
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-13-2004

An Indexing Structure and Application Model for
Vehicles Moving on Road Networks
Xiangyu Ye
Florida International University, yex@cs.fiu.edu

DOI: 10.25148/etd.FI08081551
Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Ye, Xiangyu, "An Indexing Structure and Application Model for Vehicles Moving on Road Networks" (2004). FIU Electronic Theses and
Dissertations. 26.
http://digitalcommons.fiu.edu/etd/26

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/26?utm_source=digitalcommons.fiu.edu%2Fetd%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

AN INDEXING STRUCTURE AND APPLICATION MODEL

FOR VEHICLES MOVING ON ROAD NETWORKS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Xiangyu Ye

2004

To: Dean R. Bruce Dunlap
 College of Arts and Sciences

This dissertation, written by Xiangyu Ye, and entitled An Indexing Structure and
Application Model for Vehicles Moving on Road Networks, having been approved in
respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Geoffrey Smith

Ouri Wolfson

Nagarajan Prabakar

Shu-Ching Chen

Naphtali Rishe, Major Professor

Date of Defense: July 13, 2004

The dissertation of Xiangyu Ye is approved.

Dean R. Bruce Dunlap
College of Arts and Sciences

Dean Douglas Wartzok

University Graduate School

Florida International University, 2004

 ii

© Copyright 2004 by Xiangyu Ye

All rights reserved.

 iii

DEDICATION

I dedicate this dissertation to my two grandmothers and my son Michael.

 iv

ACKNOWLEDGMENTS

I thank my major professor Naphtali Rishe for his academic advice and guidance. I

am grateful for his offers throughout the past seven years. From time to time, it was these

offers altogether that made it possible for me to go back to school and eventually reach

this point.

I am indebted to Geoffrey Smith, from whom I learn to be a good researcher. At the

hardest time of this dissertation research, Dr. Smith helped me out with his invaluable

advice and encouragement. In the late stage, he carefully reviewed and pointed out great

many errors in the dissertation.

Maxim Chekmasov has not only spent time providing directions and discussions at

the early stage of the dissertation research, but also carefully read and corrected my early

versions of writings. Nagarajan Prabakar has spent time discussing, directing and

correcting any new ideas I had. Shu-Ching Chen has provided valuable critiques on my

early work and constructive suggestions on the final results. In the classes they teach,

Xudong He and Giri Narasimhan have showed me the beauty of algorithms from

different angles. I thank the above FIU professors for their time, knowledge and support.

I wish to thank Ouri Wolfson and express my special appreciation to him for his

contributions to Moving Objects Databases research area. It was Dr. Wolfson’s work that

attracted me to this area of research, and the information and advice he provided in the

final stage has resulted in the improvement of the completeness of this dissertation.

Several of my friends have helped me in various ways. Fang Xie and Jiacun Wang

helped me greatly in taking care of my son when I started taking classes at FIU. Natalia

Terekhova, Li Yang and Olena Zhyzhkevych helped me with registration issues and

 v

various of forms during my physical absence from school. School of Computer Science

secretary Maria Monteagudo thoughtfully did all the required paper work during the

whole course of my graduate study at FIU, and handled all the final forms for me. Gaolin

Zheng and I had a very informative discussion on a topic in Computational Geometry. I

thank them and appreciate their help and time.

The last, but not least, thanks go to my family. My aunt Xiu not only encouraged me

to finish the degree, but also supported me through the toughness of living in a foreign

country. My mother in law Hui encouraged and comforted me on my fear of technical

writing. Even though being desperately waiting for the first “doctor” in the family, my

father and my uncle Yan didn’t ask me too often about when I was going to graduate in

the last couple of years. My husband Charles and our son Michael provided many

constructive suggestions on the research and application of the dissertation. Charles set

up and maintained a fully equipped research lab for me in our California home, where the

key solutions on this research topic were formed and the dissertation was finished. Many

of our discussions on systems and hardware also turned out to be very valuable to the

quality of this dissertation. Charles also provided full financial support during the last

year of my PhD research. I thank all my family members for their love and patience.

 vi

ABSTRACT OF THE DISSERTATION

AN INDEXING STRUCTURE AND APPLICATION MODEL

FOR VEHICLES MOVING ON ROAD NETWORKS

by

Xiangyu Ye

Florida International University, 2004

Miami, Florida

Professor Naphtali Rishe, Major Professor

Moving objects database systems are the most challenging sub-category among

Spatio-Temporal database systems. A database system that updates in real-time the

location information of GPS-equipped moving vehicles has to meet even stricter

requirements. Currently existing data storage models and indexing mechanisms work

well only when the number of moving objects in the system is relatively small. This

dissertation research aims at the real-time tracking and history retrieval of massive

numbers of vehicles moving on road networks. A total solution is provided for the real-

time update of the vehicles’ location and motion information, range queries on current

and history data, and prediction of vehicles’ movement in the near future.

To achieve these goals, a new approach called Segmented Time Associated to

Partitioned Space (STAPS) is first proposed in this dissertation for building and

manipulating the indexing structures for moving objects databases.

Applying the STAPS approach, an indexing structure of associating a time interval

tree to each road segment is developed for real-time database systems of vehicles moving

on road networks. The indexing structure uses affordable storage to support real-time

 vii

data updates and efficient query processing. The data update and query processing

performance it provides is consistent without restrictions such as a time window or

assuming linear moving trajectories.

An application system design based on distributed system architecture with

centralized organization is developed to maximally support the proposed data and

indexing structures. The suggested system architecture is highly scalable and flexible.

Finally, based on a real-world application model of vehicles moving in region-wide, main

issues on the implementation of such a system are addressed.

 viii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION .. 1

1.1 Thesis Overview ... 3

2 RELATED WORK ... 7

2.1 Data Model and Data Structures ... 7
2.2 Indexing Structures ... 10
2.3 Handling of Uncertainty and Imprecision... 17
2.4 Query Languages .. 19
2.5 Implementation and Applications ... 20

3 DATA MODEL AND DATA STRUCTURE .. 21

3.1 Data Model.. 22
3.1.1 Handling of Imprecision ... 28

3.2 Data Structure ... 28
3.3 Indexing Structure... 32

3.3.1 Introduction to Segment Tree ... 35
3.3.2 Indexing Structure... 42

 3.3.2.1 Indexing the Road Segments ... 43
 3.3.2.2 Indexing Vehicle’s Motion .. 49

3.4 Query Processing .. 57
3.4.1 Path Computation.. 59
3.4.2 Answering the Queries.. 62

3.5 Conclusion .. 65

4 SYSTEM ARCHITECTURE ... 67

4.1 Overview... 69
4.1.1 Distributed Architecture.. 70
4.1.2 Centralized System Organization ... 74

4.2 Meeting the Real-Time Requirements .. 76
4.3 Storage Management .. 79
4.4 Transaction and Concurrency Control .. 82
4.5 Backup and Recovery ... 85
4.6 Other Issues... 88

4.6.1 System Security .. 88
4.6.2 Query Processing .. 90
4.6.3 User Interface.. 91

4.7 Conclusion .. 91

5 IMPLEMENTATION... 94

5.1 System Requirements Analysis... 95
5.2 Setup the Parameters... 99

 ix

5.3 Hardware Platform and Operating System ... 101
5.4 Software Development.. 103
5.5 Conclusion .. 106

6 OTHER CONSIDERATIONS.. 107

6.1 Embedding the Data Structure into Sem-ODB... 107
6.2 Extend The Indexing Structure ... 109

6.2.1 Indexing Objects Moving in Free 2-d Space ... 109
6.2.2 Indexing Objects Moving in Higher Dimensional Space 111

6.3 Data Warehousing... 112

7 CONCLUSION... 114

7.1 Dissertation Contributions .. 115
7.2 Future Work .. 116

BIBLIOGRAPHY... 118

APPENDICES .. 127

VITA... 131

 x

LIST OF FIGURES

FIGURE PAGE

Figure 3-1 The Road Segments... 23

Figure 3-2 Approximate the Motion Between Two Sampling Points 25

Figure 3-3 A File Keeping a Vehicle’s Motion .. 31

Figure 3-4 The Space Partitions and Time Segments... 33

Figure 3-5 Building a Segment Tree... 37

Figure 3-6 Two Extreme Layouts of the Segments .. 38

Figure 3-7 Revised Segment Tree... 39

Figure 3-8 Searching a Segment Tree... 44

Figure 3-9 Different Cases for Algorithm SearchRectangle... 47

Figure 3-10 Answering Point and Range Queries in Time Interval Tree 49

Figure 3-11 Insertion of an Interval to the Time Interval Tree... 52

Figure 3-12 The Candidate Answer Set.. 58

Figure 3-13 Data Flow in Query Processing... 62

Figure 4-1 A Vehicles Location Information Tracking System 68

Figure 4-2 Distributed System With Centralized Organization.. 71

Figure 4-3 The Central Control Unit .. 75

Figure 4-4 The Four Levels of Storage... 80

Figure 5-1 Data Flow in Vehicles Tracking System... 104

Figure 6-1 Building Indexing Structure for Objects Moving in Free 2-d Space 110

 xi

1 INTRODUCTION

The Global Positioning System (GPS) has been widely adopted in location based

applications and services. The current GPS technology makes it possible to automatically

track the position of an object in real-time [DOD01]. Some GPS devices in the market

can achieve an accuracy of about 3 meters [Garm]. That is to say, we can locate the

location of vehicles equipped with such devices to as accurate as ± 1 lane when they are

running on road networks.

On the one hand, it is not uncommon nowadays to see application systems that

monitor, retrieve, and manage transportation systems by equipping the vehicles with GPS

devices and having them wirelessly connected to a processing server located in a data

center. The owner of a private car can install a small GPS enabled device as shown in

[Garm, Geod, Nova] and subscribe to services from a service provider to keep track of

the current location as well as to retrieve the past driving routes. Transportation services

such as Taxi companies and car shipping firms monitor and schedule their GPS-equipped

taxicabs or shipping carriers. Public transportation services extend such systems even

further so as to allow commuters to check real-time bus status.

On the other hand, researchers in the (road networks) traffic control and Intelligent

Transportation Systems (ITS) areas have been spending great amount of efforts studying

the patterns of vehicles’ movement on roads, and developing laboratory traffic simulation

systems.

Is it possible to improve, if not replace, the traffic simulation systems with the real-

world allocation of vehicles location information and their movements from the existing

 1

vehicles location information tracking systems? To do so, we must first integrate the data

in these separate vehicles tracking systems into one database system. Besides providing

the patterns of vehicles’ movements for traffic simulation, an integrated vehicles location

information system can also provide more other useful information, such as the real-time

road condition, to the users; And it costs less in system maintenance than running

individual tracking systems separately.

However, the security and privacy protection are one kind of issues and the technical

difficulties in designing and implementing such an integrated database system are another

issue that we need to resolve before this idea can be carried out and put in use. Even

though the first kind of issues will not be completely omitted in this dissertation, our

focus is on the technical issues in designing and implementing a real-time location

information tracking and history retrieval system of massive numbers of vehicles.

Moving Vehicles are a subcategory of moving objects in general. Researchers in

several areas, such as databases, motion planning, and pattern analysis, have been

studying the properties and/or management of continuously moving objects. The main

challenges of this topic for researchers in database area stem from the continuity of the

objects’ motion, which makes setting up a precise data model and building an efficient

indexing structure difficult. To track up-to-date motion of GPS-equipped vehicles within

a database system, real-time constraints need to be satisfied for update and query

operations. This fact introduces even stricter requirements to the system performance in

terms of I/O costs of these types of data accesses. Other than indexing structures that

work well with past/historical data, new indexing structures that are efficient in

performing real-time data accesses need to be found or designed.

 2

In the recent years, extensive research efforts have been put in the field of Moving

Objects (Database) Systems. Most of these works are either experimental or theoretical.

A systematic solution has not yet been found. As described in [ES02, Jen02], the

remaining research challenges in this area are mainly in data modeling, efficient indexing

approaches, and Query Languages Standardization.

Targeted at building an application system to track the current location information

and past movement of massive numbers of vehicles moving in region wide, the main

efforts of this dissertation are put in finding an efficient indexing scheme for the real-time

tracking and history retrieval of moving vehicles on road networks. A new approach,

Segmented Time Associated to Partitioned Space (STAPS), is proposed for the building

and manipulating of the indexing structures for continuously moving objects in general.

Applying this general moving objects indexing approach, an efficient indexing structure

is developed for moving vehicles on road networks, and will be used in the design and

implementation of a vehicles location information database system.

1.1 Thesis Overview

The objects of our main concern in this dissertation are vehicles moving on road

networks. The final goal will be to develop an integrated real-time vehicles’ location

information tracking system. The indexing structures to be developed should be able to

efficiently process range queries and data updates, and meet the following criteria: (1).

Vehicles location information is updated in real-time, (2). The past moving trajectories of

the vehicles can be efficiently retrieved, and (3). Vehicles’ near future movement can be

predicted, provide known information like a vehicle destination.

 3

The vehicles are equipped with GPS receivers and they periodically transmit their

location information in the form of geo-location, speed, and the time when the data set is

sampled. And the road networks are represented by street and highway road segments.

The road segments information can be obtained in the form of geo-coordinated polylines,

along with other properties, such as the speed limits [Nav].

The most frequently appearing queries to a moving objects database are range

queries. The types of queries of our main concern include:

Q1. Display the motion of all or a given sub-set of vehicles in real-time.

Q2. Replay the motion of a given set of vehicles from past time t1 to time t2, t2 can be

 past, now or near future time.

Q3. Find the vehicles that have been on a given road segment between time t1 and t2,

 and display their movements during [t1, t2].

Q4. Retrieve the moving trajectories of the vehicles that have been in a given

 rectangular area R, between time t1 and t2.

Q5. Return the vehicles that can reach a given point p, within time ∆t.

Q6. Predict the motion of given set of vehicles in the near future from t1 to t2.

In this dissertation research, a commonly used data model is adopted. Vehicles are

represented by points. Their shapes and sizes are ignored. The moving trajectory of a

vehicle is kept as a sequence of sample points of the form of (t, Rid, d, v). Where t is the

time at which the vehicle is at this location, Rid is the number of the road segment that the

vehicle is on, d is the current distance the vehicle is from the starting point of this road

segment, and v the speed the car is running at this point. Road networks are represented

 4

by a set of non-inner-intersecting one-directional road segments, each assigned a road

segment number. A two-way road segment is treated as two one-way segments. The

attributes maintained with each road segment include: the geo-coordinated layout of the

road segment, its starting and ending points, total length, speed limit, and the road

segments that are next to it at the end.

The core innovations of this dissertation research are in the indexing structures. In

the proposed STAPS approach, time and space are treated differently. Space is divided

into non-overlapping regions and indexed using appropriate space indexing structures.

The time intervals during which objects moving inside each region of space are collected,

indexed, and associated to this region.

Applying the STAPS approach to moving vehicles databases, the space is divided

into road segments. The road segments are indexed using segment tree structure [Bent??].

And the sets of time intervals generated by vehicles running on road segments are

indexed using balanced interval trees. A moving vehicles database system adopting this

indexing scheme is flexible and highly scalable, since road segments, time intervals, and

their indexing structures can easily be distributed to and processed by different

processors, any levels of memories, and servers, when such distribution is needed to

improve system performance.

An application system design is also developed in this dissertation, based on the

proposed data and indexing structure. In the system design, a distributed system

architecture with centralized organization is adopted. Issues such as the storage

management, transaction and concurrency control mechanisms, and security are carefully

balanced to maximize system performance, meet real-time requirements, and ensure

 5

system reliability. The final data structure and implementations can be embedded into

Sem-ODB [Rish92] or other existing Database Management Systems (DBMS) in the

future.

The rest of this thesis is structured as follows. Chapter 2 addresses related work in

the context of moving object and spatio-temporal database systems. Chapter 3 presents

the data model, data structure, and indexing scheme that this dissertation proposes.

Chapter 4 discusses the system architecture and design. Chapter 5 shows an example

implementation, which applies the design into a system managing vehicles moving in the

greater Miami area. Chapter 6 analyses the possibility of extending the data structure and

the application. Topics in this chapter include extending the indexing structure to objects

moving in higher dimensions and/or with fewer constraints, data warehousing the system,

and embedding the system design as a data blade to Sem-ODB and other object-oriented

or relational database management systems. Chapter 7 concludes the thesis and points out

future work.

 6

2 RELATED WORK

The storage and retrieval of moving objects are concerns of several research areas,

such as spatio-temporal databases, moving objects databases, and motion planning, etc.

Various proposals have been published, each addressing one or more sub-topics related to

the whole problem. In the application aspect, there are several laboratory

implementations, along with a big number of industrial real-time tracking systems

covering single or enterprise wide vehicles.

The emphasis of this chapter will be put in reviewing the currently existing indexing

schemes for moving objects. The current status and trends of other key issues in this area

of research, which include the data modeling and data structures, query languages and

application systems development, will also be briefly mentioned.

2.1 Data Model and Data Structures

Since the mid 90’s when the continuously moving objects caught serious attention of

researchers in the Database area, possible data models and data structures for managing

this category of data have been almost exhaustively explored.

In Worboys’ approach [Wor94], spatio-temporal objects are defined as spatio-

bitemporal complexes. Their spatial features are described by simplicial complexes, and

their temporal features are given by bitemporal elements attached to all components of

simplicial complexes.

In [TSPM98], Theodoridis et al. proposed a discrete snapshot model. A spatio-

temporal object o is represented by a time-evolving spatial object. Its evolution is

 7

represented by a set of triples (o_id, si, ti), where o_id is the object identifier of o and si is

the location of o at time ti.

Attribute time stamped models were proposed by Gadia and Nair in [GN93], Segev

and Shoshani in [SS93], and Clifford, Crocker, and Tuzhilin in [CCT93]. This group of

data models aim at gathering information about an object in one tuple and allow complex

attribute values. These complex values incorporate the temporal dimension and are

frequently modeled as functions from time into a value domain.

