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ABSTRACT OF THE DISSERTATION 

AN INDEXING STRUCTURE AND APPLICATION MODEL  

FOR VEHICLES MOVING ON ROAD NETWORKS 

by 

Xiangyu Ye 

Florida International University, 2004 

Miami, Florida 

Professor Naphtali Rishe, Major Professor 

Moving objects database systems are the most challenging sub-category among 

Spatio-Temporal database systems. A database system that updates in real-time the 

location information of GPS-equipped moving vehicles has to meet even stricter 

requirements. Currently existing data storage models and indexing mechanisms work 

well only when the number of moving objects in the system is relatively small. This 

dissertation research aims at the real-time tracking and history retrieval of massive 

numbers of vehicles moving on road networks. A total solution is provided for the real-

time update of the vehicles’ location and motion information, range queries on current 

and history data, and prediction of vehicles’ movement in the near future. 

To achieve these goals, a new approach called Segmented Time Associated to 

Partitioned Space (STAPS) is first proposed in this dissertation for building and 

manipulating the indexing structures for moving objects databases. 

Applying the STAPS approach, an indexing structure of associating a time interval 

tree to each road segment is developed for real-time database systems of vehicles moving 

on road networks. The indexing structure uses affordable storage to support real-time 
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data updates and efficient query processing. The data update and query processing 

performance it provides is consistent without restrictions such as a time window or 

assuming linear moving trajectories. 

An application system design based on distributed system architecture with 

centralized organization is developed to maximally support the proposed data and 

indexing structures. The suggested system architecture is highly scalable and flexible. 

Finally, based on a real-world application model of vehicles moving in region-wide, main 

issues on the implementation of such a system are addressed. 
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1 INTRODUCTION 

 

The Global Positioning System (GPS) has been widely adopted in location based 

applications and services. The current GPS technology makes it possible to automatically 

track the position of an object in real-time [DOD01]. Some GPS devices in the market 

can achieve an accuracy of about 3 meters [Garm]. That is to say, we can locate the 

location of vehicles equipped with such devices to as accurate as ± 1 lane when they are 

running on road networks. 

On the one hand, it is not uncommon nowadays to see application systems that 

monitor, retrieve, and manage transportation systems by equipping the vehicles with GPS 

devices and having them wirelessly connected to a processing server located in a data 

center. The owner of a private car can install a small GPS enabled device as shown in 

[Garm, Geod, Nova] and subscribe to services from a service provider to keep track of 

the current location as well as to retrieve the past driving routes. Transportation services 

such as Taxi companies and car shipping firms monitor and schedule their GPS-equipped 

taxicabs or shipping carriers. Public transportation services extend such systems even 

further so as to allow commuters to check real-time bus status. 

On the other hand, researchers in the (road networks) traffic control and Intelligent 

Transportation Systems (ITS) areas have been spending great amount of efforts studying 

the patterns of vehicles’ movement on roads, and developing laboratory traffic simulation 

systems. 

Is it possible to improve, if not replace, the traffic simulation systems with the real-

world allocation of vehicles location information and their movements from the existing 

 1



vehicles location information tracking systems? To do so, we must first integrate the data 

in these separate vehicles tracking systems into one database system. Besides providing 

the patterns of vehicles’ movements for traffic simulation, an integrated vehicles location 

information system can also provide more other useful information, such as the real-time 

road condition, to the users; And it costs less in system maintenance than running 

individual tracking systems separately. 

However, the security and privacy protection are one kind of issues and the technical 

difficulties in designing and implementing such an integrated database system are another 

issue that we need to resolve before this idea can be carried out and put in use. Even 

though the first kind of issues will not be completely omitted in this dissertation, our 

focus is on the technical issues in designing and implementing a real-time location 

information tracking and history retrieval system of massive numbers of vehicles. 

Moving Vehicles are a subcategory of moving objects in general. Researchers in 

several areas, such as databases, motion planning, and pattern analysis, have been 

studying the properties and/or management of continuously moving objects. The main 

challenges of this topic for researchers in database area stem from the continuity of the 

objects’ motion, which makes setting up a precise data model and building an efficient 

indexing structure difficult. To track up-to-date motion of GPS-equipped vehicles within 

a database system, real-time constraints need to be satisfied for update and query 

operations. This fact introduces even stricter requirements to the system performance in 

terms of I/O costs of these types of data accesses. Other than indexing structures that 

work well with past/historical data, new indexing structures that are efficient in 

performing real-time data accesses need to be found or designed. 
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In the recent years, extensive research efforts have been put in the field of Moving 

Objects (Database) Systems. Most of these works are either experimental or theoretical. 

A systematic solution has not yet been found. As described in [ES02, Jen02], the 

remaining research challenges in this area are mainly in data modeling, efficient indexing 

approaches, and Query Languages Standardization. 

Targeted at building an application system to track the current location information 

and past movement of massive numbers of vehicles moving in region wide, the main 

efforts of this dissertation are put in finding an efficient indexing scheme for the real-time 

tracking and history retrieval of moving vehicles on road networks. A new approach, 

Segmented Time Associated to Partitioned Space (STAPS), is proposed for the building 

and manipulating of the indexing structures for continuously moving objects in general. 

Applying this general moving objects indexing approach, an efficient indexing structure 

is developed for moving vehicles on road networks, and will be used in the design and 

implementation of a vehicles location information database system. 

 

1.1 Thesis Overview  

The objects of our main concern in this dissertation are vehicles moving on road 

networks. The final goal will be to develop an integrated real-time vehicles’ location 

information tracking system. The indexing structures to be developed should be able to 

efficiently process range queries and data updates, and meet the following criteria: (1). 

Vehicles location information is updated in real-time, (2). The past moving trajectories of 

the vehicles can be efficiently retrieved, and (3). Vehicles’ near future movement can be 

predicted, provide known information like a vehicle destination. 
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The vehicles are equipped with GPS receivers and they periodically transmit their 

location information in the form of geo-location, speed, and the time when the data set is 

sampled. And the road networks are represented by street and highway road segments. 

The road segments information can be obtained in the form of geo-coordinated polylines, 

along with other properties, such as the speed limits [Nav].  

The most frequently appearing queries to a moving objects database are range 

queries. The types of queries of our main concern include: 

Q1. Display the motion of all or a given sub-set of vehicles in real-time. 

Q2. Replay the motion of a given set of vehicles from past time t1 to time t2, t2 can be  

  past, now or near future time. 

Q3. Find the vehicles that have been on a given road segment between time t1 and t2,  

  and display their movements during [t1, t2]. 

Q4. Retrieve the moving trajectories of the vehicles that have been in a given  

  rectangular area R, between time t1 and t2.  

Q5. Return the vehicles that can reach a given point p, within time ∆t. 

Q6. Predict the motion of given set of vehicles in the near future from t1 to t2.  

 

In this dissertation research, a commonly used data model is adopted. Vehicles are 

represented by points. Their shapes and sizes are ignored. The moving trajectory of a 

vehicle is kept as a sequence of sample points of the form of (t, Rid, d, v). Where t is the 

time at which the vehicle is at this location, Rid is the number of the road segment that the 

vehicle is on, d is the current distance the vehicle is from the starting point of this road 

segment, and v the speed the car is running at this point. Road networks are represented 
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by a set of non-inner-intersecting one-directional road segments, each assigned a road 

segment number. A two-way road segment is treated as two one-way segments. The 

attributes maintained with each road segment include: the geo-coordinated layout of the 

road segment, its starting and ending points, total length, speed limit, and the road 

segments that are next to it at the end.  

The core innovations of this dissertation research are in the indexing structures. In 

the proposed STAPS approach, time and space are treated differently. Space is divided 

into non-overlapping regions and indexed using appropriate space indexing structures. 

The time intervals during which objects moving inside each region of space are collected, 

indexed, and associated to this region.  

Applying the STAPS approach to moving vehicles databases, the space is divided 

into road segments. The road segments are indexed using segment tree structure [Bent??]. 

And the sets of time intervals generated by vehicles running on road segments are 

indexed using balanced interval trees. A moving vehicles database system adopting this 

indexing scheme is flexible and highly scalable, since road segments, time intervals, and 

their indexing structures can easily be distributed to and processed by different 

processors, any levels of memories, and servers, when such distribution is needed to 

improve system performance. 

An application system design is also developed in this dissertation, based on the 

proposed data and indexing structure. In the system design, a distributed system 

architecture with centralized organization is adopted. Issues such as the storage 

management, transaction and concurrency control mechanisms, and security are carefully 

balanced to maximize system performance, meet real-time requirements, and ensure 
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system reliability. The final data structure and implementations can be embedded into 

Sem-ODB [Rish92] or other existing Database Management Systems (DBMS) in the 

future. 

The rest of this thesis is structured as follows. Chapter 2 addresses related work in 

the context of moving object and spatio-temporal database systems. Chapter 3 presents 

the data model, data structure, and indexing scheme that this dissertation proposes. 

Chapter 4 discusses the system architecture and design. Chapter 5 shows an example 

implementation, which applies the design into a system managing vehicles moving in the 

greater Miami area. Chapter 6 analyses the possibility of extending the data structure and 

the application. Topics in this chapter include extending the indexing structure to objects 

moving in higher dimensions and/or with fewer constraints, data warehousing the system, 

and embedding the system design as a data blade to Sem-ODB and other object-oriented 

or relational database management systems. Chapter 7 concludes the thesis and points out 

future work. 
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2 RELATED WORK 

 

The storage and retrieval of moving objects are concerns of several research areas, 

such as spatio-temporal databases, moving objects databases, and motion planning, etc. 

Various proposals have been published, each addressing one or more sub-topics related to 

the whole problem. In the application aspect, there are several laboratory 

implementations, along with a big number of industrial real-time tracking systems 

covering single or enterprise wide vehicles. 

The emphasis of this chapter will be put in reviewing the currently existing indexing 

schemes for moving objects. The current status and trends of other key issues in this area 

of research, which include the data modeling and data structures, query languages and 

application systems development, will also be briefly mentioned. 

 

2.1 Data Model and Data Structures 
 

Since the mid 90’s when the continuously moving objects caught serious attention of 

researchers in the Database area, possible data models and data structures for managing 

this category of data have been almost exhaustively explored. 

In Worboys’ approach [Wor94], spatio-temporal objects are defined as spatio-

bitemporal complexes. Their spatial features are described by simplicial complexes, and 

their temporal features are given by bitemporal elements attached to all components of 

simplicial complexes.  

In [TSPM98], Theodoridis et al. proposed a discrete snapshot model. A spatio-

temporal object o is represented by a time-evolving spatial object. Its evolution is 
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represented by a set of triples (o_id, si, ti), where o_id is the object identifier of o and si is 

the location of o at time ti.  

Attribute time stamped models were proposed by Gadia and Nair in [GN93], Segev 

and Shoshani in [SS93], and Clifford, Crocker, and Tuzhilin in [CCT93]. This group of 

data models aim at gathering information about an object in one tuple and allow complex 

attribute values. These complex values incorporate the temporal dimension and are 

frequently modeled as functions from time into a value domain. 

Another approach is to use linear constraints for modeling spatio-temporal data 

[GRS98]. This model supports efficiently representing and manipulating infinite point 

sets in arbitrary dimension. Time and geometry are treated as different and independent 

categories of data.  

The approach presented in [ES02] by Erwig and Schneider supports an integrated 

view of space and time. A temporal version of an object of type α is represented by a 

function from time to α. A straightforward and instructive view of spatio-temporal objects 

is to visualize their temporal evolution as purely geometric, 1+geometric-dimensional 

objects. The spatio-temporal objects in 2-d space are hence taken as 3 dimensional 

geometric objects. 

Erwig and Schneider also developed a complete set of spatio-temporal predicates to 

describe the spatio-temporal relationships between objects, viewing time as another 

spatial dimension [ES02]. The sptio-temporal predicates they proposed take into account 

temporal logic, point set theory and point set topology. This approach was moved 

forward by Forlizzi et al. in [FGNS00] and by Cotelo et al. in [CFGN01] with data 

structures and algorithms for the representing and implementation of basic types, 
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predicates, and operators. In [GBEJ01], Güting et al.  presented how to incorporate this 

model with object-relational databases, which include how to put these spatial and 

temporal data types into the columns of a database, and how to form different types of 

queries in the format that an object-relational DBMS accepts. 

In [WSXZ99, SWCD97] Wolfson, Sistla and their group introduced the MOST data 

model. In their data model, the concept of dynamic attributes to objects is introduced. 

The continuous change of an object’s location is represented by a function of time. A 

dynamic attribute A is represented by three sub-attributes: A.updatevalue, A.updatetime, 

and A.function. The value of a dynamic attribute depends on time, and it is defined as: at 

time A.updatetime the value of A is A.updatevalue, and until the next update the value of 

A at time A.updatetime+ t0  is given by A.updatevalue+ A.function(t0). An explicit update 

of a dynamic attribute may change its value sub-attribute, or its function sub-attribute, or 

both sub-attributes. For an object moving in 2-d space, its location attribute L can be 

modeled by two dynamic attributes L.x and L.y, each with its own update value, function 

and update time. They also modeled the uncertainty property of the data [SWCD98].  

Vazirgiannis and Wolfson in [VW01-2] proposed a data model for moving objects 

on road networks, which is similar to the approach this dissertation adopts. Roads are 

represented by polylines. The geo-information along with the speed limit and other 

attributes regarding each segment of the road are associated with the road id’s. The 

trajectory of a moving object can then be represented by a polyline along space and time 

dimensions. 
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2.2 Indexing Structures 
 

The most commonly used indexing schemes for temporal databases are multi-version 

and persistent tree structures. In the other hand, R-tree, quadtree and their variants are 

widely adopted in indexing spatial data. In general temporal database systems, the change 

or movement of data along time is discrete. And pure spatial data do not involve time. 

When the objects’ movement is continuous, neither the general temporal nor the general 

spatial indexing mechanisms can be directly adopted for efficiently indexing the 

continuously changing spatio-temporal data. 

Becker and colleagues in [BGOS93, BGOS96] proposed multi-version B-tree 

approach for indexing the data discretely changing as time evolves. A multi-version B-

Tree keeps an index structure for the versions and another structure for the data within 

each version. Whenever an update -- either an insert, delete, or modify -- happens, a new 

version is generated. These two structures can use the same scheme, or different trees. 

Each node in the version index structure points to the root of the data entries for the 

corresponding version. A data entry inside one version can point to a node in another 

version if itself and all its descendants are the same in both versions. Varman and Verma 

in their work [VV99] presented their multi-version structures and showed how to apply 

the multiversion technique to database systems. 

Multi-version trees and persistent data structures have been discussed in the work of 

other researchers. The main differences between various proposed schemes are in how 

the versions and data indexing are organized and maintained, how the overflow and 

underflow of a node are treated, etc. These techniques are appropriate for temporal 
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databases where the data change is discrete. But they are not suitable for indexing 

continuously moving objects. 

Time Parameterized R-Tree or TPR-tree, was originally described in [ŠJLL00] by 

Šaltenis et al. Šaltenis and Jensen later on optimized this structure in [ŠJ02] and named it 

REXP-tree. The TPR-tree or REXP-tree is a balanced, multiway tree with the basic structure 

of an R*-tree. In this approach, Minimum Bounding Boxes (MBB) are time-

parameterized. MBB changes dynamically as time evolves. This structure supports only 

queries falling inside time frame between now and near future. The term “near future” is 

defined by a querying window. MBB’s are revisited upon updates when reaching update-

time bounding rectangles. The concept of object’s expiration was introduced. Queries on 

the past and future data that beyond the defined querying window are not supported.  

TPR*-tree is proposed in Tao et al’s recent paper [TPS03]. It optimizes the original 

TPR-tree by employing a new set of insertion and deletion algorithms to minimize the 

query time cost, especially for the static point interval query q, whose (i) MBR has length 

| | = 0 on each axis, (ii)VBR(Velocity Bounding Box)={0,0,0,0}, and (iii)query 

interval Q

Riq

T={0, H} where H is the horizon parameter. 

In [HKTG02], Hadjielefttheriou et al. proposed partially persistent R-tree (PPR-tree) 

for indexing moving points, rectangles and objects of other shape. Emphasis is given to 

range queries for historical time t or a short period around t. Typical queries their 

approach supports are of form “find all the objects that appear in area S during time t.” 

They view the plane where the objects move and the time dimension as a 3-dimensional 

volume. And objects are split along time dimension to reduce empty space and hence 
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reduce the size of MBR’s. It can handle non-linearly moving objects as efficiently as 

those moving linearly. 

In their paper [“PKGT02”], Papadopoulos et al. proposed a scheme for indexing 

linearly moving objects on the plane using dual transform. Objects with small velocity 

magnitude are transformed to Hough-X, which is (v, a) space. And objects with large 

velocity magnitude are transformed to Hough-Y, which has (n, b) coordinates. This way 

the MBR won’t be too unreasonable for any objects, and hence the searching 

performance is efficient. Inside a Horizon, this scheme performs approximately the same 

as a TPR-tree. But outperforms the later when temporal part is out of the horizon. 

Chon, Agrawal and Abbadi in [CAA02] gave a scheme to index the objects for 

queries within time period ∆T. It divided the time into n adjacent intervals, and the space 

into m segments. As time evolves, they shift the time domain forward. The trajectory of a 

moving point is represented by a polyline using a linked list. The headers of these linked 

lists are indexed with a hash table. The space-time grid is implemented using an array. 

Inside each cell (grid), only the identifier of intersected points is stored. They also 

provided performance experiments with different parameters including the size and 

thresholds of a grid. 

