
A Methodology to Retrieve Text Documents
from Multiple Databases

Clement Yu, Senior Member, IEEE, King-Lup Liu, Member, IEEE, Weiyi Meng, Member, IEEE,

Zonghuan Wu, and Naphtali Rishe, Member, IEEE

Abstract—This paper presents a methodology for finding the n most similar documents across multiple text databases for any given

query and for any positive integer n. This methodology consists of two steps. First, the contents of databases are indicated

approximately by database representatives. Databases are ranked using their representatives with respect to the given query. We

provide a necessary and sufficient condition to rank the databases optimally. In order to satisfy this condition, we provide three

estimation methods. One estimation method is intended for short queries; the other two are for all queries. Second, we provide an

algorithm, OptDocRetrv, to retrieve documents from the databases according to their rank and in a particular way. We show that if the

databases containing the n most similar documents for a given query are ranked ahead of other databases, our methodology will

guarantee the retrieval of the n most similar documents for the query. When the number of databases is large, we propose to organize

database representatives into a hierarchy and employ a best-search algorithm to search the hierarchy. It is shown that the

effectiveness of the best-search algorithm is the same as that of evaluating the user query against all database representatives.

Index Terms—Distributed information retrieval, resource discovery, database selection, metasearch.

æ

1 INTRODUCTION

TO help ordinary users find desired data from the Web,
many search engines have been created. Each search

engine has a text database that is defined by the set of
documents that can be searched by the search engine. In
this paper, search engine and database will be used
interchangeably. Usually, an inverted file index for all
documents in the database is created and stored in the
search engine. For each term which can represent a
significant word or a combination of several (usually
adjacent) significant words, this index can identify the
documents that contain the term quickly.

Frequently, the information needed by a user is stored
in multiple databases. As an example, consider the case
when a user wants to find research papers in some subject
area. It is likely that the desired papers are scattered in a
number of publishers’ databases. Substantial effort would
be needed for the user to search each database and identify
useful papers from the retrieved papers. A solution to this
problem is to implement a metasearch engine on top of many
local search engines. A metasearch engine is a system that
supports unified access to multiple existing search engines.
It does not maintain its own index on documents.
However, a sophisticated metasearch engine may maintain
information about the contents of its underlying search
engines to provide better service. When a metasearch

engine receives a user query, it first passes the query to the
appropriate local search engines, and then collects (some-
times reorganizes) the results from its local search engines.
With such a metasearch engine, only one query is needed
from the above user to invoke multiple search engines.

Building a metasearch engine is also an effective way to

increase the search coverage of the Web. As more and more

data are put on the Web at faster paces, the coverage of the

Web by individual search engines has been steadily

decreasing [25]. By combining the coverages of multiple

search engines, a metasearch engine can have a much larger

coverage of the Web.
A closer examination of the metasearch approach reveals

the following problems.

1. If the number of local search engines in a metasearch
engine is large, then, it is likely that for a given
query, only a small percentage of all search engines
may contain sufficiently useful documents to the
query. In order to avoid or reduce the possibility of
invoking useless search engines for a query, we
should first identify those search engines that are
most likely to provide useful results to the query and
then pass the query to only the identified search
engines. Examples of systems that employ this
approach include gGlOSS [14], SavvySearch [17],
D-WISE [39], CORI Net [5], and ProFusion [7], [12].
The problem of identifying potentially useful data-
bases to search is known as the database selection
problem.

2. If a user only wants the n most similar documents
across all local databases, for some positive integer
n, then the n documents to be retrieved from the
identified databases need to be carefully specified
and retrieved. This is the document selection problem.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002 1347

. C. Yu is with the Department of Computer Science, University of Illinois at
Chicago, Chicago, IL 60607. E-mail: yu@cs.uic.edu.

. K.-L. Liu is with the School of Computer Science, Telecommunications and
Information Systems, DePaul University, Chicago, IL 60604.

. W. Meng and Z. Wu are with the Department of Computer Science,
SUNY–Binghamton, Binghamton, NY 13902.
E-mail: meng@cs.binghamton.edu.

. N. Rishe is with the School of Computer Science, Florida International
University, Miami, FL 33199.

Manuscript received 4 Nov. 1999; revised 2 Nov. 2000; accepted 25 Jan. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110896.

1041-4347/02/$17.00 ß 2002 IEEE

In this paper, we study both the database selection

problem and the document selection problem. First, we

identify a necessary and sufficient condition for a collection

of databases to be ranked optimally with respect to a given

query. This is a key step in the database selection problem.

Second, we provide estimation algorithms to attempt to

rank the databases optimally for each query. One of the

algorithms has an exponential complexity in the number of

distinct terms in the query. As a result, it can be used for

short queries only. The other estimation algorithms have

linear complexities and can be used for all queries. Third,

we provide an algorithm to retrieve documents from

ranked databases. We show that if the databases are ranked

optimally, then the n most similar documents will be

retrieved by our algorithm. We also show that all our

estimation methods when used in conjunction with our

algorithm to retrieve documents from local databases will

be able to optimally retrieve the n most similar documents

for single-term queries. In the Internet, single-term queries

are submitted frequently [18]. Fourth, experimental results

are shown to compare the performance of our algorithms.

For short queries with no more than six words per query,

one of our algorithms retrieves, on the average, from

98 percent to 99 percent of the n most similar documents

while searching an additional 7.5 percent to 13.7 percent of

databases and transmitting an additional 10.9 percent to

24.4 percent of documents, when n varies from 5, to 10, to

20, to 30. This shows that our methodology can essentially

achieve the same retrieval effectiveness as if all data were

stored in one database. For queries containing seven or

more words, one of our algorithms retrieves, on the

average, from 90 percent to 98 percent of the n most similar

documents while searching an additional 6.8 percent to

12 percent of databases and transmitting an additional

38 percent to 53.5 percent of documents, when n varies from

5, to 10, to 20, to 30. Fifth, we provide an algorithm for the

database selection problem which is suitable for numerous

databases. Specifically, representatives which indicate

approximate contents of databases are arranged in a

hierarchy and a search algorithm is given to compare the

given query against the hierarchy. It is shown that not all

database representatives need to be compared against the

query, but the effectiveness of the search algorithm is the

same as that of comparing the user query against all

database representatives.
The rest of the paper is organized as follows: In Section 2,

the database selection problem and the document selection

problem are discussed in more detail in the context of this

paper. A summary of related work is given in Section 3. In

Section 4, our methodology is presented and a necessary and

sufficient condition to rank databases optimally is provided.

In Section 5, estimation methods to satisfy the necessary and

sufficient condition are described. In Section 6, an algorithm

to retrieve documents from local databases and its desirable

properties are given. In Section 7, experimental results are

reported. In Section 8, an algorithm to compare a user query

against a hierarchy of database representatives is given. We

conclude the paper in Section 9.

2 DATABASE SELECTION AND DOCUMENT

SELECTION

We assume that the vector space model [29] is used to
represent documents and queries. In this model, each
document is represented as a vector of terms with weights
[29]. The dimension of the vector is the number of distinct
terms in the database. The weight of a term in a document
indicates the significance of the term in representing the
contents of the document. It usually depends on the term
frequency (tf) of the term in the document (i.e., the number
of times the term appears in the document) and the
document frequency (df) of the term in the database (i.e.,
the number of documents in the database that contain the
term) [29], [38]. The weight factors obtained using the tf
information and the df information are known as the tf
weight and the idf weight (inverse df weight), respectively.
A query is similarly represented as a vector of terms with
weights in the same term space for document vectors. The
similarity between a query q ¼ ðq1; . . . ; qkÞ and a document
d ¼ ðd1; . . . ; dkÞ can be measured by

Pk
i¼1 qi � di which is the

dot product of the two vectors. Often, the dot product is
divided by the product of the lengths of the two vectors. The
length of a vector ðx1; . . . ; xkÞ isffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i¼1

x2
i

vuut :

This is to normalize the similarity between zero and one.
The similarity function with such a normalization is known
as the Cosine function [29], [38]. Other similarity functions,
see for example [33], are also possible.

Given a global similarity function simðÞ, and a query q, the
n most similar documents are those documents which have
the n largest simðq; dÞ values, where d is a document. The
database selection problem is to identify, for the query, the
databases that contain thenmost similar documents. In order
for appropriate databases to be identified, the metasearch
engine maintains a representative for each database. The
representative of a database indicates approximately the
contents of the database. When a query q is submitted, q is
compared against the database representatives so that the
databases are ranked in the order D1; D2; . . . ; Dm, indicating
thatDi is searched beforeDiþ1, 1 � i � mÿ 1, wherem is the
number of databases. In Section 4, we will give a necessary
and sufficient condition for databases to be optimally ranked.

