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Abstract

In this paper, we present a methodology for find-
ing the n most similar documents across multiple tezt
databases for any given query and for any positive in-
teger n. This methodology consists of two steps. First,

_databases are ranked in a certain order. Nezt, docu-

ments are retrieved from the databases according to
the order and in a particular way. If the databases
containing the n most similar documents for a given
query can be ranked ahead of other databases, the
methodology will guarantee the retrieval of the n most
similar documents for the query. A statistical method
is provided to identify databases, each of which is es-
timated to contain at least one of the n most similar
documents. Then, a number of stralegies s presented
to retrieve documents from the identified databases.
Ezperimental results are given to illustrate the rela-
tive performance of different stralegies.

1 Introduction

The Internet has become a vast information
source in recent years and can be considered as the
world’s largest digital library. To help ordinary users
find desired data in this library, many search engines

have been created. Each search engine has a corre-.

sponding database that defines the set of documents
that can be searched by the search engine. Usually,
an index for all documents in the database is created
and stored in the search engine. For each term which
can represent a significant word or a combination of
several (usually adjacent) significant words, this in-
dex can identify the documents that contain the term
quickly.
Frequently, the information needed by a user is
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stored in the databases of multiple search engines.
As an example, consider the case when a user wants
to find papers in a subject area. It is likely that
the desired papers are scattered in a number of pub-
lishers’ and/or universities’ databases. Substantial
effort would be needed for the user to search each
database and identify useful papers from the retrieved
papers. A solution to this problem is to implement a
metasearch engine on top of many local search en-
gines. A metasearch engine is just an interface. It
does not maintain its own index on documents. How-
ever, a sophisticated metasearch engine may main-
tain information about the <contents of its underly-
ing search engines to provide better service. When a
metasearch engine receives a user query, it first passes
the query to the appropriate local search engines, and
then collects (sometimes, reorganizes) the results from
its local search engines. With such a metasearch en-
gine, only one query is needed from the above user to
invoke multiple search engines.

A closer examination of the metasearch approach
reveals the following problems.

1. If the number of local search engines in a
metasearch engine is large, then we should be
careful about which local search engines to in-
voke for a given query. It is likely that for a
given query, only a small fraction of all search en-
gines may contain sufficiently useful documents
to the query. In order to avoid or reduce the
possibility of invoking useless search engines, we
should first identify those search engines that are
most likely to provide useful results to each query
and then pass the query to only the identified
search engines. Examples of systems that em-
ploy this approach include WAIS [13], ALIWEB
[14], gG1OSS [6], SavvySearch {10] and D-WISE
(33]. The problem of identifying potentially use-
ful databases to search is known as the database -
selection problem.

2. If a user only wants the n most similar documents




across all local databases, for some positive inte-
ger n, then the n documents to be retrieved from
the identified databases need to be carefully spec-
ified and retrieved. This is the collection fusion
problem.

In this paper, we study both the database se-
lection and the collection fusion problems. First, we
identify a sufficient condition that databases need to
be ranked and documents need to be retrieved such
that the n most similar documents for a given query
can be obtained. Second. in order that databases can
be identified to contain the most similar documents,

we employ the combined-term method [18] to estimate -

the number of documents in a given database which
have high similarities with the given query. This
method extends our subrange-based method [21] by in-
corporating certain term dependencies between adja-
cent terms. We also show that this method, as well as
the subrange-based method, will be able to optimally
retrieve the n most similar documents for single-term
queries. In the Internet. it is known [I, 7, 12] that
single-term queries are submitted frequently. Third,
from databases supplied by Stanford University, we
compare performances of the combined-term method
with the high-correlation method [6, 7]. We also
compare different ways of retrieving documents from
databases which have been ranked in a given order by
our combined-term method. The experimental results
demonstrate the superior performance of our method.

The paper is organized as follows. In section 2,
the database selection problem and the collection fu-
sion problem are discussed in more detailed in the con-
text of this paper. A summary of related work is given
in Section 3. In Section 4. a sketch of the subrange-
based method and that of the combined-term method
are provided. In section 3, a sufficient condition for
ranking databases in an optimal order to retrieve the
n most similar documents for any given query, for
any given n, is given. The subrange-based method
and the combined-term method are shown to rank
the databases optimally for single-term queries. A
strategy is given to retrieve documents from databases
which have been ranked. It is shown that for the opti-
mally ranked databases (i.e., databases containing one
or more of the n most similar documents are ranked
ahead of other databases), all the n most similar doc-
uments will be retrieved. In Section 6, experimen-
tal results comparing the performances of the high-
correlation method and the combined-term method
are given. Further experimental results involving the
combined-term method in conjunction with the strat-
egy to retrieve documents from the ranked databases
are presented to show that the percentages of the n
most similar documents retrieved vary from 83% to
95% when n varies from 5 to 30.
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2 The Database Selection Problem
and the Collection Fusion Problem

We assume that the vector-space model [23] is
used to represent documents and queries. In this
model, each document (or each query) is simply a set
of words. It is transformed into a vector of terms
with weights [23]. The weight of a term usually de-
pends on the number of occurrences of the term in
the document (relative to the total number of occur-
rences of all terms in the document) [23. 32]. It may
also depend on the number of documents having the
term relative to the total number of documents in the
database. A query is similarly transformed into a vec-
tor with weights. The similarity between a query and
a document can be measured by the dot product of
the two vectors. Often, the dot product is divided by
the product of the norms of the two vectors, where the
norm of a vector (2}, z2,...,z,) is \/E_::’:—l—t? This is
to normalize the similarity between 0 and 1. The sim-
ilarity function with such a normalization is known as
the Cosine function [23, 32]. Other similarity func-
tions, see for example [27], are also possible.