In [BGZ97, BGH99, Bas99], Basch et al. proposed a kinetic data structure for 

indexing linearly moving points, which is based on the observation that the topological 

relationship between moving points changes only at some event (time) points even 

though their motion is continuous. Similar to the plane sweep technique which is widely 

adopted in Computational Geometry community, two structures are kept at any time for 

the indexing purpose. One is the order of the moving points, the other is an event queue. 

 12



Agarwal et al later proposed external kinetic B-Tree to handle the linear movement of 

points [AEG98].  

Agarwal has contributed greatly to the indexing of linearly moving points, among 

which are the time-oblivious algorithms and time-responsive solutions. In his time-

oblivious algorithms [AAE00], the core is the adoption of dual transform and the 

partition tree. The motion in 2-d space along time is viewed as the combination of motion 

in x- along time and that in y- along time. With both xt- and yt-, dual transform is applied 

and the trajectory of each moving point, which is a line, is hence transformed to a point in 

the dual space. For points moving in 2-dimentional space, build a 2-level partition tree on 

the points dual transformed from the trajectories of the moving points as follow: first 

level partition tree on the xt-space, with second-level on yt-space associated to nodes in 

some levels chosen by a certain mechanism. The total number of levels chosen is in O(1), 

so the size of secondary tree is O(n).  With a set S of N linearly moving points in either 1-

d or 2-d space, an index on S, using n blocks of storage with each block of size B, can be 

built in O(NlogBn) expected I/Os such that the range queries can be answered in 

O(n1/2+ε+k) I/Os. Points can be inserted or deleted in amortized cost of O(logB
2n) 

expected I/Os. Where ε can be a very small but positive real number.  

Another scheme proposed by Agarwal combines the kinetic range tree [AAV01] 

developed by Basch and an external range tree [ASV99] by Arge. Kinetic external range 

tree combines the kinetic B-Tree as a secondary tree to some levels of an external range 

tree. It answers range queries for given point of time on points moving in ℝ2 in 
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O(N1+ε/ ∆ +k) I/Os using O(nlogBn/ logBlogBn) space. Where ∆ is a parameter, BN ≤ ∆ ≤ 

N2. 

Agarwal’s time-responsive algorithm for indexing N points moving in 1-dimension is 

to divide the space along horizontal (t-) axis into logBN slabs. It is claimed that with high 

probability each slab contains O(N) vertices. Build index structure for each slab using the 

concept of arrangement [AAV01]. Complexities achieved for each slab is claimed as: 

Using O(N/B) space and O(Nlog2NlogBN) I/Os to build the index, a point query can be 

answered in O(Bi-1+logBN+K/B) I/Os. Where 1≤i≤logBN is the order of the slab from left 

to right. 

 

The indexing schemes we have so far talked about are mainly for range queries. 

Nearest and reverse nearest neighbor queries frequently appear in some application as 

well. In [BJKS02], Benetis et al. proposed an algorithm for answering RNN and one for 

NN queries for continuously moving points in the plane. The algorithm returns the 

RNN/NN of a moving point for any time duration T, in the form of a set {NNi, Ti} / 

{RNNi, Ti}, where T ii
I  = Ø, T ii

U  = T.  The query point can be a member in or outside 

the set. A TPR-tree is used as underlying index structure. The RNN algorithm is 

developed from the observation by Stanoi et al. in [SAA00] that in each one of the six 

regions divided by three lines intersecting at the query point p there are at most two RNN 

points of p, and the total number of RNN points is not more than 6. 
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On objects moving in constrained space, there are several indexing schemes 

proposed as well. Kollios et al. in [KGT99-2] mentioned NN search where objects 

moving in road networks. They define this as 1.5 dimensions. Road networks are indexed 

using any traditional static index scheme (Spatial Access Method) for 2-d space. And the 

motion of objects is then 1-d. But no detail was given. In [PJ01], Pfoser and Jensen 

proposed an indexing scheme for objects moving in constrained environment. In such 

environments, some areas would never have any object appear. This scheme segments the 

query window based on the infrastructure of background where the objects are moving 

on, query the index on only those segmented sub-windows that possibly have objects 

appear at any time, and then evaluate the joint of result sets.  

Pfoser and Jensen later developed an indexing scheme for objects moving on 2-

dimensional constraining networks in [PJ03]. They reduced the 2-d space to one-

dimensional, and built indexing structures on the reduced 1-d space and 1-d time. In this 

scheme, three kinds of mapping – all reduce the space dimensions from 2 to 1 – are 

required: the mapping of the fixed networks, objects’ moving trajectories, and the 

queries. Instead of one 3-d indexing structure, the networks in (x, y) space and objects 

moving trajectories, which are reduced to (x, t) space, are indexed using separate 

indexing structures. Both indexing structures, for networks and for trajectories, are R-tree 

based. This indexing scheme supports only queries on past data. 

Frentzos in his work [Fren03] proposed an indexing structure, called FNR-tree, to 

index the past trajectories of objects moving on fixed networks, which looks very similar 

to the indexing structures developed in this dissertation. The networks are indexed using 

an R-tree. Attached to each leaf node of this R-tree is a set of time intervals during which 
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objects moving over the space range defined by this leaf node. And each set of such time 

intervals are indexed using a 1-d R-tree. 

The MON-Tree proposed by Almeida and Güting [AG04] also uses two-components 

to index the past trajectories of moving objects on networks. Routes, each defined by a 

polyline, are indexed using an R-tree, and another R-tree indexes the moving trajectories 

of the objects along each route. 

 

To summarize the currently existing indexing schemes for moving objects, we can 

mainly classify them into four categories: (1) Temporal approaches, which can 

manipulate only discrete change of data; (2) The static R-tree based schemes, which 

require pre-processing and only support queries on past data; (3) The time parameterized 

R-trees, which are for queries on near future provide assuming objects moving linearly; 

and (4) The proposals from Computational Geometry community, such as the kinetic-

based approaches, the dual transform scheme, the time oblivious and responsive 

approaches, are for future motion of linearly moving points. 

The known existing indexing structures for objects moving in networks constrained 

space are all R-tree based, and they support past data only. To meet our application 

system requirements, which include efficient retrieval of past data, prediction of objects’ 

near future position, and real-time data updates, none of these existing approaches well 

fits for the data indexing purpose. 
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2.3 Handling of Uncertainty and Imprecision 
 

Wolfson et al. have systematically analyzed in their work [WCDJ98, SWCD98, 

WSXZ99, Wol02] the uncertainty and imprecision problem in moving object 

management systems. The location of a continuously moving object is inherently 

imprecise because, regardless of the policy used to update the database location of the 

object, the database location cannot always be identical to the actual location of the 

object. This inherent uncertainty has various implications on database modeling, 

querying, and indexing. For example, for range queries there can be two different kinds 

of answers, i.e. the set of objects that "may" satisfy the query, and the set that "must" 

satisfy the query. Thus, different semantics should be provided for queries. Another 

approach would be to compute the probability that an object satisfies the query. Although 

uncertainty in databases has been studied extensively, the new modeling and spatio-

temporal capabilities needed for moving objects introduce the need to revisit existing 

solutions. 

Additionally, existing approaches to deal with uncertainty assume that some 

uncertainty information is associated with the raw data stored in the database. How is this 

initial uncertainty obtained? For moving object database applications the question 

becomes how to quantify the location uncertainty, how to quantify the trade-off between 

the updating overhead and the uncertainty/imprecision penalty, how frequently should a 

moving object update its location, and how to handle the possibility that a moving object 

becomes disconnected and cannot send location updates? 

In [WCDJ98, SWCD98, WSXZ99, Wol02] the authors extended their data model, 

query language, and indexing method to address the uncertainty problem. The data model 
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was extended by enabling the provision of an uncertainty interval in the dynamic 

attribute. More specifically, at any point in time the location of a moving object is a point 

in some uncertainty interval, and this interval is computable by the DBMS. Thus, the 

DBMS replies to a query requesting the location of a moving object m with the following 

answer A: "m is on route 698 at location (x,y), with an error (or deviation) of at most 2 

miles". The bound b on the deviation (2 miles in the above answer) is provided by the 

moving object, i.e. the object commits to send a location update when the deviation 

reaches the bound. The FTL language is also extended. Two kinds of semantics, namely 

may and must semantics, are incorporated, and the processing algorithms are adapted for 

these semantics. The indexing method is also extended to enable the retrieval of both, 

moving objects that "must be" in a particular region, and moving objects that "may be" in 

it. 

They also addressed the question of determining the uncertainty associated with a 

dynamic attribute, i.e. the bound b mentioned above. They proposed a cost based 

approach, which captures the tradeoff between the update overhead and the imprecision. 

The location imprecision encompasses two related but different concepts, namely 

deviation and uncertainty. The deviation of a moving object m at a particular point in 

time t is the distance between m's actual location at time t, and its database location at 

time t. For the answer A above, the deviation is the distance between the actual location 

of m and (x,y). On the other hand, the uncertainty of a moving object m at a particular 

point in time t is the size of the interval in which the object can possibly be. For the 

answer A above, the uncertainty is 4 miles. The deviation has a cost (or penalty) in terms 

of incorrect decision making, and so does the uncertainty. The deviation (uncertainty) 
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cost is proportional to the size of the deviation (uncertainty). The tradeoff between 

imprecision and update overhead is captured by the relative costs of an uncertainty-unit, a 

deviation-unit, and an update-overhead unit. Using the cost model we propose update 

policies that establish the uncertainty bound b in a way that minimizes the expected total 

cost. Furthermore, we propose an update policy that detects disconnection of the moving 

object at no additional cost. 

 

2.4 Query Languages 
 

Generally, a query in Moving Objects Database applications involves spatial objects 

and temporal constraints. Traditional query languages such as SQL are inadequate for 

expressing such queries. 

Sistla et al. in [SWCD97] introduced a temporal query language called Future 

Temporal Logic (FTL) for query and trigger specifications in moving objects databases. 

The language is natural and intuitive to use in formulating MOD queries, and it uses both 

spatial operators (e.g. object INSIDE polygon) and temporal operators (e.g. UNTIL, 

EVENTUALLY in the future). 

In [MSI02], Mokhtar et al. investigated the appropriateness and efficiency of regular 

query languages on moving objects databases. They argued that traditional constraint 

query evaluation techniques are suitable for past queries, but neither for “continuing” nor 

the future ones. They also think that plane sweep technique can evaluate spatio-temporal 

queries efficiently. 

In [VW01-2], Vazirgiannis and Wolfson also formalized the queries for moving 

objects on road networks. 
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2.5 Implementation and Applications 
 

In the implementation and application aspects, both inside and outside the research 

community have various finished or ongoing projects on management of moving objects. 

Pfoser and Theodoridis in [PT00] presented a trajectory generator, which extends 

their earlier work named GSTD, based on constraint environment (e.g. areas with 

buildings where objects are prevented from entering). Oporto, developed by Saglio and 

Moreira, is another scenario generator for fishing boats. 

Tripod, as talked about in Griffiths et al.’s work [GFPH01] is a spatio-temporal 

database management system with full functions of a DBMS: data update, storage and 

retrieval, query processing, programming language access support, etc. 

There are several real-time vehicles tracking systems, such as the ones described in 

[Garmin, Geod, Nova]. These applications are for personal, or enterprise uses. Either the 

numbers of vehicles are small, or the query involved relationship are concerned only of 

inside subsets. One of the most widely application area is for intelligent transportation 

systems, such as [Wash, Geog, Trim]. 
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3 DATA MODEL AND DATA STRUCTURE 

 

As observed and analyzed earlier, even though the motion of the vehicles is 

continuous, we can only keep the location and speed information for some discrete 

sampling points. So it is necessary to have a mechanism, which should be not too 

complicated and not too difficult to implement, to approximate the location and motion of 

a vehicle between the discrete sampling points.  

Now the problem becomes: how do we decide the sampling points, along time 

dimension of course? The GPS enabled devices in our system update their location and 

speed data periodically. That is to say, the most accurate data we could get on the 

vehicles’ motion is a set of data at discrete sampling points. So do we keep each and 

every data update from a vehicle in our database?  

We know that there is a tradeoff between the data precision and system load. The 

shorter the sampling interval, the more accurate the motion of a vehicle is kept, and more 

data is kept in the database. Our goal is to use least possible memory space and simplest 

possible computation expense to achieve the best accuracy. 

Even though the GPS enabled devices send vehicles’ motion data periodically, the 

sampling time interval in our tracking system need not be uniform. Depending on the 

road situation where a vehicle is running on, the speed, and the change of speed, some 

motion updates from the vehicles may be omitted. Only those key points which affect the 

calculation of the motion in their nearby region are recorded and put into the database.  

In the following sections of this chapter, we talk about the data modeling, data 

structure and indexing scheme that will be used in our system design and implementation. 
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3.1 Data Model 
 

The various proposals on the data modeling sub-topic of the moving objects database 

area may look quite different from one another. The differences are mainly in the degree 

of formalization of these models. Beneath the variety of the appearance of these data 

models, almost all of the known proposals are basically similar in terms of a 

mathematical representation. Considering the maturity and reliability of these already 

approved and widely accepted existing approaches, there is no reason for us not to adopt 

a similar one. 

The rest of this section will discuss the data model for road networks, vehicles and 

their movement, and time granularity. 

 

The road networks are represented by a set of directed and connected road segments. 

A road segment in the context of this writing is defined as a segment on the road such 

that: 

(1) No intersection with other road segments exists inside the segment, and 

(2) The ends, namely the start point and the end points, are either the end of a road 

segment or the intersecting point of two or more road segments. 

A two-way road segment is treated as two separate one-way road segments. Figure3-1 

explains the definition of the road segments in the context of this writing. 

Each road segment is defined by a unique integer number Rid, the geo-location of the 

start point Se and Sn, geo-location of the end point Ee and En, the total length of this road 

segment L, the speed limit SP, and the road segments that are geographically next to it. 
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Figure 3-1 The Road Segments 
 
 
It is needed to mention that the road networks are not static. Road segments may 

look static when we look them in a short time interval. But they actually are not. Even 

though, compare to the movement of vehicles, changes to road networks are far less 

frequent, such changes do happen. A road segment can be removed due to reasons like 

construction. Roads can change their routes and new roads can be built as well. But such 

changes are discrete. So the time period at which a road segment is live needs to be 

attached, and a record for a road segment is defined as: 

road_segment { 
Roadid :   integer, 
Starteasting : real, 
Startnorthing :  real, 
Endeasting :  real, 
Endnorthing :  real, 
Length : real, 
Speed_limit:  real, 
Time_of_birth: time, 
Time_of_death: time, 
Next:  *road_segment

} 

 23



Using such a format, not only the road map is described by a complete set of road 

segments, but also the topological relationships among them.  

The vehicles’ attributes can be classified to three sub-categories: the static attributes, 

the discretely changing attributes, and the continuously changing attributes. These three 

categories of attributes are modeled respectively as follows. 

(1) The static attributes. Since vehicles in our system are independent entities, 

each of them is assigned a unique integer ID, Vid. A vehicle’s static 

properties, such as the make, model, size, etc., are included in this category. 

A complete set of such attributes and their data types is defined as: 

  vehicle_attributes_ static { 
   Vid: integer,  
    make: string,  
   model: string,  
   year: integer 
  } 
 
(2) The discretely changing attributes. Vehicle’ color, ownership and use 

could change over time, even though such changes are extremely infrequent. 

But the planned destination of a vehicle changes probably several times a 

day. It is not mandatory for a vehicle to update the data center on its change 

of destination. However, if a vehicle is a taxi cab, a shipping truck, or a bus, 

it is necessary to keep this information up-to-date at any time, for the sake of 

efficient scheduling. This set of attributes are: 

  vehicle_attributes_ discrete { 
   ownership: {owneri: string, ti: time}, 
   color:  {colori: string, ti: time}, 
   use:  {usei: string, ti: time}, 
   destination:  {desti: location,  ti: time} 
    } 

 24



         Here location is a compound data type defined as: 

  location { 
   zone:  integer, //UTM zone  
   easting: real, 
   northing: real, 
   Address: string 
  } 

(3) The continuously changing attributes. Or called the dynamic attributes. 

All the attributes that together define vehicle’s motion belong to this 

category. They are formally represented as: 

   vehicle_attributes_ dynamic { 
  Roadid:  integer,  
  time:   time,  
  velocity:  real,  
  distance:  real, 
  easting:  real, 
  northing: real 

  } 

Below are the analysis and explanation about the dynamic attributes. 

 

p1 (t1, v1, d1)
p2 (t2, v2, d2)

p (t, v, d)

d=0 

 

 

 

 

 

Figure 3-2 Approximate the Motion Between Two Sampling Points 
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The motion of a vehicle is defined by its location, direction and speed at the 

sampling points. And these values are recorded upon each update. The motion between 

two sampling points, as shown in Figure3-2, is approximated as follow. 

To achieve a little better precision than using simply a linear function, we take the 

acceleration a into consideration. At any time t between t1 and t2, which are the time 

when the vehicle is at point p1 and p2 respectively, the speed v and distance d from the 

starting point of this road segment can be calculated as: 

a = 
12

12

tt
vv

−
−  

v = a(t-t1) + v1  

d = v • ( t - t1) + 
2
1 • a • (t - t1)2

Taking the acceleration into consideration, on the other hand,  reduces the size of data 

have to be stored persistently. This happens because we can drop those sampling points at 

which the acceleration is the same as their succeeding sampling point, ignoring if there is 

a speed change. 

