information to rectify the initial contour, then the initial
contour is embedded into a higher dimensional function, i.e.
Level Set function and evolved toward the tongue body.
The experiment results demonstrated that the geometric
model can find the saltatorial points and correct them, and
rectify the contour such that the converged boundary
excludes the lower lip well.

In our future work, we will concentrate on separating
tongue coating and tongue quality, doing quantitative
analysis of the colors and texture of the tongue, the
thickness of its coating and the cracks of the tongue. Finally,
we will build a physical examination system according to
features of the tongue and the relations between the features
and the diseases based on TCM principle.
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ABSTRACT

Autism is characterized as a spectum  of
neurodevelopment impairments in communicative, social
behavioural, and sensory motor skills. Public concerns
about autism have grown in recent years due to the
prevalence of its diagnosis in 1 out of 150 young children.
Though many researches have been carried out to analyse
autistic patients’ EEG behaviour, an effective
physiological diagnosis for autism does not exist and
researchers haven’t found a distinguishing pattern to
classify autistic and non-autistic subjects. This
preliminary study analyses the EEG data to compare
patterns of speech and non- speech sound discrimination
between 8 non-autistic and 4 autistic teenagers.

An Artificial Neural Networks (ANNs) based classifier
has been implemented to determine whether EEG data
reflects differences from the two types of responses.

KEY WORDS
Autism, MMN, artificial intelligence, classification, and
neural networks

1. Introduction

1.1 Autism

The cause of the social interaction impairments that
universally inflict children with autism still continues to
elude both scientists and clinicians [1]. Autism falls
under the larger category of autism spectrum disorders
(ASD) that characterizes a diagnosed individual with a
unique rtange of developmental impairments in
communicative, social behavioral, and semsory motor
skills [2]. The diagnosis of autistic individuals ranges
from lower-functioning infantile autism to a higher-
functioning case like Asperger syndrome, depending on
the combination and severity of an individual’s
impairments. Higher-functioning autistic individuals may
possess superior language skills and mental capacity, but

_they often lack the social behavioral skills nceded to

respond appropriately to verbal and visual cues during
social interaction. However, previous studies have shown
that autistic children respond more readily to non-speech,
musical [3] and non-social sounds {4]. Ceponiené et al. [5]
has discovered that higher-functioning autistic children
discriminate non-speech tonal changes much better than
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other hand, Nitidnen {8] has introduced the method of
analyzing sound discrimination responses with mismatch
negativity (MMN) data from electroencephalogram (EEG)
testing that elicits data from subjects in their conscious
state. MMN depicts the evoked potentials that are elicited
by a subject’s involuntary neurological response to
discriminating the incidence of deviant sounds that
interrupt a repetitive onset of standard sounds stimuli
Because eliciting MMN data does not require subjects to
pay attention or perform specific tasks, the MMN method
allows researchers to effectively obtain data from autistic
children who may have short attention spans and
difficulty in following directions.

1.3 Responses to Social versus Non-Social Speech
Sounds

Although many MMN studies have yielded conclusive
results for auditory sound discrimination in autistic
children {5, 9, 10, 11], these previous studies have not
specifically compared the subjects’ responses to both
social and non-social speech sound stimuli. Lepistd et al.
{9] compared the discrimination of speech and non-
speech sounds in children with autism using MMN, but it
focuses on pitch changes within each type of sound
stimuli in order to also analyze for sound encoding and
attentiveness. The study concluded that children with and
without autism responded similarly to the pitch changes
of social speech vowel sounds and their non-specch
components, except that children with autism had a
shorter MMN latency response to the non-social speech
sounds. These results prompt us to determine whether or
not removing the pitch changes in the sound stimuli
would provide more conclusive analysis about how each
subject group discriminates social and non-social speech
sounds, since the pitch changes are meant to analyze
attentiveness.  Ferni er al. [10] studied the MMN
responses of lower-functioning autistic children with
autism, but whether their study’s sound stimuli involved
social or non-social sounds remain unclear. Kubl ef af.
[11] compared responses to speech and non-specch
sounds in the auditory preference portion of their
experiment, but not in the event-related potential fest
portion that would provide sound discrimination results.
Dawson et al. [12] have compared responses to social and
non-social stimuli among children with and without
autism, except that the study involved visual stimuli
instead of sound stimuli. Their study concluded that
children with autism failed to attend to both types of
stimuli to a higher degree than the other groups of
children. More importantly, it also found that children
with autism failed to attend to social visual stimuli even
more prominently than non-social visual stimuli. Instead
of using visual stimuli, this present study aims to compare
the elicittd MMN responses to speech and non-speech
sound stimuli in both autistic and non-autistic adolescents
using speech and non-speech sounds.
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1.4 Neural Networks in Classifying Autism