Given a similarity function g, and a query ¢, the
n most similar documents are those documents which
have the n largest g(q,d) values, where d is a docu-
ment. The documents are distributed in m databases
D,. .., D,. The database selection problem is to
identify the databases that contain the n most sim-
ilar documents. In order that appropriate databases
can be identified, the metasearch engine maintains a
representative for each database. The representative
of a database indicates approximately the contents of
the database. When a query ¢ is submitted, ¢ 1s com-
pared against the database representatives (if there
are too many databases, then the representatives can
be arranged in a hierarchy so that not all representa-
tives need to be compared against the query — this
will not be addressed in this paper). Based on a com-
parison between ¢ and database D;, estimates of the
number of documents in D; having similarities > T,
for various values of T, are obtained. By combining
these estimates from various databases, it is possible
to determine an appropriate threshold Tp such that
the sum of the expected numbers of documents from
the m databases having similarities > Tp is equal to
or slightly larger than n. In Section 4, we will employ
the subrange-based method and the combined-term
method to solve the database selection problem. )

Consider the problem of retrieving documents
from the databases each of which has been estimated
to contain one or more of the n most similar docu-
ments. In the Internet environment. local search en-
gines are likely to be autonomous and they may rank
locally retrieved documents using different local sim-
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ilarity functions. Since local similarities across multi-
ple databases are not comparable, the n most similar
documents across all local databases to a given query
are determined by similarities computed using a global
stmilarity function. It is likely that local similarity
functions are different from the global similarity func-
tion. Even if the same similarity function is used, the
weight of a term which may depend on the number
of documents having the term may change from the
global database (i.e., the imaginary database unioned
from all local databases) to a local database. As a
result, the similarity of a document with respect to
a local database may differ from that with respect
to the global database. In our earlier paper [20], we
proposed two solutions to this problem. -One is to
transform the threshold Ty for the global database
(i-e., the global threshold) to a local threshold T; for
each local database D; so that all documents in D;
having global similarities > Tp are contained in the
set of documents in D; having local similarities > T;.
Furthermore, the latter set is the smallest possible,
indicating the tightness of the local threshold T;. The
second solution is that the metasearch engine modi-
fies the user query before submitting to a local search
engine such that the local similarity of the modified
query with a document in that local database is the
same as the global similarity of the original user query
with that document. In either solution. the actual
global similarities of documents from local databases
can be determined. Assuming that certain databases
have been identified from which documents are to be
retrieved, we need to decide which documents to be
retrieved from each such identified database to make
up the n globally most similar documents to be shown
to the user. One simple strategy is to retrieve n docu-
ments having the largest global similarities from each
such database, merge them into a list, sort them in
descending order of the global similarities and then
take the top n documents. This ensures that if the
databases are optimally chosen (i.e., databases con-

taining one or more of the n most similar documents

are ranked ahead of other databases), then all the n
most similar documents will be retrieved. However,
using this method, the total number of documents
to be retrieved will be k * n, where k is the number
of databases which have been identified. The issue
is whether fewer documents can be retrieved without
losing any of the n most similar documents unneces-
sarily.

A related problem is as follows. Some database
selection algorithms rank databases in a certain order
without a precise cutoff. In other words. documents
from database D; should be considered before docu-
ments from database D;, if D; is ahead of database
D; in the ranking. In that case, it is of interest to
specify a retrieval strategy to determine which docu-

152

ments from which databases should be retrieved and
returned to the user.

3 Related Work

The solutions to the database selection problem
can be roughly classified into the following five cate-

gories.

1. The naive approach does not perform database
selection and the metasearch engine simply sends
each user query to all search engines. This ap-
proach is employed by MetaCrawler [25, 26].

2. Rough approaches represent the contents of a
database using a rough description, such as a few
words or a few paragraphs. The database repre-
sentatives are typically manually made and are
not sufficiently informative for serious database
selection. Example systems that employ rough
approaches are WAIS [13], ALIWEB [14] and
Search Broker [19]).

3. Qualitative Approaches use rather detailed infor-
mation such as the document frequency of each
term to represent the contents of a database.
Based on the information, a ranking score of each
database can be computed to reflect the relative
usefulness (or quality) of a database to a query.
However, the score of a database is not equivalent
to the number of potentially useful documents in
the database. Qualitative approach is employed
by a version of gGlOSS [6], CORI net [3] and
D-WISE [33].

4. Quantitative approaches use detailed information
to represent the contents of a database and they
directly estimate the number of potentially useful
documents in each database. Our estimation ap-
proaches belong to this category. Among quanti-
tative approaches for vector queries, the approach
in [31] is for the binary and independent case
where each document d is represented as a bi-
nary vector such that a 0 or 1 at the ith position
indicates the absence or presence of term t; in d,
and terms are assumed to be independent. This
method was later extended to the binary and de-
pendent case in [17]. A substantial amount of
information will be lost when documents are rep-
resented by binary vectors. The database repre-
sentative used in gGlOSS can be used to estimate
how many documents in a database are poten-
tially useful [7]. However, the estimation method
is very different from ours and will be shown to
be much less accurate. In addition. the estima-
tion methods employed in [6. 7] are based on two
very restrictive assumptions.



5. Learning-based Approaches make use of past re-
trieval experiences with respect to a database to
determine the usefulness of the database. Savvy-
Search [4] is an example of a learning-based ap-
proach. SavvySearch only ranks local search en-
gines and does not estimate the number of poten-
tially useful documents. The method in [2] pro-
poses to select databases based on the estimated
probability of relevance distribution of their doc-
uments. Relevance feedback is usually needed to
obtain reasonable estimation of the distribution.

The two solutions to the database selection prob-

lem to be discussed in this paper, the subrange-based .

method and the combined-term method, are quanti-
tative approaches we developed [21] and extended in
[18].