Another approach is to use linear constraints for modeling spatio-temporal data

[GRS98]. This model supports efficiently representing and manipulating infinite point

sets in arbitrary dimension. Time and geometry are treated as different and independent

categories of data.

The approach presented in [ES02] by Erwig and Schneider supports an integrated

view of space and time. A temporal version of an object of type α is represented by a

function from time to α. A straightforward and instructive view of spatio-temporal objects

is to visualize their temporal evolution as purely geometric, 1+geometric-dimensional

objects. The spatio-temporal objects in 2-d space are hence taken as 3 dimensional

geometric objects.

Erwig and Schneider also developed a complete set of spatio-temporal predicates to

describe the spatio-temporal relationships between objects, viewing time as another

spatial dimension [ES02]. The sptio-temporal predicates they proposed take into account

temporal logic, point set theory and point set topology. This approach was moved

forward by Forlizzi et al. in [FGNS00] and by Cotelo et al. in [CFGN01] with data

structures and algorithms for the representing and implementation of basic types,

 8

predicates, and operators. In [GBEJ01], Güting et al. presented how to incorporate this

model with object-relational databases, which include how to put these spatial and

temporal data types into the columns of a database, and how to form different types of

queries in the format that an object-relational DBMS accepts.

In [WSXZ99, SWCD97] Wolfson, Sistla and their group introduced the MOST data

model. In their data model, the concept of dynamic attributes to objects is introduced.

The continuous change of an object’s location is represented by a function of time. A

dynamic attribute A is represented by three sub-attributes: A.updatevalue, A.updatetime,

and A.function. The value of a dynamic attribute depends on time, and it is defined as: at

time A.updatetime the value of A is A.updatevalue, and until the next update the value of

A at time A.updatetime+ t0 is given by A.updatevalue+ A.function(t0). An explicit update

of a dynamic attribute may change its value sub-attribute, or its function sub-attribute, or

both sub-attributes. For an object moving in 2-d space, its location attribute L can be

modeled by two dynamic attributes L.x and L.y, each with its own update value, function

and update time. They also modeled the uncertainty property of the data [SWCD98].

Vazirgiannis and Wolfson in [VW01-2] proposed a data model for moving objects

on road networks, which is similar to the approach this dissertation adopts. Roads are

represented by polylines. The geo-information along with the speed limit and other

attributes regarding each segment of the road are associated with the road id’s. The

trajectory of a moving object can then be represented by a polyline along space and time

dimensions.

 9

2.2 Indexing Structures

The most commonly used indexing schemes for temporal databases are multi-version

and persistent tree structures. In the other hand, R-tree, quadtree and their variants are

widely adopted in indexing spatial data. In general temporal database systems, the change

or movement of data along time is discrete. And pure spatial data do not involve time.

When the objects’ movement is continuous, neither the general temporal nor the general

spatial indexing mechanisms can be directly adopted for efficiently indexing the

continuously changing spatio-temporal data.

Becker and colleagues in [BGOS93, BGOS96] proposed multi-version B-tree

approach for indexing the data discretely changing as time evolves. A multi-version B-

Tree keeps an index structure for the versions and another structure for the data within

each version. Whenever an update -- either an insert, delete, or modify -- happens, a new

version is generated. These two structures can use the same scheme, or different trees.

Each node in the version index structure points to the root of the data entries for the

corresponding version. A data entry inside one version can point to a node in another

version if itself and all its descendants are the same in both versions. Varman and Verma

in their work [VV99] presented their multi-version structures and showed how to apply

the multiversion technique to database systems.

Multi-version trees and persistent data structures have been discussed in the work of

other researchers. The main differences between various proposed schemes are in how

the versions and data indexing are organized and maintained, how the overflow and

underflow of a node are treated, etc. These techniques are appropriate for temporal

 10

databases where the data change is discrete. But they are not suitable for indexing

continuously moving objects.

Time Parameterized R-Tree or TPR-tree, was originally described in [ŠJLL00] by

Šaltenis et al. Šaltenis and Jensen later on optimized this structure in [ŠJ02] and named it

REXP-tree. The TPR-tree or REXP-tree is a balanced, multiway tree with the basic structure

of an R*-tree. In this approach, Minimum Bounding Boxes (MBB) are time-

parameterized. MBB changes dynamically as time evolves. This structure supports only

queries falling inside time frame between now and near future. The term “near future” is

defined by a querying window. MBB’s are revisited upon updates when reaching update-

time bounding rectangles. The concept of object’s expiration was introduced. Queries on

the past and future data that beyond the defined querying window are not supported.

TPR*-tree is proposed in Tao et al’s recent paper [TPS03]. It optimizes the original

TPR-tree by employing a new set of insertion and deletion algorithms to minimize the

query time cost, especially for the static point interval query q, whose (i) MBR has length

| | = 0 on each axis, (ii)VBR(Velocity Bounding Box)={0,0,0,0}, and (iii)query

interval Q

Riq

T={0, H} where H is the horizon parameter.

In [HKTG02], Hadjielefttheriou et al. proposed partially persistent R-tree (PPR-tree)

for indexing moving points, rectangles and objects of other shape. Emphasis is given to

range queries for historical time t or a short period around t. Typical queries their

approach supports are of form “find all the objects that appear in area S during time t.”

They view the plane where the objects move and the time dimension as a 3-dimensional

volume. And objects are split along time dimension to reduce empty space and hence

 11

reduce the size of MBR’s. It can handle non-linearly moving objects as efficiently as

those moving linearly.

In their paper [“PKGT02”], Papadopoulos et al. proposed a scheme for indexing

linearly moving objects on the plane using dual transform. Objects with small velocity

magnitude are transformed to Hough-X, which is (v, a) space. And objects with large

velocity magnitude are transformed to Hough-Y, which has (n, b) coordinates. This way

the MBR won’t be too unreasonable for any objects, and hence the searching

performance is efficient. Inside a Horizon, this scheme performs approximately the same

as a TPR-tree. But outperforms the later when temporal part is out of the horizon.

Chon, Agrawal and Abbadi in [CAA02] gave a scheme to index the objects for

queries within time period ∆T. It divided the time into n adjacent intervals, and the space

into m segments. As time evolves, they shift the time domain forward. The trajectory of a

moving point is represented by a polyline using a linked list. The headers of these linked

lists are indexed with a hash table. The space-time grid is implemented using an array.

Inside each cell (grid), only the identifier of intersected points is stored. They also

provided performance experiments with different parameters including the size and

thresholds of a grid.

In [BGZ97, BGH99, Bas99], Basch et al. proposed a kinetic data structure for

indexing linearly moving points, which is based on the observation that the topological

relationship between moving points changes only at some event (time) points even

though their motion is continuous. Similar to the plane sweep technique which is widely

adopted in Computational Geometry community, two structures are kept at any time for

the indexing purpose. One is the order of the moving points, the other is an event queue.

 12

Agarwal et al later proposed external kinetic B-Tree to handle the linear movement of

points [AEG98].

Agarwal has contributed greatly to the indexing of linearly moving points, among

which are the time-oblivious algorithms and time-responsive solutions. In his time-

oblivious algorithms [AAE00], the core is the adoption of dual transform and the

partition tree. The motion in 2-d space along time is viewed as the combination of motion

in x- along time and that in y- along time. With both xt- and yt-, dual transform is applied

and the trajectory of each moving point, which is a line, is hence transformed to a point in

the dual space. For points moving in 2-dimentional space, build a 2-level partition tree on

the points dual transformed from the trajectories of the moving points as follow: first

level partition tree on the xt-space, with second-level on yt-space associated to nodes in

some levels chosen by a certain mechanism. The total number of levels chosen is in O(1),

so the size of secondary tree is O(n). With a set S of N linearly moving points in either 1-

d or 2-d space, an index on S, using n blocks of storage with each block of size B, can be

built in O(NlogBn) expected I/Os such that the range queries can be answered in

O(n1/2+ε+k) I/Os. Points can be inserted or deleted in amortized cost of O(logB
2n)

expected I/Os. Where ε can be a very small but positive real number.

Another scheme proposed by Agarwal combines the kinetic range tree [AAV01]

developed by Basch and an external range tree [ASV99] by Arge. Kinetic external range

tree combines the kinetic B-Tree as a secondary tree to some levels of an external range

tree. It answers range queries for given point of time on points moving in ℝ2 in

 13

O(N1+ε/ ∆ +k) I/Os using O(nlogBn/ logBlogBn) space. Where ∆ is a parameter, BN ≤ ∆ ≤

N2.

Agarwal’s time-responsive algorithm for indexing N points moving in 1-dimension is

to divide the space along horizontal (t-) axis into logBN slabs. It is claimed that with high

probability each slab contains O(N) vertices. Build index structure for each slab using the

concept of arrangement [AAV01]. Complexities achieved for each slab is claimed as:

Using O(N/B) space and O(Nlog2NlogBN) I/Os to build the index, a point query can be

answered in O(Bi-1+logBN+K/B) I/Os. Where 1≤i≤logBN is the order of the slab from left

to right.

The indexing schemes we have so far talked about are mainly for range queries.

Nearest and reverse nearest neighbor queries frequently appear in some application as

well. In [BJKS02], Benetis et al. proposed an algorithm for answering RNN and one for

NN queries for continuously moving points in the plane. The algorithm returns the

RNN/NN of a moving point for any time duration T, in the form of a set {NNi, Ti} /

{RNNi, Ti}, where T ii
I = Ø, T ii

U = T. The query point can be a member in or outside

the set. A TPR-tree is used as underlying index structure. The RNN algorithm is

developed from the observation by Stanoi et al. in [SAA00] that in each one of the six

regions divided by three lines intersecting at the query point p there are at most two RNN

points of p, and the total number of RNN points is not more than 6.

 14

On objects moving in constrained space, there are several indexing schemes

proposed as well. Kollios et al. in [KGT99-2] mentioned NN search where objects

moving in road networks. They define this as 1.5 dimensions. Road networks are indexed

using any traditional static index scheme (Spatial Access Method) for 2-d space. And the

motion of objects is then 1-d. But no detail was given. In [PJ01], Pfoser and Jensen

proposed an indexing scheme for objects moving in constrained environment. In such

environments, some areas would never have any object appear. This scheme segments the

query window based on the infrastructure of background where the objects are moving

on, query the index on only those segmented sub-windows that possibly have objects

appear at any time, and then evaluate the joint of result sets.

Pfoser and Jensen later developed an indexing scheme for objects moving on 2-

dimensional constraining networks in [PJ03]. They reduced the 2-d space to one-

dimensional, and built indexing structures on the reduced 1-d space and 1-d time. In this

scheme, three kinds of mapping – all reduce the space dimensions from 2 to 1 – are

required: the mapping of the fixed networks, objects’ moving trajectories, and the

queries. Instead of one 3-d indexing structure, the networks in (x, y) space and objects

moving trajectories, which are reduced to (x, t) space, are indexed using separate

indexing structures. Both indexing structures, for networks and for trajectories, are R-tree

based. This indexing scheme supports only queries on past data.

Frentzos in his work [Fren03] proposed an indexing structure, called FNR-tree, to

index the past trajectories of objects moving on fixed networks, which looks very similar

to the indexing structures developed in this dissertation. The networks are indexed using

an R-tree. Attached to each leaf node of this R-tree is a set of time intervals during which

 15

objects moving over the space range defined by this leaf node. And each set of such time

intervals are indexed using a 1-d R-tree.

The MON-Tree proposed by Almeida and Güting [AG04] also uses two-components

to index the past trajectories of moving objects on networks. Routes, each defined by a

polyline, are indexed using an R-tree, and another R-tree indexes the moving trajectories

of the objects along each route.

To summarize the currently existing indexing schemes for moving objects, we can

mainly classify them into four categories: (1) Temporal approaches, which can

manipulate only discrete change of data; (2) The static R-tree based schemes, which

require pre-processing and only support queries on past data; (3) The time parameterized

R-trees, which are for queries on near future provide assuming objects moving linearly;

and (4) The proposals from Computational Geometry community, such as the kinetic-

based approaches, the dual transform scheme, the time oblivious and responsive

approaches, are for future motion of linearly moving points.

The known existing indexing structures for objects moving in networks constrained

space are all R-tree based, and they support past data only. To meet our application

system requirements, which include efficient retrieval of past data, prediction of objects’

near future position, and real-time data updates, none of these existing approaches well

fits for the data indexing purpose.

 16

2.3 Handling of Uncertainty and Imprecision

Wolfson et al. have systematically analyzed in their work [WCDJ98, SWCD98,

WSXZ99, Wol02] the uncertainty and imprecision problem in moving object

management systems. The location of a continuously moving object is inherently

imprecise because, regardless of the policy used to update the database location of the

object, the database location cannot always be identical to the actual location of the

object. This inherent uncertainty has various implications on database modeling,

querying, and indexing. For example, for range queries there can be two different kinds

of answers, i.e. the set of objects that "may" satisfy the query, and the set that "must"

satisfy the query. Thus, different semantics should be provided for queries. Another

approach would be to compute the probability that an object satisfies the query. Although

uncertainty in databases has been studied extensively, the new modeling and spatio-

temporal capabilities needed for moving objects introduce the need to revisit existing

solutions.

Additionally, existing approaches to deal with uncertainty assume that some

uncertainty information is associated with the raw data stored in the database. How is this

initial uncertainty obtained? For moving object database applications the question

becomes how to quantify the location uncertainty, how to quantify the trade-off between

the updating overhead and the uncertainty/imprecision penalty, how frequently should a

moving object update its location, and how to handle the possibility that a moving object

becomes disconnected and cannot send location updates?

In [WCDJ98, SWCD98, WSXZ99, Wol02] the authors extended their data model,

query language, and indexing method to address the uncertainty problem. The data model

 17

was extended by enabling the provision of an uncertainty interval in the dynamic

attribute. More specifically, at any point in time the location of a moving object is a point

in some uncertainty interval, and this interval is computable by the DBMS. Thus, the

DBMS replies to a query requesting the location of a moving object m with the following

answer A: "m is on route 698 at location (x,y), with an error (or deviation) of at most 2

miles". The bound b on the deviation (2 miles in the above answer) is provided by the

moving object, i.e. the object commits to send a location update when the deviation

reaches the bound. The FTL language is also extended. Two kinds of semantics, namely

may and must semantics, are incorporated, and the processing algorithms are adapted for

these semantics. The indexing method is also extended to enable the retrieval of both,

moving objects that "must be" in a particular region, and moving objects that "may be" in

it.

They also addressed the question of determining the uncertainty associated with a

dynamic attribute, i.e. the bound b mentioned above. They proposed a cost based

approach, which captures the tradeoff between the update overhead and the imprecision.

The location imprecision encompasses two related but different concepts, namely

deviation and uncertainty. The deviation of a moving object m at a particular point in

time t is the distance between m's actual location at time t, and its database location at

time t. For the answer A above, the deviation is the distance between the actual location

of m and (x,y). On the other hand, the uncertainty of a moving object m at a particular

point in time t is the size of the interval in which the object can possibly be. For the

answer A above, the uncertainty is 4 miles. The deviation has a cost (or penalty) in terms

of incorrect decision making, and so does the uncertainty. The deviation (uncertainty)

 18

cost is proportional to the size of the deviation (uncertainty). The tradeoff between

imprecision and update overhead is captured by the relative costs of an uncertainty-unit, a

deviation-unit, and an update-overhead unit. Using the cost model we propose update

policies that establish the uncertainty bound b in a way that minimizes the expected total

cost. Furthermore, we propose an update policy that detects disconnection of the moving

object at no additional cost.

2.4 Query Languages

Generally, a query in Moving Objects Database applications involves spatial objects

and temporal constraints. Traditional query languages such as SQL are inadequate for

expressing such queries.

Sistla et al. in [SWCD97] introduced a temporal query language called Future

Temporal Logic (FTL) for query and trigger specifications in moving objects databases.

The language is natural and intuitive to use in formulating MOD queries, and it uses both

spatial operators (e.g. object INSIDE polygon) and temporal operators (e.g. UNTIL,

EVENTUALLY in the future).

In [MSI02], Mokhtar et al. investigated the appropriateness and efficiency of regular

query languages on moving objects databases. They argued that traditional constraint

query evaluation techniques are suitable for past queries, but neither for “continuing” nor

the future ones. They also think that plane sweep technique can evaluate spatio-temporal

queries efficiently.

In [VW01-2], Vazirgiannis and Wolfson also formalized the queries for moving

objects on road networks.

 19

2.5 Implementation and Applications

In the implementation and application aspects, both inside and outside the research

community have various finished or ongoing projects on management of moving objects.

Pfoser and Theodoridis in [PT00] presented a trajectory generator, which extends

their earlier work named GSTD, based on constraint environment (e.g. areas with

buildings where objects are prevented from entering). Oporto, developed by Saglio and

Moreira, is another scenario generator for fishing boats.

Tripod, as talked about in Griffiths et al.’s work [GFPH01] is a spatio-temporal

database management system with full functions of a DBMS: data update, storage and

retrieval, query processing, programming language access support, etc.

There are several real-time vehicles tracking systems, such as the ones described in

[Garmin, Geod, Nova]. These applications are for personal, or enterprise uses. Either the

numbers of vehicles are small, or the query involved relationship are concerned only of

inside subsets. One of the most widely application area is for intelligent transportation

systems, such as [Wash, Geog, Trim].

 20

3 DATA MODEL AND DATA STRUCTURE

As observed and analyzed earlier, even though the motion of the vehicles is

continuous, we can only keep the location and speed information for some discrete

sampling points. So it is necessary to have a mechanism, which should be not too

complicated and not too difficult to implement, to approximate the location and motion of

a vehicle between the discrete sampling points.

Now the problem becomes: how do we decide the sampling points, along time

dimension of course? The GPS enabled devices in our system update their location and

speed data periodically. That is to say, the most accurate data we could get on the

vehicles’ motion is a set of data at discrete sampling points. So do we keep each and

every data update from a vehicle in our database?