Once the MMN data is obtained, an artificial neural
network (ANN) will be used to develop a classification
algorithm that can potentially classify random individuals
as either autistic or non-autistic, based on their sound
discrimination of social and non-social speech sounds. A
few precedent studies have involved using ANNs to either
classify or examine the attention deficits of children with
autism. Cohen {13] introduced the use of an ANN to
classify children with autism and mental retardation. His
method involved surveying the caretakers of the children
diagnosed with autism and mental retardation in order to
collect scaled responses on a set of chosen classification
criteia.  Subsequent studies involving ANNs to analyze
children with autism have involved the use of self-
organization maps (SOMs) to classify responses to
different stimuli [14, 15]. Although SOMs may be
effective in showing the spatial relationships of its data
inputs, this method does not provide a means of
classification. Thus, this present study aims to apply a
similar ANN classification method but focus on
evaluating sound discrimination response data obtained
directly from autistic and non-autistic subjects. More
specifically, the ANN data inputs will involve the use of
statistical features that characterize the entire set of EEG
data obtained from the experiment.

1.5 Summary

Using a statistical analysis of EEG data that depicts social
and non-social speech sound discrimination in autistic and
non-autistic children, this study aims to develop an ANN
to classify autism in children between the ages of 11-17
years old. This proposed classification system makes a
few major assumptions. First, it assumes that distinct
sound discrimination response patterns exist between
autistic and non-autistic individuals.  Secondly, it
presumes that a larger population of autistic adolescents
will exhibit the same sound discrimination characteristics
as the sample of autistic subjects involved in this study,
and vice versa for the sample of non-autistic children.
Lastly, it asserts that utilizing the entire set of EEG data
obtained in response to speech and non-speech stimuli
will be as effective as extracting only the relevant MMN
amplitude and latency data. In light of these assumptions,
the importance of distinguishing such patterns from the
sound discrimination data lies in its potential to diagnose
autism as early as infancy so that algorithms can be
developed to help diagnose autism. Ultimately, this
would allow earlier interventions for autistic children in
the areas of communicative and social behavioral
impairments.

2. Problem Statement

Is it possible to detect autism in children based on
auditory ERP tests? To provide an answer, one must first
respond to the following questions:

1) Which indicators could distinguish patterns in the

EEG associable with each of the two categories
(autistic/non autistic child)?
2) How to deal with large dataset for the analysis?
3) How can the data be compressed without losing
valued mformation?
4) Can an accurate classifier be found to discriminate
EEG of autistic from non-autistic behavior?
The EEG data of each subject contains more than 1000
ERP events properly labeled across the file. Six electrodes
(C3, C4, Cz, F3, F4, and Fz) are considered for each
subject file. The resulting data sets are so large that this
can not be directly used without pre-processing. Not
every point of the data can be used individually to train a
classifier. Thus feature extraction is performed to simplify
the set without sacrificing critical information.

After data set reduction, an Artificial Neural Network is
designed to generate a classifier based on these statistical
features. Testing results are collected and a performance
analysis is performed to evaluate the merit of this ANN-
based approach.

3. Methods
3.1. Data Collection
3.1.1. Participants

In this study, 12 subjects were considered. These
considered 4 Autistic teenagers are from mid-functioning
to high-functioning, who were unmedicated, and had no
EEG, MRI, or chromosomal abnormalities; and 8 non-
autistic teenagers (psychological and experimental) as the
control group. All subjects in both groups were mainly
English speakers with normal hearing. All the tests were
conducted at the Miami Children’s Hospital Brain
Institute.