 A vehicle sends its location and motion information in a certain frequency to the 

central station where such information is collected. But not every update from vehicle 

side is recorded into the database. If both of the following criteria are true, the update is 

ignored:  

(1) The vehicle is on the same road segment as last update;  

(2) The speed change since last update is within ± δ1 × SPr, or the acceleration is 

within δ± 2 comparing to its next update.   
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Where SPr is the speed limit of this road segment, δ1 and δ2 are predefined small real 

numbers depending on the accuracy requirement of the system. In one case, a sampling 

point needs to be inserted between two updates from the vehicle. If two consecutive 

updates from the vehicle indicate that the vehicle has moved out of the one road segment 

and enter another, an approximated sampling point at the intersection of these two road 

segments needs to be calculated and added. The algorithm used to calculate the attributes 

are the similar to which is used to approximate the motion between two known sampling 

points on the same road segment. 

Besides time t, speed v, distance d from the starting point of the road segment, the 

exact geo-location in the form of (UTM-zone, easting, northing) is stored with each 

record as well.  

 

A system parameter chron , which is the smallest time granularity, is predefined. It 

can be small as 
10
1  or 

100
1  second, depending on the system accuracy requirement. But 

for a vehicle tracking system, it should not exceed 1 second. Considering a car moving at 

40mph, the distance it moves in 1 second is about 17 meters. The average length of a road 

segment is in the order of 100 meters, and 17 meters per update means only about 5 

updates per car per road segment. This potentially could introduce data inaccuracy.  On 

the other hand, it is a waste of resource if we set it too small: if data updates come in 

every 
10
1  second and the distance between two consecutive updates would be 1.7 meters, 

which is far less than the standard GPS error which is about 3 meters, and hence is not 

necessary. Due to the introduction of the term chron into our system, time t can be stored 
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in and treated as type integer. It will greatly reduce the complexity of maintaining the 

indexing structure. 

 

3.1.1  Handling of Imprecision 

The imprecision in our system is mainly caused by two factors. One is the difference 

between our data model and the real world. The other is caused by the GPS or 

communication system (between the vehicles and the data center). Among the errors 

caused by the GPS or communication system, there could be systematic errors and 

random errors. For the systematic errors, we can correct them by measuring the 

difference between the correct data and the data we get from the GPS system, and 

adjusting the number accordingly.  

For the random errors, the method we correct them with is as follows. At each 

sampling point, we compare the location and speed with the data at its preceding and its 

succeeding sampling point. If it is reasonable we take it; we drop it otherwise. 

So far we have talked about the basic data types and the handling of imprecision in 

our system. A complete schema on the classes of data in our system is shown in 

Appendix A. In the next two sections we are going to detail this data model with data 

structures and indexing scheme. 

 

3.2 Data Structure 

We observed that the data in our system consist of continuously changing data, 

discretely changing data, and static data. To make our system efficient, they should be 

manipulated differently.  
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Recall that a road segment is defined as a tuple: (Roadid, Starteasting, Startnorthing, 

Endeasting, Endnorthing, Length, Speed_limit, Time_of_birth, Time_of_death,  Next). Every 

attribute in such a record is required and their size is uniform, except for the last one. The 

last attribute defines the road segments next to the current road segment according to 

their geographical layout. In most of the cases, there are 3 or 4 such road segments: go 

straight, turn left, turn right, and sometimes U-turn. It is reasonable to set 4 cells for the 

Next attribute, so that the size for every record is the same hence we can use an array to 

store this set of data. As for the special cases where there are fewer or more than 4 next 

segments, assume the number is x,  rules are given as follow: 

(1) when x is smaller than 4, fill in the (x+1)th through 4th cells with 0; 

(2) when x is larger than 4, the first two cells are the same as in normal case, set the 

3rd cell to 0, and the 4th cell the pointer to the address where the 3rd through xth 

are stored and there NULL is put at the end. 

Two road segments located on the same road but reversed in direction share all the 

information except for attribute Next. Redundancy is introduced if we store all the 

information for each directed road segment. Instead we can use two separate arrays to 

store attribute Next and the rest attributes. Now a cell x in the attribute array corresponds 

to two cells 2x and 2x+1 in the Next array. And the Start and End attributes in cell x of 

the attribute array are for cell 2x in Next array. They should be reversed when applying to 

cell 2x+1.  

The road networks information is needed to locate the road segment for a given point 

or street address. It is also needed to find paths, answering range queries in some cases, 

and to display vehicles’ motion. We choose a segment tree as the indexing structure for 
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road segments, which will be discussed in detail in following section. Data representing 

road networks incur discrete changes. A temporal data management scheme needs to 

apply to this set of data for indexing purpose. A multi-version tree structure, as described 

in section 2.2, is adopted to keep track of the old versions as well as the most current 

layout of the road segments. 

The static and the up-to-date discretely changing data on vehicles can be stored using 

a normal table in a relational DBMS or as instances of the same category in an OO or 

semantic DBMS. The history of the discretely changing data can be manipulated 

similarly in most of the cases. If there are special needs, we can use a multi-version tree 

structure for the indexing of these data, the same way as we handle the data on road 

segments. 

Our main concern for the vehicles related data is on their motion. Figure 3-3 shows a 

file keeping the motion of a vehicle during the time frame time_span. It can be divided 

into three parts: the header, meta data or index, and the content data.  The header is of a 

uniform size for all vehicles. It starts with the Vehicle’s ID number. The second attribute, 

time_span, is in practice composed of two attributes: start_time and end_time. The total 

size assigned to keep meta data and the total size of the file is kept in the header as well.  

Meta data contains a set of records in ascending order of time for indexing purpose. It 

keeps a mapping from time frame to the offset inside this file where the motion records 

for this time frame are located. And the content is a set of equal sized records keeping the 

data for this vehicle at all the sampling points. 

The reason that each vehicle’s motion history is kept separately is that frequent 

queries are of the form “re-play the motion of one or several vehicles during time t1 to t2”. 

 30



Even for the range queries on a rectangle area or a set of road segments for a time frame, 

the motion of each included vehicle during that time frame needs to be retrieved 

altogether.  
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Figure 3-3 A File Keeping a Vehicle’s Motion 

 

It seems that vehicle’s motion data is well organized for searching and query 

purposes, since an indexing scheme already exists inside the storage of the moving 

trajectory of each vehicle. Even though it is helpful for locating a vehicle’s position 

within given time frame, such an data organization within data on separate vehicles is not 

enough to efficiently answer all types of queries, especially for those range queries based 

on space and/or time span. Efficient indexing schemes are necessary for both the road 

segments and vehicles’ motion data. In the next section we will discuss these indexing 

structures. 
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3.3 Indexing Structure 
 

Time and space dimensions are related in defining and representing objects’ motion. 

But they don’t play equivalent role, especially during the processing of queries on the 

movement of the objects. Previous research showed that better performance can be 

achieved when time is treated differently from space dimensions. During this dissertation 

research, the author also observed that demands on time and space are different in most 

of the frequently appearing queries.  

One of the main concerns of the queries to a moving objects database is the behavior 

and properties of the vehicles in certain territories. To reflect the continuity of the 

objects’ movement and efficiently handle the imprecision and uncertainty between the 

sampling points, the moving trajectory of an object can be divided into consecutive 

segments, each representing its movement in the same territory. 

Based on the above analysis and observation, the Segmented Time Associated to 

Partitioned Space (STAPS) approach is proposed for the building of indexing structures 

for moving objects databases. Figure 3-4 illustrates how the STAPS approach works: 

First the space inside which the objects move is partitioned into basic units called space 

partition. Space partitions are independent of one another semantically. The space 

partitioning is flexible, and it is mainly decided by the frequencies of the different types 

queries the database system supports. Then for each object, time is segmented into time 

intervals, during each of which the object is inside one space partition. And the time 

intervals are put into different sets, according to the space partition that segments them.  

Each set of time intervals is indexed and associated to the corresponding space 

partition. And the space partitions are indexed separately from the time intervals. The 
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indexing structure for the space partitions, and that for each set of time intervals are 

independent of one another; they can be the same, similar or completely different ones.  

 

 
 
 

 

 

 

 

 

 

 

 

Associated Sets of 
Time IntervalsPartitioned Space

 o1 o2 oi

ok

Figure 3-4 The Space Partitions and Time Segments 
 

The advantages the STAPS approach provides include: 

- Reflecting and representing the continuity of objects movement. 

- No restrictions and presumptions on objects motion. 

- Limiting uncertainty and imprecision caused by the data processing procedures. 

- Flexibility in adjusting and balancing storage and I/O costs on different data 

structures and operations to meet each system’s specific requirements. 
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Also notice that there is no restriction on space partition algorithms as long as each 

point in the space is assign to and only to one partition. The indexing structures for both 

time intervals and space partitions can be any appropriate kinds. 

  

In the rest of this section, indexing structures and the related algorithms will be 

discussed in detail. Using STAPS method, time is segmented to intervals during which a 

vehicle is moving on a road segment. Space is partitioned into single directed road 

segments. And the indexing structures will include the structure to manipulate the road 

segments and the time intervals associated to each road segment. The indexing structures 

for both the time intervals (time segments) and those for the road segments (space 

partitions) are inspired by and based on the segment tree originally designed by Bently 

[Bent77] and introduced in [BKOS00].  A balanced interval tree is used to index the time 

intervals during which the vehicles are moving on the same road segment, and there is a 

time interval tree associated with each road segment. A modified segment tree is used to 

index the road segments.  

To answer queries involving vehicle’s future motion, path finding and computing 

may be necessary. A* heuristics are used in path computation for the moving vehicles 

with known destination. 

The continuity of the vehicles motion results in inherited uncertainty and inaccuracy 

for the current computer systems to represent their movement. Uncertainty is hence 

introduced in answering the queries. Corresponding to this fact, probability is introduced 

to the results of queries. An extra step other than in the traditional databases case is 

 34



necessary to finalize the query results. The details on the step of finalizing the query 

results will also be addressed. 

 

3.3.1  Introduction to Segment Tree 

Segment tree was discovered by Bently [Bent77]. It was originally designed to 

answer range queries on a set of line segments in 2-dimensional space. In this sub 

section, we will give the algorithms and do complexity analysis. However, the definition 

and descriptions of segment tree structure are based on Berg et al’s book [BKOS00].  

The problem can be described as follow: given a set of n non-intersecting line 

segments {[(x11, y11), (x12, y12)], [(x21, y21), (x22, y22)], …, [(xi1, yi1), (xi2, yi2)], …, [(xn1, 

yn1), (xn2, yn2)]} in 2-d space, to answer range queries of the form “return all the line 

segments in the given set that intersect the vertical line segment defined by [(x, y1), (x, 

y2)]”. In this sub-section, we explain what is a segment tree and how it works. The 

following sub-sections will show how to use the traditional segment tree to index time 

intervals and road segments and efficiently answer the range queries to our database 

system. 

The way a segment tree works is based on the observation that if we divide the space 

in parallel to the y-axis into consecutive slabs at the x-value of every end point of all 

segments, the partial segments inside each slab don’t intersect one another and hence they 

can be ordered. Figure 3-5 shows how this works. 

More precisely, if we project the 2-d segments into the x-dimension, they become 

one-dimensional intervals. The end points of these intervals divide the 1-d space into 

consecutive segments such that an interval either does not fall in a such segment 
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(ignoring the end points) or falls in it in full. The 2-d space can be segmented into slabs 

the same way. The segments inside each slab can be ordered by their y-values because 

these segments don’t intersect one another. A binary tree structure is the easiest to index 

the canonical subset of segments falling in each slab. Figure 3-5(a) shows how the space 

is segmented into vertical slabs, and Figure 3-5(b) is an example binary tree built to index 

the canonical subset inside a slab. 

The consecutive intervals in x-dimension that defines the slabs can be indexed with a 

binary tree too, since they don’t intersect each other from the indexing point of view. The 

leaf nodes of this binary tree each corresponds to an x-interval and a subset of segments 

whose x-projection falls in this interval. A pointer links the binary tree on the canonical 

subset of each x-interval to the leaf node of the binary tree on the x-intervals.  

Such a tree structure as shown in Figure 3-5(c) is named a segment tree. The subset 

of segments associated to the leaf nodes of the segment tree is the canonical subset of the 

corresponding interval. 

To answer the typical queries the segment tree is designed for, e.g. return the 

segments which intersect the segment [(x, y1), (x, y2)], search begins from the root down 

to the leaf node where the given x is inside its x-interval. And a range query on [y1, y2]  is 

performed over its canonical subset then. The I/O cost for a query is O(logn')+O(logn+k), 

where k is the total number of segments being reported, n is the total number of segments, 

and n' is the total number of x-intervals which could be up to n2. As a result, the I/O 

complexity is O(logn2)+O(logn+k) which evaluates to O(logn+k). 
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Figure 3-5 Building a Segment Tree 
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Notice that the searching could involve two paths if x falls on the boundary of two 

consecutive intervals. The extra path could be avoided if we define the x-intervals as (-∞, 

x1), [x1, x1], (x1, x2),[ x2, x2], …, [xn’, xn’], (xn’, ∞). However this way it would require 

double space for the tree structure as it is shown in Figure3-5(c), where intervals are 

defined as closed ranges [x1, x2], [x2, x3], …, [xn’-1, xn’]. 

The space complexity of a segment tree is composed of the space used for the main 

tree and that for the canonical subsets. When the x-values of the given set of segments 

cover the complete range [x11, xn2] and they do not partially overlap one another, as 

shown in Figure 3-6(a), the least of total space of O(n) is required. The other extreme is 

when every segment overlaps all the other segments but none of them overlap completely 

when projected to x-axis, as shown in Figure 3-6(b). In such case the space complexity 

goes straight up to O(n2), O(n) for the main tree and O(n) for each of the n leaf nodes. 

 

 

 

 

 

 

 

 

(a) No Partial Overlap Among Segments (b) Each Segment Overlaps all the Others

Figure 3-6 Two Extreme Layouts of the Segments 
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The space cost in the second case is obviously undesirable. Fortunately, there is a 

way to prevent it from happening by modifying the tree structure a little differently from 

its original version. This is done based on the observation that the canonical subset, 

instead of being associated to only the leaf nodes, can be associated to the non-leaf nodes. 

A subset of segments can be associated to any node whose covered range is inside the x-

ranges of these segments. We put a segment to the canonical subset associated to the 

highest possible level of the tree when it is applicable. 

 

 

v1 v3v2

parent(v2) 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

s1

s5

s3

s4

s2

{s1} 

{s2,s5} {s2} 

{s3}{s5}

{s5} {s4}

(a) a revised segment tree  
(b) a segment appears at most twice 

in the same level of the tree 

 

Figure 3-7 Revised Segment Tree 
 

The example of a revised segment tree is shown in Figure 3-7(a). If a segment 

appears at the same level of the tree in m nodes where m is larger than 2, its existence in 

the middle m-2 nodes can be lifted to a higher level. This is shown in Figure 3-7(b). Since 

each segment is associated to at most two nodes in the same level in a revised segment 
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tree, a segment can at most be associated to 2(logn – 1) nodes. The total number of basic 

intervals for n segments is at most 2n –1. So the total number of nodes in the main tree is 

at most 2(2n –1). The total size of all the canonical subsets is at most n•2(logn – 1). The 

total tree size is hence at most 2(2n –1)+2n (logn – 1) = 2n(logn+1)-2, which is O(nlogn).  

 

Theorem 3.1 A segment tree for a set S of n non-intersecting segments in the plane uses 

O(nlogn) storage and can be built in O(nlog2n) time1. It takes O(logn+k) time to report all 

the segments that intersect a given vertical segment [(x, y1), (x, y2)], where k is the 

number of reported segments. 

 

Proof The proof of Theorem 3.1 includes three parts: 

(1) The proof of the space complexity lies in the earlier analysis. 

(2) The time cost in building a segment tree is composed of the time spent to build 

the main tree structure and that to build the binary trees for each canonical subset. 

To build the main tree, the order and hence the intervals of the segments in x-

dimension need to be calculated. This takes O(nlogn) time. Building the tree then 

takes time O(n). Sorting each canonical subset of size v takes vlogv time. The total 

size of all the canonical subsets, i.e. Σv, is at most 2nlogn. So the total time cost 

for building the binary trees for all the canonical subsets is Σvlogv < (Σv)•logn < 

(2nlogn)•logn = O(nlog2n). The sum of the above steps yields O(nlog2n).  

                                                 
1 In [BKOS00] it is claimed that the preprocessing time can be improved to O(nlogn) by maintaining a 
partial order of the segments while building the segment tree. 
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(3) Time complexity for queries of the given type is the time taken to go through a 

path from the root to a leaf node, picking all the segments that fall in the y-range 

of the query from each associated canonical subset. The height of the main tree is 

O(logn). The height of the binary trees on the canonical subsets is also O(logn). 

Plus k answers are picked. The sum of the above three parts yields O(log2n+k). 

 

Below are the algorithms for building and searching a Segment Tree. 

 

Algorithm BuildSegmentTree(S) 

Input. A set of disjoint line segments in the plane. 

Output. A segment tree. 

1. Sort the x-values of the end points of all the input segments into a sorted list. A set 

including all the segments which have an end point of the same x-value is 

associated to each of the corresponding item in the list. Then find the order of the 

left and right x-value of each segment in the sorted list. 

2. Build a balanced binary tree, namely the main tree, out of the x-intervals formed 

by the sorted list obtained in step 1. 

3. Since it is now known the order of each segment’s left and right end points’ x-

value, it can be easily calculated to which nodes in the main tree a segment should 

be included in their canonical subsets. Set all the canonical subsets properly. 

4. Build a binary tree for each canonical subset according to their vertical (partial) 

order. 