We know that there is a tradeoff between the data precision and system load. The

shorter the sampling interval, the more accurate the motion of a vehicle is kept, and more

data is kept in the database. Our goal is to use least possible memory space and simplest

possible computation expense to achieve the best accuracy.

Even though the GPS enabled devices send vehicles’ motion data periodically, the

sampling time interval in our tracking system need not be uniform. Depending on the

road situation where a vehicle is running on, the speed, and the change of speed, some

motion updates from the vehicles may be omitted. Only those key points which affect the

calculation of the motion in their nearby region are recorded and put into the database.

In the following sections of this chapter, we talk about the data modeling, data

structure and indexing scheme that will be used in our system design and implementation.

 21

3.1 Data Model

The various proposals on the data modeling sub-topic of the moving objects database

area may look quite different from one another. The differences are mainly in the degree

of formalization of these models. Beneath the variety of the appearance of these data

models, almost all of the known proposals are basically similar in terms of a

mathematical representation. Considering the maturity and reliability of these already

approved and widely accepted existing approaches, there is no reason for us not to adopt

a similar one.

The rest of this section will discuss the data model for road networks, vehicles and

their movement, and time granularity.

The road networks are represented by a set of directed and connected road segments.

A road segment in the context of this writing is defined as a segment on the road such

that:

(1) No intersection with other road segments exists inside the segment, and

(2) The ends, namely the start point and the end points, are either the end of a road

segment or the intersecting point of two or more road segments.

A two-way road segment is treated as two separate one-way road segments. Figure3-1

explains the definition of the road segments in the context of this writing.

Each road segment is defined by a unique integer number Rid, the geo-location of the

start point Se and Sn, geo-location of the end point Ee and En, the total length of this road

segment L, the speed limit SP, and the road segments that are geographically next to it.

 22

p5

p1

p3

p4

p2 p7
p6

21 pp , 32 pp , 53 pp , 75 pp , 57 pp are road

segments, but 43 pp , 52 pp , 62 pp are not.

Figure 3-1 The Road Segments

It is needed to mention that the road networks are not static. Road segments may

look static when we look them in a short time interval. But they actually are not. Even

though, compare to the movement of vehicles, changes to road networks are far less

frequent, such changes do happen. A road segment can be removed due to reasons like

construction. Roads can change their routes and new roads can be built as well. But such

changes are discrete. So the time period at which a road segment is live needs to be

attached, and a record for a road segment is defined as:

road_segment {
Roadid : integer,
Starteasting : real,
Startnorthing : real,
Endeasting : real,
Endnorthing : real,
Length : real,
Speed_limit: real,
Time_of_birth: time,
Time_of_death: time,
Next: *road_segment

}

 23

Using such a format, not only the road map is described by a complete set of road

segments, but also the topological relationships among them.

The vehicles’ attributes can be classified to three sub-categories: the static attributes,

the discretely changing attributes, and the continuously changing attributes. These three

categories of attributes are modeled respectively as follows.

(1) The static attributes. Since vehicles in our system are independent entities,

each of them is assigned a unique integer ID, Vid. A vehicle’s static

properties, such as the make, model, size, etc., are included in this category.

A complete set of such attributes and their data types is defined as:

 vehicle_attributes_ static {
 Vid: integer,
 make: string,
 model: string,
 year: integer
 }

(2) The discretely changing attributes. Vehicle’ color, ownership and use

could change over time, even though such changes are extremely infrequent.

But the planned destination of a vehicle changes probably several times a

day. It is not mandatory for a vehicle to update the data center on its change

of destination. However, if a vehicle is a taxi cab, a shipping truck, or a bus,

it is necessary to keep this information up-to-date at any time, for the sake of

efficient scheduling. This set of attributes are:

 vehicle_attributes_ discrete {
 ownership: {owneri: string, ti: time},
 color: {colori: string, ti: time},
 use: {usei: string, ti: time},
 destination: {desti: location, ti: time}
 }

 24

 Here location is a compound data type defined as:

 location {
 zone: integer, //UTM zone
 easting: real,
 northing: real,
 Address: string
 }

(3) The continuously changing attributes. Or called the dynamic attributes.

All the attributes that together define vehicle’s motion belong to this

category. They are formally represented as:

 vehicle_attributes_ dynamic {
 Roadid: integer,
 time: time,
 velocity: real,
 distance: real,
 easting: real,
 northing: real

 }

Below are the analysis and explanation about the dynamic attributes.

p1 (t1, v1, d1)
p2 (t2, v2, d2)

p (t, v, d)

d=0

Figure 3-2 Approximate the Motion Between Two Sampling Points

 25

The motion of a vehicle is defined by its location, direction and speed at the

sampling points. And these values are recorded upon each update. The motion between

two sampling points, as shown in Figure3-2, is approximated as follow.

To achieve a little better precision than using simply a linear function, we take the

acceleration a into consideration. At any time t between t1 and t2, which are the time

when the vehicle is at point p1 and p2 respectively, the speed v and distance d from the

starting point of this road segment can be calculated as:

a =
12

12

tt
vv

−
−

v = a(t-t1) + v1

d = v • (t - t1) +
2
1 • a • (t - t1)2

Taking the acceleration into consideration, on the other hand, reduces the size of data

have to be stored persistently. This happens because we can drop those sampling points at

which the acceleration is the same as their succeeding sampling point, ignoring if there is

a speed change.

 A vehicle sends its location and motion information in a certain frequency to the

central station where such information is collected. But not every update from vehicle

side is recorded into the database. If both of the following criteria are true, the update is

ignored:

(1) The vehicle is on the same road segment as last update;

(2) The speed change since last update is within ± δ1 × SPr, or the acceleration is

within δ± 2 comparing to its next update.

 26

Where SPr is the speed limit of this road segment, δ1 and δ2 are predefined small real

numbers depending on the accuracy requirement of the system. In one case, a sampling

point needs to be inserted between two updates from the vehicle. If two consecutive

updates from the vehicle indicate that the vehicle has moved out of the one road segment

and enter another, an approximated sampling point at the intersection of these two road

segments needs to be calculated and added. The algorithm used to calculate the attributes

are the similar to which is used to approximate the motion between two known sampling

points on the same road segment.

Besides time t, speed v, distance d from the starting point of the road segment, the

exact geo-location in the form of (UTM-zone, easting, northing) is stored with each

record as well.

A system parameter chron , which is the smallest time granularity, is predefined. It

can be small as
10
1 or

100
1 second, depending on the system accuracy requirement. But

for a vehicle tracking system, it should not exceed 1 second. Considering a car moving at

40mph, the distance it moves in 1 second is about 17 meters. The average length of a road

segment is in the order of 100 meters, and 17 meters per update means only about 5

updates per car per road segment. This potentially could introduce data inaccuracy. On

the other hand, it is a waste of resource if we set it too small: if data updates come in

every
10
1 second and the distance between two consecutive updates would be 1.7 meters,

which is far less than the standard GPS error which is about 3 meters, and hence is not

necessary. Due to the introduction of the term chron into our system, time t can be stored

 27

in and treated as type integer. It will greatly reduce the complexity of maintaining the

indexing structure.

3.1.1 Handling of Imprecision

The imprecision in our system is mainly caused by two factors. One is the difference

between our data model and the real world. The other is caused by the GPS or

communication system (between the vehicles and the data center). Among the errors

caused by the GPS or communication system, there could be systematic errors and

random errors. For the systematic errors, we can correct them by measuring the

difference between the correct data and the data we get from the GPS system, and

adjusting the number accordingly.

For the random errors, the method we correct them with is as follows. At each

sampling point, we compare the location and speed with the data at its preceding and its

succeeding sampling point. If it is reasonable we take it; we drop it otherwise.

So far we have talked about the basic data types and the handling of imprecision in

our system. A complete schema on the classes of data in our system is shown in

Appendix A. In the next two sections we are going to detail this data model with data

structures and indexing scheme.

3.2 Data Structure

We observed that the data in our system consist of continuously changing data,

discretely changing data, and static data. To make our system efficient, they should be

manipulated differently.

 28

Recall that a road segment is defined as a tuple: (Roadid, Starteasting, Startnorthing,

Endeasting, Endnorthing, Length, Speed_limit, Time_of_birth, Time_of_death, Next). Every

attribute in such a record is required and their size is uniform, except for the last one. The

last attribute defines the road segments next to the current road segment according to

their geographical layout. In most of the cases, there are 3 or 4 such road segments: go

straight, turn left, turn right, and sometimes U-turn. It is reasonable to set 4 cells for the

Next attribute, so that the size for every record is the same hence we can use an array to

store this set of data. As for the special cases where there are fewer or more than 4 next

segments, assume the number is x, rules are given as follow:

(1) when x is smaller than 4, fill in the (x+1)th through 4th cells with 0;

(2) when x is larger than 4, the first two cells are the same as in normal case, set the

3rd cell to 0, and the 4th cell the pointer to the address where the 3rd through xth

are stored and there NULL is put at the end.

Two road segments located on the same road but reversed in direction share all the

information except for attribute Next. Redundancy is introduced if we store all the

information for each directed road segment. Instead we can use two separate arrays to

store attribute Next and the rest attributes. Now a cell x in the attribute array corresponds

to two cells 2x and 2x+1 in the Next array. And the Start and End attributes in cell x of

the attribute array are for cell 2x in Next array. They should be reversed when applying to

cell 2x+1.

The road networks information is needed to locate the road segment for a given point

or street address. It is also needed to find paths, answering range queries in some cases,

and to display vehicles’ motion. We choose a segment tree as the indexing structure for

 29

road segments, which will be discussed in detail in following section. Data representing

road networks incur discrete changes. A temporal data management scheme needs to

apply to this set of data for indexing purpose. A multi-version tree structure, as described

in section 2.2, is adopted to keep track of the old versions as well as the most current

layout of the road segments.

The static and the up-to-date discretely changing data on vehicles can be stored using

a normal table in a relational DBMS or as instances of the same category in an OO or

semantic DBMS. The history of the discretely changing data can be manipulated

similarly in most of the cases. If there are special needs, we can use a multi-version tree

structure for the indexing of these data, the same way as we handle the data on road

segments.

Our main concern for the vehicles related data is on their motion. Figure 3-3 shows a

file keeping the motion of a vehicle during the time frame time_span. It can be divided

into three parts: the header, meta data or index, and the content data. The header is of a

uniform size for all vehicles. It starts with the Vehicle’s ID number. The second attribute,

time_span, is in practice composed of two attributes: start_time and end_time. The total

size assigned to keep meta data and the total size of the file is kept in the header as well.

Meta data contains a set of records in ascending order of time for indexing purpose. It

keeps a mapping from time frame to the offset inside this file where the motion records

for this time frame are located. And the content is a set of equal sized records keeping the

data for this vehicle at all the sampling points.

The reason that each vehicle’s motion history is kept separately is that frequent

queries are of the form “re-play the motion of one or several vehicles during time t1 to t2”.

 30

Even for the range queries on a rectangle area or a set of road segments for a time frame,

the motion of each included vehicle during that time frame needs to be retrieved

altogether.

(Vid, time_span, metadata_size, file_size)
(start_time, end_time, pointer, size)
(start_time, end_time, pointer, size)

:
:

(start_time, end_time, pointer, size)

(Rid, time, vel, dist, easting, northing)
(Rid, time, vel, dist, easting, northing)
(Rid, time, vel, dist, easting, northing)

:
:

(Rid, time, vel, dist, easting, northing)
(Rid, time, vel, dist, easting, northing)

:
:

header

meta data

content data

Figure 3-3 A File Keeping a Vehicle’s Motion

It seems that vehicle’s motion data is well organized for searching and query

purposes, since an indexing scheme already exists inside the storage of the moving

trajectory of each vehicle. Even though it is helpful for locating a vehicle’s position

within given time frame, such an data organization within data on separate vehicles is not

enough to efficiently answer all types of queries, especially for those range queries based

on space and/or time span. Efficient indexing schemes are necessary for both the road

segments and vehicles’ motion data. In the next section we will discuss these indexing

structures.

 31

3.3 Indexing Structure

Time and space dimensions are related in defining and representing objects’ motion.

But they don’t play equivalent role, especially during the processing of queries on the

movement of the objects. Previous research showed that better performance can be

achieved when time is treated differently from space dimensions. During this dissertation

research, the author also observed that demands on time and space are different in most

of the frequently appearing queries.

One of the main concerns of the queries to a moving objects database is the behavior

and properties of the vehicles in certain territories. To reflect the continuity of the

objects’ movement and efficiently handle the imprecision and uncertainty between the

sampling points, the moving trajectory of an object can be divided into consecutive

segments, each representing its movement in the same territory.

Based on the above analysis and observation, the Segmented Time Associated to

Partitioned Space (STAPS) approach is proposed for the building of indexing structures

for moving objects databases. Figure 3-4 illustrates how the STAPS approach works:

First the space inside which the objects move is partitioned into basic units called space

partition. Space partitions are independent of one another semantically. The space

partitioning is flexible, and it is mainly decided by the frequencies of the different types

queries the database system supports. Then for each object, time is segmented into time

intervals, during each of which the object is inside one space partition. And the time

intervals are put into different sets, according to the space partition that segments them.

Each set of time intervals is indexed and associated to the corresponding space

partition. And the space partitions are indexed separately from the time intervals. The

 32

indexing structure for the space partitions, and that for each set of time intervals are

independent of one another; they can be the same, similar or completely different ones.

Associated Sets of
Time IntervalsPartitioned Space

 o1 o2 oi

ok

Figure 3-4 The Space Partitions and Time Segments

The advantages the STAPS approach provides include:

- Reflecting and representing the continuity of objects movement.

- No restrictions and presumptions on objects motion.

- Limiting uncertainty and imprecision caused by the data processing procedures.

- Flexibility in adjusting and balancing storage and I/O costs on different data

structures and operations to meet each system’s specific requirements.

 33

Also notice that there is no restriction on space partition algorithms as long as each

point in the space is assign to and only to one partition. The indexing structures for both

time intervals and space partitions can be any appropriate kinds.

In the rest of this section, indexing structures and the related algorithms will be

discussed in detail. Using STAPS method, time is segmented to intervals during which a

vehicle is moving on a road segment. Space is partitioned into single directed road

segments. And the indexing structures will include the structure to manipulate the road

segments and the time intervals associated to each road segment. The indexing structures

for both the time intervals (time segments) and those for the road segments (space

partitions) are inspired by and based on the segment tree originally designed by Bently

[Bent77] and introduced in [BKOS00]. A balanced interval tree is used to index the time

intervals during which the vehicles are moving on the same road segment, and there is a

time interval tree associated with each road segment. A modified segment tree is used to

index the road segments.

To answer queries involving vehicle’s future motion, path finding and computing

may be necessary. A* heuristics are used in path computation for the moving vehicles

with known destination.

The continuity of the vehicles motion results in inherited uncertainty and inaccuracy

for the current computer systems to represent their movement. Uncertainty is hence

introduced in answering the queries. Corresponding to this fact, probability is introduced

to the results of queries. An extra step other than in the traditional databases case is

 34

necessary to finalize the query results. The details on the step of finalizing the query

results will also be addressed.

3.3.1 Introduction to Segment Tree

Segment tree was discovered by Bently [Bent77]. It was originally designed to

answer range queries on a set of line segments in 2-dimensional space. In this sub

section, we will give the algorithms and do complexity analysis. However, the definition

and descriptions of segment tree structure are based on Berg et al’s book [BKOS00].

The problem can be described as follow: given a set of n non-intersecting line

segments {[(x11, y11), (x12, y12)], [(x21, y21), (x22, y22)], …, [(xi1, yi1), (xi2, yi2)], …, [(xn1,

yn1), (xn2, yn2)]} in 2-d space, to answer range queries of the form “return all the line

segments in the given set that intersect the vertical line segment defined by [(x, y1), (x,

y2)]”. In this sub-section, we explain what is a segment tree and how it works. The

following sub-sections will show how to use the traditional segment tree to index time

intervals and road segments and efficiently answer the range queries to our database

system.

The way a segment tree works is based on the observation that if we divide the space

in parallel to the y-axis into consecutive slabs at the x-value of every end point of all

segments, the partial segments inside each slab don’t intersect one another and hence they

can be ordered. Figure 3-5 shows how this works.

More precisely, if we project the 2-d segments into the x-dimension, they become

one-dimensional intervals. The end points of these intervals divide the 1-d space into

consecutive segments such that an interval either does not fall in a such segment

 35

(ignoring the end points) or falls in it in full. The 2-d space can be segmented into slabs

the same way. The segments inside each slab can be ordered by their y-values because

these segments don’t intersect one another. A binary tree structure is the easiest to index

the canonical subset of segments falling in each slab. Figure 3-5(a) shows how the space

is segmented into vertical slabs, and Figure 3-5(b) is an example binary tree built to index

the canonical subset inside a slab.

The consecutive intervals in x-dimension that defines the slabs can be indexed with a

binary tree too, since they don’t intersect each other from the indexing point of view. The

leaf nodes of this binary tree each corresponds to an x-interval and a subset of segments

whose x-projection falls in this interval. A pointer links the binary tree on the canonical

subset of each x-interval to the leaf node of the binary tree on the x-intervals.

Such a tree structure as shown in Figure 3-5(c) is named a segment tree. The subset

of segments associated to the leaf nodes of the segment tree is the canonical subset of the

corresponding interval.

To answer the typical queries the segment tree is designed for, e.g. return the

segments which intersect the segment [(x, y1), (x, y2)], search begins from the root down

to the leaf node where the given x is inside its x-interval. And a range query on [y1, y2] is

performed over its canonical subset then. The I/O cost for a query is O(logn')+O(logn+k),

where k is the total number of segments being reported, n is the total number of segments,

and n' is the total number of x-intervals which could be up to n2. As a result, the I/O

complexity is O(logn2)+O(logn+k) which evaluates to O(logn+k).