3.1.2. Stimuli and Experimental Design

The stimuli used were the vowels “la”, and “bla” and their
non-speech counterparts. The vocal tract models were
extracted of the vowels “la” and “bla” produced by a
female speaker. In each stimulus block, the frequent,
“standard” stimulus “la” and the infrequent, “deviant”
stimuli “bla” were presented in random order. The stimuli
were presented stereophontcally via loudspeakers. The
same procedure is applied with non-speech sound. During
the experiment, subjects were instructed to sit still, watch
silent cartoons on a laptop monitor to achieve stable
vigilance, and pay no attention to the sounds. The
duration of the experiment was approximately 1.5 hours
with 2 sections: stimulus lwhere the speech sound
denoted as ST1 and stimulus 2, the non-speech sound,
which is denoted as ST2. In all experiments, the stimulus
delivery was controlled by the PC-based NeuroStim
program from NeuroScan Inc.

3.1.3. EEG-Recording and Averaging

The EEG (amplified by SynAmps, band pass 0.15-50 Hz,
sampling rate OF 250 Hz) was recorded using
silver/silver—chloride  electrodes at F3, C3, (left
hemisphere), Fz, Cz, (midline), and F4, C4 (right
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where F2(w) is the magnitude of the Fourier spectrum
for a specific frequency w.

3.3. Classifier Implementation
3.3.1. Training Set Preparation

After averaging the 6 channel EEG signals of each
subject, a mean average file was created, from which the
mean, peak, standard deviation, skewness, kurtosis and
spectral power values were computed under stimuli ST1
and ST2. Thus, the training set consists of 12 dimensional
patterns according to the extracted features as shown on
table 1, where each pattern represents a different subject.
Target values were set to 1 or-1 so as to represent autistic
and non autistic children, respectively.
The features and terms are denoted as follows:

e ST;: Stumulus I which is speech sounds

e ST2: Stumulus 2 which is non-speech sounds

e M,;: Mean under stimulus ST,

e M,: Mean under stimulus ST2

e H;: Peak under stimulus ST,

e H,: Peak under stimulus ST2

e  STD,: Standard Deviation under stimulus ST,

e  STD,: Standard Deviation under stimulus ST2

e S;- Skewness under stimulus ST,

e S, Skewness under stimulus ST2

o K, Kurtosis under stimulus ST,

e K, Kurtosis under stimulus ST2

e Pz Spectral power under stimulus ST;

« P, Spectral power under stimulus ST2

e (lass -1: Negative detection, non-autistic subject

e (Class 1: Positive detection, autistic subject

9.2187
1.4264 | -0.7938 | 40154 7.8260 12834 | 2.6842
0.0462 | 05617 | 26832 5.0749 1.1223 19215
0.9874 1.0537 | 43591 4.0654 15900 | 1.3532
-1.1937 § 06688 { 13435 29226 0.7457 | 1.8477
0.0885 | 0.1133 | 22766 2.6088 12235 | 1.4471
24744 | -1.1419 | 54900 1.7285 13332 | 12856
0.4429 | 05781 3.1080 9.7086 12980 | 3.1318
0.5753 § 0.1276 14718 1.8587 1.1277 | 0.8%46
-0.5458 | 0.6236 13112 58564 0.8196 | 1.5940

-1.0555 | 43215 | 24343 14.8550 1.3298 | 43917

Table 2: Training set continued with the last 6 features and target (S:
subject pumber, T: target)

12 071 078 | 3.04 | 275 793.77 10458.00

3.3.2. Dataset Partitioning and Training Strategy

Due to the limited numbers of subjects used in this stady,
spectial attention had to be given on to how to exploit the
data during training and still obtain a classifier able to
generalize well. To that end, 50% of the set was reserved
for training and the remaining 50% for testing. Training
was performed with crossvalidation, ¢.g., a portion of the
50 % used in training is actually used for training whereas
a small portion of this 50 % is at times used to
crossvalidate the classifier and to early stop the iterations
(see Fig. 1). Crossvalidation is a general strategy used to
avoid memorization and increase the generalization
ability of the classifiers. The distribution of patterns
during training is shown in Table 3.