5. Return the root of the tree built in step 2. 
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Algorithm SearchSegmentTree(Γ, l) 

Input. A segment tree Γ and a vertical line segment l. 

Output. All the segments in the segment tree that intersect the vertical line segment. 

1. S←Ф. 

2. Search the main tree of Γ to locate the path that the x-value of l is included. 

3. Starting from the root of Γ down to the leaf node in the path, search each 

associated binary tree to locate the y-range of l. Add these segments whose y-

value at lx is inside l to S. 

4. Return S. 

 

A segment tree structure is suitable for indexing static input data set. Insertion and 

deletion in segment trees are expensive and cannot be well supported if they occur 

frequently. The revised version of the segment tree trades searching time complexity for 

space, comparing to the original version. With the original segment tree, it costs only 

O(logn+k) time to report all the segments that intersect a given vertical line segment. 

 

3.3.2  Indexing Structure 

The indexing structure in a location information tracking system for vehicles moving 

on the road networks mainly include two parts: indexing the road networks and vehicle’s 

moving trajectory. The distance and relative position between different vehicles and that 

between a vehicle and a static location are determined by vehicles’ geolocation as well as 

the layout of the road segments. Some forms of queries, such as a range query involving a 

given area in the map, may need to find the road segments inside the given area before 
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the query can be answered. On vehicle’s motion, since each single vehicle’s moving 

trajectory is already well organized for range queries on time span, it makes sense to 

build a main indexing structure over all of the vehicles’ trajectories for queries on 

space/location range. To do so, the time span of each vehicle running on a road segment 

is designed as the basic unit of data, and a corresponding indexing structure, namely a 

time interval tree, is built and associated to each road segment. Queries on given space 

range and time span are answered by first look into the road network and get all the road 

segments inside the given space range, and then go to the time interval trees associated 

these included road segments to get the vehicles running on these road segments at the 

given time span. 

Coincidently, the segment tree structure is adopted for both indexing structures. 

Details on building and maintaining these indexing structures and how the search 

operations are carried out are discussed in subsections 3.3.2.1 and 3.3.2.2. The 

corresponding algorithms are given, and the space cost and I/O complexity for each 

operation are analyzed as well. 

 

3.3.2.1  Indexing the Road Segments 

The term “road segment” in our system was defined in section 3.1. For the sake of 

simplicity, whenever there is an intersection between two physical road segments, both of 

them are divided into two segments to store in the database system. The dividing point is 

the point of intersection. This applies to the case when there is no intersection viewing 

from three-dimensional space but there is one when projecting the roads to 2-d plane. 

 43



Example of such case is when a highway “intersecting” a local road, where in 3-d space 

there is no intersecting point at all. 

Now the road segments in our system almost meet all the requirements for building a 

segment tree over them. The only two things that need special care are the coincidence of 

the end points of the segments, and the segments that are vertical themselves. 

For the coincidence of two or more end points at the same coordinate, there is no 

need to re-modify the indexing structure as described in subsection 3.3.1. The specialty is 

with the search operation for query answering. When answering a point query, all the 

segments intersecting at the point should be returned if the query point is right on the 

intersection. However, when answering a rectangular range query, the segments that have 

only one point inside the range are excluded. 
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Figure 3-8 Searching a Segment Tree 
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As for the segments whose layout is strictly vertical in the plane, a new x-interval is 

added at the phase of processing the x-intervals while building the segment tree. This new 

x-interval is a closed range starting at the x-coordinate of a vertical segment and ending at 

the same value. So the x-intervals will appear as [x1, x2], [x2, x3], …, [xi-1, x], [x, x], [x, xi], 

…, when there is a vertical segment [(x, y1), (x, y2)]. And a vertical road segment is 

included in the canonical subset of only the corresponding leaf node. 

 

The preprocessing of building tree is basically the same as in the case of the standard 

segment tree. The time and space complexity for building tree is analyzed earlier, and 

they remain the same. 

Figure 3-8 shows how to locate a point and a rectangular area and return the 

intersected road segments. The search algorithms and the I/O cost are explored as follow. 

 

Algorithm SearchPoint(q, Γ) 

Input. A given point q in the plane and a road segment tree Γ. 

Output. All the road segments that intersect point q. 

1. S←Ф. 

2. Locate the path(s) in Γ  of the nodes whose x-range include qx. 

3. Along the path(s) found in step 2, search the y-range against qy in each of the 

canonical subset. If point (qx, qy) is on a segment, add the segment to S. 

4. Return S. 

 

 45



The maximum number of possible paths located in step 2 is 3. It happens when qx is 

the end point of multiple segments and there is a vertical segment whose x-value is qx. 

Going through one path and the associated subsets takes O(log2n) I/O accesses. Plus 

reporting k results, it is O(log2n+k). The worst case I/O cost is O(3logn+k)= O(logn+k), 

where k is the total number of segments reported. 

 

Algorithm SearchRectangle(R, Γ) 

Input. A rectangle R in the plane defined by (x1, x2, y1, y2) and a road segment tree Γ. 

Output. All the road segments that intersect the rectangular area defined by R. 

1. S←Ф. 

2. Locate the range in Γ of the nodes whose x-range covers or intersects [x1, x2]. This 

will result in a set of paths from root to leaf nodes in Γ. 

3. Along each of the paths found in step 2, search the y-range against [y1, y2] in their 

canonical subsets. If a segment intersects the area (x1, x2, y1, y2), add it to S. 

4. Return S. 

 

In Theorem 3.1 we know that it costs O(log2n+k) I/O operations to report all the 

segments intersecting a vertical query segment. Does the I/O cost remain the same order 

with algorithm SearchRectangle? It remains the same order when either the x-range of the 

query rectangle is very small comparing to the x-range of the segments in the set, or the 

majority of the segments whose x-range intersect the x-range of the query window 

actually intersect the query window in 2-d plane. Refer to Figure 3-9(a) for illustration.   
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However, cases exist where the I/O cost for SearchRectangle goes beyond 

O(log2n+k). Look at an extreme case as shown in Figure 3-9(b), where the query 

rectangle crosses the whole range of the x-values of the segments but its y-range is small 

and the rectangle doesn’t intersect any of the segments. In this case, the search operation 

goes through all the nodes in the main tree and retrieves O(logn) depth in each binary tree 

on canonical subset. The number of reported segments is 0. Total complexity in terms of 

I/O accesses goes up to O(nlogn). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 (b) Desirable Case (b) Worst Case 

 

Figure 3-9 Different Cases for Algorithm SearchRectangle 
 
 

The worst case shown in Figure 3-9 won’t happen in the road segments, since the 

road networks are connected. But we can’t prevent similar situation from appearing. 

However, limiting the scope to road networks only, the size of the querying rectangle 

decides the number of the reported segments in the majority cases. Hence the average 

query cost is O(log2n+k), and in worst case it is O(nlogn). 
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Putting all the above analysis together, we conclude the following Corollary: 

 

Corollary 3.1 Using a segment tree to index the road segments in the plane, it costs 

O(log2n+k) I/Os to locate all the road segments containing a given point; the average cost 

for locating road segments intersecting an axis-parallel rectangle is O(log2n+k), with the 

worst case of O(nlogn)1. Such a segment tree can be built in O(nlog2n) I/Os, using 

O(nlogn) storage. 

 

O(nlogn) is the optimal space complexity a data structure can achieve for 2-

dimensional range queries without joining operation involved. The preprocessing time on 

building tree is not a concern in this case since it is basically built once last forever, plus 

O(nlog2n) isn’t bad at all. The query performance is of our most concern. The I/O cost of 

O(nlogn) in rectangular queries answering in the worst case is strongly undesirable, why 

is this approach still used to index the road segments? The reason lies in the probability 

of the occurrence of the worst cases. Such case appears only when the query area falls in 

a lake, a mountain, marshes or alike where there are no roads constructed, but not in 

urban area. It rarely occurs in city regions. If larger areas are covered, an auxiliary data 

structure can be added to handle these areas where none or rare roads exist. 

The segment tree structure has another advantage for road segments in keeping the 

history. Multi version tree can be easily adopted to reflect the discrete change of the road 

segments. 

 

                                                 
1 In [BKOS00] it is claimed as O(log2n+k), which is inaccurate. 
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3.3.2.2 Indexing Vehicle’s Motion 

The basic unit of vehicles’ movement in our indexing structure is measured by the 

duration while a vehicle running on the same directed road segment. The structure of a 

segment tree is used to index the time intervals during which a vehicle is on the same 

road segment. A one dimensional segment tree on time intervals is called a Time Interval 

Tree in the scope of this dissertation. 

Since time intervals are one-dimensional, there is no need to sort or build an 

indexing structure for the canonical subsets associated to each node in the time interval 

tree. Point queries can be answered in O(logn+k) I/Os where k is the number of the 

reported time intervals. And range queries can be answered O(logn+k) I/Os too. The 

searching path(s) for point and range queries are shown in Figure 3-10. The search 

algorithms are similar to the vertical line segment and rectangle window search in the 

revised version of the 2-d segment tree. 
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Figure 3-10 Answering Point and Range Queries in Time Interval Tree 
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The online update of the time interval tree in a vehicles location information tracking 

system include only one kind of operation – insertion1. The insertion of a time interval is 

done in two steps: (1) At the time of entering a road segment, the start of a time interval 

is sent to and recorded in the tree; (2) At time of leaving a road segment, a time interval is 

explicitly added to the tree structure. Notice that the time point or time interval to be 

inserted is always at the right most in the x-axis, or they are of the latest comparing to the 

existing data in the tree. 

Let’s first clarify the data structures in a (balanced) time interval tree. The data types 

involved in a time interval tree include node, tree, and an auxiliary data structure called a 

node locator for the purpose of indicating the most current (time) node in the tree. Details 

are as follows: 

- A node, leaf or non-leaf node, in a time interval tree is defined by the time span 

from time point a to time point b and a set S of Vid’s of the vehicles that share the 

same time span [a, b]. It appears as  ([a, b], {Vid, …, }). 

- A time interval tree is a doubly linked balanced binary tree. Each node in the tree 

has three pointers to link their parent node, left node and right node. 

- A node locator contains a pointer r to a node in the time interval tree, time point t, 

and the level l of the pointed node in the tree. The level of a node is ordered from 

the leaf nodes up, and the level of the leaf nodes is 0. 

 

 

                                                 
1 Offline update could incur delete and/or modify operations at time of data recovery. The delete and 
modify operations are very rare even if they do appear, and the performance of these operations won’t 
affect the overall performance of the data structure. 
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Algorithms for insertion in a time interval tree are shown as below. 

 

Algorithm InsertTimePoint(t, Γ, P) 

Input. A new time point, a time interval tree Γ and Γ ۥ s most recent record P. 

Output. Updated time interval tree Γ and its most recent record P. 

1. If (P.t  < 0)  P.t ← t; 

2. Else if (t > P.t)  AddNewLeaf (t, Γ, P) ; 

3. Return. 

 

Algorithm InsertTimeInterval([a, b], Vid, Γ, P) 

Input. A time interval [a,b], Vid of the vehicle that generated [a, b], a time interval tree Γ  

and its most recent record P. 

Output. Updated time interval tree Γ and its most recent record P. 

1. If (b > P.t)  AddNewLeaf(b, Γ, P); 

2. UpdateSubset([a, b], Vid, Γ, P); 

3. Return. 

 

In these two algorithms, procedures AddNewLeaf and UpdateSubset are the key. 

Their performance defines the update performance of the time interval tree. Variable P is 

introduced solely to reduce the time and I/O cost while locating nodes to perform data 

updates. It always points to the newest position in the interval tree in the order of time 

sequence. 
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Figure 3-11(a) shows the course of the tree’s growth when leaf nodes are added one 

after another. Notice that a new leaf node is always added at the right most position, since 

a newly coming in time point is always later than those already existing in the time 

interval tree. Both Γ and P are dynamic as the time interval tree grows. Figure 3-11(b) 

shows the process of UpdateSubsets when a new interval is added. The Vid is added to the 

subsets of the bold nodes. 
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Here are the algorithms AddNewLeaf and UpdateSubset: 

 

Algorithm AddNewLeaf (t, Γ, P) 

Input. A new time point, a time interval tree Γ and Γ ۥ s most recent record P. 

Output. Updated time interval tree Γ and its most recent record P. 

1. If (Γ = Nil) or (P.r = Nil) 

2.       Add a new leaf node v0 =Node([P.t, t], {}); 

3.       Add a new node v1=Node([P.t, +∞], {}); 

4.       Link v0 to v1 as the left child; 

5.       Point both Γ and P to v1;  P.t ← t;  P.l ← 1. 

6. Else If  P is at any level higher than 1 

7.       Add a new node v0=Node([P.r.left.b,+∞],{}) and link it as P’s right child; 

8.       While the level of  v0  is larger than 1 

9.                Create left child node v1 to v0; v0= v1; 

10.       P.r ← v0;  P.t ← t;  P.l ← 1; 

11.       Add new leaf node v1 =Node([P.t, t],{}) and link it as P’s left child. 

12. Else 

13.       Add new node v0=Node([P.t, t],{}) and link it as P’s right child; 

14.       While v0  is the right child of its parent node 

15.                   v0 ← v0.parent; Replace v0’s ending time point +∞ with t; 

16.       If  Γ  is at v0 

17.             Add a new node v1 = Node([v0.a, +∞],{});  v1 . left =  v0 ; 
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18.             Point Γ  to v1; 

19.       Point P to v0 .parent . 

20. Return. 

 

Algorithm UpdateSubset([a, b], Vid, Γ, P) 

Input. A time interval [a,b], Vid of the vehicle that generated [a, b], a time interval tree Γ  

and its most recent record P. 

Output. Updated time interval tree Γ and its most recent record P. 

1. v = P.r.left;    //down track 

2. While ([v.a, v.b] ∩ [a, b] ≠ Φ) and (!([v.a, v.b] ⊆  [a, b])) 

3.       If  (v.left .b > a) 

4.             v.right.S ← v.right.S ∪ {Vid}; 

5.             v ← v.left; 

6.       Else 

7.             v ← v.right;  

8. If  ([v.a, v.b]  [a, b]) ⊆

9.       v.S ← v.S {V∪ id}; 

10. If  (P.r ≠ Γ)   //going up from P 

11.       v ← P; 

12.       While (a<v.a) 

13.              v ← v.parent; 

14.       v ← v.left; 
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15.       While (!([v.a, v.b]  [a, b]))  //going down again at the left side ⊆

16.             If  (v.left .b > a) 

17.                   v.right.S ← v.right.S ∪ {Vid}; 

18.                   v ← v.left; 

19.             Else 

20.                   v ← v.right;  

21.       v.S ← v.S {V∪ id}; 

22. Return. 

 

The total space usage for a time interval tree is the space each node takes plus the 

pointers linking the nodes. Inside each node, there is a time interval defined by two time 

points and a canonical subset. There are three pointers for each node. So excluding the 

canonical subsets, the space taken for a time interval tree of n time intervals is at most 

2·2n·5 data units. We have analyzed earlier that the total size of the canonical subsets is 

not larger than 2·2n·logn. The total size of the tree is hence no larger than (2·2n·5 + 

2·2n·logn) = 20n+4nlogn, which yields O(n·logn). 

The worst case I/O cost for a single data update, as shown both in Figure3-11 and in 

the algorithms, is the standard answer for any binary trees which is O(logn). However, 

the average cost is better than in the general binary trees because of the small constant 

attached to logn. In the procedure of AddLeafNode, each node is accessed at most two 

times: while its creation and the closing of its time span (end time point b changed from 

+∞ to a meaningful value). So the total I/O spent on AddLeafNode for the whole tree is 

2·2n·2 = 6n and the average cost for inserting each time interval is constant. The I/O cost 

 55



for each single procedure UpdateSubset depends on the length of the involved interval. 

Generally speaking, the longer the interval spans, the more I/O accesses is needed for the 

insertion. Considering the real world situation in our objected application, the actual I/O 

complexity is far less than O(logn). This applies to both the average and the extreme 

situations: 

(1) The time a vehicle running on a road segment is very short comparing to the time 

span of the tree (referring to the analysis in Chapter 5). For those non-major 

roads, most of the time there are only as few as no more than 10 vehicles running 

on the road segment at the same time. This implies that the update of the subsets 

for these corresponding intervals takes only 2•log210<8 I/Os. 

(2) The most time intervals appearing in unit time are the cases of rush hours on a 

super highway.  On a highway of length 2 miles with 4 lanes and speed limit of 

50 miles per hour, no more than 500 vehicles can be on the same segment at 

same time. And the I/O accesses are no more than 2•log2500<18. 

So the actual worst case cost is about 18. It is conservative to say that the average I/O 

cost for UpdateSubset in our application model is O(1). 

 

Theorem 3.2 A balanced Time Interval Tree for a set of n time intervals coming in order 

can be built in O(nlogn) I/O using O(n·logn) storage. It takes O(logn+k) I/Os to report all 

the k time intervals that contain a given time point x, and at the same order of I/O cost a 

range query of reporting all the k time intervals that intersect a given time span [a, b] can 

be answered. An insertion operation costs O(logn) I/O accesses. 

Proof  The proof lies in the earlier analysis in this subsection. 
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Corollary 3.2 In a balanced Time Interval Tree on time intervals generated by vehicles 

running on the same road segment, the insertion of a new time interval to the tree costs an 

average of O(1) I/O operations. 

 

The way a time interval tree is built implies that a single data update from a vehicle 

won’t immediately cause the update of the indexing structure. Instead, the indexing tree 

is updated upon a vehicle’s entering and leaving of a road segment. Due to this fact, term 

“Indexing Event Trigger” (IET) is introduced for the simplicity for the system design and 

implementation of the applied applications, and it is defined as follow: 

 

Definition 3.1 An Indexing Event Trigger is a data update which causes the need to 

update the corresponding indexing structure. 