 36

x1 x2 x3 x4 x5 x6 x7 x8 x10x9 x11

s7s6

s5 s4

s3

s1

s2

s4

s7

s3

s1

s2

s3s4

s7

s2

s1

(b) Indexing the Canonical
Subset in the Grey Slab in (a)(a) Divide the Space into Vertical Slabs

{s7 } {s2, s5, s6} {s2, s6}

[x11, x12][x9, x10] [x8, x9][x7, x8][x6, x7][x5, x6][x4, x5][x3, x4] [x2, x3]

[x9, x11]

[x1, x2]

[x7, x9] [x5, x7] [x3, x5][x1, x3]

[x5, x9][x1, x5] [x9, x11]

[x9, x11] [x1, x9]

{ s1, s2, s3, s4, s7} 3

4

72

1

6 75

622

(c) Segment Tree for the Set of
Segments Defined in (a)

[x1, x11]

Figure 3-5 Building a Segment Tree

 37

Notice that the searching could involve two paths if x falls on the boundary of two

consecutive intervals. The extra path could be avoided if we define the x-intervals as (-∞,

x1), [x1, x1], (x1, x2),[x2, x2], …, [xn’, xn’], (xn’, ∞). However this way it would require

double space for the tree structure as it is shown in Figure3-5(c), where intervals are

defined as closed ranges [x1, x2], [x2, x3], …, [xn’-1, xn’].

The space complexity of a segment tree is composed of the space used for the main

tree and that for the canonical subsets. When the x-values of the given set of segments

cover the complete range [x11, xn2] and they do not partially overlap one another, as

shown in Figure 3-6(a), the least of total space of O(n) is required. The other extreme is

when every segment overlaps all the other segments but none of them overlap completely

when projected to x-axis, as shown in Figure 3-6(b). In such case the space complexity

goes straight up to O(n2), O(n) for the main tree and O(n) for each of the n leaf nodes.

(a) No Partial Overlap Among Segments (b) Each Segment Overlaps all the Others

Figure 3-6 Two Extreme Layouts of the Segments

 38

The space cost in the second case is obviously undesirable. Fortunately, there is a

way to prevent it from happening by modifying the tree structure a little differently from

its original version. This is done based on the observation that the canonical subset,

instead of being associated to only the leaf nodes, can be associated to the non-leaf nodes.

A subset of segments can be associated to any node whose covered range is inside the x-

ranges of these segments. We put a segment to the canonical subset associated to the

highest possible level of the tree when it is applicable.

v1 v3v2

parent(v2)

s1

s5

s3

s4

s2

{s1}

{s2,s5} {s2}

{s3}{s5}

{s5} {s4}

(a) a revised segment tree
(b) a segment appears at most twice

in the same level of the tree

Figure 3-7 Revised Segment Tree

The example of a revised segment tree is shown in Figure 3-7(a). If a segment

appears at the same level of the tree in m nodes where m is larger than 2, its existence in

the middle m-2 nodes can be lifted to a higher level. This is shown in Figure 3-7(b). Since

each segment is associated to at most two nodes in the same level in a revised segment

 39

tree, a segment can at most be associated to 2(logn – 1) nodes. The total number of basic

intervals for n segments is at most 2n –1. So the total number of nodes in the main tree is

at most 2(2n –1). The total size of all the canonical subsets is at most n•2(logn – 1). The

total tree size is hence at most 2(2n –1)+2n (logn – 1) = 2n(logn+1)-2, which is O(nlogn).

Theorem 3.1 A segment tree for a set S of n non-intersecting segments in the plane uses

O(nlogn) storage and can be built in O(nlog2n) time1. It takes O(logn+k) time to report all

the segments that intersect a given vertical segment [(x, y1), (x, y2)], where k is the

number of reported segments.

Proof The proof of Theorem 3.1 includes three parts:

(1) The proof of the space complexity lies in the earlier analysis.

(2) The time cost in building a segment tree is composed of the time spent to build

the main tree structure and that to build the binary trees for each canonical subset.

To build the main tree, the order and hence the intervals of the segments in x-

dimension need to be calculated. This takes O(nlogn) time. Building the tree then

takes time O(n). Sorting each canonical subset of size v takes vlogv time. The total

size of all the canonical subsets, i.e. Σv, is at most 2nlogn. So the total time cost

for building the binary trees for all the canonical subsets is Σvlogv < (Σv)•logn <

(2nlogn)•logn = O(nlog2n). The sum of the above steps yields O(nlog2n).

1 In [BKOS00] it is claimed that the preprocessing time can be improved to O(nlogn) by maintaining a
partial order of the segments while building the segment tree.

 40

(3) Time complexity for queries of the given type is the time taken to go through a

path from the root to a leaf node, picking all the segments that fall in the y-range

of the query from each associated canonical subset. The height of the main tree is

O(logn). The height of the binary trees on the canonical subsets is also O(logn).

Plus k answers are picked. The sum of the above three parts yields O(log2n+k).

Below are the algorithms for building and searching a Segment Tree.

Algorithm BuildSegmentTree(S)

Input. A set of disjoint line segments in the plane.

Output. A segment tree.

1. Sort the x-values of the end points of all the input segments into a sorted list. A set

including all the segments which have an end point of the same x-value is

associated to each of the corresponding item in the list. Then find the order of the

left and right x-value of each segment in the sorted list.

2. Build a balanced binary tree, namely the main tree, out of the x-intervals formed

by the sorted list obtained in step 1.

3. Since it is now known the order of each segment’s left and right end points’ x-

value, it can be easily calculated to which nodes in the main tree a segment should

be included in their canonical subsets. Set all the canonical subsets properly.

4. Build a binary tree for each canonical subset according to their vertical (partial)

order.

5. Return the root of the tree built in step 2.

 41

Algorithm SearchSegmentTree(Γ, l)

Input. A segment tree Γ and a vertical line segment l.

Output. All the segments in the segment tree that intersect the vertical line segment.

1. S←Ф.

2. Search the main tree of Γ to locate the path that the x-value of l is included.

3. Starting from the root of Γ down to the leaf node in the path, search each

associated binary tree to locate the y-range of l. Add these segments whose y-

value at lx is inside l to S.

4. Return S.

A segment tree structure is suitable for indexing static input data set. Insertion and

deletion in segment trees are expensive and cannot be well supported if they occur

frequently. The revised version of the segment tree trades searching time complexity for

space, comparing to the original version. With the original segment tree, it costs only

O(logn+k) time to report all the segments that intersect a given vertical line segment.

3.3.2 Indexing Structure

The indexing structure in a location information tracking system for vehicles moving

on the road networks mainly include two parts: indexing the road networks and vehicle’s

moving trajectory. The distance and relative position between different vehicles and that

between a vehicle and a static location are determined by vehicles’ geolocation as well as

the layout of the road segments. Some forms of queries, such as a range query involving a

given area in the map, may need to find the road segments inside the given area before

 42

the query can be answered. On vehicle’s motion, since each single vehicle’s moving

trajectory is already well organized for range queries on time span, it makes sense to

build a main indexing structure over all of the vehicles’ trajectories for queries on

space/location range. To do so, the time span of each vehicle running on a road segment

is designed as the basic unit of data, and a corresponding indexing structure, namely a

time interval tree, is built and associated to each road segment. Queries on given space

range and time span are answered by first look into the road network and get all the road

segments inside the given space range, and then go to the time interval trees associated

these included road segments to get the vehicles running on these road segments at the

given time span.

Coincidently, the segment tree structure is adopted for both indexing structures.

Details on building and maintaining these indexing structures and how the search

operations are carried out are discussed in subsections 3.3.2.1 and 3.3.2.2. The

corresponding algorithms are given, and the space cost and I/O complexity for each

operation are analyzed as well.

3.3.2.1 Indexing the Road Segments

The term “road segment” in our system was defined in section 3.1. For the sake of

simplicity, whenever there is an intersection between two physical road segments, both of

them are divided into two segments to store in the database system. The dividing point is

the point of intersection. This applies to the case when there is no intersection viewing

from three-dimensional space but there is one when projecting the roads to 2-d plane.

 43

Example of such case is when a highway “intersecting” a local road, where in 3-d space

there is no intersecting point at all.

Now the road segments in our system almost meet all the requirements for building a

segment tree over them. The only two things that need special care are the coincidence of

the end points of the segments, and the segments that are vertical themselves.

For the coincidence of two or more end points at the same coordinate, there is no

need to re-modify the indexing structure as described in subsection 3.3.1. The specialty is

with the search operation for query answering. When answering a point query, all the

segments intersecting at the point should be returned if the query point is right on the

intersection. However, when answering a rectangular range query, the segments that have

only one point inside the range are excluded.

12
9 15

10

8
8

7

4

2

1
1

2

3

4

5

6

7 9

10

11
14

13

12 15

{1}

{4}

{5,6,7}
{8,6,9,10}
{11,12,13}{3}

{14,15}
{2}

{1} {5,6,7}

{8,6,9,10}
{11,12,13}{3}

{14,15}
{2}

3

5

6
11

14

13

(a) Locate a Point (b) Locate a Rectangular Area

Figure 3-8 Searching a Segment Tree

 44

As for the segments whose layout is strictly vertical in the plane, a new x-interval is

added at the phase of processing the x-intervals while building the segment tree. This new

x-interval is a closed range starting at the x-coordinate of a vertical segment and ending at

the same value. So the x-intervals will appear as [x1, x2], [x2, x3], …, [xi-1, x], [x, x], [x, xi],

…, when there is a vertical segment [(x, y1), (x, y2)]. And a vertical road segment is

included in the canonical subset of only the corresponding leaf node.

The preprocessing of building tree is basically the same as in the case of the standard

segment tree. The time and space complexity for building tree is analyzed earlier, and

they remain the same.

Figure 3-8 shows how to locate a point and a rectangular area and return the

intersected road segments. The search algorithms and the I/O cost are explored as follow.

Algorithm SearchPoint(q, Γ)

Input. A given point q in the plane and a road segment tree Γ.

Output. All the road segments that intersect point q.

1. S←Ф.

2. Locate the path(s) in Γ of the nodes whose x-range include qx.

3. Along the path(s) found in step 2, search the y-range against qy in each of the

canonical subset. If point (qx, qy) is on a segment, add the segment to S.

4. Return S.

 45

The maximum number of possible paths located in step 2 is 3. It happens when qx is

the end point of multiple segments and there is a vertical segment whose x-value is qx.

Going through one path and the associated subsets takes O(log2n) I/O accesses. Plus

reporting k results, it is O(log2n+k). The worst case I/O cost is O(3logn+k)= O(logn+k),

where k is the total number of segments reported.

Algorithm SearchRectangle(R, Γ)

Input. A rectangle R in the plane defined by (x1, x2, y1, y2) and a road segment tree Γ.

Output. All the road segments that intersect the rectangular area defined by R.

1. S←Ф.

2. Locate the range in Γ of the nodes whose x-range covers or intersects [x1, x2]. This

will result in a set of paths from root to leaf nodes in Γ.

3. Along each of the paths found in step 2, search the y-range against [y1, y2] in their

canonical subsets. If a segment intersects the area (x1, x2, y1, y2), add it to S.

4. Return S.

In Theorem 3.1 we know that it costs O(log2n+k) I/O operations to report all the

segments intersecting a vertical query segment. Does the I/O cost remain the same order

with algorithm SearchRectangle? It remains the same order when either the x-range of the

query rectangle is very small comparing to the x-range of the segments in the set, or the

majority of the segments whose x-range intersect the x-range of the query window

actually intersect the query window in 2-d plane. Refer to Figure 3-9(a) for illustration.

 46

However, cases exist where the I/O cost for SearchRectangle goes beyond

O(log2n+k). Look at an extreme case as shown in Figure 3-9(b), where the query

rectangle crosses the whole range of the x-values of the segments but its y-range is small

and the rectangle doesn’t intersect any of the segments. In this case, the search operation

goes through all the nodes in the main tree and retrieves O(logn) depth in each binary tree

on canonical subset. The number of reported segments is 0. Total complexity in terms of

I/O accesses goes up to O(nlogn).

 (b) Desirable Case (b) Worst Case

Figure 3-9 Different Cases for Algorithm SearchRectangle

The worst case shown in Figure 3-9 won’t happen in the road segments, since the

road networks are connected. But we can’t prevent similar situation from appearing.

However, limiting the scope to road networks only, the size of the querying rectangle

decides the number of the reported segments in the majority cases. Hence the average

query cost is O(log2n+k), and in worst case it is O(nlogn).

 47

Putting all the above analysis together, we conclude the following Corollary:

Corollary 3.1 Using a segment tree to index the road segments in the plane, it costs

O(log2n+k) I/Os to locate all the road segments containing a given point; the average cost

for locating road segments intersecting an axis-parallel rectangle is O(log2n+k), with the

worst case of O(nlogn)1. Such a segment tree can be built in O(nlog2n) I/Os, using

O(nlogn) storage.

O(nlogn) is the optimal space complexity a data structure can achieve for 2-

dimensional range queries without joining operation involved. The preprocessing time on

building tree is not a concern in this case since it is basically built once last forever, plus

O(nlog2n) isn’t bad at all. The query performance is of our most concern. The I/O cost of

O(nlogn) in rectangular queries answering in the worst case is strongly undesirable, why

is this approach still used to index the road segments? The reason lies in the probability

of the occurrence of the worst cases. Such case appears only when the query area falls in

a lake, a mountain, marshes or alike where there are no roads constructed, but not in

urban area. It rarely occurs in city regions. If larger areas are covered, an auxiliary data

structure can be added to handle these areas where none or rare roads exist.

The segment tree structure has another advantage for road segments in keeping the

history. Multi version tree can be easily adopted to reflect the discrete change of the road

segments.

1 In [BKOS00] it is claimed as O(log2n+k), which is inaccurate.

 48

3.3.2.2 Indexing Vehicle’s Motion

The basic unit of vehicles’ movement in our indexing structure is measured by the

duration while a vehicle running on the same directed road segment. The structure of a

segment tree is used to index the time intervals during which a vehicle is on the same

road segment. A one dimensional segment tree on time intervals is called a Time Interval

Tree in the scope of this dissertation.

Since time intervals are one-dimensional, there is no need to sort or build an

indexing structure for the canonical subsets associated to each node in the time interval

tree. Point queries can be answered in O(logn+k) I/Os where k is the number of the

reported time intervals. And range queries can be answered O(logn+k) I/Os too. The

searching path(s) for point and range queries are shown in Figure 3-10. The search

algorithms are similar to the vertical line segment and rectangle window search in the

revised version of the 2-d segment tree.

s4s1 s5s3

s2

{s1}

{s2,s5} {s2}

{s4}
{s5}

{s5} {s5}

s4s1 s5s3

s2

{s1}

{s2,s5} {s2}

{s4}
{s5}

{s5} {s5}

(a) Locate a Point (b) Locate a Range

Figure 3-10 Answering Point and Range Queries in Time Interval Tree

 49

The online update of the time interval tree in a vehicles location information tracking

system include only one kind of operation – insertion1. The insertion of a time interval is

done in two steps: (1) At the time of entering a road segment, the start of a time interval

is sent to and recorded in the tree; (2) At time of leaving a road segment, a time interval is

explicitly added to the tree structure. Notice that the time point or time interval to be

inserted is always at the right most in the x-axis, or they are of the latest comparing to the

existing data in the tree.

Let’s first clarify the data structures in a (balanced) time interval tree. The data types

involved in a time interval tree include node, tree, and an auxiliary data structure called a

node locator for the purpose of indicating the most current (time) node in the tree. Details

are as follows:

- A node, leaf or non-leaf node, in a time interval tree is defined by the time span

from time point a to time point b and a set S of Vid’s of the vehicles that share the

same time span [a, b]. It appears as ([a, b], {Vid, …, }).

- A time interval tree is a doubly linked balanced binary tree. Each node in the tree

has three pointers to link their parent node, left node and right node.

- A node locator contains a pointer r to a node in the time interval tree, time point t,

and the level l of the pointed node in the tree. The level of a node is ordered from

the leaf nodes up, and the level of the leaf nodes is 0.

1 Offline update could incur delete and/or modify operations at time of data recovery. The delete and
modify operations are very rare even if they do appear, and the performance of these operations won’t
affect the overall performance of the data structure.

 50

Algorithms for insertion in a time interval tree are shown as below.

Algorithm InsertTimePoint(t, Γ, P)

Input. A new time point, a time interval tree Γ and Γ ۥ s most recent record P.

Output. Updated time interval tree Γ and its most recent record P.

1. If (P.t < 0) P.t ← t;

2. Else if (t > P.t) AddNewLeaf (t, Γ, P) ;

3. Return.

Algorithm InsertTimeInterval([a, b], Vid, Γ, P)

Input. A time interval [a,b], Vid of the vehicle that generated [a, b], a time interval tree Γ

and its most recent record P.

Output. Updated time interval tree Γ and its most recent record P.

1. If (b > P.t) AddNewLeaf(b, Γ, P);

2. UpdateSubset([a, b], Vid, Γ, P);

3. Return.

In these two algorithms, procedures AddNewLeaf and UpdateSubset are the key.

Their performance defines the update performance of the time interval tree. Variable P is

introduced solely to reduce the time and I/O cost while locating nodes to perform data

updates. It always points to the newest position in the interval tree in the order of time

sequence.

 51

Figure 3-11(a) shows the course of the tree’s growth when leaf nodes are added one

after another. Notice that a new leaf node is always added at the right most position, since

a newly coming in time point is always later than those already existing in the time

interval tree. Both Γ and P are dynamic as the time interval tree grows. Figure 3-11(b)

shows the process of UpdateSubsets when a new interval is added. The Vid is added to the

subsets of the bold nodes.

Γ

P

P
P

P

Γ
Γ

Γ

P

Nil

Γ

(a) Adding a New Leaf Node

Γ

Track of UpdateSubset

P

(b) Updating the Subsets for a New Interval

Figure 3-11 Insertion of an Interval to the Time Interval Tree

 52

Here are the algorithms AddNewLeaf and UpdateSubset:

Algorithm AddNewLeaf (t, Γ, P)

Input. A new time point, a time interval tree Γ and Γ ۥ s most recent record P.