Consider the problem of retrieving documents from local
databases. In the Internet environment, local search engines
are likely to be autonomous and may rank locally retrieved
documents using different local similarity functions. Since
local similarities across multiple databases may be incom-
parable, the n most similar documents across all local
databases to a given query are determined by similarities
computed using a global similarity function. It is likely that
local similarity functions are different from the global
similarity function. As a result, the local similarity of a
document with respect to a local database may differ from
the global similarity of the same document. This situation
causes a problem if our goal is to retrieve documents whose
global similarities are greater than a certain threshold. Two
solutions were proposed in [27] to tackle this problem. The

1348 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

first solution is to transform the threshold T0 for the global
database (i.e., the global threshold) to a tight local threshold
Ti for each local database Di so that all documents in Di

having global similarities � T0 are contained in the set of
documents in Di having local similarities � Ti. This ensures
that the former set of documents is retrieved. The second
solution is that the metasearch engine modifies the user
query before submitting it to a local search engine such that
the local similarity of a document in that local database with
the modified query is the same as the global similarity of
that document with the original user query. In either
solution, the actual global similarities of documents from
local databases can be determined. Assuming that the
databases have been ranked in the order D1; D2; . . . ; Dm, we
need to determine an integer k such that the first k databases
are searched but the remaining databases are not searched.
Furthermore, when a database is searched, we want to
minimize the number of documents to be transmitted from
the database to a software component called result merger,
which is part of the metasearch engine). This software
component merges the transmitted documents from the
searched databases to form a list of n documents to be
returned to the user. An algorithm to determine the cut-off
k and to determine the documents to transmit from each of
these k databases is provided in this paper.

3 RELATED WORK

Nontrivial existing solutions to the database selection
problem can be roughly classified into the following three
categories. Qualitative Approaches predict the quality of each
database with respect to a given query based on certain
ranking formula. Often, the quality measures or ranking
scores are difficult to understand. Example systems that
belong to this type of approaches include gGlOSS [14],
CORI Net [5] and its later extension [35], and D-WISE [39].
Quantitative Approaches predict the usefulness of each
database based on measures that are much easier to
understand than the measures used in qualitative ap-
proaches. In other words, the measures used in quantitative
approaches reflect the usefulness of a database with respect
to a given query more directly and explicitly in comparison
to qualitative approaches. Usually, one or more pieces of
statistical information need to be kept in order to enable the
database usefulness prediction in quantitative approaches.
One measure used by quantitative approaches is the “the
number of documents in a database whose similarity with a
given query is above a threshold” [15], [27]. Learning-Based
Approaches make use of past retrieval experiences with
respect to a search engine to predict the usefulness of the
search engine [6], [7], [34]. The theoretical approaches taken
by [1], [10] are very different from ours. No experimental
results are reported in [10]. Recent experimental results
reported in [2] show that if the number of documents
retrieved is larger than or comparable to the number of
databases, then good retrieval effectiveness can be
achieved, otherwise, there is substantial deterioration in
performance. In this paper, we show good experimental
results in both situations. It was shown in [35] that excellent
retrieval effectiveness can be achieved using query expan-
sion. However, the queries used in [35] are much longer

than typical Internet queries. In addition, the proposed

approach depends on the existence of a training collection

which has similar coverage of subject matters to the

collections of documents to be searched. Whether such a

training collection can be constructed in the Internet

environment which contains very heterogeneous docu-

ments remains to be seen.
Our necessary and sufficient condition to rank databases

optimally is different from others. One of the statistics we

use in each database representative is the maximum

(normalized) weight of each term. We believe that this

statistic, which is absent in others’ works in this area, is

critical in accurate determination of which databases to

search. Many previous works utilize the average (normal-

ized) weight. In our opinion, it is not possible to estimate

accurately quantities such as the similarity of the most

similar document and the expected number of documents

which are most similar to a query in a database without

using the maximum (normalized) weight of each term.
Nontrivial existing solutions to the document selection

problem can also be classified into three categories. The

weighted allocation approaches retrieve proportionally more

documents from local search engines whose databases have

higher ranking scores. CORI Net, ProFusion, and D-WISE

employ such approaches. Learning-based approaches deter-

mine the number of documents to retrieve from a local

database based on past retrieval experiences with the

database [34]. Weighted allocation and learning-based

approaches are heuristic in nature and they do not

guarantee that all globally most similar documents will be

retrieved from each local search engine. The guaranteed

retrieval approach aims at guaranteeing such a property. The

algorithm in [16] while guaranteering that all potentially

useful documents are retrieved may unnecessarily retrieve

many nonsimilar documents. The approach in [27] is also a

guaranteed retrieval approach but has a second goal of

minimizing the retrieval of nonsimilar documents.
The document retrieval algorithm we propose in this

paper has the property that, when it is used together with

any of our database selection methods, all the n most

similar documents for any single-term query will be

retrieved. Experimental results will show that with our

approach between 98 percent and 99 percent of the n most

similar documents are retrieved for queries, each containing

up to six words, while the additional databases to be

searched and the additional documents to be transmitted

vary from 7.5 percent to 13.7 percent and from 10.9 percent

to 24.4 percent, respectively. Since Internet queries are

typically very short (an average query has about 2.2 terms

[20]), the vast majority of Internet queries will have no more

than six words per query. For queries with seven or more

words, experimental results will show that with our

approach between 90 percent to 98 percent of the n most

similar documents are retrieved, while an additional

6.8 percent to 12 percent of databases are searched and an

additional 38 percent to 53.5 percent of documents are

transmitted.

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1349

4 A METHODOLOGY FOR DATABASE SELECTION

AND DOCUMENT SELECTION

The methodology that we propose to retrieve the n most
similar documents across multiple databases for a given
query consists of the following two steps:

1. Rank the databases so that a database with a higher
rank will be searched before a database with a lower
rank.

2. Search the databases according to their rank in a
certain manner to retrieve the n documents.

We first present a necessary and sufficient condition to

rank databases optimally. Then, in Section 6, we provide an

algorithm for step 2. In this paper, we assume that all local

databases in a metasearch engine are distinct. Identical

databases (search engines) may exist due to the existence of

mirror sites.

4.1 A Necessary and Sufficient Condition for
Ranking Databases Optimally

Defintion 1. A set of databases is said to be optimally ranked in
the order ½D1; D2; . . . ; Dm� with respect to a given query q if
for every positive integer n, there exists a k such that
D1; D2; . . . ; Dk contain the n most similar documents and
each Di, 1 � i � k, contains at least one of the n most similar
documents.

Intuitively, the ordering is optimal because whenever the

n most similar documents to the query are desired, it is

sufficient to examine the first k databases. Note that the

ordering of the databases depends on the query q. For ease

of presentation, we shall assume that all similarities of the

documents with the query are distinct so that the set of the

n most similar documents to the query is unique.

Proposition 1. D1; D2; . . . ; Dm are optimally ranked in the order
½D1; D2; . . . ; Dm� with respect to a given query q if and only if
msimðq;D1Þ > msimðq;D2Þ > . . . > msimðq;DmÞ, where
msimðq;DiÞ is the global similarity of the most similar
document with the query q in database Di.

The above proposition says that in order to rank

databases optimally, it is sufficient to examine only the

most similar document in each database, find their highest

global similarities, and then order them in descending

order. This proposition cannot be used as is, however,

because we cannot afford to search each database and

obtain the global similarity of its most similar document.

Instead, for each database, we shall apply one of the three

methods (to be described in the next section) to estimate the

required similarity.

Proof of Proposition 1. Sufficiency: Suppose

msimðq;D1Þ > msimðq;D2Þ > . . . > msimðq;DmÞ:

We need to show that ½D1; D2; . . . ; Dm� is an optimal
order. We establish by induction that for any given n,
there exists a k such that D1; D2; . . . ; Dk are the only
databases containing the n most similar documents with
each of them containing at least one such document.

For n ¼ 1, since

msimðq;D1Þ > msimðq;D2Þ > . . . > msimðq;DmÞ;

database D1 contains the overall most similar document.
Thus, k ¼ 1 is found for n ¼ 1.

For n ¼ i, suppose that D1; D2; . . . ; Ds contain the i
most similar documents with each of them containing at
least one of the i most similar documents. When
n ¼ iþ 1, consider the ðiþ 1Þth most similar document.
It appears either in one of the databases D1; . . . ; Ds or in
one of the remaining databases. In the former case,
D1; . . . ; Ds contain all of the iþ 1 most similar databases
and k ¼ s. In the latter case, the ðiþ 1Þth most similar
document must appear in Dsþ1 because

msimðq;Dsþ1Þ > msimðq;Dsþ2Þ > . . . > msimðq;DmÞ:

Thus, for the latter case, k ¼ sþ 1.
Necessity: Suppose the optimal rank order of the

databases is ½D1; D2; . . . ; Dm�. We now show that
msimðq;D1Þ > msimðq;D2Þ > . . . > msimðq;DmÞ. When
n ¼ 1, the most similar document is in database D1.
Thus, msimðq;D1Þ > msimðq;DjÞ; 2 � j � m. Let n be
increased to i1 so that the most similar i1 ÿ 1
documents appear in database D1 and the i1th most
similar document appears in another database D. This
i1th most similar document must be the most similar
document in D and because D1; D2; . . . ; Dm are opti-
mally ranked, the database D must be D2. Thus,

msimðq;D2Þ > msimðq;DjÞ; 3 � j � m:

Let n be increased from i1 to i2 so that the i1th to
ði2 ÿ 1Þth most similar documents appear in database
D1 or database D2 and the i2th most similar document
appears in another database D 0. Again by the optimal
rank ordering of ½D1; D2; . . . ; Dm�, database D 0 must be
D3 and, hence, msimðq;D3Þ > msimðq;DjÞ; 4 � j � m.
By repeatedly increasing n in the manner described
above, we obtain

msimðq;D4Þ > msimðq;DjÞ; 5 � j � m . . . ;

msimðq;Dmÿ1Þ > msimðq;DmÞ:

By combining all these derived inequalities, we obtain
msimðq;D1Þ > msimðq;D2Þ > . . . > msimðq;DmÞ. tu
We have the following observations about Proposition 1.