 

As we will discuss in chapter 6, an IET is not necessarily the leaving of a vehicle 

from a road segment. It can be of other types, such as when a vehicle enters (or leaves) a 

rectangular area or areas/locations of other forms. An IET can be associated to the 

system, a vehicle or a location in implementation. 

 

3.4 Query Processing 

In the cases of rectangular range queries, a vehicle included in an answer set returned 

from the time interval trees are not guaranteed to be one of the answers to the range 

query. As shown in Figure 3-12(a), vehicles v1 and v2 both are returned from the time 

interval trees when searching answers for range query defined by [t1, t2]×[x1, x2]×[y1, y2]. 
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However, v1 belongs to the final answer set to the query but v2 doesn’t. During time [t1, 

t2], even though v2 appeared on a road segment that intersects the query space range, it 

was at the part of the road outside of the space range. The term “Candidate Answer Set” 

(CAS) is introduced for the handling of such situations. 

 

Definition 3.2 A “Candidate Answer Set” is a set of data that contains all the answers to 

a given range query. 
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Figure 3-12 The Candidate Answer Set 

 

The candidate answers in our system appear in the intermediate results of the 

rectangular range queries. Figure 3-12(b) gives more details about candidate answer set. 

On a range query on the vehicles appearing in space range R as shown in the gray area in 

the figure during time span [t1, t2], the road segments in set S = {s2, s3, s4, s5, s6, s7, s8, s9, 
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s10, s11, s12, s13, s14} all intersect rectangular area R. However, segments in S1={s4, s6, s7, 

s8, s9, s10} are fully inside R but segments in S2={s2, s3, s5, s11, s12, s13, s14} are partially 

overlapped by R. A vehicle appearing on the road segments in S1 at any time during [t1, 

t2] should be included in the answer set. But those vehicles that are on the road segments 

in set S2 may or may not be inside R during [t1, t2], since they could be on the part of 

these road segments which are outside R during the time range. When such a query is 

processed, S1 is the final answer set and S2 is a candidate answer set. To decide if the 

items in S2 are included in the final answer, their moving trajectories during time [t1, t2] 

need to be verified against R. Those that do exist in R during [t1, t2] will be included in 

the final answer, while the rest excluded. 

 

To answer queries involving future time, prediction on vehicles’ possible moving 

trajectory may be necessary. An important technique required for such prediction is the 

computation of the near future paths of the vehicles. This section will talk about the Path 

Computation algorithm before showing and evaluating the query answering procedures. 

 

3.4.1  Path Computation 

The path computation on road maps is an active topic in several research 

communities. In the context of this dissertation, we need a path computation algorithm as 

a part for answering queries of form “which vehicles can reach a given point within time 

T”. Among all the possible schemes discussed in literature such as [ARR00, SFL96, 

SMWH], the A* search mechanism, is recommended by Shekhar et al based on their 

analysis and experiments described in [SF96].  
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A* search is a heuristic search scheme taking the advantages of both greedy search 

and uniform-cost search. It evaluates a choice n at the current point by combining g(n), 

the cost from the starting point up to the current point, and the estimated cost from the 

current point to the goal h(n): 

f(n) = g(n) + h(n) 

 
Russell and Norvig showed in [RN95] that A* search with an h function that never 

overestimates the cost to reach the goal is complete and optimal. So we can define g(n) 

and h(n) as follow: 

g(n) = ∑
i i

i

S
L

 

h(n) = 
max

),(
V

ppDist en  

where Li is the length of the ith road segment in the chosen path, Si is the speed limit 

of this segment. It is possible to take the advantage of the real time traffic data in the 

system and assign Si the current actual driving speed on each road segment. If it is a road 

that will be reached later on, the history speed information on the same road segment at 

the same time of a day can be used. Hence g(n) is the time taken to drive from the origin 

to the current point. The h function shown is the shortest possible time from current point 

to the end point, since Dist(pn, pe) is the Euclidian distance from the current location pn to 

the destination pe and Vmax the maximum speed limit within the range of the map.  

Considering the huge main memory consumption in doing A* search, the search 

length is limited to M steps. M is a constant in an application. The value of M can be 
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decided by factors including the hardware and software configuration of the system 

where the application runs on. 

 

Algorithm PathComputation(p, q) 

Input. An origin point p and a destination point q each defined by a tuple (R, d), where R 

is a road segment and d the distance from the starting point of R to this point, and 

the road map (global) given in the format of a set of directed road segments as 

defined earlier. 

Output. A route (from p to q) S, composed of a sequence of consecutive road segments. 

1. Locate points p, q;  r ← p.R ; 

2. S ← {r};  pn  ← r.end; T ← {};  m ← 0; 

3. While (Goal NOT Reached) 

4.       For (all r’s succeeding road segments r′i) 

5.              If (r′i in T or S) then  f(r′i) ← ∞; 

6.              Else  f(r′i) ← r′i.length / r′i.SpeedLimit + dist(r′i.end,q) / Vmax; 

7.       r ← the r′i with the smallest f(r′i); 

8.       If  ( the smallest f(r′i) is ∞ ) 

9.               One step back and choose the next smallest answer; 

10.       Else 

11.               T ← T U {r}; m++; 

12.       If (m≥M) 

13.               Move the first item of T to the new last item of S; m--; 

14. Append T to S; 
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15. Remove loops, if there are any, from S; 

16. Return S. 

  

3.4.2  Answering the Queries 

Range queries are answered by taking steps. Different types of queries may incur 

different kinds of operations. Figure 3-13 shows the data flow in the system while 

processing range queries. The possible query answering steps include: 
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Figure 3-13 Data Flow in Query Processing 

 

(1) Do path computation and predict vehicles future motion. 

(2) Locate the road segments intersecting the given space range. 

 62



(3) Retrieve the vehicles that are on the road segments found in step 2 during the 

given time range. 

(4) Finalize the candidate answers. 

 

Depending on the query type, one or more of these steps will be involved. For each 

of the typical types of queries, their processing procedure and performance are analyzed 

as follow: 

(1) For types of Q1 and Q2 queries, searching for an answer is trivial.  

Q1. Display the motion of all or a given sub-set of vehicles in real-time. 

Q2. Replay the motion of a given set of vehicles from past time t1 to time t2, t2  can be  

past, now or near future. 

The current and most recent motion of all the vehicles will be kept and buffered in 

main memory. For the history data, each vehicle’s motion is kept in continuous storage 

and well indexed, which makes the retrieval extremely simple. Locating the data mostly 

takes only 1 I/O, loading the meta data. Fetching each vehicles past motion in time frame 

[t1, t2] takes k/B I/O’s, where k is the size of the motion data and B is the block size. And 

the future motion prediction is done in main memory. 

 

(2) For queries of type Q3,  

Q3. Return the vehicles that have been on a given road segment during [t1, t2]. 

The time interval tree associated to the given road segment is searched. After getting 

the Vid’s from the time interval tree, the motion data on each vehicle is retrieved. I/O 

complexity: O(logT+k) + O(k) = O(logT+k), where T is the total number of time intervals 
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associated to the same given road segment, k is the number of vehicles appearing on this 

road during [t1, t2]. 

 

(3) For queries of type Q4, it takes three steps. 

Q4. Display the vehicles that have been in a given rectangular area R, during [t1, t2]. 

First we search all the road segments {ri} intersecting R from the road segment tree. 

Then go to the interval trees associated to these road segments, searching for all the Vid’s 

of the vehicles which have appeared on any of these road segments during [t1, t2]. The 

vehicles appear on road segments inside R are certainly part of the final result. The 

trajectories of those vehicles appear on segments partially ovelapping R need to be 

examined and actual intersections need to be calculated. 

The first step takes O(logN+m) I/Os where N is the total number of road segments 

and m is the number of segments reported, the second step takes O(logT +ki) for each 

road segment where T is the total number of time intervals associated to the road segment 

and k is the total number of intervals reported. The third step is done in main memory and 

hence no I/O cost involved. The total I/O cost: O(logN + m) + O(m•logT + ∑ ) = 

O(logN + mlogT + k), where k is the total number of vehicles that appear on the m 

segments during [t

=

m

i
ik

1

1, t2]. 

Notice that when the query area is large, the number of road segments gets very large 

too, and the operation becomes costly. We know that any indexing structure has to trade 

off between space expense and I/O cost. In our targeted application model, the response 

time requirements for data updates and data queries are different. The balance is hence 
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among the costs on space, data update and data query. Since the data updates are the most 

critical type of operations, it can’t be guaranteed that every type of queries be answered 

in optimal I/O operations. Also as we will discuss in chapter 6, if we know ahead of the 

frequently queried areas, Indexing Event Triggers and time interval trees can be set and 

built at data update stage. This way, the I/O complexity for these queries reduces to the 

same as Q3 queries. 

 

(4) Queries of type Q5 and Q6 require path computation. 

Q5. Display the vehicles that can reach a given point p=(px, py), within time ∆t. 

Q6. Predict the motion of the vehicles in the near future from t1 to t2.  

For queries of type Q5, we first do a range  query of type Q4 with range R defined as: 

R = [ (px - Vmax•∆t),  ( py - Vmax•∆t),  (px + Vmax•∆t),  ( py + Vmax•∆t) ]  

and time frame [now, now]. Then we do path computation, finding path and time cost for 

each vehicle whose Vid is included in the first query. The set of vehicles with time cost no 

larger than ∆t is returned. 

Queries of type Q6 apply only to those vehicles with known destinations. We first 

find path for each of them and then calculate their motion in [t1, t2] along their paths. 

 

3.5 Conclusion 

This chapter discussed the data model, data structure and indexing structure as well 

as the processing of queries for a real time tracking (and history retrieval) system for the 

location information of vehicles moving on road networks. The I/O complexities of the 

critical data access types are not only low in the order, but also with small constant 
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attached to the order. Updates on new coming data can be done in O(1) I/O operations. 

Based on the analysis in sections 3.3 and 3.4, we conclude that the data structure and 

indexing mechanism we adopt are efficient, and the real time requirements for data 

updates and retrieval can be well met. 
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4 SYSTEM ARCHITECTURE 

 

A vehicles’ location information tracking system mainly involves four kinds of 

participants: registered vehicles, data processing center(s), the end users and/or client 

services, and communication channels.  

Figure 4-1 shows a complete picture of a tracking system for GPS enabled moving 

vehicles. Each vehicle included in the system is equipped with a GSP receiver to receive 

its up-to-date location information from the GPS satellites periodically. And there is a 

wireless channel, through ground communication towers or communication satellites, for 

the vehicles to update the data center on their current location and other time-variant 

information such as their destinations if applicable. The data center is the core of the 

system, which keeps the system running and functional. It is responsible for the 

organizing, storing, and accessing of the input and output data. It keeps the vehicles’ 

current and history location information and provides retrieval services in a timely 

manner to different kinds of users. It not only needs to provide services with high 

performance, the data center is required to be highly reliable and persistently available. 

The “users” can include the drivers of the vehicles, the owners of a single vehicle or a 

group of vehicles and others who are authorized to access such data. A data item must be 

and is only visible and accessible to the group(s) of users who have been granted access 

permission. The communication channels include wired (for the local and wide area 

computer networks) and wireless (communication satellites and/or ground radio 

channels). 
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Figure 4-1 A Vehicles Location Information Tracking System 
 
 
The system works as follows. The vehicles are real world vehicles that mainly move 

on road networks. A vehicle receives GPS signals from the GPS satellites to determine its 

geographic location, which can be converted uniformly to the Universal Transverse 

Mercator (UTM) coordinates. It then periodically updates the data center of the up-to-

date location information via wireless communication channels. The data center stores 

vehicles’ static attributes and the real-time location updates from the moving vehicles. It 

keeps the history data as well as the current information associated with each vehicle. 

The function of the data center is to provide the online client applications and/or end 

users access to these data typically in the form of query answering. The end users of 
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client applications can then make decisions or plans based on the query results, if they so 

desire.  

The main concern of this thesis, especially in this chapter, is the structure and 

processes inside the data processing center. This chapter discusses the architecture of the 

data processing system, namely a real-time vehicle location information tracking system, 

inside the data center.  

The rest of this chapter is organized as follows. Following a brief background 

introduction, Section 4.1 presents the overall architecture of the system. Sections 4.2 

through 4.7 address how to handle the key issues in the system, including the system 

organization, the real-time requirements, storage management, backup and recovery, 

transaction and concurrency control, and security, respectively. Section 4.8 briefly 

mentions the User Interfaces. Section 4.7 concludes this chapter. 

 

4.1 Overview 
 

In the context of this dissertation, we don’t intend to build a general database 

management system for Moving Objects. Even though our data structure and system 

architecture can be embedded into a DBMS as a data blade (this will be discussed in 

Chapter 6) and the system itself can be upgraded to a DBMS by adding other 

management components, at this stage it is solely a database application system 

independent of any existing DBMS’s. The system will be built on top of the data 

structure introduced in Chapter 3. The system is designed to meet, but is not limited to, 

the following requirements: 
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- Keep track of the current location and motion of all the vehicles in real-time. 

- Store and manipulate the history data efficiently. 

- Retrieve both real-time and history data in a timely manner. 

- Be constantly available and highly reliable. 

- Disclose data items only to the authorized parties. 

 

To maximize the high throughput, scalability and real-time properties that the 

application system desires and our data structure and indexing mechanism supports, a 

centralized distributed system architecture is adopted. On the one hand, parallel 

processing is desirable in such systems due to the massiveness of the data and the real-

time requirements, and our data structure is designed to support highly parallel system 

architecture. On the other hand, the cost for communication, synchronization, and control 

in a pure distributed system is expensive, which would greatly compromise the 

performance brought by the parallelism in a distributed system. But a distributed system 

with centralized organization takes all the advantages a distributed architecture provides 

and avoids the unnecessary costs in communication and synchronization. 

 

4.1.1  Distributed Architecture 

In general, a distributed system provides higher performance and more reliable 

services by distributing the system workload to multiple nodes which run concurrently. In 

our case, several processes are basically independent of one another. So a distributed 

architecture is especially suitable. 
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Figure 4-2 Distributed System With Centralized Organization 
 

To meet the minimum functional requirements, modules to handle data collecting, 

query processing, and data accessing should be included in our system. Considering the 

system reliability requirement, a backup and recovery mechanism must be provided as 

well. To coordinate and synchronize these modules, a mechanism is needed to manage 

and support the communication among these modules. As shown in Figure 4-2, the main 

functional components in our system include:  

• The Data Collecting Service is responsible for collecting the real-time raw data on 

vehicles. It receives real-time data from the vehicles through wireless channels. 

Upon receiving data, it first forwards them directly to the Data Backup Service so 

that the data update can be logged for recovery purpose. It then formats the data 
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and sends them to Data Preprocessing Service for database updates and retrieval 

purposes. 

• The Data Processing Service plays the key role in enforcing our data model and 

data structure defined in last chapter. It locates the vehicles’ current positions on 

the road map and hence associates each vehicle with the road segment it is 

running on. It checks data validity, and corrects errors if possible, dumps the 

wrong data which can’t be corrected. Data on consecutive sampling points are 

compared here and the insignificant points are removed then. The vehicle’s 

motion data on the most current road segment are always kept in the main 

memory of this service node. When it is time to update the persistent storage on 

any vehicle’s current trajectory, it forwards the related data to Data Access 

Service. Since the most current data are stored in main memory on this node, 

queries on the up-to-date information are also processed here. 

• The Query Processing Service is the bridge between the client applications or end 

users and our database system. It interprets queries coming in any formats and 

forwards them to Data Pre-processing Service or Data Access Service depending 

on the time range in these queries. 

• The Data Access Service is responsible for updating the database and answering 

queries on recent or past data. When it receives an update from the Data Pre-

processing Service, it puts the physical data to data file, and updates the indexing 

structure to allow the current update to be indexed.  

• The Backup Service handles all the data that may be needed upon recovery. 

Keeping data logs is one and the most reliable way to be prepared for system 
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failure in our case. At least one copy of the recent data, along with the indexing 

structure, should be kept as well. The reason for this is that recovering from the 

data logs is much more costly than recovering from readily organized data. Even 

though logically the Backup Service “receives” raw data from the Data Collecting 

Service and “puts” them to data logs, one of the physical media where such logs 

reside in could very likely be the hard disks of the Data Collecting Service node. 

The advantage of such an arrangement is obvious. 

• The Recovery Service restores the disrupted data and recovers the system in case 

of any forms of failures. Since the system is required to be functioning at any 

time, in case of a “core dump”, no time can be given to the recovery process 

before bringing the main system functions back. So the recovery processes are 

always supposed to be going in parallel to the system’s main services. The 

Recovery Service is also responsible for bringing offline data, as we will discuss 

in section 4.4, back into the system online upon requests. 

• Storage in our system exists in several forms. Strictly speaking it doesn’t provide 

any system functions independently. Details on storage management will be 

discussed in section 4.4. 

• The Central Control Unit controls and coordinates the other service nodes to 

achieve the performance, reliability and security of our system. Next section, 

Section 4.1.2, will address the details. 

The term “service” frequently appears in this section. It is conceptual, flexible and 

scalable in the context of our system architecture. There is not necessarily a one on one 

relationship between a service and a physical server machine which provides the service. 
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At implementation stage, one service can be carried out by several physical server 

machines and multi-services can be integrated on one machine, depending on the size of 

the system. 