Output. Updated time interval tree Γ and its most recent record P.

1. If (Γ = Nil) or (P.r = Nil)

2. Add a new leaf node v0 =Node([P.t, t], {});

3. Add a new node v1=Node([P.t, +∞], {});

4. Link v0 to v1 as the left child;

5. Point both Γ and P to v1; P.t ← t; P.l ← 1.

6. Else If P is at any level higher than 1

7. Add a new node v0=Node([P.r.left.b,+∞],{}) and link it as P’s right child;

8. While the level of v0 is larger than 1

9. Create left child node v1 to v0; v0= v1;

10. P.r ← v0; P.t ← t; P.l ← 1;

11. Add new leaf node v1 =Node([P.t, t],{}) and link it as P’s left child.

12. Else

13. Add new node v0=Node([P.t, t],{}) and link it as P’s right child;

14. While v0 is the right child of its parent node

15. v0 ← v0.parent; Replace v0’s ending time point +∞ with t;

16. If Γ is at v0

17. Add a new node v1 = Node([v0.a, +∞],{}); v1 . left = v0 ;

 53

18. Point Γ to v1;

19. Point P to v0 .parent .

20. Return.

Algorithm UpdateSubset([a, b], Vid, Γ, P)

Input. A time interval [a,b], Vid of the vehicle that generated [a, b], a time interval tree Γ

and its most recent record P.

Output. Updated time interval tree Γ and its most recent record P.

1. v = P.r.left; //down track

2. While ([v.a, v.b] ∩ [a, b] ≠ Φ) and (!([v.a, v.b] ⊆ [a, b]))

3. If (v.left .b > a)

4. v.right.S ← v.right.S ∪ {Vid};

5. v ← v.left;

6. Else

7. v ← v.right;

8. If ([v.a, v.b] [a, b]) ⊆

9. v.S ← v.S {V∪ id};

10. If (P.r ≠ Γ) //going up from P

11. v ← P;

12. While (a<v.a)

13. v ← v.parent;

14. v ← v.left;

 54

15. While (!([v.a, v.b] [a, b])) //going down again at the left side ⊆

16. If (v.left .b > a)

17. v.right.S ← v.right.S ∪ {Vid};

18. v ← v.left;

19. Else

20. v ← v.right;

21. v.S ← v.S {V∪ id};

22. Return.

The total space usage for a time interval tree is the space each node takes plus the

pointers linking the nodes. Inside each node, there is a time interval defined by two time

points and a canonical subset. There are three pointers for each node. So excluding the

canonical subsets, the space taken for a time interval tree of n time intervals is at most

2·2n·5 data units. We have analyzed earlier that the total size of the canonical subsets is

not larger than 2·2n·logn. The total size of the tree is hence no larger than (2·2n·5 +

2·2n·logn) = 20n+4nlogn, which yields O(n·logn).

The worst case I/O cost for a single data update, as shown both in Figure3-11 and in

the algorithms, is the standard answer for any binary trees which is O(logn). However,

the average cost is better than in the general binary trees because of the small constant

attached to logn. In the procedure of AddLeafNode, each node is accessed at most two

times: while its creation and the closing of its time span (end time point b changed from

+∞ to a meaningful value). So the total I/O spent on AddLeafNode for the whole tree is

2·2n·2 = 6n and the average cost for inserting each time interval is constant. The I/O cost

 55

for each single procedure UpdateSubset depends on the length of the involved interval.

Generally speaking, the longer the interval spans, the more I/O accesses is needed for the

insertion. Considering the real world situation in our objected application, the actual I/O

complexity is far less than O(logn). This applies to both the average and the extreme

situations:

(1) The time a vehicle running on a road segment is very short comparing to the time

span of the tree (referring to the analysis in Chapter 5). For those non-major

roads, most of the time there are only as few as no more than 10 vehicles running

on the road segment at the same time. This implies that the update of the subsets

for these corresponding intervals takes only 2•log210<8 I/Os.

(2) The most time intervals appearing in unit time are the cases of rush hours on a

super highway. On a highway of length 2 miles with 4 lanes and speed limit of

50 miles per hour, no more than 500 vehicles can be on the same segment at

same time. And the I/O accesses are no more than 2•log2500<18.

So the actual worst case cost is about 18. It is conservative to say that the average I/O

cost for UpdateSubset in our application model is O(1).

Theorem 3.2 A balanced Time Interval Tree for a set of n time intervals coming in order

can be built in O(nlogn) I/O using O(n·logn) storage. It takes O(logn+k) I/Os to report all

the k time intervals that contain a given time point x, and at the same order of I/O cost a

range query of reporting all the k time intervals that intersect a given time span [a, b] can

be answered. An insertion operation costs O(logn) I/O accesses.

Proof The proof lies in the earlier analysis in this subsection.

 56

Corollary 3.2 In a balanced Time Interval Tree on time intervals generated by vehicles

running on the same road segment, the insertion of a new time interval to the tree costs an

average of O(1) I/O operations.

The way a time interval tree is built implies that a single data update from a vehicle

won’t immediately cause the update of the indexing structure. Instead, the indexing tree

is updated upon a vehicle’s entering and leaving of a road segment. Due to this fact, term

“Indexing Event Trigger” (IET) is introduced for the simplicity for the system design and

implementation of the applied applications, and it is defined as follow:

Definition 3.1 An Indexing Event Trigger is a data update which causes the need to

update the corresponding indexing structure.

As we will discuss in chapter 6, an IET is not necessarily the leaving of a vehicle

from a road segment. It can be of other types, such as when a vehicle enters (or leaves) a

rectangular area or areas/locations of other forms. An IET can be associated to the

system, a vehicle or a location in implementation.

3.4 Query Processing

In the cases of rectangular range queries, a vehicle included in an answer set returned

from the time interval trees are not guaranteed to be one of the answers to the range

query. As shown in Figure 3-12(a), vehicles v1 and v2 both are returned from the time

interval trees when searching answers for range query defined by [t1, t2]×[x1, x2]×[y1, y2].

 57

However, v1 belongs to the final answer set to the query but v2 doesn’t. During time [t1,

t2], even though v2 appeared on a road segment that intersects the query space range, it

was at the part of the road outside of the space range. The term “Candidate Answer Set”

(CAS) is introduced for the handling of such situations.

Definition 3.2 A “Candidate Answer Set” is a set of data that contains all the answers to

a given range query.

s14

s13

s12

s5

s7

s11

s9
s8

s6

s3

s2

s1 s4

s10

(b) An abstracted picture (a) A real world scenario

Figure 3-12 The Candidate Answer Set

The candidate answers in our system appear in the intermediate results of the

rectangular range queries. Figure 3-12(b) gives more details about candidate answer set.

On a range query on the vehicles appearing in space range R as shown in the gray area in

the figure during time span [t1, t2], the road segments in set S = {s2, s3, s4, s5, s6, s7, s8, s9,

 58

s10, s11, s12, s13, s14} all intersect rectangular area R. However, segments in S1={s4, s6, s7,

s8, s9, s10} are fully inside R but segments in S2={s2, s3, s5, s11, s12, s13, s14} are partially

overlapped by R. A vehicle appearing on the road segments in S1 at any time during [t1,

t2] should be included in the answer set. But those vehicles that are on the road segments

in set S2 may or may not be inside R during [t1, t2], since they could be on the part of

these road segments which are outside R during the time range. When such a query is

processed, S1 is the final answer set and S2 is a candidate answer set. To decide if the

items in S2 are included in the final answer, their moving trajectories during time [t1, t2]

need to be verified against R. Those that do exist in R during [t1, t2] will be included in

the final answer, while the rest excluded.

To answer queries involving future time, prediction on vehicles’ possible moving

trajectory may be necessary. An important technique required for such prediction is the

computation of the near future paths of the vehicles. This section will talk about the Path

Computation algorithm before showing and evaluating the query answering procedures.

3.4.1 Path Computation

The path computation on road maps is an active topic in several research

communities. In the context of this dissertation, we need a path computation algorithm as

a part for answering queries of form “which vehicles can reach a given point within time

T”. Among all the possible schemes discussed in literature such as [ARR00, SFL96,

SMWH], the A* search mechanism, is recommended by Shekhar et al based on their

analysis and experiments described in [SF96].

 59

A* search is a heuristic search scheme taking the advantages of both greedy search

and uniform-cost search. It evaluates a choice n at the current point by combining g(n),

the cost from the starting point up to the current point, and the estimated cost from the

current point to the goal h(n):

f(n) = g(n) + h(n)

Russell and Norvig showed in [RN95] that A* search with an h function that never

overestimates the cost to reach the goal is complete and optimal. So we can define g(n)

and h(n) as follow:

g(n) = ∑
i i

i

S
L

h(n) =
max

),(
V

ppDist en

where Li is the length of the ith road segment in the chosen path, Si is the speed limit

of this segment. It is possible to take the advantage of the real time traffic data in the

system and assign Si the current actual driving speed on each road segment. If it is a road

that will be reached later on, the history speed information on the same road segment at

the same time of a day can be used. Hence g(n) is the time taken to drive from the origin

to the current point. The h function shown is the shortest possible time from current point

to the end point, since Dist(pn, pe) is the Euclidian distance from the current location pn to

the destination pe and Vmax the maximum speed limit within the range of the map.

Considering the huge main memory consumption in doing A* search, the search

length is limited to M steps. M is a constant in an application. The value of M can be

 60

decided by factors including the hardware and software configuration of the system

where the application runs on.

Algorithm PathComputation(p, q)

Input. An origin point p and a destination point q each defined by a tuple (R, d), where R

is a road segment and d the distance from the starting point of R to this point, and

the road map (global) given in the format of a set of directed road segments as

defined earlier.

Output. A route (from p to q) S, composed of a sequence of consecutive road segments.

1. Locate points p, q; r ← p.R ;

2. S ← {r}; pn ← r.end; T ← {}; m ← 0;

3. While (Goal NOT Reached)

4. For (all r’s succeeding road segments r′i)

5. If (r′i in T or S) then f(r′i) ← ∞;

6. Else f(r′i) ← r′i.length / r′i.SpeedLimit + dist(r′i.end,q) / Vmax;

7. r ← the r′i with the smallest f(r′i);

8. If (the smallest f(r′i) is ∞)

9. One step back and choose the next smallest answer;

10. Else

11. T ← T U {r}; m++;

12. If (m≥M)

13. Move the first item of T to the new last item of S; m--;

14. Append T to S;

 61

15. Remove loops, if there are any, from S;

16. Return S.

3.4.2 Answering the Queries

Range queries are answered by taking steps. Different types of queries may incur

different kinds of operations. Figure 3-13 shows the data flow in the system while

processing range queries. The possible query answering steps include:

Vid’s With
Time Intervals

Space Range

Road ID’s

Time Interval Trees

Motion
Segments

Motion Data Files

Road Segment Tree

Range Query

Time Range Intersection
Calculation

Result

Figure 3-13 Data Flow in Query Processing

(1) Do path computation and predict vehicles future motion.

(2) Locate the road segments intersecting the given space range.

 62

(3) Retrieve the vehicles that are on the road segments found in step 2 during the

given time range.

(4) Finalize the candidate answers.

Depending on the query type, one or more of these steps will be involved. For each

of the typical types of queries, their processing procedure and performance are analyzed

as follow:

(1) For types of Q1 and Q2 queries, searching for an answer is trivial.

Q1. Display the motion of all or a given sub-set of vehicles in real-time.

Q2. Replay the motion of a given set of vehicles from past time t1 to time t2, t2 can be

past, now or near future.

The current and most recent motion of all the vehicles will be kept and buffered in

main memory. For the history data, each vehicle’s motion is kept in continuous storage

and well indexed, which makes the retrieval extremely simple. Locating the data mostly

takes only 1 I/O, loading the meta data. Fetching each vehicles past motion in time frame

[t1, t2] takes k/B I/O’s, where k is the size of the motion data and B is the block size. And

the future motion prediction is done in main memory.

(2) For queries of type Q3,

Q3. Return the vehicles that have been on a given road segment during [t1, t2].

The time interval tree associated to the given road segment is searched. After getting

the Vid’s from the time interval tree, the motion data on each vehicle is retrieved. I/O

complexity: O(logT+k) + O(k) = O(logT+k), where T is the total number of time intervals

 63

associated to the same given road segment, k is the number of vehicles appearing on this

road during [t1, t2].

(3) For queries of type Q4, it takes three steps.

Q4. Display the vehicles that have been in a given rectangular area R, during [t1, t2].

First we search all the road segments {ri} intersecting R from the road segment tree.

Then go to the interval trees associated to these road segments, searching for all the Vid’s

of the vehicles which have appeared on any of these road segments during [t1, t2]. The

vehicles appear on road segments inside R are certainly part of the final result. The

trajectories of those vehicles appear on segments partially ovelapping R need to be

examined and actual intersections need to be calculated.

The first step takes O(logN+m) I/Os where N is the total number of road segments

and m is the number of segments reported, the second step takes O(logT +ki) for each

road segment where T is the total number of time intervals associated to the road segment

and k is the total number of intervals reported. The third step is done in main memory and

hence no I/O cost involved. The total I/O cost: O(logN + m) + O(m•logT + ∑) =

O(logN + mlogT + k), where k is the total number of vehicles that appear on the m

segments during [t

=

m

i
ik

1

1, t2].

Notice that when the query area is large, the number of road segments gets very large

too, and the operation becomes costly. We know that any indexing structure has to trade

off between space expense and I/O cost. In our targeted application model, the response

time requirements for data updates and data queries are different. The balance is hence

 64

among the costs on space, data update and data query. Since the data updates are the most

critical type of operations, it can’t be guaranteed that every type of queries be answered

in optimal I/O operations. Also as we will discuss in chapter 6, if we know ahead of the

frequently queried areas, Indexing Event Triggers and time interval trees can be set and

built at data update stage. This way, the I/O complexity for these queries reduces to the

same as Q3 queries.

(4) Queries of type Q5 and Q6 require path computation.

Q5. Display the vehicles that can reach a given point p=(px, py), within time ∆t.

Q6. Predict the motion of the vehicles in the near future from t1 to t2.

For queries of type Q5, we first do a range query of type Q4 with range R defined as:

R = [(px - Vmax•∆t), (py - Vmax•∆t), (px + Vmax•∆t), (py + Vmax•∆t)]

and time frame [now, now]. Then we do path computation, finding path and time cost for

each vehicle whose Vid is included in the first query. The set of vehicles with time cost no

larger than ∆t is returned.

Queries of type Q6 apply only to those vehicles with known destinations. We first

find path for each of them and then calculate their motion in [t1, t2] along their paths.

3.5 Conclusion

This chapter discussed the data model, data structure and indexing structure as well

as the processing of queries for a real time tracking (and history retrieval) system for the

location information of vehicles moving on road networks. The I/O complexities of the

critical data access types are not only low in the order, but also with small constant

 65

attached to the order. Updates on new coming data can be done in O(1) I/O operations.

Based on the analysis in sections 3.3 and 3.4, we conclude that the data structure and

indexing mechanism we adopt are efficient, and the real time requirements for data

updates and retrieval can be well met.

 66

4 SYSTEM ARCHITECTURE

A vehicles’ location information tracking system mainly involves four kinds of

participants: registered vehicles, data processing center(s), the end users and/or client

services, and communication channels.

Figure 4-1 shows a complete picture of a tracking system for GPS enabled moving

vehicles. Each vehicle included in the system is equipped with a GSP receiver to receive

its up-to-date location information from the GPS satellites periodically. And there is a

wireless channel, through ground communication towers or communication satellites, for

the vehicles to update the data center on their current location and other time-variant

information such as their destinations if applicable. The data center is the core of the

system, which keeps the system running and functional. It is responsible for the

organizing, storing, and accessing of the input and output data. It keeps the vehicles’

current and history location information and provides retrieval services in a timely

manner to different kinds of users. It not only needs to provide services with high

performance, the data center is required to be highly reliable and persistently available.

The “users” can include the drivers of the vehicles, the owners of a single vehicle or a

group of vehicles and others who are authorized to access such data. A data item must be

and is only visible and accessible to the group(s) of users who have been granted access

permission. The communication channels include wired (for the local and wide area

computer networks) and wireless (communication satellites and/or ground radio

channels).

 67

Figure 4-1 A Vehicles Location Information Tracking System

The system works as follows. The vehicles are real world vehicles that mainly move

on road networks. A vehicle receives GPS signals from the GPS satellites to determine its

geographic location, which can be converted uniformly to the Universal Transverse

Mercator (UTM) coordinates. It then periodically updates the data center of the up-to-

date location information via wireless communication channels. The data center stores

vehicles’ static attributes and the real-time location updates from the moving vehicles. It

keeps the history data as well as the current information associated with each vehicle.

The function of the data center is to provide the online client applications and/or end

users access to these data typically in the form of query answering. The end users of

 68

client applications can then make decisions or plans based on the query results, if they so

desire.

The main concern of this thesis, especially in this chapter, is the structure and

processes inside the data processing center. This chapter discusses the architecture of the

data processing system, namely a real-time vehicle location information tracking system,

inside the data center.

The rest of this chapter is organized as follows. Following a brief background

introduction, Section 4.1 presents the overall architecture of the system. Sections 4.2

through 4.7 address how to handle the key issues in the system, including the system

organization, the real-time requirements, storage management, backup and recovery,

transaction and concurrency control, and security, respectively. Section 4.8 briefly

mentions the User Interfaces. Section 4.7 concludes this chapter.

4.1 Overview

In the context of this dissertation, we don’t intend to build a general database

management system for Moving Objects. Even though our data structure and system

architecture can be embedded into a DBMS as a data blade (this will be discussed in

Chapter 6) and the system itself can be upgraded to a DBMS by adding other

management components, at this stage it is solely a database application system

independent of any existing DBMS’s. The system will be built on top of the data

structure introduced in Chapter 3. The system is designed to meet, but is not limited to,

the following requirements:

 69

- Keep track of the current location and motion of all the vehicles in real-time.