Observation 1. The necessary and sufficient condition is
independent of the similarity function. In fact, if there is a
relevance function which assigns degrees of relevance to
documents, the same result will also be applicable. The
condition can be applied to all types of databases, including
image, audio and video databases.

Observation 2. If not all similarities of the documents with the
query are distinct, Proposition 1 remains essentially true (need
to change all > to �) but the optimal order may no longer be
unique.

5 ESTIMATION METHODS

In this section, we present three methods to estimate the
similarity of the most similar document to a query q in any

1350 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

given database D. To enable the estimation, we need a
representative for database D. The representative indicates
an approximate contents of the database. In addition, a
representative for the “global database” which logically
contains all documents but does not exist physically is
created. The representative for the global database contains,
for each term, the global idf weight of the term. The
representative for each individual database varies from one
estimation method to another and will be described with its
associated estimation method. The first method, the
subrange-combined-term method, is given in [26], [28].
Although it is reasonably accurate, its time complexity is
exponential in the number of terms of the query. As a result,
the method is applicable to short queries only in practice.
As pointed out earlier, most Internet queries are short. For
queries of arbitrary lengths, we provide two new methods,
fast-similarity method and fast-combined-term method, to
estimate the similarity of the most similar document. The
complexities of these algorithms are linear in the number of
query terms. Thus, they can be executed efficiently.

5.1 Subrange-Combined-Term Method

We first review the subrange-based method [28] for estimating
the usefulness of a database with respect to a given query.
We then sketch the subrange-combined-term method [26]
which is an extension of the subrange-based method by
incorporating one type of term dependencies between
adjacent terms.

5.1.1 The Subrange-Based Estimation Method

Suppose database D has m distinct terms. Each document d
in this database can be represented as a vector
d ¼ ðd1; . . . ; dmÞ, where di is the tf weight of the ith term
in the document, 1 � i � m. Each query is also represented
by a vector. Consider query q ¼ ðu1; u2; . . . ; umÞ, where uj is
the weight of tj in the query, 1 � j � m. The weight uj is the
product of the tf weight and the idf weight of the term (i.e.,
tf*idf weight). When the weight of a term in a vector is
divided by the length of the vector, we obtain the normalized
weight of the term. The similarity function we consider is
the dot product function. Note that the Cosine function [29]
can be considered as the dot product function using vectors
of normalized weights. For ease of reading, we sometimes
use unnormalized vectors in our discussions.

The representative of a database D with m distinct terms
can be given by m tuples fðpi; wi;mnwi; sdiÞ j i ¼ 1; . . . ;mÞg,
where pi is the probability that term ti appears in a document
in D, wi is the average of the (normalized) non-zero weights
of ti in the set of documents containing ti;mnwi is the
maximum of the normalized weights of ti in all documents
and sdi is the standard deviation of the nonzero normalized
weights of ti. For example, if the normalized weights of ti in
10 documents are (0, 0, 0, 0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6), then
pi ¼ 0:6, as six out of the 10 documents have the term,
wi ¼ 0:4, as the average is over all documents having the
term, mnwi ¼ 0:6, as the maximum normalized weight is 0.6
and sdi ¼ 0:16. For a given query q ¼ ðu1; u2; . . . ; umÞ, the
database representative is used to estimate the similarity of
the most similar document in D. Without loss of generality,
we assume that only the first r; ui’s are nonzero, 0 < r � m.

Therefore, q becomes ðu1; u2; . . . ; urÞ and simðq; dÞ becomes
u1 � d1 þ � � � þ ur � dr.

The distribution of the similarities of the query with the
documents due to term ti can be represented by the
following polynomial [28]:

pi1 �Xwmi1�ui þ pi2 �Xwmi2�ui þ � � � þ pil �Xwmil�ui þ ð1ÿ piÞ;
ð1Þ

where pi1 þ pi2 þ . . .þ pil ¼ pi is the probability that a
document has the term. The range of positive weights of
ti is partitioned into l subranges of weights such that the
probability that a weight of ti occurs in the jth subrange is
pij and the median of the jth subrange is wmij; j ¼ 1; . . . ; l.
The variable X is utilized such that its coefficient represents
a probability and its exponent represents an increase to the
similarity value. In the above example, we can have three
subranges of weights whose medians are 0.2, 0.4, and 0.6,
respectively, and each of their associated probabilities is 0.2.
The resulting polynomial is:

0:2X0:6�ui þ 0:2X0:4�ui þ 0:2X0:2�ui þ 0:4: ð2Þ

This polynomial says that 20 percent of the documents
have similarities 0:6 � ui, 20 percent of the documents have
similarities 0:4 � ui, 20 percent of the documents have
similarities of 0:2 � ui, and 40 percent of the documents
have similarities equal to zero due to the term ti alone.
Under the assumption that nonzero normalized weights of
each term satisfy the normal distribution, the standard
deviation sdi together with pi and wi permit the generation
of the medians wmij and its associated probabilities pij so
that they need not be stored. For each term in the user
query, there is a polynomial as indicated above. When all of
these polynomials are multiplied together and terms with
the same exponents of X are merged, we obtain

a1 �Xb1 þ a2 �Xb2 þ � � � þ ac �Xbc : ð3Þ

We assume that the terms in (3) are listed in descending order
of the exponents, i.e., b1 > b2 > . . . > bc. It was shown in [28]
that if the terms are independent, then the coefficient ofXs in
function (3) is the probability that a document in database D
has similarity swith q. Thus,N � ai is the expected number of
documents that have similarity bi with query q, whereN is the
number of documents in database D.

To estimate the similarity of the most similar document
in a database, we simply scan the terms in (3) in descending
order of exponents until

Ps
i¼1 ai �N is approximately one

for some s. The exponent bs is the estimated similarity of the
most similar document in the database as the expected
number of documents in the database with similarity
greater than or equal to bs is approximately one. It was
found that, when partitioning the positive weights of ti into
subranges, if mnwi is used to form a subrange by itself, then
the estimation accuracy can be drastically increased [28].
The probability for this subrange can be set to be 1=N . This
probability may be an underestimate. However, since
different documents usually have different lengths and
therefore there is usually only one document having the
largest normalized weight, the estimated probability is
reasonable. In order to keep the sum of all probabilities to

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1351

be one, pi1 in (1) can be replaced by ðpi1 ÿ 1=NÞ. More
technical information about the estimation process can be
found in [28].

The complexity of the estimation method is exponential
in the number of terms of the query for the following
reason. Suppose for each term in the query, there are p

coefficients in the polynomial to represent the term. Multi-
plying two of these polynomials together takes Oðp2Þ time.
Thus, the multiplication of t such polynomials takes OðptÞ
time, where t is the number of terms in the query. Fast
Fourier Transform is unlikely to speed up the process in
practice.

The space requirement for this method is that for each
term, four quantities are kept (i.e., pi; wi;mnwi; sdi). It was
pointed out [28] that the space requirement for this type of
representative is about 1.5 percent to 3.0 percent of the
space required to store the documents in the database.

5.1.2 The Subrange-Combined-Term Estimation

Method

The assumption that terms are independently distributed in
the previous solution is not entirely realistic. For example,
the two terms “computer” and “algorithm” may appear
together more frequently in documents in a database than
that expected if the two terms were independently
distributed in the database. The subrange-combined-term
method remedies the term independence assumption by
recognizing dependent adjacent term pairs and combining
such pairs into new terms. This is like recognizing phrases
and treating each phrase as a different term. If two terms
are combined, then we apply the subrange-based method for
the combined term. The rest of the estimation process
remains unchanged. The criteria for determining whether
two adjacent terms should be combined is discussed in
Section 5.3.

5.2 Fast-Similarity Method

Consider a query q having k terms t1; t2; . . . ; tk with
corresponding weights q1; q2; . . . ; qk. These weights incor-
porate both the term frequency and the inverse document
frequency information and have been normalized be-
tween zero and one. Let d be a document in a database
D having the maximum normalized weight, mnwi, on
one of the query terms, say term ti. We want to compute
the expected similarity of d with the query q, assuming
that the other query terms are distributed independently
in the set of documents. Let anwj be the average
normalized weight of term tj in all documents in
database D, including documents not having the term.
(Note that this average normalized weight is different
from the average normalized nonzero weight used in the
subrange-combined-term method, as the latter includes
documents having the term only.) Then, the expected
similarity of d with q is qi �mnwi þ

Pk
j¼1;j6¼i qj � anwj. The

expected similarity of the most similar document in
database D is at least that of d. This argument can be
repeated for other documents in database D, each having
the maximum normalized term weight on one of the
k query terms. Thus, the expected similarity of the most
similar document in

D � max
i
fqi �mnwi þ

Xk

j¼1;j6¼iqj � anwjg:

We assume that the most similar document has one of the

query terms having the maximum normalized weight.