 

4.1.2  Centralized System Organization 

By dividing the system functionalities into services and distributing these services to 

multiple server nodes which can be running in parallel, the overall system performance 

can be greatly improved. However, in traditional distributed systems, the communication, 

synchronization and coordination among these independent server nodes are expensive 

and sometimes difficult. Due to the real-time requirement of our system, such costs are 

strongly undesirable. To avoid these expenses and improve system response time, a 

centralized system organization would be a wise choice.  

Data and messages may pass from one to another among the service nodes, but when 

synchronization or arbitration is needed, requests are sent to the Central Control Unit.  

The Central Control Unit, upon receiving a request, makes the decision and sends back 

control back to involved parties. In our system, not all the service nodes must be under 

the control of the Central Control server. Some services, such as the Data Collecting 

service and the Query Processing service, are relatively independent of the core of the 

system. They don’t need to request any authorization or arbitration from the Central 

Control server, and hence are not directly under the control of the later. As shown in 

Figure 4-2, the nodes that provide data pre-processing services, data access services, data 

backup service, and data recovery services exchange data among each other, they are also 

under the direct control of the Central Control Unit whenever a control is needed. 
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The system works as follow. The only source of the data input to the system is the 

Data Collecting Server. It sends the data to Data Preprocessing server. Data are processed 

there, kept in the main memory of this node, and later on forwarded to Data Access 

server. The Data Access server records the data updates into the database in persistent 

storage upon getting permission to do so from the Central Control Unit. When a query 

comes from the user/client end, the Query Processing service first interprets the request. 

It then forwards the interpreted request to Data Pre-processing server or the Data Access 

server, depending on the time range defined in the query. Security checks are enforced at 

the time of processing the answers to each query. 
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Figure 4-3 The Central Control Unit         
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In the background, the backup processes run with permission from the Central 

Control Unit, assuring that the foreground processes are not affected. In times of database 

recovery, potential conflicts with the real-time database updates occur frequently. 

Transactions are scheduled by the central control server in such cases. 

As shown in Figure 4-3, the Central Control Unit mainly contains the following data 

in its main memory: 

• A directory on the locations of the data and services.  

• Transaction scheduling policies 

• Storage management policies 

• Security policies.  

It takes charge of concurrency control and transaction scheduling, storage 

management, and security enforcement. Within storage management, both the data 

backup and recovery are included. The central control server always works closely with 

the data structure to ensure the functionality, availability and reliability of the system. 

Any operations involving data items in the database must be under the management and 

control of it. 

A centralized organization eliminates the number of messages and amount of data 

passing through the functional nodes. It also makes it simpler, easier, and more reliable to 

enforce or carry out security and other policies. 

 
 
4.2 Meeting the Real-Time Requirements 
 

Real-time systems can be divided into three categories according to their 

requirements on meeting the deadlines: 
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In hard real-time systems, the missing of the deadlines reduces the value of the data 

to negative. Data updates are of value only if they are committed before or on the 

deadlines. Not only becoming meaningless, the missing of their deadlines cause negative 

effects to the system. 

A soft real-time system prefers that all the data updates are committed meeting their 

deadlines. However, data are still of value when their deadlines are missed. The value of 

the data reduces eventually to 0, after the deadline is missed. 

Firm real-time systems are those with a deadline requirement in between. 

In a real-time tracking system, users have the needs to access the most current data. 

In cases such as bus / taxis scheduling, obsolete data may result in bad or even wrong 

schedules. Individuals who plan their trips based on information provided by the tracking 

system could miss their appointments or even opportunities if the system can’t keep the 

data up-to-date. It is highly desirable for the data updates to meet their deadlines. 

However, the data updates won’t become useless even if they are committed after their 

deadlines. Such updates are still of value when we do history retrieval and analysis. So 

our system falls in the firm real-time category. In case they are missed, the system should 

try to commit the transaction as early as possible. 

According to their degree of urgency, transactions in our system can be classified to 

three types: 

• Urgent – The most current data on vehicles’ location. These group of data need 

to be put into database as soon as they come in.  
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• Medium Urgent – Transactions acquiring the current information on vehicles’ 

movement. These transactions should be committed as early as possible if they 

don’t delay the commits of the Urgent transactions. 

• Neutral – Queries on the history data. There is not a clear deadline for such 

queries. Slowness in response to such queries is only evidence of bad system 

performance. 

In our system, the real-time requirements are met by means of the following system 

architecture and management policies: 

(1) The distributed architecture enables several processes to run at the same 

time. System throughput and performance are then highly ensured. The 

parallelism in the system also makes it more likely for the conflicts among 

transactions to be resolved without missing any of their deadlines. 

(2) Any data update that can be approximated by its preceding or succeeding 

updates is not stored into the persistent storage. This reduces overall load of 

the system, hence makes it easier to meet the deadlines for urgent 

transactions. 

(3) The most current data are kept in main memory due to the high access 

demands on them. 

(4) The transactions are scheduled to commit according to their levels of 

urgency, when there are conflicts. 

 

One of the most important factors that define the real-time performance of real-time 

database systems is their storage management mechanisms. Another important factor that 
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affects the real-time property of a database system is its concurrency control policies. We 

have taken into full consideration of meeting the real-time requirements when defining 

the storage management, transaction management and concurrency control policies of our 

system. The following two sections will discuss how these policies are defined to ensure 

the real-time property as well as meet the other requirements of the system. 

 

4.3 Storage Management 
 

Four levels of storage are used in our system. Obviously, the latest data on vehicles’ 

motion are in main memory before newer update data are received. Some frequently 

accessed data structure may need to permanently reside in main memory as well. The 

recent data on vehicles’ motion are accessed relatively frequently, they should be 

conveniently reachable. These data are stored in local hard disks. Older data can be stored 

in file systems in local network since they are accessed infrequently. These three levels of 

storage are all online. There is yet another kind of storage, which is offline though.  The 

out-of-date data are not likely to be accessed in a daily basis, but there are needs in some 

cases to retrieve information from these data. Considering the huge volume of data there 

could be for each day, Compact Disks do not have enough capacity for this purpose. High 

capacity tapes are used to store the far past data.  

Figure 4-3 shows the distribution of data of different “age” in different levels of 

storage and transfer between them.  

The trajectory of each vehicle’s movement on a road segment is not written to disk 

until it leaves the current road segment and enters the next segment. So the motion on the 

current road segment is always kept in main memory for all the vehicles. The data 
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describing the road segments are frequently accessed for purposes such as calculating 

vehicle’s motion between sampling points, path finding, and vehicle’s motion prediction. 

The current version of this set of data also needs to be in main memory. 
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Figure 4-4 The Four Levels of Storage 
 

Only next to the current data, data on vehicles’ recent movements are the second 

most frequently accessed. This set of data, including the indexing trees and the data files 

on each vehicle, is stored in local disk. The indexing structure on road segments is used 

for some range queries. The frequency of accessing it is close to that of the retrieval on 

vehicle’s recent motion. It is also kept in local disks.  

The frequency of accessing the past data decreases as reversing time back. It is 

reasonable to put the past and history data in storage media that incurs longer access time. 
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The past data on both vehicles’ motion and the road segments resides in Network File 

Systems. They are still highly available, only slower in accessing time. The historical 

data are not necessarily to be online. Putting them in tapes and loading to hard disks upon 

request is the economical way to make them reachable. 

Our indexing mechanism enables and fully supports storing data separately on 

different media, according to the time the data is on. A dictionary (easily accessible to the 

control server) residing in the main memory is built up for locating storage location 

where a given set of data is stored.  

In managing the main memory, the classical techniques, such as buffering and 

anticipatory prefetching, can also apply to our system.  However, these techniques work 

closely with Operating Systems the application runs on. They can be selectively adopted 

in the implementation stage, taking consideration of our system performance 

requirements and the features the Operating System and hardware support. 

The management of the secondary storage, namely the hard disks in our system, is 

supported by applying the following mechanism: 

• The indexing scheme minimizes I/O costs in locating physical data. 

• The organization of the motion data for each vehicle ensures that there is at most 

two I/O accesses overhead in loading consecutive data of any size on one 

vehicle. 

• Data and access are evenly distributed to multiple servers and/or disks depending 

on the size of the application system. 

• Queries processing is optimized. 
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General data buffering and disk scheduling techniques that the operating system and 

hardware support should be considered in the implementation phase. 

 

4.4 Transaction and Concurrency Control 
 

For database systems, correctness in the presence of concurrent access and/or failure 

is tied to the notion of a transaction. A transaction is a unit of work, possibly consisting 

of multiple data accesses and updates, that must commit or abort as a single unit. 

Transaction executions are supposed to respect the ACID properties: 

• Atomicity – either all or no operations are completed. 

• Consistency – all transactions must leave the database in consistent state. 

• Isolation – transactions cannot interfere with each other. 

• Durability – successful transactions must persist through crashes. 

The goal of transaction management is to maximize the system throughput and 

minimize the amount of restart overhead. The mechanisms used to resolve conflicts and 

schedule the execution of the transactions is called Concurrency control. 

The main issue in transaction management in a real-time system is how to meet the 

urgency of transaction executions and, at the same time, to maintain the database 

consistency.  

The same as in general database cases, real-time concurrency control algorithms can 

be generally classified as either conservative or optimistic. Conservative algorithms 

prevent any violation of database consistency from happening. Some variations of 

conservative algorithms adopt multi-data-version strategies [LK01] to increase the 

concurrency level of the system. Typical conservative mechanism is lock-oriented real-
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time concurrency control. Optimistic concurrency control algorithms often delay the 

resolution of data conflicts until a transaction has finished all of its operations. A 

validation test is then performed to ensure that the resulting schedule is serializable. In 

case of data conflicts, they usually use transaction aborts to maintain database 

consistency. The validation schemes, such as wait-50 and sacrifice, make the conflict 

resolution being priority-cognitive. Most of the existing optimistic concurrency control 

algorithms are for soft and firm real-time systems, because the abortion cost of a real-

time transaction is often hard to quantify. For most of the real-time systems, it is very 

difficult to ensure the schedulability of the transactions under the optimistic approach. 

A delayed write procedure is often adopted in many concurrency control algorithms: 

the update for each data object by a transaction is done in the local area of the transaction, 

and the actual write of the data object is delayed until the commit time of the transaction. 

When a lock-oriented concurrency control algorithm is adopted, each object in the 

database is associated with a lock. When a transaction locks a data object, it must lock it 

in a proper mode, such as share or exclusive. 

One of the trends in real-time database concurrency control is semantics-based 

concurrency control. It ensures correctness by enforcing final-state serializability, view 

serializability and conflict serializability. Data similarity in terms of their semantics is 

introduced and used to manage the transactions. The integrity management of real-time 

database systems involves two issues: 1) External consistency and temporal consistency 

constraints must be specified and justified to be adequate for the similarity relations 

specific to the application. 2) Real-time transaction scheduling algorithms are needed to 

enforce these constraints. Kuo and Mok, in [KM00], proposed the idea of physical 
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schedules in which a real-time database scheduler may skip unimportant computation or 

updates to meet time constraints and/or satisfy some safety requirements on the system. 

The correctness of the physical schedules is justified by the notion of similarity. 

Even though transaction scheduling and concurrency control techniques have been 

extensively studied, there doesn’t exist a total solution for the specific needs of our 

system. In our system, the data access operations include only Inserts and Searches. 

Operations of type Modify and Delete are not supposed to occur. In addition, the Inserts 

and Searches never appear in the same transaction because these two types of operations 

are always requested by different processes. Those read/write violations, which is one of 

the main problems in general database systems, are not likely to happen in our case. And 

serializability is always satisfiable. Our goal for transaction management is to maintain 

the real-time property, ensure data correctness, and maximize system throughput. 

First, the similarity based concurrency control policy is adopted and “over” enforced 

in our system. As described earlier, the “similar” data updates are omitted, ignoring if 

there are conflicts and if it is missing the deadline.  

Second, data are buffered in memory until a vehicle leaves a road segment and the 

set of data are written to hard disk in one transaction. This way it eliminates the number 

of transactions while maintaining the size of a transaction not to be too big, so to reduce 

the number of possible conflicts. 

Third, in the cases that conflicts do occur, the update transactions have the highest 

priority. The transactions containing Read (search/retrieval) operations are scheduled in 

the order of the time of the data they request. E.g. a transaction that acquires current data 
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has higher priority than one which requests recent data, and a transaction that requests 

recent data has higher priority than one that queries past data. 

The system ensures the correctness and performance by enforcing these rules in the 

transaction management along with other mechanisms discussed in other sections. 

 

4.5 Backup and Recovery 
 

In database systems, unpredictability exists in many aspects due to the dependence of 

the transaction’s execution sequence on data values, the data and resource conflicts, 

dynamic paging and I/O, and rollbacks and restarts resulting from transaction aborts. 

Communication delays and site failures happen in distributed systems. These factors all 

could result in system failures. 

The way to handle failures is by means of backup and recovery. When a failure 

happens, the system should be able to recover. To enable recovery, backup is necessary. 

Backup and recovery are always risky; in general, the following schemes can be used to 

minimize the chances of data lost: 

• Store everything on a fault-tolerant disk array.  

• Use battery backup.  

• Use reliable hardware.  

Research and industrial experences also show that the following mechanisms 

improve the chances of successful recovery, in case it does happen: 

• Store backups on a third disk on another controller  

• Store backups on a different computer on a different network in a different 

physical location. 
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• Plan and configure for recovery from the beginning.  

• Test the recovery strategy from time to time.  

• Make the recovery strategy easy to maintain and test.  

 

Down time in a real-time system, no matter how short it lasts, is fatal and strongly 

unacceptable. This fact makes it critical and more difficult to recover a real-time database 

system when it is needed, than in the normal database systems cases. It is even more 

complicated in a real-time current status tracking and history retrieval system, since in 

such systems the common event log scheme used in general database systems would not 

work. General database systems recover themselves upon failures or errors by means of 

keeping one or more copies of an event log, which records the history of all the 

transactions that have committed. In our case the database itself is the data defining the 

most up-to-date status and records of the transaction history. So the traditional way of 

keeping event logs and restoring the database based on these logs may not be simply 

applied to our system.  

The process of recovery is another challenge for real-time systems. To recover 

systems without real-time requirements, short system down time may be permissible. But 

in real-time systems like in our case, any recovery must be done in “hot” mode. That is to 

say, the recovery process should not interrupt the running of the system. 

For Real-Time Database systems, the following strategies and techniques can help in 

keeping the real-time properties while performing backup and recovery: reduce log 

traffic; speedy logging and recovery; use transaction priority oriented logging and 

recovery, data class oriented logging and recovery; partitioned and parallel logging and 
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recovery; ephemeral logging; use Non-Volatile High Speed Store as a fast persistent 

backup store. 

Considering the characteristics and performance requirements of our system, we 

need to secure our data in all the possible aspects, by means of multiple mechanisms. As 

a result, the following policies are used in our system: 

• Redundancy. The Central Control server, the Data Pre-Processing server and the 

Data Access server are the most critical nodes in our system. A hot backup server 

is allocated for each of them. 

• Event logs are done at the data collecting server. Data is logged to disk as soon as 

they are received by the Data Collecting server. In case of data lost caused by 

any sorts of failure, we can recover the database by redoing the calculation based 

on these data logs. 

• Fast I/O disks to keep the most recent data. 

• A server solely for the backup and recovery purposes respectively. 

 

These policies altogether work as follow. 

• The process of backups: Raw data coming in from the vehicles are written to 

event logs upon their arrival. This happens at the Data Collecting server. After 

preprocessing, data are written to persistent storage with two copies, one of 

which is kept as backup. Older and history data are backed up to tape. 

• The process of restoring. 

o Restore from event logs. The event logs are in fact the raw data. To 

restore, the recovery server needs to re-calculate as the pre-processing 
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server does to the incoming data. And the rest processes are the same as 

to the data after processed by the pre-processing server. 

o Restore from backup. The backups are ready to use as soon as they are 

put back online, since the physical data files and the indexing structures 

are readily well organized. The directory in Central Control unit needs to 

be updated to reflect the new status of the data locations in this case. 

 

4.6 Other Issues 
 

To make our system sound and complete, we need to address a couple of other issues 

in addition to the topics talked about in last few sections. Security, Query Processing, and 

User Interface in our system will be discussed in this section. 

 

4.6.1  System Security 

A simple but widely-applicable security model is the CIA triad. Standing for 

Confidentiality, Integrity and Availability, they are three key principles that should be 

guaranteed in any kind of secure system. Confidentiality is the ability to hide information 

from those who are not authorized to view it. It is perhaps the most obvious aspect of the 

CIA triad and the one that is attacked most often. Integrity is the ability to ensure that 

data is an accurate and unchanged representation of the original secure information. 

Availability is defined as the assurance that the systems are accessible when needed, by 

those who are authorized to. It is important to ensure that the data items are readily 

accessible to the authorized users at all times. If any one of the three aspects can be 

breached serious consequences may be caused. 
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A software application system’s confidentiality, as well as other security aspects in 

some extent, is basically and greatly impacted by the security mechanisms the Operating 

System on which the software is running adopts. It is important to choose a secure 

operating system and build the application security policies on top of it. First we choose a 

secure O.S. Two most possible options are OpenBSD and Sun’s Trusted Solaris. The 

open source OpenBSD was built from the ground up to be secure, by constantly auditing 

the operating system's code for potential security problems. OpenBSD also incorporates 

encryption in the operating system. Sun Microsystems claims that its Trusted Solaris is 

one of the most widely deployed trusted operating systems. However neither of these two 

Operating Systems are suitable for desktops. In such case, Linux would be an appropriate 

choice. 