The proposed solutions to the collection fusion
problem can also be classified into five categories. The
local determination approach simply allows each lo-
cal search engine to return all documents it retrieved.
NCSTRL (http://www.ncstrl.org/) employs such an
approach. The user determination approach lets the
user determine how many documents should be re-
trieved from each local search engine. MetaCrawler
and SavvySearch use this approach. More sophis-
ticated weighted allocation approaches retrieve pro-
portionally more documents from local search en-
gines whose databases have higher ranking scores.
CORI net and D-WISE employ such approaches.
Learning-based approaches determine the number of
documents to retrieve from a local database based on
past retrieval experiences with the database. Several
learning-based algorithms in [28, 29] are based on the
use of training queries. The probabilistic model [2] is
more suitable in a feedback environment, because it
may depend on accurate estimates of certain param-
eter values. Weighted allocation and learning-based
approaches are heuristic in nature and they do not
guarantee that all globally potentially useful docu-

‘ments will be retrieved from each local search engine.

The guaranteed reirieval approach aims at guarantee-
ing such a property. The algorithm in [8] while guar-
anteering that all potentially useful documents are re-
trieved may unnecessarily retrieve many non-similar
documents. Our earlier approach in [20] is a guar-
anteed retrieval approach but with a second goal of
minimizing the number of non-similar documents to
be retrieved. The guaranteed retrieval approach has
important applications in medical and legal domains
as doctors or lawyers often want to find all or nearly
all past cases most similar to their present cases. The
solution we propose in this paper has the property
that when it is used together with the subrange-based
method or the combined-term method, it will retrieve
all the n most similar documents for any single-term
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query. Experimental results will show that with our
approach between 88% to 95% of the most similar doc-
uments are retrieved for queries of various lengthes.

4 Methods for Usefulness Estimation

In this section, we present our solutions to the
database selection problem. In Section 4.1, we review
the subrange-based method [21] based on the Non-
binary Independence Model (NBIM) to estimate the
usefulness of a database with respect to a given query.
For a given query and a given global similarity thresh-
old, the usefulness of a database is defined to be the
number of documents in the database that have global
similarities with the query greater than the global
threshold. In NBIM, term weights can be any non-
negative real numbers and the occurrences of different
terms in each document are assumed to be indepen-
dent. In Section 4.2., we present the combined-term
method which is an extension of the subrange-based
method by incorporating one type of term dependen-
cies between adjacent terms.

4.1 Subrange-based Method with NBIM

Consider a database D with m distinct terms.
Each document d in this database can be represented
as a vector d = (d,,...,dn), where d, is the weight (or
significance) of the ith term ¢; in representing the doc-
ument, 1 < i < m. Each query can be similarly rep-
resented. Consider query q = (uy, u2, ..., Um), Where
u; is the weight of ¢; in the query, 1 < j < m. The
global similarity between ¢ and d can be defined as
the dot product of their respective vectors, namely
sim(q,d) = u; xd} + -+ + um * dm. Similarities are
often normalized between 0 and 1. One common nor-
malized similarity function is the-Cosine function [23].
This is easily implemented by dividing each d; by the
norm of the document and each u; by the norm of
the query. Thus, it is sufficient to consider the dot
product similarity function. For ease of reading, we
sometimes use unnormalized term weights in our dis-

cussion.
A database D with m distinct terms can be rep-
resented as m pairs {(p;,w;) | i =1,....m}, where p;

is the probability that term t; appears in a document
in D and w; is the average of the weights of ¢; in the
set of documents containing ¢;. For a given query ¢ =
(u1, ua, ..., um), the database representative is used to
estimate the usefulness of D. Without loss of general--
ity, we assume that only the first r u;’s are non-zero,
0 < r < m. Therefore, ¢ becomes (u;. ua....,u,) and
sim(q,d) becomes u; *d; + - - -+ u, *d-. This implies
that only the first r terms in each document in D need
to be considered.
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Consider the following generating function:

(P X" + (1= p1)) * (p2* X272 + (1= p2))

* oo (pr * XY™ 4 (1= p,)) (1)

where X is a dummy variable. The following propo-
sition [20] relates the coefficients of the terms in the
above function with the probabilities that documents
in D have certain similarities with q.

Proposition 1. Let ¢ and D be defined as above. If
the terms are independent and the weight of term ¢;
whenever present in a document is w;, which is given
in the database representative (1 < ¢ < r), then the
coefficient of X* in function (1) is the probability that
a document in D has similarity s with g.

Example 4.1 Let g be a query with three terms with
all weights equal to 1, i.e., ¢ = (1, 1, 1). (for ease of
understanding, the weights of terms in the query and
documents are not normalized). Suppose database D
has five documents and their vector representations
are (only components corresponding to query terms
are given): (2, 0, 2), (0, 1, 1), (2, 0, 0), (0, 0, 3)
and (0, 0, 0). Namely, the first document has query
term 1 and query term 3, and their corresponding
weights are both 2. Other document vectors can be
interpreted similarly. From the five documents in D,
we have (p;,w;) = (0.4, 2) as 2 out of 5 documents
have term 1 and the average weight of term 1 in the
two documents is 2. Similarly, (p2, w3) = (0.2, 1)
and (p3,ws) = (0.6, 2). Therefore, the corresponding
generating function is:

(0.4 X% +0.6)(0.2% X +0.8)(0.6+X>+0.4) (2)

Consider the coefficient of X3 in the function.
Clearly, it is the sum of p; * p» * (1 — p3) and (1 -
p1) * p2 * p3. The former is the probability that a
document in D has exactly the first two query terms
and the corresponding similarity with ¢ is w; + w»
(=3). The latter is the probability that a document
in D has exactly the last two query terms and the
corresponding similarity is w2 + w3 (=3). Therefore,
the coefficient of X3, namely, p; * pa * (L —p3) + (1 -
p1) *p2 *p3 = 0.104, is the estimated probability that
a document in D has similarity 3 with q. &

By expanding generating function (1_) and merg-
ing the terms with the same X*, we obtain

apx X" e * X2+ a.x N (3)

We assume that the terms in (3) are listed in descend-

)

ing order of the exponents, i.e, by > b2 > ... > b,
By Proposition 1, a; is the probability that a docu-
ment in D has similarity b; with ¢. In other words, if
database D contains N documents, then N xa; is the
expected number of documents that have similarity b;
with query g. )

Suppose a user query requests that the n most
similar documents across all local databases be re-
trieved. The expansions (3), one for each local
database, can be used to convert such a number n
to the global threshold T for the user query. The idea
is to convert the expansion (3) for each database into
a similarity distribution list such that, for any given
global threshold, it is easy to determine from the list
the number of documents in the database having sim-
ilarities greater than the threshold. After the similar-
ity distribution lists of all databases are obtained, a
desired global threshold T can easily be found such
that the total number of documents having similari-
ties greater than T across all databases is either n or
slightly larger than n (the latter case can be caused
when different documents may have the same global
similarities). The following example illustrates the
conversion of n to T.