Figure 1: Data partitioning for classifier generation

Table 3: Patterns as distributed during training

v e

#1 1Autistic (Subject 9);
__(25% training) 2 Normal (Subject 1,2)

#2 1 Autistic{Subject 10);
{25% cross testing) 2 Normal (Subject 3,4)

#3 2 Autistic (Subject 11,12);
(50 % pure testing) | 4 Normal (Subject 5,6,7,8)

3.33. Classifier Generation
3.3.3.1. Network Design and Training

A number of paradigms can be used as classifiers for
pattern recognition, such as Support Vector Machines,
ANN, Fuzzy Logic classifiers, to name a few. For this
study, ANNs were chosen due to the applicability of
neural studio, a platform that was developed in the CATE
center of FIU (Center of Advanced Technology and
Education of Florida International University)

Based on the data used, the following ANNSs architecture
as illustrated in Figure 2 was developed to optimize the
classification process.

R s

FM,M, . P))
s 1:Non- Autistic:

tnput input tayer Hidden tayer
Paramelers (12 neurons) (12, 24 neuroas)

Figure 2: Proposed ANN configuration architecture

This architecture is a feedforward multilayer neural
network [16] consisting of an input layer; a hidden layer
and an output unit which will provide the classification
value (see Figure 3). The parameters in the training tables
were used in configuring the ANNs architecture. The
proposed configuration 12 -X -1 means the network will
have 12 input neurons, a vaniable number of neurons in
the hidden layer, and one output neuron. The amount of
hidden units was varied in this study in an effort to find a
simple configuration that would minimize the
classification errors. Furthermore, input units were
assigned zero bias and a linear transfer function was used,
whereas hidden units and output unit used a sigmoid
transfer function.

The network was trained with the backpropagation
algonthm [17].

3.3.3.2. ANN Implementation of NeuralStudio

For implementation, Neural Studio software [18] was
used, a computer program developed at the center for
advanced technology (CATE) from Flonda International
University (FIU). NeuralStudio ts a powerful and state-of-
the art tool for conducting research on ANN’s. It offers
modules for the analysis of the most popular ANN’s as
well as assistive tools for database analysis, including a
wide range of configurable visual outputs and the ability
to stop the calculations for temporal results visualization.

4. Results

The classifier was trained for two different ANN
configurations, namely 12-24-1 and 12-12-1. The first
configuration was an attempt to follow the rule of thumb
that proposes twice as many hidden units as there are
input units. Given the relative large number of hidden
units (12) another version with fewer units was tried.
Optimum weights are not shown in this paper for space
considerations, but they can be easily re-created.
Performance evaluation of the classifier was conducted by
a differential investigation based on Receiver Operating
Characteristics (ROC) analysis [16].

An ROC analysis 1s started with a confusion matrix which
contains  information about actual and predicted
classifications done by a classification system. The
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following table shows the ¢
for a two class classifier.

Table 4: Entries

1
|
|
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norm, this case study coi
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equation:

AC=—
TF

The classification error is d

F

CE=
TP+ T

The confusion matrices obt
the 12-24-1 and the
configurations are illusts
respectively. For subset cor

Table 5: Confusion matrixes obtai
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and (-),
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Table 6: Confusion matrixes obta
1 configuration. Positive and neg
and (),

Lo : :
The overall indicators for
for the total accuracy AC
classification error CE =

performance of the classifi
of hidden units is decreases




5. Discussion and Conclusion

The results of this study indicate distinctive patterns of
speech and non-speech sound discrimination among
autistic subjects with varying moderate to high-
functioning communicative abilities and non-autistic
subjects. As it can be seen from the results, using
Artificial Neural Network as a method to discriminate
autistic subject from non-autistic subject according to
their EEG response to speech and Non-speech stimulus is
feasible. These results would be statistically meaningful if
more subjects were included.