Second, we adopt role based access control (RBAC) in our system for authentication 

and authorization. RBAC is chosen because of the following facts: 

• The users of our system are grouped in nature, because the vehicles may be 

used for different purposes and managed by different owners. This matches 

the way RBAC works. 

• It is not complicated to implement. The cost for implementing a role based 

system is inexpensive. 

• It has reduced complexity in administration of such systems. 

• It is suitable for network and distributed systems. 

• It is now an American National Standard. 
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The integrity and availability of our system are mainly provided and maintained by 

the mechanisms we stated in the last few sections, together with a good protection of the 

system confidentiality. System integrity and availability are ensured by the following 

mechanisms which have been discussed in detail earlier: 

• Good system organization. 

• Reliable and high performance hardware. 

• Redundancy. 

• Our data structure and indexing scheme. 

• Backup and “hot” recovery. 

 

Potential attacks and problems exist at other points of the system, such as the data 

communication between the vehicles and the data center, the communication channels 

between users and the data center, etc. Cryptography and Encryption may be used; Data 

Compression may be necessary since the answers to some queries could be huge in size.  

 

4.6.2  Query Processing 

At the beginning of this writing the types of queries of our concern are listed. An 

out-of-fashion yet simple and straightforward way to interpret these queries is to require 

them to come in the form of a function call. The query criteria are passed to the system as 

parameters. Even though it is simple and efficient, it is obviously not flexible and not 

complete. 

In the literature of Moving Object Databases and that of Spatio-Temporal Databases, 

query languages for sptio-temperal objects have been broadly explored. Among those 
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proposals, the FTL, which standards for Future Temporal Language, proposed by 

Wolfson [WSXZ99] is the most closely applicable to our system since the data model of 

our system is similar to which was used in [WSXZ99]. However FTL is not designed for 

the same case as ours, some work may be needed to extend it to fit our case. 

 

4.6.3  User Interface 

The data consumers of our system include the end users and applications that are 

built on these data. The end users include the commuters who check their bus status, 

drivers who monitor their current locations or retrieve the past route, etc. Applications 

can be built for vehicles scheduling, traffic and other statistics, using the data retrieved 

from our system. The interface for both cases is closely connected to the format of the 

queries the system supports, but should not be the same considering their different 

characteristics. 

Generally speaking, the end users request smaller amount of data each time and the 

data they request can be represented in simpler form, while the applications may request 

large amount of data in complicated form in terms of being represented by standard 

queries. So the formalized query language support is about enough for the end users. And 

Application Programming Interface, due to the reduced processing procedures, must be 

provided for the applications. 

 

4.7 Conclusion 

A successful software system is the integration of a well designed system 

architecture and an efficient data structure. As we have discussed in the last sections of 
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this chapter, the system architecture we adopt not only well fits the data structure and 

indexing scheme we proposed, but also provides support to the real-time, flexible and 

reliable properties that a moving object database system desires. 

The distributed property enables highly parallel processing. System performance is 

hence tremendously improved. The distribution of system functions to multiple server 

nodes also makes the system scalable and flexible. This type of architecture is especially 

suitable for our indexing scheme since our indexing structure is a set of indexing trees 

among which there is little interference between one another. 

The advantage that a centralized system organization brings to a distributed system is 

the reduced message passing or communication expenses, the simplified scheduling and 

control procedures, and improved system performance. 

To prevent severe damage to the system in case of single point failure, redundancy 

and backup mechanisms are provided to the key server nodes and multi-levels of storage. 

The “hot” backup and recovery policies reduce the time for data recovery to the least 

possible. 

System performance, especially the real-time property, is guaranteed by the 

parallelism and the concurrency control polices. The reliability and confidentiality is 

ensured by the security mechanisms along with other aspects of the system architecture. 

As a result, the system architecture and the mechanisms used for the handling of 

various issues inside the database system altogether provide the system the following 

properties: 

• Performance. The system performance can be broken down to the real-time 

property, data update and retrieval performance it can provide. Our system 
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overall performance is achieved by means of the distribution of system workload 

to server nodes working in parallel, the reduced communication cost, and 

simplified control mechanism. The real-time property is assured by the 

transaction management and scheduling policies, and the “hot” recovery scheme.  

• Reliability. The system is reliable because of the redundancy, backup and 

recovery mechanisms, and the security issues, which we have taken into full 

consideration during the stage of system design. 

• Confidentiality. The combination of secure Operating Systems and the security 

policies which is applicable and appropriate to both the database application 

system and the operating systems makes the software system the most possibly 

secure. 

• Scalability. From the data structure on to the system architecture, the system is 

highly scalable at every level. A personal computer running Linux Operating 

System can carry out the tasks we designed for all the server nodes, if we apply 

our design to a small system with limited number of vehicles running on limited 

area. Several mainframe servers together with huge numbers of high end server 

machines, and wide area networks can be involved if we intend to build a 

tracking system for large number of objects running nation or even worldwide. 

• Flexibility. Even though the system is designed to have the above important 

properties, it is yet flexible. As technologies develop, or in case any problems are 

found in implementation of application stages, the change of any functional 

module and/or policies will basically need to affect just the involved modules or 

servers and it wouldn’t hurt the overall functionalities of the system. 
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5 IMPLEMENTATION 

 

In any fields of the real world, the implementation based on a design cannot cover 

the flaws inside the design, if there are any. However, a perfect system design based on 

perfect ideas, on the other hand, could be greatly ruined by a bad implementation. It is 

especially true in the development of software systems. To maximize the advantages of 

the data structure and system architecture presented in this dissertation, we need to 

carefully and correctly arrange the various details involved in the system implementation. 

This chapter discusses the issues closely connected to the implementation of a database 

system for tracking and retrieval of vehicles location information using the data structure 

and system architecture talked about in chapter 3 and chapter 4 of this writing. 

We choose the Miami area and the vehicles running in this area as the objective of 

our system implementation. The designed system capacity is to cover the greater Miami 

area and all the vehicles that mainly run in this area. This area is chosen because of the 

size of it and its population, which implies the possible number of vehicles possessed. 

They are large enough to challenge the data structure and system architecture the 

application system is adopting, but not too large in terms of cost in hardware and 

workforce for the implementation. Yet such an implementation, if successful, could be 

extended without much technical difficulty.   

In the rest of this chapter, we will start with the system requirements analysis, 

followed by the options and decisions on hardware, network and operating system 

platforms. The parameters configuration and implementation of the main functional 

modules are discussed thereafter. The performance of the finished system is also 
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evaluated.  In the last section of this chapter, we will explore how to extend it to cover a 

nation or even the entire world and to include all the vehicles anywhere inside the 

covered areas. 

 

5.1 System Requirements Analysis 

We start with a series of simple calculations to get the order of the sizes of the data 

that will be stored in our database system. Since it is impossible to get the exact numbers, 

and what we need is only the order of these numbers, all the calculations are approximate. 

And the data are calculated based on the time range of 1 day, for those with time involved. 

We predefine the data update frequency from the vehicles to the data center to be once 

per second. 

According to the US Census Bureau in “American Community Survey Profile 2002” 

[USCen], in year 2002 the population in the Miami and Fort Lauderdale area was 

3,975,250. Assume every two people possess a car, and these cars are all registered to our 

system, then we will have a total of about 2,000,000 vehicles in our database system. 

Referring to appendix B, which is a map of greater Miami area, the size of this area is 

about 95x132km. Appendix C shows that the number of directed road segments in each 

square kilometer is around 200. The total number of road segments will be approximately 

2,500,000. 

Now we can approximate the average total number of cars that run through each road 

segment. The average length of each road segment is approximately 0.1 kilometers, since 

there are 200 directed road segments in each square kilometer. The standard annual 

mileage for a car is 12,000 miles. The daily average is 33 miles or 53 kilometers. The 
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total number of road segments a car runs through in a day, is 53/0.1=530. And the 

average number of vehicles that run through each directed road segment in each day, can 

be calculated as: 2,000,000×530 ÷ 2,508,000 = 423. 

However, for those road segments on highway or crowded local roads, the daily 

number of vehicles passing through is much bigger. In the rush hours (6-9am, 4-7pm), 

there could be 1/2-1 cars entering a road segment in each second. The total number of 

cars entered in the rush hours is up to 6×60×60×1=21,600. The total number of cars 

entering such a road segment at other times of the day can be around this number. So the 

final number is around 43,000. 

The possible size of the interval trees associated with each road segment is analyzed 

as follows. The data size for each single interval tree is at most 20n+4nlogn data units 

where n is the total number of time intervals in the tree. Suppose 4-byte integer and real 

data types are used, in the average cases, the size of an interval tree is around  

(20n+4nlog2n)×4 = 16n(5+log2n) = 16×423×  (5+log2423) = 94,752 bytes. While for the 

highway roads, the number goes sharply up to: 16n(5+log2n) = 16 43000× ×  

(5+log243000) ≈ 14,500,000 bytes. The maximum possible total data size for the 

indexing structure in a day is approximated to: 2,500,000× 94,752 ≈ 237,600,000,000 

bytes ≈ 237GB. Even though the percentage of highway roads over all the roads is small, 

in practice the actual final number could be slightly higher considering the outstanding 

data size generated by this type of road segments. 

Since each car runs 53km, we can approximate the total size of primary data stored 

in our database as follows. The time spent on road to cover the distance of 53km 

(33miles) should be within 1 hour in most of cases. The data size for each update is 24 
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bytes: 4 bytes each for Road ID, Time of Update, Easting, Northing, Speed and Distance 

from the beginning point of road segment. So 24×60×60 = 86,400 bytes. And the total 

size of the primary data in a day is 2,000,000×86,400 = 172,800,000,000 ≈ 172GB. 

About the road segments, we have the following original and/or calculated numbers. 

The size of the data defining each undirected road segment is 32 bytes: 1 integer for Road 

ID, 2 real numbers for start point geolocation, 2 real numbers for end point geolocation, 1 

integer for UTM zone, 1 real number for total length and 1 integer for speed limit. For the 

total of 2,500,000 directed segments, which is approximated to 1,254,000 undirected 

roads, the total data size is 32×1,254,000 = 40,128,000 bytes ≈  40MB. Referring to 

section 3.3.3.2, when there are n total road segments the size of the segment tree is no 

larger than 32n+24nlog2n. So the indexing structure for the road segments could take a 

total size of 32 1,254,000 +24× ×1,254,000×  log21,254,000 = 672,144,000 ≈ 672MB.  

On the topology of the road map, as we have discussed in chapter 3, it is represented 

in the format of an array. The last cell for each directed road segment is a pointer pointing 

to a linked list. This linked list keeps the ID’s of the vehicles that are currently running on 

this road segment. The average number of vehicles that run on a road segment at any time 

is at most 2,000,000 ÷ 2,500,000 ≈ 1, since there are a total of 2 million cars and about 2.5 

million road segments. However in the extreme case, e.g. when there is traffic jam, the 

total number of vehicles can be up to the product of the total number of lanes and the 

length of the road segment divided by the length of a car. Inside a 1 mile highway with 4 

lanes, there could be as many as 4×1609.3 ÷ 6 = 1073. (The average length of a car is 

about 5 meters; 1 meter is added as the distance between two vehicles.) 
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A vehicle doesn’t send any updates to the data center when it is not moving at all. In 

the rush hours, most vehicles are moving and hence the total data being sent to data 

collecting server is at the highest volume at these times. The extreme case is when all the 

vehicles are running. In this case, the data are rushing from vehicles to the data collecting 

server at the speed of: 24×2,000,000 = 48M Bytes/second. This only considers the data 

meaningful to our system. To receive this amount of useful data, more data are actually 

transmitted through the wireless channels. However, since the average time a vehicle 

spends on road is within 1 hour, the average data flow is 1/24 of the above extreme case, 

which is 2M bytes/second. 

The data flow from servers to servers inside the data center can be estimated as 

follows. Vehicles’ speed changes mostly happen at stops and re-starts. Normally the total 

time a vehicle spends on stops and re-starts is less that when it is running at even speeds. 

After preprocessing at the data collecting server, the data updates from vehicles should be 

reduced to half or less of the original size. So the data updates flow from server to server 

is within 48M ÷ 2 = 24M bytes/second. And the average is 1M bytes/second. The amount 

of data transferred for query answering depends on the data range defined by the queries. 

Based on the above analysis, the system requirements can be abbreviated as: 

• 172GB raw data comes in each day. 

• Indexing structure can take up to 237GB per day. 

• Maximum of 43,000 vehicles run on a directed road segment in a day, and 

the average number is 423. 

• Maximum of 1073 vehicles can be in the same directed road segment at same 

time, and the average number is 1. 
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• Data transmit speed from vehicles to data collecting server can be up to 48M 

bytes/second, the average is within 2M bytes/second. 

• Transfer rate for data update between servers inside data center ranges from 

1M bytes/second or less to 24M bytes/second. 

 

Besides the above analysis that measured in numbers, there are other system 

requirements which mainly include: 

• Incoming data need to be properly processed so that all meaningful data are 

kept in database. 

• Data update need to be processed in a timely manner such that instead of 

obsolete data, the “current data” in our system reflect the true situation in the 

real world. 

• Queries on both current and past data should be answered promptly, while 

priority given to current queries at times of conflicts. 

 

5.2 Setup the Parameters  

To meet the system requirements and maximize the performance of the application 

system, we need to properly set up the following parameters: the time granularity chron, 

the change of speed δ1 and the change of acceleration δ2 as discussed in section 3.1, and 

the time range for the indexing trees. Based on the system requirements analysis results 

provided in last section, these parameters are set as follows. 

• Chron. It is decided by the data update frequency. We set it to 1 second. 

Considering the overhead over the communication channels, 1 second per update 
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means 24M bytes data could be sending to the data center every second. This is 

even a great challenge for local networks. On the other hand, it is ideal to set it to 

¼ to 1/3 second so that the distance between two consecutive updates is around 

twice the GPS data error range. As for the data processing, it basically is possible 

to handle data coming in 24M bytes per second. So 1 second is the number after 

balancing all the affected parties. 

• δ1 and δ2. The math is based on the fact that the omit of speed change which 

results in the distance difference within the GPS error is acceptable. The GPS 

error is about 3 meters, and the data update interval is one second. 3 meters per 

second is about 6 MPH in speed. The highest known speed limit is 75 MPH. δ1 = 

6 75 = 0.08. Such a number for δ÷ 1 is large if a highly accurate GPS system is 

used in the future, so we don’t set up a value for δ2 and the related calculation 

will be measured by the production of δ1  and the Speed Limit of the roads only. 

• Time range for each indexing tree. The time interval trees associated to each 

directed road segment have a space complexity of nlogn. We can’t do anything 

about the n inside this formula, but the logn part is what we want to eliminate. 

Considering the nature of the road traffic distribution over time, such as there are 

rush hours during the day time, and at late night there are very little traffic on any 

road, we can break it down into days and build separate trees for different time 

ranges. The basic unit is day, and the separator can be set at 2 O’clock in the 

morning since there is the lowest traffic at this time. This way logn can never 

grow to too large. Since the total amount of data for one day, as analyzed in last 

section, is not small in our case, one day is good for our specific case. Such a 
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setting will result in the average indexing tree size of about 30K and the largest 

up to 5M bytes. 

 

5.3 Hardware Platform and Operating System 

The system architecture described in chapter 4 can be implemented, due to its 

scalability, with a few high end servers such as IBM mainframe, some powerful 

workstations, or a relatively big number of PC servers. To show the system organization 

and load balance mechanisms in the distributed system design, PC servers are chosen as 

the hardware platforms for servers at all functional nodes in our system. The current high 

end PC servers are powerful enough, in terms of computing capability, to do the data 

processing, since the amount of data calculation needed in our system is not huge. 

However, due to the requirement of the main memory residing road networks and the 

most current motion of the vehicles, sized at the order of 102 MB each, high volume of 

main memory is required for the servers. A minimum of 1GB is necessary for most of the 

servers, and 2GB is suggested for the critical ones, such as the servers that handling the 

current data. 

For the system security consideration, OpenBSD is the ideal choice as Operating 

System. The fact that OpenBSD is open source, which makes it available to us at no cost, 

is another reason for us to favor OpenBSD. 

Now the compatibility of OpenBSD and Personal Computers becomes the key factor 

to decide the feasibility of implementing our system on PC servers running OpenBSD. 

OpenBSD/I386 is the PC version of OpenBSD. It runs on the standard PC’s and 

clones [OBSD], with a wide variety of processors, I/O bus architectures and peripherals 
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supported. Our concerns of the Operating System supported hardware mainly include the 

processors, I/O buses, hard disks, RAID storage; tape drives, and network connection 

which include wired and wireless LAN/WAN support. The currently OpenBSD 

supported PC hardware of our concern can be summarized as below: 

• The supported processors include Intel, AMD, Cyrix and other series; 

• Supported I/O bus architectures include All standard ISA/EISA/VLB/PCI buses, 

16-Bit PCMCIA PC Cards, 32-Bit CardBus PC Cards and Universal Serial Bus. 

• Hard disk controllers: ISA MFM, ESDI, IDE, and RLL. 

• Various RAID and Cache Controllers. 

• Tape Drives include: most SCSI tape drives and tape changers, QIC-02 and QIC-

36 format tape drives. 

Network connection: 10/100Mbps and Gigabit Ethernet, wireless, ATM and FDDI 

interfaces. 

OpenBSD supports server and workstation product lines from vendors such as 

Hewlett-Packard, Motorola, Sun Microsystems, and the Alpha-based and VAX-based 

systems from Digital. So it is possible to put some workstations besides the PC’s in our 

system if the budget permits to do so. Otherwise, the migration of partial or all of the 

hardware system to any higher products in the future wouldn’t cause any problem in 

system architecture, and there is basically no need to re-write the source code after 

hardware upgrade. 