Example 4.2 Continue Example 4.1. When expres-
sion (2) is expanded, we have

0.048 + X3 +0.192+ X4+ 0.104% X3+ 0.416 % X°

+ 0.048 = X +0.192 (4)

Based on the expanded expression and Propo-
sition 1, we can obtain the following similarity dis-
tribution list for this database: {(3, 0.24), (4, 1.20),
(3, 1.72), (2, 3.80), (1, 4.04), (0, 3)}. In each pair,
the first number is a global similarity and the second
number indicates the estimated number of documents
in the database whose similarities are greater than or
equal to the first number. The first pair (5, 0.24) is
obtained from the first term in expression (4) and the

. second pair (4, 1.20) is obtained by combining the
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first two terms in the same expression. Other pairs
can be computed similarly. When the second number
in each pair is rounded up and pairs whose second
numbers are zero (after the rounding) are discarded,
the following modified similarity distribution list is
obtained: {(4, 1), (3, 2), (2, 4), (1. 4), (0, 5)}. This
(rounded) distribution list indicates that database D
contains 1 document having similarities 4 or higher
with the query ¢, 2 documents having similarities 3 or
higher with g, etc.

From the similarity distribution lists of all local
databases, determining a desired global threshold T
for the n most similar documents across all databases
can be done easily. Suppose for another database we



have the following (rounded) similarity distribution
list: {(5, 1), (4, 2), (3, 2), (2, 2), (1, 4), (0, 4)}. In
this case, if only one most similar document is desired,
then any threshold between 4 and 5 (excluding 4) can
be used; if two most similar documents are needed,
then any threshold between 3 and 4 (excluding 3) can
be used. In general, by trying the global threshold in
decreasing values, a desired threshold can be found.
|

For a given similarity threshold T, let C be the
largest integer to satisfy bc > T. Then, the usefulness
of D for query ¢ based on threshold T, namely, the

number of documents whose similarities with query ¢

are greater than T, can be estimated as:

c (of
est_use fulness(T,q, D) = Z Nxag;=n Z a; (5)
g=1

i=1

There are two unrealistic assumptions in Propo-
sition 1. First, the assumption about the weight of
a term being uniform among documents containing
the term is not realistic. Second, the terms are not
necessarily independent. As a result, the estimated
usefulness may be inaccurate. One of the methods we
proposed to remove the first assumption is the follow-
ing subrange-based method [21]. In Section 4.2, we
will present a method for tackling the second assump-
tion.

Let t; be a term in a query. Based on the above
solution, the polynomial p; * X*"*r + (1 — p;) will
be a factor in the generating function (1). As an ex-
ample, consider 8 documents of which 4 have unnor-
malized weight of 2 and another 4 have unnormalized
weight of 6 for term ¢;. The average unnormalized
weight of the term for a document having the term
is 4. Using the above estimation method, a polyno-
mial of the form p; = X* + (1 — p;) will be formed for
the term, assuming that the query has weight 1 for

- the term (again, unnormalized weights instead of nor-

malized weights are used for ease of understanding).
Since the weight distribution is not uniform, we can
improve the modelling by partitioning the documents
having the term into two subsets. One subset contains
documents having lower unnormalized term weight
(term weight = 2 in this example) and another involv-
ing documents having larger weights (term weight =
6 in this example). The corresponding polynomial
is given by p;; * X® + pia ¥ X* + (1 — p;), where
Pi1 = pi» = p;/2. This example can be generalized
as follows. Let w;y, wia, ..., w;r be the actual weights
of ¢; in the set of documents having the term, where
k = p; * n is the number of documents having the
term and n is the total number of documents in the
database. Suppose w;; < wis < ... < wix. Suppose
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we partition the weight range of ¢; into I subranges
of possibly different lengths. Let wm;; be the me-
dian of the weights in the j-th subrange, j = 1,...,1.
With the assumption that the weight distribution of
the term is normal, wm;;’s can be approximated us-
ing the average weight w; and the standard deviation
o; very easily [21]. Then, the distribution of the term
weights of ¢; may be approximated by the following
distribution: The term has a uniform weight of wm;;
for the documents whose term weights fall in the j-th
subrange, j = 1,...,I. With this weight approxima-
tion, for a query containing term ¢;, the polynomial
pi * X¥"¥ 4+ (1 — p;) in the generating function (1)
can be replaced by the following polynomial:

Pil * ‘\-wm,,tu, + p‘_:’ * Jx—wm.;-u. + . +

pi * XY™ 4 (1 - p;) (6)

where p;; is the probability that term ¢; occurs in
a document and has a weight in the jth subrange,
J = 1,..., 1. Essentially, polynomial (6) is obtained
from p; * X' "% +(1—p;) by decomposing the proba-
bility p; into | probabilities corresponding to the I sub-
ranges. After the above polynomial replacement, the
rest of the estimation process is identical to that de-
scribed earlier. To incorporate the maximum normal-
ized weight into expression (6), we add the component
Dpig-X ¥ ¥ where muw; is the maximum normalized
weight of the term and p;o = 1/N (N being the num-
ber of documents in the local database). Thus, the
expected number of documents having the maximum
normalized weight is exactly 1. This is reasonable as
it is unlikely that there is another document with ex-
actly the same normalized weight. Since the sum of
probabilities p;o +pi1 +---+pi1 + (1 — p;) should be
1, we adjust p;; to be (pi1 — pio). '

4.2 The Combined-Term Method

The assumption that terms are independently

distributed in Proposition 1 is not entirely realistic.