This study is a pilot project trying to find a novel way to
classify autism. Given the fact that MMN and P3a are two
important features of Autistic ERP, it is expected that
their inclusion into future studies would improve the
classification accuracy.

The present results show that autistic teenagers do have
different EEG response to speech and non-speech sounds
from the non-autistic teenagers, not just presented in
MMN and P3a, but also through the statistic features used
in this ANNSs approach.

The results also show that more hidden neurons (24)
increase the accuracy, but at the expense of additional
processing time for the ANNs to converge.

In these preliminary results, only a small number of
subjects were available for this study, the confusion
matrixes reveal excellent classification results. The merit
of the parameters used (mean, standard deviation ...)
would of course be better assessed once more subjects are
recruited into this study.
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ABSTRACT study
Epilepsy is characterized by an unexpected and frequent analyz
malfunction of the brain. Electrical activity in the brain would
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the subject. Similar time evolution was found for the the e
activity and the power of the alpha and delta bands. It is promis
also shown that the behavior of the correlation integral is Nevert
somehow similar minutes before the seizure. to date
predict
KEY WORDS The ef
EEG, Epilepsy, Seizure prediction. Patient
nor do
1. Introduction asase
The National Institute of Neurological Disorders and One g
Stroke estimates that more than 2 million people in the medici
United States have experienced an unprovoked seizure or only w
been diagnosed with epilepsy. For about 80 percent of medici
those diagnosed with epilepsy, seizures can be controlled the.refo
with some medicines. patient
i before
EEG has been studied for years in an attempt to predict epileps
seizures. Anything that disturbs the normal pattern of OCCUITY
neuron activity can lead to seizures. forecas
In the area of epilepsy, where the most important goal is stimul:
to predict seizures, different measures have been used for their ¢
years, without much success to produce reliable, events.
prospective seizure prediction [1, 2]. This outcome is pattern
quite understandable given the challenge imposed by such oecurs,
a critical research endeavor. In the context of this study, straigh
many of the methods currently available in the specialized epilept

literature have been tested yielding contradictory results.
In an effort to compile all methods and conduct a detailed
investigation on EEG data towards seizure prediction, this
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.

comMygyuen(®) = (A, 3/3t A]/ Jn

=0/ .Jn
=0 (1)
We are interested in the limiting case

lim (comeED(n) - commy,, ..(8)) =0 (12)

For a system that has a very large number of photons, the quantum
commutator behaves like the classical commutator, demonstrating
that the imiting case of QED is Maxwell’s equations. In most
applications the number of photons actually is quite large and so
the systen behaves classically. But the quantum nature of the
photon is always present, and is even evident in certain
macroscopic  systems (like the photoelectric effect), where
Maxwell’s equations cannot begin to explain the phenomenon.
How large is large for the number of photons? In the visible
spectrum, red light has a wavelength A of roughly

A—6x10"m
The energy £ (in joules ) of a single “red” photon is

c 19
g = h}: = 3x10 7}
Using a light source with power of | watt (1 §/sec), the number a of
photons emitted per second is 1/€, or about 3x10'3. So even in a
dimly Iit scene, we expect a conventional (classical) renderer to
produce accurate. That comes as no surprise; the point here is that
we can quantify why classical ilhumnination is good enough.

In order for the quantum field properties of photons in a rendered
scene to make a difference, we must consider a situation where
there is only a small number of photons. This can occur if the time
interval for the light to be collected must be very small; or the light
source is very dim; or the illuminated volume is very large so the
photon density is low; or the rendered volume is a very small
subset of the total space, containing oaly a few localized photons;
or the wavelength of the light is very short but energetic (which
means rendering a scene illuminated by gamma rays).

5. Conclusion

‘We summarized the essentials of quantum electrodynamics (QED)
that are needed to relate it to classical electrodynamics. In brief,
the photon states form a Fock space and are represented by linear
combinations of kets and are acted on by a quantum field operator
A defined via the least action together with a commutator relation.
‘When the number of photons is large, the effect of the quantum
commutator is negligible, and it asymptotically approaches the
classical commutator for the vector potential A It is in this sense
that QED approaches classical electrodynamics as presented in
Maxwell’s equations.
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