The current 1G bps local network fits all other I/O devices inside a PC well in terms 

of bandwidth. Vehicles can be grouped if network bandwidth becomes a bottleneck, and 
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more than one machine are used so that each machine accepts and processes only data 

from vehicles of certain group(s). 

The bottleneck for query answering is with the hard disk access. Our indexing 

mechanism and distributed system architecture, along with fast access hard disks, 

altogether ensure that queries be processed promptly. When distributing the data load, 

both the primary data and indexing structure are distributed evenly to the different access 

servers. Primary data are distributed according to the vehicles, and indexing structures are 

distributed according to geolocation of the road segments. 

 

5.4 Software Development 

C/C++ is widely adopted for system and application software development due to its 

portability and compatibility. Even though it is frequently criticized for its lack of 

features such as ease of learning, variable default initiation, and garbage collection, these 

are not a problem for those true computer professionals. The reason that C/C++ is chosen 

as the programming language for our software system implementation is, instead of its 

popularity, its efficiency in implementing functional modules that access and/or manage 

the I/O devices. To implement software that frequently accesses I/O devices, e.g. hard 

disks and network ports, C/C++ is the choice for all reasons.  

The data flow in our database system is shown in Figure 5-1. Besides the data flow 

shown in the figure, the control flow is maintained complying with the scheduling 

policies by means of communication among different servers. 
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Figure 5-1 Data Flow in Vehicles Tracking System 

 

The software implementation mainly includes the development of the following 

modules: incoming data processing, query processing, backup and recovery handling, 

data update/query algorithms, storage management, network and communication. The 

rest of this section will briefly address the key functional modules of our vehicle location 

information tracking system running on OpenBSD using C/C++ programming language. 

• Algorithms. The algorithms for insert/search/pathfinder were given in chapter 3. 

The implementation of this part is basically to convert this abstracted code into 
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C/C++ format. Special care needs to be taken to the parts involving I/O access to 

storage. 

• Communication and Central Control Services. Communication among servers is 

implemented by socket programming. To reduce network traffic as well as data 

transfer delay, queries are numbered before they are forwarded to one of the 

servers for answers and the results are sent back directly from the server which 

carries out the query process.  

Inside the central control services, there is a directory on data and service 

locations along with various system policies. The Central Control Server provides 

services such as transaction scheduling and load balancing, and ensures some of 

the security policies. 

• Incoming Data Processing. The main goal of this module is to reduce as much as 

possible for the next phase of processing, while maintain the property that the 

vehicle’s motion trajectory can be simulated within the required accuracy. 

• Query Processing. It parses and interprets the queries from clients, forwards it to 

the corresponding server for answer, finalizes the result and sends it back to 

clients. 

• Storage Management. Storage in our system exists in the forms of main memory, 

local hard disks, network file systems, and tapes. The most current data is kept in 

main memory. Recent data are in local and network hard disks. And past data are 

stored offline in tapes. Each vehicle’s motion can be managed as separate files. 

But it could be very inefficient if the indexing trees are stored on hard disks in 
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the format of files. To update and access the indexing structure, direct hard disk 

access is necessary. 

• Backup and Recovery. The data logs are the records of the incoming data in the 

time order of their arriving. These logs are written to hard disks as soon as data 

comes in. The backup from existing database is a copy of the database ranging 

certain time span stored in hard disks or tapes.  

Restore from backups is relatively easy, since it only needs to put the data online 

and update the data directory. Restore from data logs needs to go through the 

same process as the incoming data from vehicles. Since the data under restoring 

are old comparing to the newly collected data, the restore processes have lower 

priorities in case of conflict. 

  

5.5 Conclusion 

This chapter discussed the implementation of a vehicles location information 

tracking system based on the real world example of the greater Miami area. Starting with 

the system requirements analysis, issues from the system parameters setting, the choosing 

of hardware and operating system, to the software development are all briefly addressed. 

Research and analysis shows that such a tracking system covering the greater Miami area 

with all the vehicles mainly running in this area included can be implemented with about 

15-20 high end PC servers and necessary persistent storage. OpenBSD is recommended 

for the Operating System based on which the software will be developed. C/C++ is 

chosen as the programming language. 
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6 OTHER CONSIDERATIONS 

 

The system architecture described in chapter 4 is for an independent database 

application system. The data and indexing structures described in chapter 3 were 

originally targeted at and designed for the real world model of moving objects on 

constrained road networks in a 2-d plane. Is it possible to expand or embed the system 

design and the indexing mechanisms to a database management system, so that they can 

be more powerful and more widely applicable? Can we extend the data and indexing 

structures to manage objects moving freely in higher dimensional space without 

constraints on their moving trajectory? With a huge amount of vehicles’ movement data 

stored in our databases, could we make more use out of it, to benefit other research and 

application fields such as traffic management and control? 

This chapter explores these possibilities and ways to extend the application model 

and the data structures we proposed earlier. Section 6.1 discusses how to embed our data 

structure into Sem-ODB. Section 6.2 shows methods to extend the indexing mechanism. 

Section 6.3 explores ways to data warehouse the databases manipulated by our approach. 

 

6.1 Embedding the Data Structure into Sem-ODB 

Sem-ODB is a semantic object oriented database model originally proposed by Rishe 

[Rish92]. A database management system has been developed by the High Performance 

Database Research Center at Florida International University. Various GIS and other 

applications have been built and still are successfully running on top of the Sem-ODB 

DBMS.  
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The accessibility and the familiarity of Sem-ODB make it a natural choice for the 

expansion of our data structure and application model. But there are other reasons as 

well. The introduction of semantics into a DBMS improves the efficiency of data 

management and reduces storage cost. The indexing mechanism (for traditional static 

data) in Sem-ODB is efficient and uncomplicated. High flexibility is provided to the 

application system and the developers by not requiring a key for data of any category, 

which is equivalent to a table in the relational model. These characteristics of Sem-ODB 

make it suitable for the management of static and some discrete data types for a vehicles 

location information tracking system.  

Embedding our data structure and system architecture into Sem-ODB would provide 

the following benefits for the system designers and developers: 

- Efficient management of static data, 

- No need to develop a new query interpreting service, 

- Easy incorporation of our transaction scheduling mechanism, 

- Easy implementation of Role based security policies, 

- Rich Application Programming Interface (API) 

- Many existing tools. 

 

To do this embedding, care needs to be taken to key issues including dealing with 

different indexing structures, transaction scheduling and concurrency control policies, 

and processing of spatio-temporal queries. The API may need to be expanded as well to 

meet the program needs of accessing spatio-temporal data. These issues can be handled 

as follows: 
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- Embedding the Indexing Structure. Only the data on continuously moving 

objects motion is indexed using the STAPS approach. Other data, including static 

and discretely changed data, are under the control of Sem-ODB’s traditional 

management. 

- Transaction and Concurrency Control. The updates of static data always yield the 

real-time updates, except for those involving security role changes. 

- Expanding the API. The API for data updates on sptio-temporal data are allowed 

for system programs; users never are given permission to call these 

functions/interfaces. 

- Adding Spatio-temporal Query Types. The parser and interpreter need to be 

updated, and SQL expressions need to be enriched. 

 

6.2 Extend The Indexing Structure 

Even though they were designed for the application model of vehicles moving on 

road networks, the data and indexing structures are applicable to objects moving in higher 

dimensions with or without constraints. This section briefly discusses how the indexing 

schemes work in an expanded space. 

 

6.2.1 Indexing Objects Moving in Free 2-d Space 

An IET is defined in chapter 3 as any event that triggers the update of the indexing 

structure. Corresponding to the definition of IET, the partition of the space is not 

necessarily restricted to road segments or any of the constraints on the objects’ motion. 

Even for objects moving on road networks, the IET(s) can be defined as other events than 
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the entering and leaving of a road segment. The simplest way to partition the 2-d space so 

that the STAPS approach can be applied is to evenly grid the plane into equal rectangular 

areas. 
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Figure 6-1 Building Indexing Structure for Objects Moving in Free 2-d Space 
 

Figure 6-1 shows how such a space partition policy works. The IETs in this case are 

defined as the objects’ entering and leaving of the rectangular area. When there is no 

restriction on objects movement, there is no need to index anything like the road 

segments as in the case we discussed in earlier chapters. The locating of a given query 

point or area into the grids in the plane can be easily calculated by their coordinates and 

the boundaries of the grids.  

Queries of all types are processed similarly as in the moving vehicles on road 

networks case that we discussed in chapter 3. For range queries of type Q4, the I/O 
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complexity is O(mlogT + k), where m is the number of grids (partitions) that intersect the 

given query space range, T is the total number of time intervals associated to this space 

grid, and k is the total number of objects that appear in the space range during time [t1, 

t2]. This fact shows that the STAPS approach works for objects moving in free 2-d space 

at least as well as when the objects’ movement is restricted to any road networks in the 

plane. 

Notice that the IETs are not required to be uniformly defined even in the same 

application system. The involved space range doesn’t have to be rectangular or any 

regular geometric shapes either. 

 

6.2.2 Indexing Objects Moving in Higher Dimensional Space 

The work on extending the STAPS approach to manage continuously moving objects 

in higher dimensional space becomes trivial after it is successfully extended to free 2-d 

space. For objects moving in 3-dimensional space or higher dimensional hyper plane, an 

efficient indexing structure can be built by defining an appropriate space partitioning 

rule, choosing an applicable static access method for the manipulation of the space 

partitions, and building an interval tree to handle the accesses to the associated time 

intervals. The easiest space partitioning method is to evenly grid it into hyper rectangles. 

And just as in the 2-d space cases, there are no restrictions to the space partitioning 

methods as long as any point in the space is assigned to, and mostly only to, one partition. 

 

Observe that in both the 2-d and higher dimensional cases, one of the critical steps in 

applying the STAPS approach to build and manipulate the indexing structures is to 
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choose an appropriate space partitioning method. In the processing of a range query, the 

I/O complexity of O(mlogT+k) greatly depends on how the space is partitioned. The 

larger each partition is, the smaller m, but the larger T and k will be. The system designers 

have to balance them considering the specific situation of the application.  

The indexing structures for both the space partitions and the segmented time 

intervals can be any kinds which are appropriate to the application model. The system 

performance depends on how well the chosen indexing structures fit the criticality of 

different kinds of operations to the system. In the real-time vehicles location information 

tracking system, the most critical tasks are the data updates, that is why in our example 

application case a structure is chosen to provide the best update performance O(1) I/Os, 

on the average. 

 

6.3 Data Warehousing 

In chapter 5, we have analyzed the data size a region wide moving vehicles location 

information tracking system would generate in each day. As time passes, the data stored 

in the system would grow quickly, and soon it would become more like a data warehouse 

than a simple location information database. These data could provide valuable support to 

research and applications in the area of traffic control, such as traffic simulation [Trim, 

Cors], intelligent transportation systems [ITS02, DOT03], and real-time traffic 

information systems [Geor, Wash]. 

The mechanisms inside STAPS could be adopted for further analysis of the data 

stored in such a data warehouse to be used by such research and application projects. The 

data analysis could be done by putting IETs to the data types of concern and applying the 
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indexing structures and/or the data analysis algorithms whenever it is triggered. The data 

to which the IETs are associated could be any types, not just space. The data analysis 

could be done either in real-time, if it doesn’t compromise the application’s time-critical 

processes, or in background and/or offline by reviewing stored data.  
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7 CONCLUSION 

 

In this dissertation we have explored data structure, indexing mechanisms, system 

architecture, and implementation issues involved in a real-time database system of 

continuously moving objects based on the real-world application model of a location 

information tracking and retrieval system for vehicles moving on road networks. We 

have proposed the Segmented Time Associated to Partitioned Space (STAPS) approach 

for the processing of continuously moving objects databases. A data and indexing 

structure has been designed for the real-time location information tracking and history 

retrieval system for vehicles moving on road networks using the STAPS method. Based 

on this data and indexing structure, a distributed system architecture has been presented. 

Targeting at a possible real-time database application system that manipulates all the 

vehicles moving in the greater Miami area, the main implementation issues have been 

addressed based on the system requirements analysis. The possibilities and means of 

extending the indexing structure have been briefly discussed as well. 

The STAPS approach well represents the continuity of the objects movement by 

partitioning the space where the objects move in and segmenting the time into intervals 

during which an object is inside a space partition. There is no need for any assumptions 

on objects’ moving trajectories and speed. The indexing structures for space partitions 

and time intervals are not predefined. Instead system designers can choose or design the 

structures that best fit their specific system requirements. STAPS is a general approach 

for manipulating databases on objects of any kinds that continuously move in any sort of 

free or constrained space. 
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Designed for the database systems of vehicles moving on road networks, the road 

networks are represented by a set of directed road segments indexed by a segment tree, 

and a balanced interval tree structure is used to index time segments associated to the 

road segments. These two structures working together can achieve ideal data update 

complexity of average O(1) I/Os to meet the application system’s real-time requirements, 

and I/O cost on most of the search operations is within the order of logarithm. 

A distributed system architecture with centralized organization is presented for a 

real-time database system on moving vehicles on regional road networks. The key 

problems for a real-time database system, such as the real-time property, transaction and 

concurrency control, storage management, backup and recovery, and the system security, 

are discussed and solutions are given. The detailed implementation related issues 

involved in the development of such application systems are itemized based on the 

system requirement analysis on the real world scenario of moving vehicles in greater 

Miami area, and a suggested total solution is provided. 

 

7.1 Dissertation Contributions 

The main contributions of this dissertation research are concluded as follows: 

1. STAPS is the first known systematic approach for building indexing structures 

for Continuously Moving Objects databases. Instead of being taken as another 

spatial dimension, time is treated separately from the spatial dimensions. The 

time dimension and the space dimensions interfere with each other at the points 

of IETs. This way the continuity of the objects movement is well represented. 
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Hence data and indexing structures developed applying the STAPS approach are 

potentially more efficient than those developed in the traditional ways.  

2. The Segment Tree structure [Bent77] is adopted and carefully re-modified to fit 

the application model of real-time moving vehicles on road networks. The 

indexing structures with proven I/O complexity meet the system’s real-time 

requirements with acceptable search performance. They can be extended to 

higher dimensional and/or free moving space without compromising the 

efficiency provided to the cases of 2-dimensional road networks constrained 

space. 

3. The proposed indexing structure supports data insertions at worst case O(clogn) 

I/O cost with very small constant c, and the average I/O cost for data updates in 

the vehicles moving on road networks case is O(1). The real-time data updates 

property is ensured. 

4. An architecture and detailed system design is provided for the implementation of 

a real world application model – real-time integration of a location information 

tracking and retrieval system for vehicles moving on (region wide) road 

networks. 

 

7.2 Future Work 

This dissertation research has addressed most of the core issues involved in a moving 

objects database. Solutions are provided to the specific case of moving vehicles on road 

networks. However, there are yet important issues, which are either not discussed or not 

fully developed. Our next step will be to work on the implementation of the database 
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system on vehicles moving on road networks, using the data structure, system 

architecture and design presented in this dissertation. Then we will focus on the tuning of 

the searching performance on some types of queries, and the development of algorithms 

to answer other important types of queries, such as nearest neighbor. To itemize, the 

future work includes: 

- System Implementation. To implement the proposed application system, and then 

embed the data and indexing structure to Sem-ODB is part of the main concerns 

in the near future plan. 

- Reducing the I/O costs on range queries. Based on the experimental results from 

the running application, parameters can be adjusted to achieve better I/O 

performance for queries, especially the range queries. 

- Nearest Neighbor Search. In practice, this family of queries are useful for 

companies or government agencies to do their scheduling and/or planning work. 

In research, it is a topic of interest to people in several research areas. 

-  Explore the possibility of a systematic method to partition the space and define 

the IETs. After or at the same time that the above tasks are carried out, we can 

work on the space partition methods to improve the overall system performance 

and speed the data structure and algorithms design for different kinds of MODBs 

and related applications. 
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Appendix  A  Semantic Schema for Road Segments and Vehicles 
APPENDICES 

 
 
 
 
 
 
 
 
   
 
 
 

 
Dynamic_ Attributes 

 
Roadid:  integer 

time:  time 
velocity: real 
distance: real 
easting: real 

northing: real 
 

 
Static_Attributes 

 
Vid: integer 
make: string 
model: string 
year: integer 

 
Location 

 
zone: integer 
easting: real 

northing: real 
address: string 

 
Discrete _Attributes 

 
Road_Segment 

 
Roadid :  integer 

Starteasting : real 
Startnorthing : real 
Endeasting : real 
Endnorthing : real 
Zone: integer 
Length : real 

Speed_limit: real 

 
Vehicle 

next (1:m) 

Ownership 
owner: string 

start_time: time 

Use 
use: string 

start_time: time

Color 
color: string 

start_time: time 

 

Destination 
start_time: time 

run_on (1:m) 

on (m:1) 

at (m:m) 

has (m:m)

dest (m:m) 

own_by (m:m) 

use (m:m) 
static (m:m) 

dyn (m:m)

dis (m:m)

col (m:m) 
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Appendix B Map of Greater Miami Area 
 
 
 

Inside the Yellow Rectangle, Sized 95km×132km , is the Area Where 
Vehicles Would Most Likely Appear. 
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Appendix C Two Sample Road Segments Layout in Miami Florida 
 

 
 
 

a. about 175 segments/km2 -- Miami Down Town  
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b. about 210 segments/km2 -- Miami SW 8th Street 
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