 -27.088 -28.502
768 209 -0.396 -0.34413 -1.8717 167 1274 -28.447 -27.129 -28.285
835 250 -8.115 -8.1603 -9.2252 167 1274 -28.748 -27.129 -28.285
835 247 -8.867 -9.0733 -10.093 165 1275 -28.742 -28.429 -28.502

Table 1: Comparison table of CP102, our DEM and USGS DEM at certain DEM location (X,Y ).