Thus, the inequality is replaced by an equality. Note that

for this estimation method, we only need two pieces of

information, mnwi and anwi, for the ith term in the

representative.
The computational complexity for this method is linear

in the number of terms for each database. First, we computePk
j¼1 qj � anwj. This takes OðkÞ time. From this temporary

result, we generate

qi �mnwi þ
Xk

j¼1;j6¼i; qj � anwj; 1 � i � k;

by subtracting qi � anwi and adding qi �mnwi, for each i

between one and k. This takes OðkÞ time, as there are k such

expressions. Finally, the maximum of the k values is taken.

Thus, altogether OðkÞ is spent.

5.3 Fast-Combined-Term Method

This estimation method is essentially the same as that of the

fast-similarity method, except that adjacent query terms may

be combined together as in the subrange-combined-term

method. Here, two adjacent query terms may be combined

together if the maximum weighted normalized weight of the

combined term (i.e., the two terms ti and tj are treated as a

single term) is higher than its expected value. The

maximum weighted normalized weight of the combined

term is defined as follows. Consider a document

d ¼ ðd1; . . . ; di; . . . ; dj; . . . ; dmÞ

containing both terms ti and tj. The weighted normalized

weight of the combined term is gidfi � di þ gidfj � dj, where

gidfi and gidfj are the global idf weights of terms ti and tj,

respectively. The maximum weighted normalized weight of

the combined term is the maximum value over all

documents. Consider the documents having either the ith

term or the jth term with the maximum normalized weight.

If these two terms are independent, then the expected

similarity between a query having one occurrence of each of

the two terms and one such document is estimated to be

ES ¼ maxfgidfi �mnwi þ gidfj � anwj; gidfi � anwi
þ gidfj �mnwjg:

The subtraction of the above expression, ES, from the

maximum weighted normalized weight is called the

deviation of the pair of terms ðti; tjÞ from independence. If

the deviation is greater than zero, then the pair is a potential

pair of combined terms.
Consider a query containing terms ti, followed by tj and

then tk. Suppose the deviations are greater than zero by the

term pairs (ti; tj) and (tj; tk). To decide which term pair to

use for the query, we compare the deviation from

independence for the term pair (ti; tj) with that for the pair

(tj; tk). The term pair with the larger deviation from

independence will be chosen.

1352 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

6 RETRIEVAL FROM LOCAL DATABASES

The methods from Section 5 estimate the similarity of the
most similar document in each database. Using the
necessary and sufficient condition given in Section 4, the
databases are ranked based on the estimated similarities of
their most similar documents. Suppose the order of the
databases is ½D1; D2; . . . ; Dm�. We now give an algorithm
which determines a cut-off k such that the top k ranked
databases will be searched and the remaining databases will
not be searched. The algorithm also determines which
documents need to be transmitted from the selected
databases to the result merger to form a list of documents
in descending order of global similarity. This algorithm has
the following desirable properties: 1) If databases, each of
which contains at least one of the n most similar documents
are ranked higher than databases which do not contain any
of the n most similar documents, then the algorithm will
retrieve all the n desired documents. Furthermore, the
number of databases searched is, at most, one more than the
number of databases containing the desired documents.
2) Any of the three estimation methods from Section 5 when
used in conjunction with this retrieval algorithm will
retrieve all the n desired documents for single term queries.

The basic idea of this algorithm, OptDocRetrv, is that we
retrieve documents from the databases in the order
½D1; D2; . . . ; Dm� until n most similar documents contained
in the selected databases are obtained. (The obtained n most
similar documents in the selected databases may or may not
be the n most similar documents from all databases.)
Consider the top s databases D1; D2; . . . ; Ds. From each of
these databases we obtain the actual global similarity of its
most similar document. Let the minimum of these s
similarities be m-asim. Next, from these s databases we
transmit to the result merger all documents whose actual
global similarities are greater than or equal to m-asim. If n or
more documents have been obtained, these documents are
sorted in descending order of similarity and the first n
documents are returned to the user. Otherwise, the next
database in the given order, namely Dsþ1, will be
considered and its most similar document will be trans-
mitted. The actual similarity of this document is then
compared against m-asim. The minimum of these two
similarities will be used as a new threshold to transmit all
documents from these sþ 1 databases whose actual global
similarities are greater than or equal to this threshold.

Algorithm OptDocRetrv

1. transmit the most similar document from database D1 to

the result merger and let asim1 be its actual global

similarity;

2. m-asim:= asim1;

3. j :¼ 1; /* Dj is the database whose most similar

document has similarity equal to the current m-asim. */

4. i :¼ 2;
while (the number of documents obtained so far is less

than n) {

(a) transmit the most similar document from database Di

to the result merger and let asimi be its actual global

similarity;

(b) if (m-asim � asimi), then {

i. transmit documents from databases D1; . . . ; Diÿ1 to
the result merger such that each of the retrieved

documents has actual global similarity � asimi;

ii. m-asim:= asimi and j :¼ i; }

else transmit from database Di to the result merger all

documents having actual global similarities � m-asim;

(c) i :¼ iþ 1; }

5. At the result merger, sort all the transmitted documents

in descending order of their actual global similarities and
return the top n documents to the user.

Note: In Step 4b, documents which had been previously

transmitted need not be transmitted again. In addition, the

number of documents to be retrieved from any single

chosen database should be no more than n, as the user is

interested in n documents only.

Example 1. Suppose databases are ranked in the order

D1; D2; D3; D4; . . . based on the estimated global similarity

of the most similar document in each database. For the

purpose of illustration, suppose also that in each of the

first four databases, the documents are arranged in

descending order of their actual global similarities as

shown below.
Database D1 : d1 0:53; d2 0:48; d3 0:39; . . .
Database D2 : d10 0:47; d21 0:43; d52 0:42; . . .
Database D3 : d23 0:54; d42 0:49; d62 0:38; . . .
Database D4 : d33 0:40; . . .
Suppose the user wants to retrieve the four most

similar documents. From databases D1 and D2, the result
merger receives documents d1 and d10 with similarities
0.53 and 0.47, respectively. The minimum of these two
similarities, m-asim, is 0.47. From database D1, docu-
ments with similarities � m-asim are retrieved. This
brings in d2. Since less than four documents are
retrieved, database D3 will be accessed. The retrieval of
document d23 with similarity 0.54 results in m-asim
remaining unchanged. From database D3, documents
with similarities � m-asim are retrieved. After docu-
ment d42 is retrieved, the 5 documents d1; d2; d10; d23, and
d42 are sorted in descending order of similarity and the
top four documents are returned to the user. Note that, in
this example, although the databases are not ranked in
descending order of the actual global similarities of the
most similar documents, the n ¼ 4 most similar docu-
ments are retrieved, as databases D1, D2, and D3 which
contain the four most similar documents, are ranked
ahead of other databases.

This algorithm has the following properties.

Proposition 2. For a given query, let S be the set of the n most

similar documents. Suppose S is unique (note that, in general,

S may not be unique due to identical similarities of different

documents) and databases D1; D2; . . . ; Dk collectively con-

tain the documents in S and each of these k databases contains

at least one of the n documents in S. If a database selection

method ranks the databases D1; D2; . . . ; Dk ahead of other

databases, then the n most similar documents to the query will

be retrieved by algorithm OptDocRetrv and furthermore, at

most kþ 1 databases will be examined.

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1353

Proof. Let m-asim ¼ minfasim1; . . . ; asimkg, where asimi

is the actual global similarity of the most similar
document in database Di; i ¼ 1; . . . ; k. Let the document
having this similarity be from database Dj, i.e.,
asimj ¼ m-asim; 1 � j � k. Let the actual global simi-
larity of the nth most similar document be minsim.
Then, m-asim � minsim. Based on algorithm OptDo-
cRetrv, when database Dj is examined, all documents
from databases D1; D2; . . . ; Djÿ1 whose actual global
similarities are greater than or equal to m-asim will be
retrieved. Clearly, these documents are in S. When
databases Djþ1; . . . ; Dk are examined, documents from
these databases having similarities � m-asim will be
retrieved. Again, these documents are in S. Clearly, if
m-asim= minsim, then all documents in S would have
been retrieved based on the definition of minsim. If
minsim < m-asim, then consider the next database to be
examined, say Dkþ1. Let asimkþ1 be the actual global
similarity of the most similar document in Dkþ1. Notice
that asimkþ1 < minsim since the n most similar
documents are in databases D1; . . . ; Dk and S is
unique. When Dkþ1 is examined, all documents in
D1; D2; . . . ; Dk having actual global similarity greater
than asimkþ1 will be retrieved. This includes all
documents in S. By step 5 of algorithm OptDocRetrv,
S will be returned. From the above discussion, the top
k or kþ 1 databases will be examined depending on
whether m-asim=minsim is true. tu

Note that is the similarity of the nth most similar
document is unique, S is also unique. If the uniqueness
condition is not satisfied but the databases are optimally
ranked, then the retrieval of the n most similar documents
(may not be unique) is still guaranteed.