For example. the two terms “computer” and “algo-
rithm” may appear together more frequently than any
arbitrarily chosen two words. In this subsection, we
present the combined-term method which remedies
the term independence assumption in the subrange-
based method by incorporating one type of depen-
dency between two adjacent terms.

Consider the distributions of terms t; and ¢; in a
database of documents. Within the set of documents
having both terms, there is 2 document having the
largest sum of the normalized term weight of ¢; and
the normalized term weight of ¢;. Let the largest sum
be called the marimum normalized weight of the com-
bined term and be denoted by mnuw;;. If terms t; and
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t; are combined into a single term, then the probabil-
ity that a document in the database has the maximum
normalized weight of the combined term, mnw;;, can
be assumed to be 1/N, where N is the number of
documents in the database. As pointed out earlier,
it is unlikely that another document in the database
has the same maximum normalized weight under the
combined term. If the two terms were independently
distributed in the documents of the database, then the
probakility that a document in the database has the
normalized sum of term weights mnw;; under the two
terms t; and ¢; can be estimated using the subrange-
based estimation method. Specifically, a polynomial
representing the probability that a document has the
maximum normalized term weight for t;, followed by
the probabilities that a document has certain per-
centiles of weights for term f; can be written (see
Example 3). Similarly, another such polynomial can
be written for term £;. By multiplying these two
polynomials together, the desired probability can be
estimated. The criteria that the two terms ¢; and
t; should be combined into a single term t;; is that
the estimated probability under the term indepen-
dence assumption is very different from I/ and the
maximum normalized weight of the combined term is
higher than the maximum normalized weight of each
of the two individual terms. Since our aim is to esti-
mate the similarities of the most similar documents,
the latter condition is to ensure that if the combined
term is used, it will not lead to smaller similarities.
The former condition is implemented by computing
the difference in absolute value between 1/.V and the
estimated probability and then comparing to a pre-
set threshold. If the difference exceeds the threshold,
then the two terms should be combined. The differ-
ence for the term pair ¢; and ¢; is denoted by d;; and
is stored together with the combined term ¢;;.

If the two terms are combined, then we obtain
from the documents containing both terms the distri-
bution of the sum of the normalized weights of the two
terms. From the distribution, we apply the subrange-
based method for the combined term. For a com-
bined term t;;, we store the maximum normalized
sum mnw;;j, the average normalized sum, its stan-
dard deviation, its probability of occurrence and its
difference d;;. The last quantity is utilized to deter-
mine which term should be combined with a given
term in a query and will be explained later.

Example 4.3 Suppose that the user’s query g¢ is
“computer algorithm”, and that normalized term
weight is used in this example.

Let the maximum normalized weight for the
terms “computer  and “algorithm” be mw; = 0.458
and mus = 0.525, respectively. Suppose that the
polynomials for the two terms are

0.0013 + X35 4 0.00016 * X°37 + 0.0054 + X°-316

+0.0279 % X198 4+ 0.0174 » X101
+0.0174  X°09%% 1 0.93

and

0.0013 % X %535 4 0.0225 + X04?8 4 0.039 » X 0356

+0.952 % X023 £ 0,157 & Y0128
0,157 % X022 ¢ g 37

Suppose that the maximum normalized weight of
the combined term “computer algorithm” mnw;» =
0.825 which is greater than mw; and mw,. By mul-
tiplying the above polynomials, the probability that
a document has a total normalized weight (associ-
ated with these two terms) of mnw,a or higher is
3.878 + 1073, This probability is based on the as-
sumption that the two terms were independent. The
actual probability is 1/V = 0.0013, where V = 761 in
this example. Since the estimated probability and the
actual probability differ substantially, the two terms
should be combined. =

In general, O(m?) term pairs need to be tested
for possible combination, where m is the number of
terms. VWhen m is large, the testing process may be-

come too time consuming. In order that the process

can be easily carried out, we restrict the terms to be
query terms (l.e., terms appeared in previously sub- .
mitted queries) and each pair of terms to be in adja-
cent locations in a query. The latter condition is to
simulate phrases since the components of a phrase are
usually in adjacent locations.

Given a query, we need to estimate the distri-
bution of the similarities of the query with the docu-
ments in the database, while taking into consideration
that certain terms in the query may be combined. We

. shall restrict a combined term to contain two individ-

156

ual terms only. It is essential to decide for a given
term of the query whether it is to be combined, and
if the term is to be combined, which term should be
combined with it. Specifically, consider three adjacent
terms t;, followed by ¢; and then followed by #; in a
query. If term ¢; has been combined with its preced-
ing term, then it will not be combined with term ¢;
(because a phrase usually consists of two words and it
is simpler to recognize phrases containing two words
than phrases containing three or more words): oth-
erwise. check if the combined term ¢;; exists. If the
combined term ¢;; exists. then check if the combined
term f;; exists. If both combined terms exist, then
compare the differences d;; and d;i. The larger dif-
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ference indicates which term should be combined with
term t; for this query. For example, if djx is larger
than d;;, then term t; is combined with ¢; and the
distribution of the combined term should be used to
estimate the distribution of the similarities of the doc-
uments with this query. If only one of the combined
term exists, then that combined term will be used. If
none of the two combined terms exists, then term ¢;
is not combined with any term.

5 A Sufficient Condition fbr Databases
to Be Ranked Optimally

In this section, we present a method to retrieve
the n most similar documents to a given query across
multiple databases. Based on this method, we prove a
sufficient condition for ranking databases so that the
n most similar documents will be retrieved.