- Store and manipulate the history data efficiently.

- Retrieve both real-time and history data in a timely manner.

- Be constantly available and highly reliable.

- Disclose data items only to the authorized parties.

To maximize the high throughput, scalability and real-time properties that the

application system desires and our data structure and indexing mechanism supports, a

centralized distributed system architecture is adopted. On the one hand, parallel

processing is desirable in such systems due to the massiveness of the data and the real-

time requirements, and our data structure is designed to support highly parallel system

architecture. On the other hand, the cost for communication, synchronization, and control

in a pure distributed system is expensive, which would greatly compromise the

performance brought by the parallelism in a distributed system. But a distributed system

with centralized organization takes all the advantages a distributed architecture provides

and avoids the unnecessary costs in communication and synchronization.

4.1.1 Distributed Architecture

In general, a distributed system provides higher performance and more reliable

services by distributing the system workload to multiple nodes which run concurrently. In

our case, several processes are basically independent of one another. So a distributed

architecture is especially suitable.

 70

query

answers

data uptates

query
answers

uptates

logs data uptates
from vehicles

Data Collecting

Service

Normal Data

queries

Query
Processing

Service

Data Backup
Service

R

ec
ov

er
y

Se
rv

ic
e

Main
Memory

Hard
Disks

Offline
Data

data uptates /
access requests

data

Data Backup

Logs

Central
Control

 Unit Current Data
Processing

Service

Data Access
Service

Data

Figure 4-2 Distributed System With Centralized Organization

To meet the minimum functional requirements, modules to handle data collecting,

query processing, and data accessing should be included in our system. Considering the

system reliability requirement, a backup and recovery mechanism must be provided as

well. To coordinate and synchronize these modules, a mechanism is needed to manage

and support the communication among these modules. As shown in Figure 4-2, the main

functional components in our system include:

• The Data Collecting Service is responsible for collecting the real-time raw data on

vehicles. It receives real-time data from the vehicles through wireless channels.

Upon receiving data, it first forwards them directly to the Data Backup Service so

that the data update can be logged for recovery purpose. It then formats the data

 71

and sends them to Data Preprocessing Service for database updates and retrieval

purposes.

• The Data Processing Service plays the key role in enforcing our data model and

data structure defined in last chapter. It locates the vehicles’ current positions on

the road map and hence associates each vehicle with the road segment it is

running on. It checks data validity, and corrects errors if possible, dumps the

wrong data which can’t be corrected. Data on consecutive sampling points are

compared here and the insignificant points are removed then. The vehicle’s

motion data on the most current road segment are always kept in the main

memory of this service node. When it is time to update the persistent storage on

any vehicle’s current trajectory, it forwards the related data to Data Access

Service. Since the most current data are stored in main memory on this node,

queries on the up-to-date information are also processed here.

• The Query Processing Service is the bridge between the client applications or end

users and our database system. It interprets queries coming in any formats and

forwards them to Data Pre-processing Service or Data Access Service depending

on the time range in these queries.

• The Data Access Service is responsible for updating the database and answering

queries on recent or past data. When it receives an update from the Data Pre-

processing Service, it puts the physical data to data file, and updates the indexing

structure to allow the current update to be indexed.

• The Backup Service handles all the data that may be needed upon recovery.

Keeping data logs is one and the most reliable way to be prepared for system

 72

failure in our case. At least one copy of the recent data, along with the indexing

structure, should be kept as well. The reason for this is that recovering from the

data logs is much more costly than recovering from readily organized data. Even

though logically the Backup Service “receives” raw data from the Data Collecting

Service and “puts” them to data logs, one of the physical media where such logs

reside in could very likely be the hard disks of the Data Collecting Service node.

The advantage of such an arrangement is obvious.

• The Recovery Service restores the disrupted data and recovers the system in case

of any forms of failures. Since the system is required to be functioning at any

time, in case of a “core dump”, no time can be given to the recovery process

before bringing the main system functions back. So the recovery processes are

always supposed to be going in parallel to the system’s main services. The

Recovery Service is also responsible for bringing offline data, as we will discuss

in section 4.4, back into the system online upon requests.

• Storage in our system exists in several forms. Strictly speaking it doesn’t provide

any system functions independently. Details on storage management will be

discussed in section 4.4.

• The Central Control Unit controls and coordinates the other service nodes to

achieve the performance, reliability and security of our system. Next section,

Section 4.1.2, will address the details.

The term “service” frequently appears in this section. It is conceptual, flexible and

scalable in the context of our system architecture. There is not necessarily a one on one

relationship between a service and a physical server machine which provides the service.

 73

At implementation stage, one service can be carried out by several physical server

machines and multi-services can be integrated on one machine, depending on the size of

the system.

4.1.2 Centralized System Organization

By dividing the system functionalities into services and distributing these services to

multiple server nodes which can be running in parallel, the overall system performance

can be greatly improved. However, in traditional distributed systems, the communication,

synchronization and coordination among these independent server nodes are expensive

and sometimes difficult. Due to the real-time requirement of our system, such costs are

strongly undesirable. To avoid these expenses and improve system response time, a

centralized system organization would be a wise choice.

Data and messages may pass from one to another among the service nodes, but when

synchronization or arbitration is needed, requests are sent to the Central Control Unit.

The Central Control Unit, upon receiving a request, makes the decision and sends back

control back to involved parties. In our system, not all the service nodes must be under

the control of the Central Control server. Some services, such as the Data Collecting

service and the Query Processing service, are relatively independent of the core of the

system. They don’t need to request any authorization or arbitration from the Central

Control server, and hence are not directly under the control of the later. As shown in

Figure 4-2, the nodes that provide data pre-processing services, data access services, data

backup service, and data recovery services exchange data among each other, they are also

under the direct control of the Central Control Unit whenever a control is needed.

 74

The system works as follow. The only source of the data input to the system is the

Data Collecting Server. It sends the data to Data Preprocessing server. Data are processed

there, kept in the main memory of this node, and later on forwarded to Data Access

server. The Data Access server records the data updates into the database in persistent

storage upon getting permission to do so from the Central Control Unit. When a query

comes from the user/client end, the Query Processing service first interprets the request.

It then forwards the interpreted request to Data Pre-processing server or the Data Access

server, depending on the time range defined in the query. Security checks are enforced at

the time of processing the answers to each query.

Pe

rs
is

te
nt

St

or
ag

e

Central Control

Unit

Database
Access

Transaction
Schd. Policies

Security
Policies

Directories

Storage Mng.
Policies

Backup

C
ur

re
nt

 D
at

a
Pr

oc
es

si
ng

D
at

ab
as

e
R

ec
ov

er
y

Cntl. Request
Control Flow
Data Flow (conceptual)

Figure 4-3 The Central Control Unit

 75

In the background, the backup processes run with permission from the Central

Control Unit, assuring that the foreground processes are not affected. In times of database

recovery, potential conflicts with the real-time database updates occur frequently.

Transactions are scheduled by the central control server in such cases.

As shown in Figure 4-3, the Central Control Unit mainly contains the following data

in its main memory:

• A directory on the locations of the data and services.

• Transaction scheduling policies

• Storage management policies

• Security policies.

It takes charge of concurrency control and transaction scheduling, storage

management, and security enforcement. Within storage management, both the data

backup and recovery are included. The central control server always works closely with

the data structure to ensure the functionality, availability and reliability of the system.

Any operations involving data items in the database must be under the management and

control of it.

A centralized organization eliminates the number of messages and amount of data

passing through the functional nodes. It also makes it simpler, easier, and more reliable to

enforce or carry out security and other policies.

4.2 Meeting the Real-Time Requirements

Real-time systems can be divided into three categories according to their

requirements on meeting the deadlines:

 76

In hard real-time systems, the missing of the deadlines reduces the value of the data

to negative. Data updates are of value only if they are committed before or on the

deadlines. Not only becoming meaningless, the missing of their deadlines cause negative

effects to the system.

A soft real-time system prefers that all the data updates are committed meeting their

deadlines. However, data are still of value when their deadlines are missed. The value of

the data reduces eventually to 0, after the deadline is missed.

Firm real-time systems are those with a deadline requirement in between.

In a real-time tracking system, users have the needs to access the most current data.

In cases such as bus / taxis scheduling, obsolete data may result in bad or even wrong

schedules. Individuals who plan their trips based on information provided by the tracking

system could miss their appointments or even opportunities if the system can’t keep the

data up-to-date. It is highly desirable for the data updates to meet their deadlines.

However, the data updates won’t become useless even if they are committed after their

deadlines. Such updates are still of value when we do history retrieval and analysis. So

our system falls in the firm real-time category. In case they are missed, the system should

try to commit the transaction as early as possible.

According to their degree of urgency, transactions in our system can be classified to

three types:

• Urgent – The most current data on vehicles’ location. These group of data need

to be put into database as soon as they come in.

 77

• Medium Urgent – Transactions acquiring the current information on vehicles’

movement. These transactions should be committed as early as possible if they

don’t delay the commits of the Urgent transactions.

• Neutral – Queries on the history data. There is not a clear deadline for such

queries. Slowness in response to such queries is only evidence of bad system

performance.

In our system, the real-time requirements are met by means of the following system

architecture and management policies:

(1) The distributed architecture enables several processes to run at the same

time. System throughput and performance are then highly ensured. The

parallelism in the system also makes it more likely for the conflicts among

transactions to be resolved without missing any of their deadlines.

(2) Any data update that can be approximated by its preceding or succeeding

updates is not stored into the persistent storage. This reduces overall load of

the system, hence makes it easier to meet the deadlines for urgent

transactions.

(3) The most current data are kept in main memory due to the high access

demands on them.

(4) The transactions are scheduled to commit according to their levels of

urgency, when there are conflicts.

One of the most important factors that define the real-time performance of real-time

database systems is their storage management mechanisms. Another important factor that

 78

affects the real-time property of a database system is its concurrency control policies. We

have taken into full consideration of meeting the real-time requirements when defining

the storage management, transaction management and concurrency control policies of our

system. The following two sections will discuss how these policies are defined to ensure

the real-time property as well as meet the other requirements of the system.

4.3 Storage Management

Four levels of storage are used in our system. Obviously, the latest data on vehicles’

motion are in main memory before newer update data are received. Some frequently

accessed data structure may need to permanently reside in main memory as well. The

recent data on vehicles’ motion are accessed relatively frequently, they should be

conveniently reachable. These data are stored in local hard disks. Older data can be stored

in file systems in local network since they are accessed infrequently. These three levels of

storage are all online. There is yet another kind of storage, which is offline though. The

out-of-date data are not likely to be accessed in a daily basis, but there are needs in some

cases to retrieve information from these data. Considering the huge volume of data there

could be for each day, Compact Disks do not have enough capacity for this purpose. High

capacity tapes are used to store the far past data.

Figure 4-3 shows the distribution of data of different “age” in different levels of

storage and transfer between them.

The trajectory of each vehicle’s movement on a road segment is not written to disk

until it leaves the current road segment and enters the next segment. So the motion on the

current road segment is always kept in main memory for all the vehicles. The data

 79

describing the road segments are frequently accessed for purposes such as calculating

vehicle’s motion between sampling points, path finding, and vehicle’s motion prediction.

The current version of this set of data also needs to be in main memory.

Current Data in Memory

Dictionary
on Data
Location

Road
Segments

Vehicle’s Most
Recent Motion

Past Data in NFS System

Road Seg.
In Past

Vehicles’
Motion

Motion Index
Asso. to Road

Seg.

Historical Data on Tapes

Road Seg.
History

Vehicles’
Motion

Motion Index
Asso. to Road

Seg.

Motion Index
Asso. to Space

Partition

Motion Index
Asso. to Space

Partition

Recent Data in Local Disks

Motion Index
Asso. to Space

Partition
Vehicles’
Motion

Index on
Road Seg.

Motion Index
Asso. to Road

Seg.

Figure 4-4 The Four Levels of Storage

Only next to the current data, data on vehicles’ recent movements are the second

most frequently accessed. This set of data, including the indexing trees and the data files

on each vehicle, is stored in local disk. The indexing structure on road segments is used

for some range queries. The frequency of accessing it is close to that of the retrieval on

vehicle’s recent motion. It is also kept in local disks.

The frequency of accessing the past data decreases as reversing time back. It is

reasonable to put the past and history data in storage media that incurs longer access time.

 80

The past data on both vehicles’ motion and the road segments resides in Network File

Systems. They are still highly available, only slower in accessing time. The historical

data are not necessarily to be online. Putting them in tapes and loading to hard disks upon

request is the economical way to make them reachable.

Our indexing mechanism enables and fully supports storing data separately on

different media, according to the time the data is on. A dictionary (easily accessible to the

control server) residing in the main memory is built up for locating storage location

where a given set of data is stored.

In managing the main memory, the classical techniques, such as buffering and

anticipatory prefetching, can also apply to our system. However, these techniques work

closely with Operating Systems the application runs on. They can be selectively adopted

in the implementation stage, taking consideration of our system performance

requirements and the features the Operating System and hardware support.

The management of the secondary storage, namely the hard disks in our system, is

supported by applying the following mechanism:

• The indexing scheme minimizes I/O costs in locating physical data.

• The organization of the motion data for each vehicle ensures that there is at most

two I/O accesses overhead in loading consecutive data of any size on one

vehicle.

• Data and access are evenly distributed to multiple servers and/or disks depending

on the size of the application system.

• Queries processing is optimized.

 81

General data buffering and disk scheduling techniques that the operating system and

hardware support should be considered in the implementation phase.

4.4 Transaction and Concurrency Control

For database systems, correctness in the presence of concurrent access and/or failure

is tied to the notion of a transaction. A transaction is a unit of work, possibly consisting

of multiple data accesses and updates, that must commit or abort as a single unit.

Transaction executions are supposed to respect the ACID properties:

• Atomicity – either all or no operations are completed.

• Consistency – all transactions must leave the database in consistent state.

• Isolation – transactions cannot interfere with each other.

• Durability – successful transactions must persist through crashes.

The goal of transaction management is to maximize the system throughput and

minimize the amount of restart overhead. The mechanisms used to resolve conflicts and

schedule the execution of the transactions is called Concurrency control.

The main issue in transaction management in a real-time system is how to meet the

urgency of transaction executions and, at the same time, to maintain the database

consistency.

The same as in general database cases, real-time concurrency control algorithms can

be generally classified as either conservative or optimistic. Conservative algorithms

prevent any violation of database consistency from happening. Some variations of

conservative algorithms adopt multi-data-version strategies [LK01] to increase the

concurrency level of the system. Typical conservative mechanism is lock-oriented real-

 82

time concurrency control. Optimistic concurrency control algorithms often delay the

resolution of data conflicts until a transaction has finished all of its operations. A

validation test is then performed to ensure that the resulting schedule is serializable. In

case of data conflicts, they usually use transaction aborts to maintain database

consistency. The validation schemes, such as wait-50 and sacrifice, make the conflict

resolution being priority-cognitive. Most of the existing optimistic concurrency control

algorithms are for soft and firm real-time systems, because the abortion cost of a real-

time transaction is often hard to quantify. For most of the real-time systems, it is very

difficult to ensure the schedulability of the transactions under the optimistic approach.

A delayed write procedure is often adopted in many concurrency control algorithms:

the update for each data object by a transaction is done in the local area of the transaction,

and the actual write of the data object is delayed until the commit time of the transaction.

When a lock-oriented concurrency control algorithm is adopted, each object in the

database is associated with a lock. When a transaction locks a data object, it must lock it

in a proper mode, such as share or exclusive.

One of the trends in real-time database concurrency control is semantics-based

concurrency control. It ensures correctness by enforcing final-state serializability, view

serializability and conflict serializability. Data similarity in terms of their semantics is

introduced and used to manage the transactions. The integrity management of real-time

database systems involves two issues: 1) External consistency and temporal consistency

constraints must be specified and justified to be adequate for the similarity relations

specific to the application. 2) Real-time transaction scheduling algorithms are needed to

enforce these constraints. Kuo and Mok, in [KM00], proposed the idea of physical

 83

schedules in which a real-time database scheduler may skip unimportant computation or

updates to meet time constraints and/or satisfy some safety requirements on the system.

The correctness of the physical schedules is justified by the notion of similarity.

Even though transaction scheduling and concurrency control techniques have been

extensively studied, there doesn’t exist a total solution for the specific needs of our

system. In our system, the data access operations include only Inserts and Searches.

Operations of type Modify and Delete are not supposed to occur. In addition, the Inserts

and Searches never appear in the same transaction because these two types of operations

are always requested by different processes. Those read/write violations, which is one of

the main problems in general database systems, are not likely to happen in our case. And

serializability is always satisfiable. Our goal for transaction management is to maintain

the real-time property, ensure data correctness, and maximize system throughput.

First, the similarity based concurrency control policy is adopted and “over” enforced

in our system. As described earlier, the “similar” data updates are omitted, ignoring if

there are conflicts and if it is missing the deadline.

Second, data are buffered in memory until a vehicle leaves a road segment and the

set of data are written to hard disk in one transaction. This way it eliminates the number

of transactions while maintaining the size of a transaction not to be too big, so to reduce

the number of possible conflicts.

Third, in the cases that conflicts do occur, the update transactions have the highest

priority. The transactions containing Read (search/retrieval) operations are scheduled in

the order of the time of the data they request. E.g. a transaction that acquires current data

 84

has higher priority than one which requests recent data, and a transaction that requests

recent data has higher priority than one that queries past data.

The system ensures the correctness and performance by enforcing these rules in the

transaction management along with other mechanisms discussed in other sections.

4.5 Backup and Recovery

In database systems, unpredictability exists in many aspects due to the dependence of

the transaction’s execution sequence on data values, the data and resource conflicts,

dynamic paging and I/O, and rollbacks and restarts resulting from transaction aborts.

Communication delays and site failures happen in distributed systems. These factors all

could result in system failures.