Proposition 2 says that for any database selection
method, if it ranks the databases correctly with respect to
a given query and if the ranking is used in such a way as
in algorithm OptDocRetrv, then all the n most similar
documents with respect to the query can be retrieved.
Even if the first k databases are not ranked optimally (in
descending order of the similarities of the most similar
documents) but they are ahead of the other databases
which do not contain any of the n most similar
documents, then all the desired documents will be
retrieved. Also, according to Proposition 2, if databases
D1; D2; . . . ; Dk which contain the n most similar docu-
ments are ranked ahead of other databases, the algorithm
OptDocRetrv examines at most kþ 1 databases. Thus, the
minimum number of databases plus at most one addi-
tional database will be examined by the algorithm.

Proposition 3. For each single-term query, if the set of the n most
similar documents S is unique, then all documents in S will be
retrieved correctly by the subrange-combined-term method, the
fast-similarity method, and the fast-combined-term method
when used in conjunction with the document retrieval strategy
given in algorithm OptDocRetrv.

Proof. For each of the three estimation methods, there is a
maximum normalized weight associated with each term
in each database. For a query containing a single term,
say t, the maximum normalized weight of the term for

database D is precisely the actual global similarity of the
most similar document in database D with respect to the
query. (For a single term query, the weight of the term in
the query after normalization is one, irrespective of the
inverse document weight of the term.) As a result,
databases will be ranked in descending order of the
similarity of the most similar document in each database.
If databases D1; . . . ; Dk contain the n most similar
documents, then the maximum actual global similarity
of any document in any other database will be smaller
than the similarity of the most similar document within
any of the databases D1; . . . ; Dk. Thus, databases
D1; D2; . . . ; Dk will be ranked higher than other data-
bases. By Proposition 2, the n most similar documents
will be retrieved. tu

Several observations can be made about the above
results.

Observation 1. An important assumption implicit in the
algorithm OptDocRetrv is that the most similar document
within each database with respect to the global similarity can
be retrieved. There are a number of ways to implement this.
One way is to retrieve a number of documents from the chosen
database using its local similarity function (see [27]) and then
recompute the actual global similarities of these documents to
determine the most similar document for this database. These
documents will be saved in cache to be used in later steps of the
algorithm. Another way is to modify the query so that the local
similarity of the modified query is the same as the actual global
similarity of the original query [27].

Observation 2. In algorithm OptDocRetrv, we examine one
database at a time. An alternative is as follows. Apply an
estimation method such as the subrange-combined-term
method to identify the databases whose sum of expected
numbers of the most similar documents is approximately n. (It
is not difficult to see how this can be done using polynomial
(3).) Let the number of such databases be m. Then, retrieve
from the ðmÿ 1Þ most highly ranked databases by 1) finding
from each such database the actual global similarity of the
most similarity document, 2) compute the minimum of these
ðmÿ 1Þ similarities (let it be m-asim), and 3) transmit all
documents from these ðmÿ 1Þ databases whose actual global
similarities are greater than or equal to m-asim. If n or more
documents are obtained, then terminate, otherwise, another
database is examined. In this way, there will be parallel
accesses to the databases and the efficiency of the algorithm
may be improved. By either applying the algorithm as is or its
modified version as indicated above, a few of the most similar
documents will be produced quickly and they can be
immediately sent to the user so that the waiting time to see
some output can be significantly reduced.

Observation 3. In algorithm OptDocRetrv, it is possible that
some documents are retrieved from a database, followed by
additional retrieval of documents from the same database for a
single query. In practice, the n most similar documents from a
selected database should be cached such that if documents are
to be retrieved in a number of iterations, the documents should
be taken out from the cache instead of invoking the search
engine of the database.

1354 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

Observation 4. Algorithm OptDocRetrv does not guarantee that
the n documents returned are unique if there are overlaps
among local databases. However, the algorithm can be easily
modified to ensure the retrieval of n distinct documents. The
only change that needs to be made is to change the while loop
condition in step 4 to “the number of distinct documents
obtained so far is less than n.”

7 EXPERIMENTAL RESULTS

In this section, we report some experimental results. Fifteen
databases are used in our experiments. These databases are
formed from articles posted to 52 different newsgroups in
the Internet. These articles were collected at Stanford
University [14]. Each newsgroup that contains more than
500 articles forms a separate database. Smaller newsgroups
are merged to produce larger databases. Table 1 shows the
number of documents in each database.

There are altogether 6,597 queries submitted by real
users. Both the data and the queries were used in the
gGlOSS project [14]. From these 6,597 queries, we obtain
two subsets of queries. The first subset consists of the first
1,000 queries, each having no more than six words. They
will be referred later as short queries. The second subset
consists all queries having seven or more words. There are
363 long queries.

In [28], the subrange-based estimation method was com-
pared with the high-correlation method[14], [15] in terms of
the estimation accuracy for individual databases only (i.e.,
not in terms of retrieving from multiple databases) using
the first set of queries identified above (i.e., short queries).
Here, we compare the performance of the following
estimation methods in retrieving the n most similar
documents for n = 5, 10, 20, and 30 from the 15 databases
given above.

1. The high-correlation method. Although there are two
estimation methods in gGlOSS, our earlier results
indicate that the high-correlation method is more
accurate. Therefore, we choose it for comparison.
The high-correlation method does not provide any
detail on how a cutoff in database selection is chosen
nor which documents are picked from each chosen
database. In order to have a fair comparison, all
estimation methods will use the OptDocRetrv algo-
rithm to retrieve documents from the databases,
after the databases have been ranked.

2. The subrange-combined-term method. We will use this
method for the set of short queries, as its exponential
complexity is likely to make it not practical for long
queries.

3. The fast-similarity method.
4. The fast-combined-term method.

Both the fast-similarity method and the fast-combined-term
method run in linear time. Thus, they will be used to run for
both long and short queries.

The performance measures of an algorithm to search for
the n most similar documents in a set of databases are given
as follows:

1. The percentage of correctly identified documents,
that is, the ratio of the number of documents
retrieved among the n most similar documents over
n. This percentage is denoted cor iden doc.

2. The database search effort is the ratio of the number
of databases searched by the algorithm over the
number of databases which contain one or more of
the n most similar documents. This ratio is denoted
db effort. The ratio is usually more than 1.

3. The document transmission effort is the ratio of the
number of documents transmitted by the algorithm
over n. This ratio is denoted doc effort.

A good retrieval algorithm should aim at achieving
cor iden doc close to (but below) one, db effort slightly
above one and doc effort close to but above one.

In these experiments, the Cosine similarity function is
utilized. Both the term frequencies and the inverse document
frequencies (tf-idf) (the log of the number of documents
divided by the document frequency of a term is the idf
weight of the term) are utilized [34]. The degree of
improvement of method A over method B in terms of
retrieving the desired documents is given by (the percen-
tage of desired documents retrieved by method A minus
the percentage of desired documents retrieved by method
B)/(the percentage of desired documents retrieved by
method B). In each of the experiments, the numbers of
most similar documents for each query are 5, 10, 20, and 30.

A summary of the experimental results is given as
follows.

1. From Table 2, it can be seen that for short queries, the

best performer is the fast-combined-term method. This is
followed by the subrange-combined-term method, the

fast-similarity method and then the high-correlation

method. The same performance ordering of the

methods holds true for long queries (see Table 3),

except that subrange-combined-term method is not

applied to long queries. For both short and long

queries, as the number of most similar documents to

be retrieved increases, the percentage of correctly
identified documents also increases. This is true for

each method. Although the fast-combined-term

method is better than the subrange-combined-term

method in identifying the most similar documents

and in efficiency, the latter method is capable of

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1355

TABLE 1
The Sizes of Test Databases

identifying a set of databases whose sum of the

estimated numbers of most similar documents is

approximately equal to the desired number of most
similar documents. As a result, the latter method can

access all these databases in parallel, while the former

method may need to determine the desired databases

sequentially.

2. It can be seen from Table 2 that for short queries,

the subrange-combined-term method, the fast similarity

method and the fast-combined-term method achieve

close to optimal results. The fast-combined-term

method retrieves from 98.4 percent to 99.7 percent

of the most similar documents. This essentially

says that it achieves close to the same performance

as if all documents were at one site and in one

database. Furthermore, the number of databases

searched is on the average only at most 13.7 per-

cent beyond the number of databases containing

all desired documents. The number of documents

transmitted is on the average at most 24.4 percent

beyond the desired number of documents.

3. Overall, the fast-similarity method achieves rather

impressive results, given its simplicity and effi-

ciency of computation. It is only slightly worse

than the subrange-combined-term method for short

queries (see Table 2) and is significantly better

than the high-correlation method for both short and

long queries (see Table 2 and Table 3). Further-

more, the space required to store the database

representatives in order to use the fast-similarity

method is comparable to that required to store the

database representatives to use the high-correlation

method.

4. For quite a few entries in the tables (see for example

the first 4 rows in Table 2), we observe that the

average number of databases searched can be less

1356 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

TABLE 2
Performances of the Four Methods for Short Queries

TABLE 3
Performances of the Three Methods for Long Queries

than the number of databases containing all the most

similar documents. The reason is as follows: When a

nondesired database is searched, its most similar

document, say d, with similarity, say s, is trans-

mitted to the result merger and documents from

previously examined databases having similarities

� s are also transmitted to the result merger. Since d

is not a desired document, its similarity s can be

rather low and as a result, it is possible to find as

many as n documents in previously examined

databases with similarities � s. This causes the

retrieval algorithm to terminate without searching

other databases. As pointed out earlier, if all the

desired databases are ranked ahead of all other

databases, at most one additional database will be

searched. That not too many databases will be

searched is a property of the OptDocRetrv algorithm.