Notice that our database usefulness estimation
methods (see Section 4) can estimate the global sim-
ilarity of the most similar document in each local
database. Suppose we rank the databases in descend-
ing order of the estimated similarity of the most sim-
ilar document in each database. More precisely, let
sim; be the estimated similarity of the most simi-
lar document in database D;. If sim; > simas >
--- > simy, then the databases are ranked in the order
Dy,Da,....D.

We now present an algorithm, OptDocRetrv, to
retrieve the n most similar documents to a given
query from these databases. The basic idea is that
we retrieve documents from the databases in the or-
der D,.D-....,D; until the n most similar docu-
ments from these databases are obtained. Consider
the top s databases Dy, D,,...,D,. From each of
these databases we obtain the actual global similar-
ity of its most similar document. Let the minimum
of these s similarities be m-asim. Next, from these
s databases we obtain all documents whose actual

~ global similarities are greater than or equal to m-

estm. If n or more documents have been obtained,
then the algorithm can be terminated. Otherwise,
the next database in the given order, namely D,4,
will be considered and its most similar document will
be retrieved. The actual similarity of this document
is then compared against m-asim. The minimum of
these two similarities will be used as a new threshold
to obtain all documents from these s + 1 databases
whose actual global similarities are greater than or
equal to this threshold.

Algorithm OptDocRetrv

1. retrieve the most similar document from database
D; and let asim; be its actual global similarity;
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2. m-asim := asim,;

3. j:=1;, [*Djisthe database whose most sim-
ilar document has similarity equal to the current
m-asim. */

4. 1 := 2;
while (the number of documents retrieved so far
is less than n) {

(a) retrieve the most similar document from
database D; and let asim; be its actual
global similarity;

(b) if (m-asim > asim;), then {

1. retrieve documents from databases
Dy, ...,D;_1 such that each of these
documents has actual global similarity
> asimy; .

ii. m-astm := asim; and j := i;

else { retrieve from database D; all docu-
ments having actual global similarities > m-
asim;

(c) i:=i+1;
}

5. Sort all the retrieved documents in descending
order of their actual global similarities and return
the top n documents.

This algorithm has the following properties.

Proposition 2: For a given query, suppose the
set of the n most similar documents S is unique
(note that in general S may not be unique .due
to identical similarities of different documents) and
databases Dj,Ds,..., Dy contain the documents in
S. If a database selection method ranks the databases

Dy, D, ..., D; higher than other databases, then the
“n most similar documents to the query will be re-
trieved.

Proof: Without loss of generality, we assume

that each of the k databases contains at least
one of the n documents in S. Let m-asim =
min{asim;,...,asim;}, where asim; is the actual
global similarity of the most similar document in
database D;, i = 1,...,k. Let the document hav-
ing this similarity be from database D;, i.e., asim;
= m-asim, 1 < j < k. Let the actual global simi
larity of the n-th most similar document be minsim.
Then, m-asim > minsim. Based on algorithm Opt-
DocRetrv, when database Dj is examined, all docu-
ments from databases D;, D, ..., D;_; whose actual
global similarities are greater than or equal to m-asim
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will be retrieved. Clearly, these documents are in S.
When databases Dj,1,..., Dy are examined, docu-
ments from these databases having similarities > m-
asim will be retrieved. Again, these documents are in
S. Clearly, if m-asim = minsim, then all documents
in S would have been retrieved based on the defini-
tion of minsim. If minsim < m-asim, then consider
the next database to be examined, say Dg4;. Let
asimi4; be the actual global similarity of the most
similar document in Dgy;. Notice that asimgpy; <
minsim since the n most similar documents are in
databases D;,..., D and S is unique. When Dy,
is examined, all documents in D;, D», ..., D; having
actual global similarity greater than asimgy; will be
retrieved. By step 4 of algorithm OptDocRetrv, we
know that the either the top k or k + 1 databases will
be examined depending whether m-asim = minsim is
true. Then the n most similar documents will be re-
trieved if the top k databases are correctly identified.
| .

Note that if the set S in Proposition 2 is not
unique, then the algorithm OptDocRetrv guarantees
only that the documents in one set of the n most sim-
ilar documents be retrieved if the databases contain-
ing this set of documents are ranked higher than other
databases.

Proposition 2 is a rather surprising result. It says
that for any database selection method, if it ranks
the databases correctly with respect to a given query
and if the ranking is used in such a way as in algo-
rithm OptDocRetrv, then all the n most similar doc-
uments with respect to the query can be retrieved.
In other words, there is no need to estimate accu-
rately the number of most similar documents in each
database, as long as the databases are ranked prop-
erly. In practice, if a database selection method can
produce reasonably accurate but not necessarily per-
fect estimates, then ranking databases based on the
estimates should give  good results. Also, from the
proof of Proposition 2, we can see that if databases
Dy, Da, ..., Dy which contain the n most similar docu-
ments are ranked ahead of other databases, the algo-
rithm OptDocRetrv examines at most k£ + 1 databases.
Thus, the minimum number of databases plus at most
one additional one will be examined by the algorithm.

Proposition 3: For each single-term query, if the
set of the n most similar documents S 1is unique,
then all documents in S will be retrieved correctly by
either the subrange-based method or the combined-
term method, when used in conjunction with the
document retrieval strategy given in algorithm Opt-
DocRetru.

Proof: For our subrange-based method and the
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combined-term method, there is a maximum nor-
malized weight associated with each term for each
database. For a query containing a single term,
say t, the maximum normalized weight of the term
for database D is precisely the actual global simi-
larity of the most similar document in database D
with respect to the query. As a result, databases
will be ranked in descending order of the similar-
ity of the most similar document in each database.
If databases D,...,D: contain the n most similar
documents, then the maximum actual global similar-
ity of any document in any other database will be
smaller than the similarity of the most similar docu-
ment within any of the databases Dy, ..., D¢. Thus,
databases D, Do, ..., Dy will be ranked higher than
other databases. By Proposition 2, the n most simi-
lar documents will be retrieved. ®

Several observations can be made about the
above results.