The way to handle failures is by means of backup and recovery. When a failure

happens, the system should be able to recover. To enable recovery, backup is necessary.

Backup and recovery are always risky; in general, the following schemes can be used to

minimize the chances of data lost:

• Store everything on a fault-tolerant disk array.

• Use battery backup.

• Use reliable hardware.

Research and industrial experences also show that the following mechanisms

improve the chances of successful recovery, in case it does happen:

• Store backups on a third disk on another controller

• Store backups on a different computer on a different network in a different

physical location.

 85

• Plan and configure for recovery from the beginning.

• Test the recovery strategy from time to time.

• Make the recovery strategy easy to maintain and test.

Down time in a real-time system, no matter how short it lasts, is fatal and strongly

unacceptable. This fact makes it critical and more difficult to recover a real-time database

system when it is needed, than in the normal database systems cases. It is even more

complicated in a real-time current status tracking and history retrieval system, since in

such systems the common event log scheme used in general database systems would not

work. General database systems recover themselves upon failures or errors by means of

keeping one or more copies of an event log, which records the history of all the

transactions that have committed. In our case the database itself is the data defining the

most up-to-date status and records of the transaction history. So the traditional way of

keeping event logs and restoring the database based on these logs may not be simply

applied to our system.

The process of recovery is another challenge for real-time systems. To recover

systems without real-time requirements, short system down time may be permissible. But

in real-time systems like in our case, any recovery must be done in “hot” mode. That is to

say, the recovery process should not interrupt the running of the system.

For Real-Time Database systems, the following strategies and techniques can help in

keeping the real-time properties while performing backup and recovery: reduce log

traffic; speedy logging and recovery; use transaction priority oriented logging and

recovery, data class oriented logging and recovery; partitioned and parallel logging and

 86

recovery; ephemeral logging; use Non-Volatile High Speed Store as a fast persistent

backup store.

Considering the characteristics and performance requirements of our system, we

need to secure our data in all the possible aspects, by means of multiple mechanisms. As

a result, the following policies are used in our system:

• Redundancy. The Central Control server, the Data Pre-Processing server and the

Data Access server are the most critical nodes in our system. A hot backup server

is allocated for each of them.

• Event logs are done at the data collecting server. Data is logged to disk as soon as

they are received by the Data Collecting server. In case of data lost caused by

any sorts of failure, we can recover the database by redoing the calculation based

on these data logs.

• Fast I/O disks to keep the most recent data.

• A server solely for the backup and recovery purposes respectively.

These policies altogether work as follow.

• The process of backups: Raw data coming in from the vehicles are written to

event logs upon their arrival. This happens at the Data Collecting server. After

preprocessing, data are written to persistent storage with two copies, one of

which is kept as backup. Older and history data are backed up to tape.

• The process of restoring.

o Restore from event logs. The event logs are in fact the raw data. To

restore, the recovery server needs to re-calculate as the pre-processing

 87

server does to the incoming data. And the rest processes are the same as

to the data after processed by the pre-processing server.

o Restore from backup. The backups are ready to use as soon as they are

put back online, since the physical data files and the indexing structures

are readily well organized. The directory in Central Control unit needs to

be updated to reflect the new status of the data locations in this case.

4.6 Other Issues

To make our system sound and complete, we need to address a couple of other issues

in addition to the topics talked about in last few sections. Security, Query Processing, and

User Interface in our system will be discussed in this section.

4.6.1 System Security

A simple but widely-applicable security model is the CIA triad. Standing for

Confidentiality, Integrity and Availability, they are three key principles that should be

guaranteed in any kind of secure system. Confidentiality is the ability to hide information

from those who are not authorized to view it. It is perhaps the most obvious aspect of the

CIA triad and the one that is attacked most often. Integrity is the ability to ensure that

data is an accurate and unchanged representation of the original secure information.

Availability is defined as the assurance that the systems are accessible when needed, by

those who are authorized to. It is important to ensure that the data items are readily

accessible to the authorized users at all times. If any one of the three aspects can be

breached serious consequences may be caused.

 88

A software application system’s confidentiality, as well as other security aspects in

some extent, is basically and greatly impacted by the security mechanisms the Operating

System on which the software is running adopts. It is important to choose a secure

operating system and build the application security policies on top of it. First we choose a

secure O.S. Two most possible options are OpenBSD and Sun’s Trusted Solaris. The

open source OpenBSD was built from the ground up to be secure, by constantly auditing

the operating system's code for potential security problems. OpenBSD also incorporates

encryption in the operating system. Sun Microsystems claims that its Trusted Solaris is

one of the most widely deployed trusted operating systems. However neither of these two

Operating Systems are suitable for desktops. In such case, Linux would be an appropriate

choice.

Second, we adopt role based access control (RBAC) in our system for authentication

and authorization. RBAC is chosen because of the following facts:

• The users of our system are grouped in nature, because the vehicles may be

used for different purposes and managed by different owners. This matches

the way RBAC works.

• It is not complicated to implement. The cost for implementing a role based

system is inexpensive.

• It has reduced complexity in administration of such systems.

• It is suitable for network and distributed systems.

• It is now an American National Standard.

 89

The integrity and availability of our system are mainly provided and maintained by

the mechanisms we stated in the last few sections, together with a good protection of the

system confidentiality. System integrity and availability are ensured by the following

mechanisms which have been discussed in detail earlier:

• Good system organization.

• Reliable and high performance hardware.

• Redundancy.

• Our data structure and indexing scheme.

• Backup and “hot” recovery.

Potential attacks and problems exist at other points of the system, such as the data

communication between the vehicles and the data center, the communication channels

between users and the data center, etc. Cryptography and Encryption may be used; Data

Compression may be necessary since the answers to some queries could be huge in size.

4.6.2 Query Processing

At the beginning of this writing the types of queries of our concern are listed. An

out-of-fashion yet simple and straightforward way to interpret these queries is to require

them to come in the form of a function call. The query criteria are passed to the system as

parameters. Even though it is simple and efficient, it is obviously not flexible and not

complete.

In the literature of Moving Object Databases and that of Spatio-Temporal Databases,

query languages for sptio-temperal objects have been broadly explored. Among those

 90

proposals, the FTL, which standards for Future Temporal Language, proposed by

Wolfson [WSXZ99] is the most closely applicable to our system since the data model of

our system is similar to which was used in [WSXZ99]. However FTL is not designed for

the same case as ours, some work may be needed to extend it to fit our case.

4.6.3 User Interface

The data consumers of our system include the end users and applications that are

built on these data. The end users include the commuters who check their bus status,

drivers who monitor their current locations or retrieve the past route, etc. Applications

can be built for vehicles scheduling, traffic and other statistics, using the data retrieved

from our system. The interface for both cases is closely connected to the format of the

queries the system supports, but should not be the same considering their different

characteristics.

Generally speaking, the end users request smaller amount of data each time and the

data they request can be represented in simpler form, while the applications may request

large amount of data in complicated form in terms of being represented by standard

queries. So the formalized query language support is about enough for the end users. And

Application Programming Interface, due to the reduced processing procedures, must be

provided for the applications.

4.7 Conclusion

A successful software system is the integration of a well designed system

architecture and an efficient data structure. As we have discussed in the last sections of

 91

this chapter, the system architecture we adopt not only well fits the data structure and

indexing scheme we proposed, but also provides support to the real-time, flexible and

reliable properties that a moving object database system desires.

The distributed property enables highly parallel processing. System performance is

hence tremendously improved. The distribution of system functions to multiple server

nodes also makes the system scalable and flexible. This type of architecture is especially

suitable for our indexing scheme since our indexing structure is a set of indexing trees

among which there is little interference between one another.

The advantage that a centralized system organization brings to a distributed system is

the reduced message passing or communication expenses, the simplified scheduling and

control procedures, and improved system performance.

To prevent severe damage to the system in case of single point failure, redundancy

and backup mechanisms are provided to the key server nodes and multi-levels of storage.

The “hot” backup and recovery policies reduce the time for data recovery to the least

possible.

System performance, especially the real-time property, is guaranteed by the

parallelism and the concurrency control polices. The reliability and confidentiality is

ensured by the security mechanisms along with other aspects of the system architecture.

As a result, the system architecture and the mechanisms used for the handling of

various issues inside the database system altogether provide the system the following

properties:

• Performance. The system performance can be broken down to the real-time

property, data update and retrieval performance it can provide. Our system

 92

overall performance is achieved by means of the distribution of system workload

to server nodes working in parallel, the reduced communication cost, and

simplified control mechanism. The real-time property is assured by the

transaction management and scheduling policies, and the “hot” recovery scheme.

• Reliability. The system is reliable because of the redundancy, backup and

recovery mechanisms, and the security issues, which we have taken into full

consideration during the stage of system design.

• Confidentiality. The combination of secure Operating Systems and the security

policies which is applicable and appropriate to both the database application

system and the operating systems makes the software system the most possibly

secure.

• Scalability. From the data structure on to the system architecture, the system is

highly scalable at every level. A personal computer running Linux Operating

System can carry out the tasks we designed for all the server nodes, if we apply

our design to a small system with limited number of vehicles running on limited

area. Several mainframe servers together with huge numbers of high end server

machines, and wide area networks can be involved if we intend to build a

tracking system for large number of objects running nation or even worldwide.

• Flexibility. Even though the system is designed to have the above important

properties, it is yet flexible. As technologies develop, or in case any problems are

found in implementation of application stages, the change of any functional

module and/or policies will basically need to affect just the involved modules or

servers and it wouldn’t hurt the overall functionalities of the system.

 93

5 IMPLEMENTATION

In any fields of the real world, the implementation based on a design cannot cover

the flaws inside the design, if there are any. However, a perfect system design based on

perfect ideas, on the other hand, could be greatly ruined by a bad implementation. It is

especially true in the development of software systems. To maximize the advantages of

the data structure and system architecture presented in this dissertation, we need to

carefully and correctly arrange the various details involved in the system implementation.

This chapter discusses the issues closely connected to the implementation of a database

system for tracking and retrieval of vehicles location information using the data structure

and system architecture talked about in chapter 3 and chapter 4 of this writing.

We choose the Miami area and the vehicles running in this area as the objective of

our system implementation. The designed system capacity is to cover the greater Miami

area and all the vehicles that mainly run in this area. This area is chosen because of the

size of it and its population, which implies the possible number of vehicles possessed.

They are large enough to challenge the data structure and system architecture the

application system is adopting, but not too large in terms of cost in hardware and

workforce for the implementation. Yet such an implementation, if successful, could be

extended without much technical difficulty.

In the rest of this chapter, we will start with the system requirements analysis,

followed by the options and decisions on hardware, network and operating system

platforms. The parameters configuration and implementation of the main functional

modules are discussed thereafter. The performance of the finished system is also

 94

evaluated. In the last section of this chapter, we will explore how to extend it to cover a

nation or even the entire world and to include all the vehicles anywhere inside the

covered areas.

5.1 System Requirements Analysis

We start with a series of simple calculations to get the order of the sizes of the data

that will be stored in our database system. Since it is impossible to get the exact numbers,

and what we need is only the order of these numbers, all the calculations are approximate.

And the data are calculated based on the time range of 1 day, for those with time involved.

We predefine the data update frequency from the vehicles to the data center to be once

per second.

According to the US Census Bureau in “American Community Survey Profile 2002”

[USCen], in year 2002 the population in the Miami and Fort Lauderdale area was

3,975,250. Assume every two people possess a car, and these cars are all registered to our

system, then we will have a total of about 2,000,000 vehicles in our database system.

Referring to appendix B, which is a map of greater Miami area, the size of this area is

about 95x132km. Appendix C shows that the number of directed road segments in each

square kilometer is around 200. The total number of road segments will be approximately

2,500,000.

Now we can approximate the average total number of cars that run through each road

segment. The average length of each road segment is approximately 0.1 kilometers, since

there are 200 directed road segments in each square kilometer. The standard annual

mileage for a car is 12,000 miles. The daily average is 33 miles or 53 kilometers. The

 95

total number of road segments a car runs through in a day, is 53/0.1=530. And the

average number of vehicles that run through each directed road segment in each day, can

be calculated as: 2,000,000×530 ÷ 2,508,000 = 423.

However, for those road segments on highway or crowded local roads, the daily

number of vehicles passing through is much bigger. In the rush hours (6-9am, 4-7pm),

there could be 1/2-1 cars entering a road segment in each second. The total number of

cars entered in the rush hours is up to 6×60×60×1=21,600. The total number of cars

entering such a road segment at other times of the day can be around this number. So the

final number is around 43,000.

The possible size of the interval trees associated with each road segment is analyzed

as follows. The data size for each single interval tree is at most 20n+4nlogn data units

where n is the total number of time intervals in the tree. Suppose 4-byte integer and real

data types are used, in the average cases, the size of an interval tree is around

(20n+4nlog2n)×4 = 16n(5+log2n) = 16×423× (5+log2423) = 94,752 bytes. While for the

highway roads, the number goes sharply up to: 16n(5+log2n) = 16 43000× ×

(5+log243000) ≈ 14,500,000 bytes. The maximum possible total data size for the

indexing structure in a day is approximated to: 2,500,000× 94,752 ≈ 237,600,000,000

bytes ≈ 237GB. Even though the percentage of highway roads over all the roads is small,

in practice the actual final number could be slightly higher considering the outstanding

data size generated by this type of road segments.

Since each car runs 53km, we can approximate the total size of primary data stored

in our database as follows. The time spent on road to cover the distance of 53km

(33miles) should be within 1 hour in most of cases. The data size for each update is 24

 96

bytes: 4 bytes each for Road ID, Time of Update, Easting, Northing, Speed and Distance

from the beginning point of road segment. So 24×60×60 = 86,400 bytes. And the total

size of the primary data in a day is 2,000,000×86,400 = 172,800,000,000 ≈ 172GB.

About the road segments, we have the following original and/or calculated numbers.

The size of the data defining each undirected road segment is 32 bytes: 1 integer for Road

ID, 2 real numbers for start point geolocation, 2 real numbers for end point geolocation, 1

integer for UTM zone, 1 real number for total length and 1 integer for speed limit. For the

total of 2,500,000 directed segments, which is approximated to 1,254,000 undirected

roads, the total data size is 32×1,254,000 = 40,128,000 bytes ≈ 40MB. Referring to

section 3.3.3.2, when there are n total road segments the size of the segment tree is no

larger than 32n+24nlog2n. So the indexing structure for the road segments could take a

total size of 32 1,254,000 +24× ×1,254,000× log21,254,000 = 672,144,000 ≈ 672MB.

On the topology of the road map, as we have discussed in chapter 3, it is represented

in the format of an array. The last cell for each directed road segment is a pointer pointing

to a linked list. This linked list keeps the ID’s of the vehicles that are currently running on

this road segment. The average number of vehicles that run on a road segment at any time

is at most 2,000,000 ÷ 2,500,000 ≈ 1, since there are a total of 2 million cars and about 2.5

million road segments. However in the extreme case, e.g. when there is traffic jam, the

total number of vehicles can be up to the product of the total number of lanes and the

length of the road segment divided by the length of a car. Inside a 1 mile highway with 4

lanes, there could be as many as 4×1609.3 ÷ 6 = 1073. (The average length of a car is

about 5 meters; 1 meter is added as the distance between two vehicles.)

 97

A vehicle doesn’t send any updates to the data center when it is not moving at all. In

the rush hours, most vehicles are moving and hence the total data being sent to data

collecting server is at the highest volume at these times. The extreme case is when all the

vehicles are running. In this case, the data are rushing from vehicles to the data collecting

server at the speed of: 24×2,000,000 = 48M Bytes/second. This only considers the data

meaningful to our system. To receive this amount of useful data, more data are actually

transmitted through the wireless channels. However, since the average time a vehicle

spends on road is within 1 hour, the average data flow is 1/24 of the above extreme case,

which is 2M bytes/second.

The data flow from servers to servers inside the data center can be estimated as

follows. Vehicles’ speed changes mostly happen at stops and re-starts. Normally the total

time a vehicle spends on stops and re-starts is less that when it is running at even speeds.

After preprocessing at the data collecting server, the data updates from vehicles should be

reduced to half or less of the original size. So the data updates flow from server to server

is within 48M ÷ 2 = 24M bytes/second. And the average is 1M bytes/second. The amount

of data transferred for query answering depends on the data range defined by the queries.

Based on the above analysis, the system requirements can be abbreviated as:

• 172GB raw data comes in each day.

• Indexing structure can take up to 237GB per day.

• Maximum of 43,000 vehicles run on a directed road segment in a day, and

the average number is 423.

• Maximum of 1073 vehicles can be in the same directed road segment at same

time, and the average number is 1.

 98

• Data transmit speed from vehicles to data collecting server can be up to 48M

bytes/second, the average is within 2M bytes/second.

• Transfer rate for data update between servers inside data center ranges from

1M bytes/second or less to 24M bytes/second.

Besides the above analysis that measured in numbers, there are other system

requirements which mainly include:

• Incoming data need to be properly processed so that all meaningful data are

kept in database.

• Data update need to be processed in a timely manner such that instead of

obsolete data, the “current data” in our system reflect the true situation in the

real world.

• Queries on both current and past data should be answered promptly, while

priority given to current queries at times of conflicts.

5.2 Setup the Parameters

To meet the system requirements and maximize the performance of the application

system, we need to properly set up the following parameters: the time granularity chron,

the change of speed δ1 and the change of acceleration δ2 as discussed in section 3.1, and

the time range for the indexing trees. Based on the system requirements analysis results

provided in last section, these parameters are set as follows.

• Chron. It is decided by the data update frequency. We set it to 1 second.

Considering the overhead over the communication channels, 1 second per update

 99

means 24M bytes data could be sending to the data center every second. This is

even a great challenge for local networks. On the other hand, it is ideal to set it to

¼ to 1/3 second so that the distance between two consecutive updates is around

twice the GPS data error range. As for the data processing, it basically is possible

to handle data coming in 24M bytes per second. So 1 second is the number after

balancing all the affected parties.