8 SEARCHING A GENERAL HIERARCHY OF

DATABASE REPRESENTATIVES

In the previous sections, we assumed a two-level architecture

for database representatives, where the bottom level contains

database representatives for individual databases and the

root node is the representative for the “global database.” The

latter representative contains the global inverse document

frequency weight for each term. This architecture is suitable

for a moderate number of search engines (or databases—we

shall use search engine or database interchangeably since

logically each search engine retrieves documents from a

logical database), say 100 databases. However, when the

number of databases is very large, say thousands or tens of

thousands, then there will be efficiency problems. Estimating

the similarity of the most similar document for each database

could be time consuming for a large number of databases. For

this reason, we introduce a general hierarchy of database

representatives and a search algorithm for such a hierarchy so

that the number of estimations can be significantly reduced.

We first define this hierarchy of database representatives. As

in the two-level architecture, the lowest level contains all

representatives of individual databases. Individual databases

can be logically grouped into superdatabases. For example, if

superdatabase S1 contains databases D1; D2 and D3, then all

documents in these databases are logically contained in S1.

Physically, superdatabases do not exist. The next level of the

hierarchy contains representatives of superdatabases formed

from local databases directly. The representative of a super-

database will be called a super-representative. Each super-

representative is constructed from the representatives which

are one level below it and is kept physically. The super-

representative, RS, which is constructed from a set, R, of

representatives, consists of two quantities for each term

which appears in any of the representatives in R. The two

quantities are the maximum normalized weight and the

maximum averaged normalized weight of the term. Let the

maximum normalized weight of term ti in the jth represen-

tative inR bemnwij. Then, the maximum normalized weight

of term ti in the super-representative RS is max
all j in R

fmnwijg.
Similarly, the maximum average normalized weight of term ti

in the super-representative RS is obtained by taking the

maximum of the corresponding quantities in the component

representatives. If the number of super-representatives at a

given level is still too large, then they can be grouped into

higher level super-representatives by repeating the above

process which ends when the number of super-representa-

tives below the root node is sufficiently small. The root node

representative contains the same information as that in the

root node of the two-level hierarchy case discussed in

Section 5, i.e., the global inverse document frequency weight

of each term which appears in any local database is kept.
Fig. 1 illustrates the process of deriving the quantities for

a single term in a hierarchy. The first quantity associated

with each node is the maximum normalized weight and the

second quantity is the maximum average normalized

weight.

8.1 An Algorithm for Searching the Hierarchy

Let RS be the super-representative for superdatabase S

that logically contains local databases D1; . . . ; Dr. Let gidfi
be the global idf weight of the ith term. The similarity of

the most similar document in S with the query

q ¼ ðq1 � gidf1; . . . ; qk � gidfkÞ , can be estimated using RS

and the root representative as follows. Let the estimate be

est msimðq; SÞ

¼ max
1�i�k

n
mnw0i � gidfi � qi þ

Xk
j¼1
j 6¼i

mawj � gidfj � qj
o
;
ð4Þ

where mnw0i ¼ maxfmnwið1Þ; . . . ;mnwiðrÞg;mnwiðeÞ is the

maximum normalized weight of term ti in database De,

1 � e � r; mawj ¼ maxfanwjð1Þ; . . . ; anwjðrÞg, anwjðeÞ is

the average normalized weight of term tj in the database

De, 1 � e � r. (In principle, the weights in the query should

be divided by the norm of the query. However, since we are

comparing the similarity of the most similar document in

one superdatabase against that of another, the norm of the

query is in common and can be ignored.) Note that mnw0i
and mawj are kept in the representative of the super-

database S. For every database De, we estimate the

similarity of the most similar document in De by

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1357

Fig. 1. Illustrating the computation of super-representative for one term.

est msimðq;DeÞ

¼ max
1�i�k

n
mnwiðeÞ � gidfi � qi þ

Xk
j¼1
j 6¼i

anwjðeÞ � gidfj � qj
o
:

ð5Þ

Since mnw0i � mnwiðeÞ, and mawj � anwjðeÞ, by com-
paring (4) with (5), we have

est msimðq; SÞ � est mismðq;DeÞ:

This result is summarized as follows.

Lemma 1. Let S be a superdatabase containing databases
D1; . . . ; Dr. For a given query q, let est mismðq; SÞ and
est mismðq;DeÞ be the estimated similarity of the most
similar document in S and in De, respectively. Then,
est msimðq; SÞ � est msimðq;DeÞ1 � e � r.

Suppose superdatabase S and other superdatabases are
contained in a superdatabaseT . Recall that the representative
of T is formed from the representatives of the children of T in
exactly the same way that the representative of S is formed
from the representatives of D1; . . . ; Dr. Thus, the estimated
similarity of the most similar document in T , denoted by
est msimðq; T Þ, satisfies est msimðq; T Þ � est msimðq; SÞ.

Consider a path P containing A1; A2; . . . ; As in the
hierarchy, where each Ai represents the representative of
a superdatabase and Aiþ1, is a child of Ai. With a slight
abuse of notation, we also use Ai to denote a database since
there is a 1–1 correspondence between a database and its
representative. Based on our discussion, we have
est msimðq; AiÞ � est msimðq; Aiþ1Þ for any given query.
By transitivity of inequality, we have the following lemma.

Lemma 2. In the hierarchy of representatives, if Ai is an ancestor
of Aj, then est msimðq; AiÞ � est msimðq; AjÞ for any given
query q.

This property will allow us to devise a best-first search
strategy which ranks databases exactly the same as if the
similarity of the most similar document in each database Di

were computed and then the databases were ranked in
descending order of est msimðq;DiÞ. This best-first strategy
avoids the computation of est msimðq;DjÞ for most
databases Dj.

We now provide an algorithm to search this hierarchy of
representatives. The main idea of the best-first search
algorithm is as follows. For a given query, we estimate
the similarity of the most similar document in each child of
the root. These child nodes are arranged to form a list in
descending order of estimated similarity. The representa-
tive which yields the largest estimated similarity is selected.
If it is the representative of a local database, then the
corresponding search engine is invoked and documents are
retrieved in the way as described in Section 6. If it is a
super-representative, i.e., an intermediate node in the
hierarchy, then the similarity of the most similar document
in each of its child representatives is estimated. These child
representative nodes are arranged in descending order of
similarity and merged with the current list of nodes in
descending order of similarity to form a list of representa-
tive nodes in the same order. In this list, the estimated

similarities can be due to the representatives of local

databases or from the nonleaf super-representatives. In

either case, we always take the largest value. If the largest

value is from the representative of a local database, then the

corresponding search engine is invoked and documents are

retrieved according to Section 6, otherwise, the best-first

search process is executed on the node with the largest

estimated similarity value. The details are as follows.

Best First Searchðn;q;RootÞ /* n is the number of

documents to be retrieved; q is the

query; Root is the root node of the

hierarchy */

1. Initialization: min-sim := 1; /* the minimum of the

similarities of the retrieved documents from

previously searched databases is initially set to be 1
(the highest possible similarity) */

2. The similarity of the most similar document in each

child of the root node, Root, is estimated. These child

nodes are arranged in a list L in descending order of

the estimated similarities.

3. The first node, say N , is removed from L.

If it is the representative of a local database D, then

Step (3.1): {
(a) local database D is searched;

(b) the most similar document and its similarity with

q, csim, are returned to the result-merger;

(c) If csim > min-sim then {

i. send from database D all documents with

similarity � min-sim to the result-merger;

ii. if n or more documents have been received

by the result merger, then take the n most
similar documents and stop; }

else {for each local database D0 which has been

searched, do

i. send all documents from D0, which have

similarities � csim (but have not been trans-

mitted) to the result-merger;

ii. min-sim := csim;

iii. if n or more documents have been received
by the result-merger, then take the n most

similar documents and stop;

} } /* end of step (3.1) */

else { Step (3.2):

(a) the similarity of the most similar document in

each child of N is estimated;

(b) these child nodes are arranged in a list L1 in

descending order of estimated similarity;
(c) L and L1 are merged to form L in descending

order of estimated similarity; }

4. repeat Step (3);

The result merger collects the transmitted documents

from the searched databases to form the list of n documents

to present to the user.

8.2 Effectiveness of Algorithm
Best First Searchðn;q;RootÞ

In Algorithm Best First Searchðn; q; RootÞ, the result-

merger gathers the documents retrieved from various

1358 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

local databases until n or more documents have been
received. Step 3.1 is exactly the same process for deciding
which documents from the selected databases will form
the n documents to present to the user as that described
in Section 6. In the two-level hierarchy, the representa-
tives (the leaf-nodes) are arranged in a list in descending
order of estimated similarity and then Step 3.1 is
executed to those databases in the ordered list. In
Algorithm Best First Searchðn; q; RootÞ, the leaf-nodes
and the intermediate nodes are interleaved in the list of
nodes in descending order of estimated similarity.
Whenever a leaf-node, i.e., the representative of a local
database is reached, Step 3.1 is executed to determine the
documents to retrieve from the local database. Whenever
a nonleaf node is encountered, it is replaced by its
children. If the leaf-nodes executed by Step 3.1 are exactly
in the same order as if databases were arranged in
descending order of estimated similarity, then this
algorithm will give the same retrieval performance of a
two-level hierarchy as described in previous sections. The
following proposition establishes this fact.