Observation 1: At the end of step 4 of algorithm
OptDocRetrv, n or slightly more than n docu-
ments will be retrieved. When another database,
say Dp, needs to be examined, the number of
documents retrieved so far must be less than n
and the additional documents to be retrieved
are those from D, or in a previously exam-
ined-database whose actual global similarities are
greater than or equal to the actual global simi-
larity of the most similar document in database
D,. It is likely that the additional number of
documents to be retrieved in step 4 is less than
n.

Observation 2: An important assumption implicit
in the algorithm OptDocRetrv is that the most
similar document within each database with re-
spect to the global similarity be obtained. There
are a number of ways to implement this. One way
is to retrieve a number of documents from the
chosen database using its local similarity func-
tion (i.e., we can employ a database selection al-
gorithm to retrieve ¢ times the estimated number
of most similar documents from each database for
some positive constant ¢) and then re-compute
the actual global similarities of these documents
to determine the most similar document for this
database. These documents will be saved in cache
to be used in later steps of the algorithm. An-
other way is to modify the query so that the lo-
cal similarity of the modified query is the same as
the actual global similarity of the original query.
The following example illustrates this situation.

Example 4 Let the original query ¢ = (¢1.¢2)
and a document d = (d;,d»). Let the global sim-



ilarity function g(q,d) = ay * g1 *d1 + az * g2 * d3,
where a; and a, are two parameter values used
by the global database. Let the local similarity
function (g, d) = by * q; * d; + b2 * g2 * d2, where
b; and b, are two parameter values determined
by a local database. Then, the modified query is
¢ = (q1*a1/b1, ga*az/bs). Then, it can be easily
verified that {(¢’,d) = g(g,d). In information re-
trieval, it is common to use the inverse document
frequency weight. The document frequency of a
term £ in the global database (i.e., the number
of documents containing the term in the global
database) is usually different from its document

frequency in a local database. This variation is.

modelled by the parameters a’s and b’s in this

example. The same approach applies if the stan-’

dard Cosine function is used together with the
inverse document frequency weight. B

Observation 3: In algorithm OptDocRetrv, we ex-
amine one database at a time. Another alter-
native is as follows. Apply a database selec-
tion method such as the subrange-based method
or the combined-term method to identify the
databases which are likely to contain the n most
similar documents. Let the number of such
databases be m. Then, retrieve from the (m —1)
most highly ranked databases by (2) finding from
each such database the actual global similarity of
the most similarity document; (b) compute the
minimumof these (m—1) similarities (let it be m-
asim); and (c) retrieve all documents from these
(m—1) databases whose actual global similarities
are greater than or equal to m-asim. If n or more
documents are retrieved, then terminate; other-
wise, another database i1s examined. In this way,
there will be fewer iterations and the efficiency of
the algorithm may be improved.

Although the document retrieval strategy de-
* scribed in algorithm OptDocRetrv has the nice prop-
erty as reflected in Propositions 2 and 3, it also
has a serious drawback. The problem arises when
a database is incorrectly identified to contain one or
more of the n most similar documents but in reality
the actual global similarity of its most similar doc-
ument is significantly below that of the n-th most
similar document across all databases. This is illus-
trated by the following example. Suppose databases
Dy, Ds, D3 and D, contain the n most similar doc-
uments but a database selection method ranks the
databases in the order D;, Ds, D5, D3, Dy, .... Sup-
pose the actual global similarity of the most similar
document in Ds is much smaller than that of the n-th
most similar document and there are many documents
in D; whose actual global similarities are higher than
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the most similar document in Ds. Then, these doc-
uments in D; will be retrieved, preventing the most
similar documents from D2, D3 and D4 from being
retrieved. This problem drawback can be avoided to
some extent by the modified algorithm in Observation
3, in which a number of databases are examined to-
gether. For the experimental results presented in the
next section, the remedy given above is not used and
yet the results are very promising.

6 Experimental results

In this section, we report some experimental re-
sults. 15 databases are used in our experiments.
These databases are formed from articles posed to 52
different newsgroups in the Internet. These articles
were collected at Stanford University {6]. Each news-
group that contains more than 500 articles forms a
separate database. Smaller newsgroups are merged
to produce larger databases. Table 1 shows for each
database its size and the number of distinct terms ap-
pearing in its collection of documents. 1,000 queries
by real users are used in our experiments. These
queries were also collected at Stanford University [6].

database | #documents | #distinct terms
T (61 16065
2 1014 297380
3 i0D 15400
4 682 15588
b 661 12737
6 622 13858
{ 226 10956
¥ 299 10245
9 629 11534
10 288 - 11502
1T 298 15821
12 226 12163
13 607 23338
14 648 11787
15 204 15023

Table 1: Databases Used in Experiments

We first compare the performance of the hkigh-
correlation method [6, 7] and the combined-term
method relative to the ideal method which determines
the databases containing the n most similar docu-
ments optimally. For each query, the ideal method
is implemented by computing the actual global sim-
ilarity of each document directly and the similarities
are then used to rank the databeses. Clearly, the ideal
method is not applicable in read metasearch engines.
It is used for comparison purpose oniy. The high-
correlation method is chosen because it has similar ca-
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pabilities with the combined-term method, i.e., they
both can rank databases and estimate the number of
documents in each local database having similarities
greater than or equal to a given threshold.