Proposition 4. Consider any two local databases Di and Dj.
Suppose the estimated similarity of the most similar document
in Di is higher than that of the most similar document in Dj,
i.e., est msimðq;DiÞ > est msimðq;DjÞ. Then, Step 3.1 of
Algorithm Best First Searchðn; q; RootÞ will execute on
database Di before it executes on database Dj.

Proof. Consider the parent P of database Dj in the
hierarchy. Two cases may occur:

Case 1. Di’s parent is the root node. If

est msimðq;DiÞ > est msimðq; P Þ;

then Di will be ahead of P in the list L. As a result, Di,
will be executed by Step 3.1 before Dj. Even if
est msimðq; P Þ > est msimðq;DiÞ, Step 3.2 will compute
est msimðq;DjÞ. Since

est msimðq;DiÞ > est msimðq;DjÞ;

Di will be ahead of Dj, in the list L, due to Step 3.2c.

Case 2.Di’s parent is not the root. Let C be a child of the root
and also an ancestor of Di. Consider the path, PATH,
from C to Di. For each node N in the PATH, including C
but excluding Di, est msimðq;NÞ � est msimðq;DiÞ by
Lemma 2. Since

est msimðq;NÞ � est msimðq;DiÞ > est msimðq;DjÞ;

repeated application of Step 3 will place C, then the child
of C in PATH, followed by the grandchild of C in PATH
and eventually Di, in the list L. All these nodes are ahead
of Dj, due to the inequality. Thus, Di will be executed
before Dj. tu

Observation. This proposition guarantees that the databases will
be searched in descending order of estimated similarity using our
method (i.e., (4) and (5)) of estimating similarity of the most
similar document in a database or superdatabase. The same result
holds for any other estimation method as long as the estimation
method is a nondecreasing function of the two parameters,

namely the maximum normalized weight and the maximum

average normalized weight (the average normalized weight in

the case of a local database). Due to the nondecreasing property of

an estimation function (i.e., Lemma 2), est msimðq; AÞ �
est msimðq; BÞ whenever A is an ancestor of B. Thus,

Proposition 4 holds.

9 CONCLUSIONS

With the increase of the number of search engines on the

World Wide Web, providing easy, efficient and effective

access to text information from multiple sources has

increasingly become necessary. In this paper, we proposed

a new methodology to find the most similar documents

from multiple text databases. Our contributions consist of

1. A simple condition to rank databases optimally with
respect to a given query.

2. Three algorithms to estimate the similarity of the
most similar document in each database; one of
these algorithms, namely Fast-Similarity Method, is
shown to yield much better retrieval effectiveness
than the high-correlation method and uses the same
amount of space. It is linear in time complexity. The
other two estimation algorithms are more accurate in
ranking databases, but they use more storage and/or
require higher time complexity.

3. An algorithm (namely OptDocRetrv) was given to
provide a cutoff (i.e., determine which databases
need to be searched) and to determine which
documents need to be transmitted. Experimental
results showed that when it is used in conjunction
with any of the three estimation algorithms, the
number of databases searched by this algorithm is,
on the average, only slightly above the number of
databases containing the n most similar documents.

4. When the number of databases is very large, we
proposed a hierarchy of representatives with the
number of levels > 2. We provided an algorithm to
search the hierarchy. It was shown that the search
will produce the same effectiveness as the corre-
sponding two-level hierarchy (i.e., the query is
compared against all database representatives.)

The following are research issues to be examined.

1. The experimental results obtained by us are based
on term matching. In other words, if query q and
document d have no term in common, then d cannot
be retrieved. However, techniques such as Latent
Semantic Indexing [11] may permit q and d to match
after term transformation. In that case, our database
representative should be based on the transformed
terms, i.e., statistics such as the maximum term
weights are collected on the transformed terms.
When a query is submitted, its terms are trans-
formed into a new set of terms before it is matched
against the database representatives. Whether this
approach yields good results remains to be verified.
In [13], queries are expanded by terms having
similar contexts. How the expansion is to be carried

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1359

out effectively in a large number of databases
remains to be seen.

2. In the Internet environment, Web pages are exten-
sively linked. Such linkage information provide
valuable information about the degrees of impor-
tance of documents, see for example [4], [21] and
should be utilized for database and document
selection.

3. Much larger data collections should be utilized for
experimentation. Unfortunately, we are not aware
of a large collection which has relevance assess-
ment of documents, large number of short typical
Internet queries and extensively linked documents.
The authors of [8], [9] partitioned previous
TREC collections into databases and used them
together with TREC queries as testbeds. However,
the TREC queries for previous TREC collections are
much longer than typical Internet queries and there
is no linkage information among the documents in
these collections. The recent TREC VLC2 collection
contains multigigabyte of real Web pages. There is
potential that a testbed can be created using this
collection. At present, this collection may not have
extensive relevance assessment information.

4. In order to demonstrate the efficiency of searching a
hierarchy of database representatives, good cluster-
ing algorithms are needed to cluster the representa-
tives properly so that for most queries, only very few
representatives are compared. Experimentation is
required.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science

Foundation (IIS-9902792, IIS-9902872, EIA-9911099, CCR-

9816633, CCR-9803974, CDA-9711582, and HRD-9707076),

NASA (NAGW-4080 and NAG5-5095), and ARO

(NAAH04-96-1-0049 and DAAH04-96-1-0278). The authors

are grateful to L. Gravano and H. Garcia-Molina for

providing us with the collection of documents and queries

used in our experiments, and to W. Wu for supplying some

of the programs. They also would like to thank the

anonymous reviewers for their constructive comments to

an earlier version of the paper.

REFERENCES

[1] C. Baumgarten, “A Probabilistic Model for Distributed Informa-
tion Retrieval,” Proc. ACM Special Interest Group on Information
Retrieval Conf., pp. 258-266, July, 1997.

[2] C. Baumgarten, “A Probabilistic Solution to the Selection and
Fusion Problem in Distributed Information Retrieval,” Proc. ACM
Special Interest Group on Information Retrieval Conf., pp. 246-253,
Aug. 1999.

[3] N.J. Belkin, P. Kantor, E.A. Fox, and J.A. Shaw, “Combining the
Evidence of Multiple Query Representations for Information
Retrieval,” Information Processing & Management, vol. 31, no. 3,
pp. 431-448, May-June, 1995.

[4] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual
Web Search Engine,” Proc. Seventh World Wide Web Conf., Apr.
1998.

[5] J. Callan, Z. Lu, and W. Bruce Croft, “Searching Distributed
Collections with Inference Networks,” Proc. ACM Special Interest
Group on Information Retrieval Conf. pp. 21-28, July 1995.

[6] D. Dreilinger and A. Howe, “Experiences with Selecting Search
Engines Using Metasearch,” ACM Trans. Information Systems,
vol. 15, no. 3, July 1997.

[7] Y. Fan and S. Gauch, “Adaptive Agents for Information Gathering
from Multiple, Distributed Information Sources,” Proc. AAAI
Symp. Intelligent Agents in Cyberspace, Mar. 1999.

[8] J. French, “Evaluating Database Selection Techniques: A Testbed
and Experiment,” Proc. ACM Special Interest Group on Information
Retrieval Conf., pp. 121-129, Aug. 1998.

[9] J. French, “Comparing the Performance of Database Selection
Algorithms,” Proc. ACM Special Interest Group on Information
Retrieval Conf., pp. 238-245, Aug. 1999.

[10] N. Fuhr, “A Decision-Theoretic Approach to Database Selection in
Networked IR,” ACM Trans. Information Systems, vol. 17, no. 3,
pp. 229-249, July 1999.

[11] G. Furnas, “Information Retrieval Using a Singular Value
Decomposition Model of Latent Semantic Structure,” Proc. ACM
Special Interest Group on Information Retrieval Conf., pp. 465-480,
June 1988.

[12] S. Gauch, G. Wang, and M. Gomez, “ProFusion: Intelligent Fusion
from Multiple, Distributed Search Engines,” J. Universal Computer
Science, vol. 2, no. 9, pp. 637-649, 1996.

[13] S. Gauch, J. Wang, and S. Rachakonda, “A Corpus Analysis
Approach for Automatic Query Expansion and Its Extension to
Multiple Databases,” Proc. ACM Trans. Information Systems, vol. 17,
no. 3, pp. 250-269, July 1999.

[14] L. Gravano and H. Garcia-Molina, “Generalizing GlOSS to Vector-
Space databases and Broker Hierarchies,” Int’l Conf. Very Large
Data Bases, pp. 78-89, Sep. 1995.

[15] L. Gravano and H. Garcia-Molina, “Generalizing GlOSS to Vector-
Space databases and Broker Hierarchies,” technical report,
Computer Science Dept., Stanford Univ., 1995.