The high-correlation method estimates the num-
ber of documents in a local database having simi-
larities greater than or equal to a given threshold
based on the following assumption: For any given
database, if query term ¢; appears in at least as
many documents as query term g, then every doc-
ument containing term t; also contains term t;. Let
fi < fo £ ... £ fa be the document frequencies of
query terms iy,ts,...,1,, respectively. By the high-
correlation assumption, each document that contains
t; also contains tj,j > k. Therefore, these f; docu-
ments containing ¢; has the highest similarity which
is: Yoo, gi * (Wi/fi), where ¢; is the weight of term
t; in the query, W; is the sum of the weights of ¢;
over all documents in the database. Similarly, the
f» — fi documents containing ¢» but not t; has sim-

Cilarity 3or_aqi * (Wi/fi). In general, the fi — fi_;

documents that contain #; but not #;_, has similar-
ity S0, i * (Wi/ fi). Let p be the largest number to
satisfy Z?:p gi * (Wi/fi) > T, where T is the thresh-
old. Then the number of documents in the database
having similarities greater than the threshold T can
be estimated to be f,.

In our earlier papers [20, 21], we have compared
our estimation methods with the high-correlation
method in terms of the estimation accuracy for indi-
vidual databases only. Here, the comparison is based
on the retrieval of the n most similar documents from
multiple databases.

The following two measures are used in the com-
parison: (1) the percentage of correctly identified
databases (i.e., the databases containing the n most
similar documents); and (2) the percentage of cor-
rectly identified documents (i.e., the n most similar
documents.) ,

One of the experiments we performed is designed
as follows. First, the ideal method is used for each
query such that a set of M databases containing the
n most similar documents is obtained, for some posi-
tive integer /. This number M is then used by both
the combined-term method and the high-correlation
method to determine which databases should be cho-
sen. In other words, each of these two estimation
methods will use their top M databases to retrieve
the n most similar documents. Clearly, the choices of
databases by the two methods may differ. For each
method and each database chosen by it, it will re-
trieve ¢ * est_number documents from the database,
where est_number is the number of documents in the
database which are estimated to be among the n most
similar documents and c is a parameter which varies
from 1.5 to 4. If the estimated number of documents
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is very precise, then it is sufficient to retrieve from
each chosen database exactly est_number documents,
as the sum of these estimated numbers over the cho-
sen databases should be n or slightly above it. Since
the estimated number may not be that accurate, we
try other values of ¢ > 1.

Clearly, the ideal method identifies 100% of the
correct databases containing the n most similar doc-
uments and 100% of the desired documents. Since
the combined-term method and the high-correlation
method identify the same number (but not necessarily
the same set) of databases, the percentages of cor-
rectly identified databases and documents are usually
below 100%. Tables 2 and 3 show that the combined-
term method retrieves 83% to 93% of correctly identi-
fied databases versus 51% to 64% of correctly identi-
fied databases by the high-correlation method, when
the numbers of most similar documents are 5, 10,
20 and 30. In these tables, c:Db denotes the per-
centage of correctly identified databases and ciDoc
denotes the percentage of correctly identified docu-
ments. The average improvement of the combined-
term method over the high-correlation method in iden-
tifving the databases is 55.5%. The improvements
range from 45.3% to 61.9% with the larger improve-
ments for smaller values of n. Tables 2 and 3 also
show that the results of correctly retrieving the most
similar documents for ¢ = 1.5, 2. 3 and 4. and for
the different values of n described above. The aver-
age improvement of the combined-term method over
the high-correlation method in identifying documents
is 21%. The improvements range from 15.9% to 29.2%
with the larger improvements for smaller values of n
and c.

ciDoc
n cDb |c=1o0]c=21c=31c=4
5 | 51.0% | 53.6% | 54.6% | 52.1% | 53.3%
10 | 53.1% | 58.2% | 59.4% | 60.8% | 60.6%
20 | 59.3% | 64.0% | 65.0% | 66.8% | 67.0%
30 | 64.3% | 68.0% | 69.83% | 11.2% | 72.0%

Table 2: High-correlation Method

Our second set of experiments consists of apply-
ing the combined-term method with the retrieval algo-
rithm OptDocRetrv to identify the desired databases
and the desired documents. Unlike the first set of
experiments, the number of desired databases for a
given query is not known to the algorithm. The
combined-term method ranks the databases using the
estimated similarity of the most similar document in
each database and then invokes the retrieval strat-
egy to retrieve documents in the ranked order of the
databases. Table 4 shows the results according to the




c1Doc
n cDb |[c=1lo|c=2]c¢c=3 Jc=4
5 | 83.3% | 69.3% | 69.9% | 70.5% | 71.0%
10 | 87.7% | 72.0% | 73.5% | 74.4% | 75.0%
20 [ 91.3% | 75.4% | 76.9% | 78.4% | 79.3%
30 193.4% | 79.1% | 80.9% | 82.6% | 83.5%

Table 3: Combined-term Method

two measures ciDb and ciDoc for n = 5, 10, 20 and
30. It is shown that the algorithm identifies 85% to
91% of the desired databases and 88% to 95% of the

desired documents. As the number of the most similar -

documents to be retrieved increases, the percentages
of desired databases and desired documents also in-
crease. This is not surprising because when n reaches
the number of documents in all databases, both per-
centages should be 100%.

n aDb ctDoc
5 | 85.48% | 83.12%
10 | 86.15% | 90.02%
20 | 89.41% | 93.59%
30 | 91.63% | 95.73%

Table 4: Experimental Results Using Retrieval Algo-
rithm OptDocRetrv

7 Conclusion

In this paper, we developed an algorithm to re-
trieve the n most similar documents with respect to
a given query from a collection of databases. A suf-
ficient condition for our algorithm to retrieve all the
desired documents is that those databases contain-

- ing the desired documents are ranked higher than

other databases. The rank of a database is based
on the similarity of the most similar document in
the database with respect to the query. Our algo-
rithm does not require us to have an accurate esti-
mate of the number of most similar documents in each
database. The experimental results show that the
combined-term method when used in conjunction with
the proposed retrieval strategy is promising. When
the number of desired documents was 5, we retrieved
on the average about 88% of them. For all other cases,
we retrieved on the average more than 90% of the de-
sired documents. However, the experimental results
are limited in scope. We will perform many more
experiments with much larger collections and many
more queries in the near future.
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