[16] L. Gravano and H. Garcia-Molina, “Merging Ranks from Hetero-
geneous Internet Sources,” Int’l Conf. Very Large Data Bases,
pp. 196-205, Aug. 1997.

[17] A. Howe and D. Dreilinger, “SavvySearch: A Meta-Search Engine
that Learns Which Search Engines to Query,” AI Magazine, vol. 18,
no. 2, 1997.

[18] B. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real Life
Information Retrieval: A Study of User Queries on the Web,” Proc.
ACM Special Interest Group on Information Retrieval Forum, vol. 32,
no. 1, 1998.

[19] B. Kahle and A. Medlar, “An Information System for Corporate
Users: Wide Area information Servers,” Technical Report
TMC199, Thinking Machine Corporation, Apr. 1991.

[20] S. Kirsch, “The Future of Internet Search: Infoseek’s Experiences
Searching the Internet” Proc. ACM Special Interest Group on
Information Retrieval Forum, vol. 32, no. 2, pp. 3-7, 1998.

[21] J. Kleinberg, “Authoritative Sources in Hyperlinked Environ-
ment,” ACM-SIAM Symp. Discrete Algorithms, 1998.

[22] G. Kowalski, Information Retrieval Systems, Theory and Implementa-
tion. Kluwer Academic, 1997.

[23] K. Kwok, M. Chan, “Improving Two-Stage Ad-Hoc Retrieval for
Short Queries,” Proc. ACM Special Interest Group on Information
Retrieval Conf., pp. 250-256, Aug. 1998.

[24] S. Lawrence and C.L. Giles, “Searching the World Wide Web,”
Science, vol. 280, pp. 98-100, Apr. 1998.

[25] S. Lawrence and C.L. Giles, “Accessibility of Information on the
Web,” Nature, vol. 400, pp. 107-109, July 1999.

[26] K. Liu, C. Yu, W. Meng, W. Wu, and N. Rishe, “A Statistical
Method for Estimating the Usefulness of Text Databases,” IEEE
Trans. Knowledge and Data Eng., vol. 14, no. 6, Nov./Dec. 2002.

[27] W. Meng, K.-L. Liu, C. Yu, X. Wang, Y. Chang, and N. Rishe,
“Determining Text Databases to Search in the Internet,” Proc. Int’l
Conf. Very Large Data Bases, pp. 14-25, Aug. 1998.

[28] W. Meng, K. Liu, C. Yu, W. Wu, and N. Rishe, “Estimating the
Usefulness of Search Engines,” Proc. IEEE Int’l Conf. Data Eng.,
pp. 146-153, Mar. 1999.

[29] G. Salton and M. McGill, Introduction to Modern Information
Retrieval. New York: McCraw-Hill, 1983.

[30] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison Wesley, 1989.

[31] E. Selberg and O. Etzioni, “Multiservice Search and Comparison
Using the MetaCrawler,” Proc. Fourth Int’l World Wide Web Conf.,
Dec. 1995.

[32] E. Selberg and O. Etzioni, “The MetaCrawler Architecture for
Resource Aggregation on the Web,” IEEE Expert, 1997.

1360 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 6, NOVEMBER/DECEMBER 2002

[33] A. Singhal, C. Buckley, and M. Mitra, “Pivoted Document Length
Normalization,” Proc. ACM Special Interest Group on Information
Retrieval Conf., pp. 21-29, Aug. 1996.

[34] E. Voorhees, N. Gupta, and B. Johnson-Laird, “Learning Collec-
tion Fusion Strategies,” Proc. ACM Special Interest Group on
Information Retrieval Conf., pp. 172-179, July 1995.

[35] J. Xu and J. Callan, “Effective Retrieval with Distributed
Collections,” Proc. ACM Special Interest Group on Information
Retrieval Conf., pp. 112-120, Aug. 1998.

[36] C. Yu, K. Liu, W. Wu, W. Meng, and N. Rishe, “Finding the Most
Similar Documents across Multiple Text Databases,” Proc. IEEE
Conf. Advancements in Digital Libraries, pp. 150-162, May 1999.

[37] C. Yu, W. Meng, K. Liu, W. Wu, and N. Rishe, “Efficient and
Effective Metasearch for a Large Number of Text Databases,” Proc.
Eighth ACM Int’l Conf. Information and Knowledge Management, pp.
217-224, Nov. 1999.

[38] C. Yu and W. Meng, Principles of Database Query Processing for
Advanced Applications. Morgan Kaufmann, 1998.

[39] B. Yuwono and D. Lee, “Server Ranking for Distributed Text
Resource Systems on the Internet,” Proc. Fifth Int’l Conf. Database
Systems for Advanced Applications, pp. 391-400, Apr. 1997.

Clement Yu received the BS degree in applied
mathematics from Columbia University in 1970
and the PhD degree in computer science from
Cornell University in 1973. He is a professor in
the Department of Computer Science at the
University of Illinois at Chicago. His areas of
interest include search engines and multimedia
retrieval. He has publications in various journals
such as IEEE Transactions on Knowledge and

Data Engineering, ACM TODS, and JACM and in various conferences
such as VLDB, ACM SIGMOD, ACM Special Interest Group on
Information Retrieval, and ACM Multimedia. He previously served as
chairman of ACM Special Interest Group on Information Retrieval and as
a member of the advisory committee to the US National Science
Foundation. He was/is a member of the editorial board of IEEE
Transactions on Knowledge and Data Engineering, the International
Journal of Software Engineering and Knowledge Engineering and
Distributed and Parallel Databases. He was a cochair of the US
National Science Foundation Information and Data Management
Program Workshop for principal investigators for the year 2000 and a
cochair of the International Conference on Information Society in the
21st Century: Emerging Technologies and New Challenges which was
held in Japan. He is a senior member of the IEEE.

King-Lup Liu received the MSc degree in
computer methodology from Baruch College,
CUNY in 1992, the MSc degree in computer
science from Binghamton University, State Uni-
versity of New York in 1994, and the PhD degree
in computer science from the University of
Illinois at Chicago in 1999. He is currently a
visiting assistant professor at DePaul University.
His research interests include information retrie-
val, multimedia retrieval, and Database Sys-

tems. He is a member of the IEEE.

Weiyi Meng (M’93) received the BS degree in
mathematics from Sichuan University, People’s
Republic of China, in 1982, and the MS and PhD
degrees in computer science from the University
of Illinois at Chicago in 1988 and 1992,
respectively. He is currently an associate pro-
fessor in the Department of Computer Science
at the State University of New York at Bingham-
ton. His research interests include Web-based
information retrieval, multidatabase systems,

query processing, and optimization. He is the coauthor of a recent
database book (Principles of Database Query Processing for Advanced
Applications). He has published more than 50 papers in various journals
and international conference proceedings (including TODS, IEEE
Transactions on Knowledge and Data Engineering, VLDB, SIGMOD,
ICDE, WWW). He served as the program chair of the IEEE TAI
conference in 1999 and served in the program committee of many
international conferences. He is a member of the IEEE.

Zonghuan Wu received the BS and MS
degrees in computer science from Sichuan
University, China, in 1991 and 1994, respec-
tively. Since 1997, he has been a PhD student at
State University of New York at Binghamton. He
is interested in Web-based information system,
database system, and image processing.

Naphtali Rishe received the PhD at Tel Aviv
University in 1984. Since then, he worked as an
assistant professor at the University of Califor-
nia, Santa Barbara (1984-1987) and as an
associate professor (1987-1992) and professor
(1992-) at Florida International University (FIU).
His expertise is in database management. Dr.
Rishe’s methodology for the design of database
applications and his work on the Semantic
Binary Database Model was published as a

book by Prentice-Hall in 1988. Rishe’s Semantic Modeling theory was
published as a book by McGraw-Hill in 1992. Rishe’s current research
focuses on efficiency and flexibility of database systems (particularly of
object-oriented, semantic, decision-support, and spatial/geographic
DBMS), distributed DBMS, high-performance systems, database design
tools, and Internet access to databases. Rishe is the editor of four books
and the author of two patents, 24 papers in journals (including IEEE
Transactions on Knowledge and Data Engineering, DKE, Information
Systems, Fundamenta Informaticae), seven chapters in books and
serials (including three in Springer Verlag’s Lecture Notes in Computer
Science), three encyclopedia articles, more than 80 papers published in
proceedings (including ACM SIGMOD, VLDB, PDIS, IEEE DE, ACM
Special Interest Group on Information Retrieval, SEKE, ARITH, and
FODO). Dr. Rishe has been awarded millions of dollars in research
grants by government and industry. His research is currently sponsored
by NASA (5.5 million), US National Science Foundation (4 million),
BMDO, ARO, DoD, DoI, and other agencies. Dr. Rishe also has
extensive experience in database applications and database systems in
the industry. This included eight years of employment as head of
software and database projects (1976-84) and later consulting for
companies such as Hewlett-Packard and the telecommunications
industry. Rishe is the founder and director of the High Performance
Database Research Center at FIU, which now employs 110 research-
ers, including 20 PhDs. Rishe chaired the program and steering
committees of the PARBASE conference and is on the steering
committee of the PDIS conference series. He is a member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

YU ET AL.: A METHODOLOGY TO RETRIEVE TEXT DOCUMENTS FROM MULTIPLE DATABASES 1361

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