• δ1 and δ2. The math is based on the fact that the omit of speed change which

results in the distance difference within the GPS error is acceptable. The GPS

error is about 3 meters, and the data update interval is one second. 3 meters per

second is about 6 MPH in speed. The highest known speed limit is 75 MPH. δ1 =

6 75 = 0.08. Such a number for δ÷ 1 is large if a highly accurate GPS system is

used in the future, so we don’t set up a value for δ2 and the related calculation

will be measured by the production of δ1 and the Speed Limit of the roads only.

• Time range for each indexing tree. The time interval trees associated to each

directed road segment have a space complexity of nlogn. We can’t do anything

about the n inside this formula, but the logn part is what we want to eliminate.

Considering the nature of the road traffic distribution over time, such as there are

rush hours during the day time, and at late night there are very little traffic on any

road, we can break it down into days and build separate trees for different time

ranges. The basic unit is day, and the separator can be set at 2 O’clock in the

morning since there is the lowest traffic at this time. This way logn can never

grow to too large. Since the total amount of data for one day, as analyzed in last

section, is not small in our case, one day is good for our specific case. Such a

 100

setting will result in the average indexing tree size of about 30K and the largest

up to 5M bytes.

5.3 Hardware Platform and Operating System

The system architecture described in chapter 4 can be implemented, due to its

scalability, with a few high end servers such as IBM mainframe, some powerful

workstations, or a relatively big number of PC servers. To show the system organization

and load balance mechanisms in the distributed system design, PC servers are chosen as

the hardware platforms for servers at all functional nodes in our system. The current high

end PC servers are powerful enough, in terms of computing capability, to do the data

processing, since the amount of data calculation needed in our system is not huge.

However, due to the requirement of the main memory residing road networks and the

most current motion of the vehicles, sized at the order of 102 MB each, high volume of

main memory is required for the servers. A minimum of 1GB is necessary for most of the

servers, and 2GB is suggested for the critical ones, such as the servers that handling the

current data.

For the system security consideration, OpenBSD is the ideal choice as Operating

System. The fact that OpenBSD is open source, which makes it available to us at no cost,

is another reason for us to favor OpenBSD.

Now the compatibility of OpenBSD and Personal Computers becomes the key factor

to decide the feasibility of implementing our system on PC servers running OpenBSD.

OpenBSD/I386 is the PC version of OpenBSD. It runs on the standard PC’s and

clones [OBSD], with a wide variety of processors, I/O bus architectures and peripherals

 101

supported. Our concerns of the Operating System supported hardware mainly include the

processors, I/O buses, hard disks, RAID storage; tape drives, and network connection

which include wired and wireless LAN/WAN support. The currently OpenBSD

supported PC hardware of our concern can be summarized as below:

• The supported processors include Intel, AMD, Cyrix and other series;

• Supported I/O bus architectures include All standard ISA/EISA/VLB/PCI buses,

16-Bit PCMCIA PC Cards, 32-Bit CardBus PC Cards and Universal Serial Bus.

• Hard disk controllers: ISA MFM, ESDI, IDE, and RLL.

• Various RAID and Cache Controllers.

• Tape Drives include: most SCSI tape drives and tape changers, QIC-02 and QIC-

36 format tape drives.

Network connection: 10/100Mbps and Gigabit Ethernet, wireless, ATM and FDDI

interfaces.

OpenBSD supports server and workstation product lines from vendors such as

Hewlett-Packard, Motorola, Sun Microsystems, and the Alpha-based and VAX-based

systems from Digital. So it is possible to put some workstations besides the PC’s in our

system if the budget permits to do so. Otherwise, the migration of partial or all of the

hardware system to any higher products in the future wouldn’t cause any problem in

system architecture, and there is basically no need to re-write the source code after

hardware upgrade.

The current 1G bps local network fits all other I/O devices inside a PC well in terms

of bandwidth. Vehicles can be grouped if network bandwidth becomes a bottleneck, and

 102

more than one machine are used so that each machine accepts and processes only data

from vehicles of certain group(s).

The bottleneck for query answering is with the hard disk access. Our indexing

mechanism and distributed system architecture, along with fast access hard disks,

altogether ensure that queries be processed promptly. When distributing the data load,

both the primary data and indexing structure are distributed evenly to the different access

servers. Primary data are distributed according to the vehicles, and indexing structures are

distributed according to geolocation of the road segments.

5.4 Software Development

C/C++ is widely adopted for system and application software development due to its

portability and compatibility. Even though it is frequently criticized for its lack of

features such as ease of learning, variable default initiation, and garbage collection, these

are not a problem for those true computer professionals. The reason that C/C++ is chosen

as the programming language for our software system implementation is, instead of its

popularity, its efficiency in implementing functional modules that access and/or manage

the I/O devices. To implement software that frequently accesses I/O devices, e.g. hard

disks and network ports, C/C++ is the choice for all reasons.

The data flow in our database system is shown in Figure 5-1. Besides the data flow

shown in the figure, the control flow is maintained complying with the scheduling

policies by means of communication among different servers.

 103

No

Q
ue

ry
 R

es
ul

ts

Query Incoming Data

Yes

No

No

Yes

location and
speed change
within range?

Current Data Processing

Pre-Processing

Backup to
 Hard Disks

leaving
current road

seg.?

Update Database

Recovery Process

Query

Database

On Current
/ Future
Data?

Data Buffered

in Memory

Figure 5-1 Data Flow in Vehicles Tracking System

The software implementation mainly includes the development of the following

modules: incoming data processing, query processing, backup and recovery handling,

data update/query algorithms, storage management, network and communication. The

rest of this section will briefly address the key functional modules of our vehicle location

information tracking system running on OpenBSD using C/C++ programming language.

• Algorithms. The algorithms for insert/search/pathfinder were given in chapter 3.

The implementation of this part is basically to convert this abstracted code into

 104

C/C++ format. Special care needs to be taken to the parts involving I/O access to

storage.

• Communication and Central Control Services. Communication among servers is

implemented by socket programming. To reduce network traffic as well as data

transfer delay, queries are numbered before they are forwarded to one of the

servers for answers and the results are sent back directly from the server which

carries out the query process.

Inside the central control services, there is a directory on data and service

locations along with various system policies. The Central Control Server provides

services such as transaction scheduling and load balancing, and ensures some of

the security policies.

• Incoming Data Processing. The main goal of this module is to reduce as much as

possible for the next phase of processing, while maintain the property that the

vehicle’s motion trajectory can be simulated within the required accuracy.

• Query Processing. It parses and interprets the queries from clients, forwards it to

the corresponding server for answer, finalizes the result and sends it back to

clients.

• Storage Management. Storage in our system exists in the forms of main memory,

local hard disks, network file systems, and tapes. The most current data is kept in

main memory. Recent data are in local and network hard disks. And past data are

stored offline in tapes. Each vehicle’s motion can be managed as separate files.

But it could be very inefficient if the indexing trees are stored on hard disks in

 105

the format of files. To update and access the indexing structure, direct hard disk

access is necessary.

• Backup and Recovery. The data logs are the records of the incoming data in the

time order of their arriving. These logs are written to hard disks as soon as data

comes in. The backup from existing database is a copy of the database ranging

certain time span stored in hard disks or tapes.

Restore from backups is relatively easy, since it only needs to put the data online

and update the data directory. Restore from data logs needs to go through the

same process as the incoming data from vehicles. Since the data under restoring

are old comparing to the newly collected data, the restore processes have lower

priorities in case of conflict.

5.5 Conclusion

This chapter discussed the implementation of a vehicles location information

tracking system based on the real world example of the greater Miami area. Starting with

the system requirements analysis, issues from the system parameters setting, the choosing

of hardware and operating system, to the software development are all briefly addressed.

Research and analysis shows that such a tracking system covering the greater Miami area

with all the vehicles mainly running in this area included can be implemented with about

15-20 high end PC servers and necessary persistent storage. OpenBSD is recommended

for the Operating System based on which the software will be developed. C/C++ is

chosen as the programming language.

 106

6 OTHER CONSIDERATIONS

The system architecture described in chapter 4 is for an independent database

application system. The data and indexing structures described in chapter 3 were

originally targeted at and designed for the real world model of moving objects on

constrained road networks in a 2-d plane. Is it possible to expand or embed the system

design and the indexing mechanisms to a database management system, so that they can

be more powerful and more widely applicable? Can we extend the data and indexing

structures to manage objects moving freely in higher dimensional space without

constraints on their moving trajectory? With a huge amount of vehicles’ movement data

stored in our databases, could we make more use out of it, to benefit other research and

application fields such as traffic management and control?

This chapter explores these possibilities and ways to extend the application model

and the data structures we proposed earlier. Section 6.1 discusses how to embed our data

structure into Sem-ODB. Section 6.2 shows methods to extend the indexing mechanism.

Section 6.3 explores ways to data warehouse the databases manipulated by our approach.

6.1 Embedding the Data Structure into Sem-ODB

Sem-ODB is a semantic object oriented database model originally proposed by Rishe

[Rish92]. A database management system has been developed by the High Performance

Database Research Center at Florida International University. Various GIS and other

applications have been built and still are successfully running on top of the Sem-ODB

DBMS.

 107

The accessibility and the familiarity of Sem-ODB make it a natural choice for the

expansion of our data structure and application model. But there are other reasons as

well. The introduction of semantics into a DBMS improves the efficiency of data

management and reduces storage cost. The indexing mechanism (for traditional static

data) in Sem-ODB is efficient and uncomplicated. High flexibility is provided to the

application system and the developers by not requiring a key for data of any category,

which is equivalent to a table in the relational model. These characteristics of Sem-ODB

make it suitable for the management of static and some discrete data types for a vehicles

location information tracking system.

Embedding our data structure and system architecture into Sem-ODB would provide

the following benefits for the system designers and developers:

- Efficient management of static data,

- No need to develop a new query interpreting service,

- Easy incorporation of our transaction scheduling mechanism,

- Easy implementation of Role based security policies,

- Rich Application Programming Interface (API)

- Many existing tools.

To do this embedding, care needs to be taken to key issues including dealing with

different indexing structures, transaction scheduling and concurrency control policies,

and processing of spatio-temporal queries. The API may need to be expanded as well to

meet the program needs of accessing spatio-temporal data. These issues can be handled

as follows:

 108

- Embedding the Indexing Structure. Only the data on continuously moving

objects motion is indexed using the STAPS approach. Other data, including static

and discretely changed data, are under the control of Sem-ODB’s traditional

management.

- Transaction and Concurrency Control. The updates of static data always yield the

real-time updates, except for those involving security role changes.

- Expanding the API. The API for data updates on sptio-temporal data are allowed

for system programs; users never are given permission to call these

functions/interfaces.

- Adding Spatio-temporal Query Types. The parser and interpreter need to be

updated, and SQL expressions need to be enriched.

6.2 Extend The Indexing Structure

Even though they were designed for the application model of vehicles moving on

road networks, the data and indexing structures are applicable to objects moving in higher

dimensions with or without constraints. This section briefly discusses how the indexing

schemes work in an expanded space.

6.2.1 Indexing Objects Moving in Free 2-d Space

An IET is defined in chapter 3 as any event that triggers the update of the indexing

structure. Corresponding to the definition of IET, the partition of the space is not

necessarily restricted to road segments or any of the constraints on the objects’ motion.

Even for objects moving on road networks, the IET(s) can be defined as other events than

 109

the entering and leaving of a road segment. The simplest way to partition the 2-d space so

that the STAPS approach can be applied is to evenly grid the plane into equal rectangular

areas.

Associated Time
Interval TreesPartitioned Space

Figure 6-1 Building Indexing Structure for Objects Moving in Free 2-d Space

Figure 6-1 shows how such a space partition policy works. The IETs in this case are

defined as the objects’ entering and leaving of the rectangular area. When there is no

restriction on objects movement, there is no need to index anything like the road

segments as in the case we discussed in earlier chapters. The locating of a given query

point or area into the grids in the plane can be easily calculated by their coordinates and

the boundaries of the grids.

Queries of all types are processed similarly as in the moving vehicles on road

networks case that we discussed in chapter 3. For range queries of type Q4, the I/O

 110

complexity is O(mlogT + k), where m is the number of grids (partitions) that intersect the

given query space range, T is the total number of time intervals associated to this space

grid, and k is the total number of objects that appear in the space range during time [t1,

t2]. This fact shows that the STAPS approach works for objects moving in free 2-d space

at least as well as when the objects’ movement is restricted to any road networks in the

plane.

Notice that the IETs are not required to be uniformly defined even in the same

application system. The involved space range doesn’t have to be rectangular or any

regular geometric shapes either.

6.2.2 Indexing Objects Moving in Higher Dimensional Space

The work on extending the STAPS approach to manage continuously moving objects

in higher dimensional space becomes trivial after it is successfully extended to free 2-d

space. For objects moving in 3-dimensional space or higher dimensional hyper plane, an

efficient indexing structure can be built by defining an appropriate space partitioning

rule, choosing an applicable static access method for the manipulation of the space

partitions, and building an interval tree to handle the accesses to the associated time

intervals. The easiest space partitioning method is to evenly grid it into hyper rectangles.

And just as in the 2-d space cases, there are no restrictions to the space partitioning

methods as long as any point in the space is assigned to, and mostly only to, one partition.

Observe that in both the 2-d and higher dimensional cases, one of the critical steps in

applying the STAPS approach to build and manipulate the indexing structures is to

 111

choose an appropriate space partitioning method. In the processing of a range query, the

I/O complexity of O(mlogT+k) greatly depends on how the space is partitioned. The

larger each partition is, the smaller m, but the larger T and k will be. The system designers

have to balance them considering the specific situation of the application.

The indexing structures for both the space partitions and the segmented time

intervals can be any kinds which are appropriate to the application model. The system

performance depends on how well the chosen indexing structures fit the criticality of

different kinds of operations to the system. In the real-time vehicles location information

tracking system, the most critical tasks are the data updates, that is why in our example

application case a structure is chosen to provide the best update performance O(1) I/Os,

on the average.

6.3 Data Warehousing

In chapter 5, we have analyzed the data size a region wide moving vehicles location

information tracking system would generate in each day. As time passes, the data stored

in the system would grow quickly, and soon it would become more like a data warehouse

than a simple location information database. These data could provide valuable support to

research and applications in the area of traffic control, such as traffic simulation [Trim,

Cors], intelligent transportation systems [ITS02, DOT03], and real-time traffic

information systems [Geor, Wash].

The mechanisms inside STAPS could be adopted for further analysis of the data

stored in such a data warehouse to be used by such research and application projects. The

data analysis could be done by putting IETs to the data types of concern and applying the

 112

indexing structures and/or the data analysis algorithms whenever it is triggered. The data

to which the IETs are associated could be any types, not just space. The data analysis

could be done either in real-time, if it doesn’t compromise the application’s time-critical

processes, or in background and/or offline by reviewing stored data.

 113

7 CONCLUSION

In this dissertation we have explored data structure, indexing mechanisms, system

architecture, and implementation issues involved in a real-time database system of

continuously moving objects based on the real-world application model of a location

information tracking and retrieval system for vehicles moving on road networks. We

have proposed the Segmented Time Associated to Partitioned Space (STAPS) approach

for the processing of continuously moving objects databases. A data and indexing

structure has been designed for the real-time location information tracking and history

retrieval system for vehicles moving on road networks using the STAPS method. Based

on this data and indexing structure, a distributed system architecture has been presented.

Targeting at a possible real-time database application system that manipulates all the

vehicles moving in the greater Miami area, the main implementation issues have been

addressed based on the system requirements analysis. The possibilities and means of

extending the indexing structure have been briefly discussed as well.

The STAPS approach well represents the continuity of the objects movement by

partitioning the space where the objects move in and segmenting the time into intervals

during which an object is inside a space partition. There is no need for any assumptions

on objects’ moving trajectories and speed. The indexing structures for space partitions

and time intervals are not predefined. Instead system designers can choose or design the

structures that best fit their specific system requirements. STAPS is a general approach

for manipulating databases on objects of any kinds that continuously move in any sort of

free or constrained space.

 114

Designed for the database systems of vehicles moving on road networks, the road

networks are represented by a set of directed road segments indexed by a segment tree,

and a balanced interval tree structure is used to index time segments associated to the

road segments. These two structures working together can achieve ideal data update

complexity of average O(1) I/Os to meet the application system’s real-time requirements,

and I/O cost on most of the search operations is within the order of logarithm.

A distributed system architecture with centralized organization is presented for a

real-time database system on moving vehicles on regional road networks. The key

problems for a real-time database system, such as the real-time property, transaction and

concurrency control, storage management, backup and recovery, and the system security,

are discussed and solutions are given. The detailed implementation related issues

involved in the development of such application systems are itemized based on the

system requirement analysis on the real world scenario of moving vehicles in greater

Miami area, and a suggested total solution is provided.

7.1 Dissertation Contributions

The main contributions of this dissertation research are concluded as follows:

1. STAPS is the first known systematic approach for building indexing structures

for Continuously Moving Objects databases. Instead of being taken as another

spatial dimension, time is treated separately from the spatial dimensions. The

time dimension and the space dimensions interfere with each other at the points

of IETs. This way the continuity of the objects movement is well represented.

 115

Hence data and indexing structures developed applying the STAPS approach are

potentially more efficient than those developed in the traditional ways.

2. The Segment Tree structure [Bent77] is adopted and carefully re-modified to fit

the application model of real-time moving vehicles on road networks. The

indexing structures with proven I/O complexity meet the system’s real-time

requirements with acceptable search performance. They can be extended to

higher dimensional and/or free moving space without compromising the

efficiency provided to the cases of 2-dimensional road networks constrained

space.

3. The proposed indexing structure supports data insertions at worst case O(clogn)

I/O cost with very small constant c, and the average I/O cost for data updates in

the vehicles moving on road networks case is O(1). The real-time data updates

property is ensured.

4. An architecture and detailed system design is provided for the implementation of

a real world application model – real-time integration of a location information

tracking and retrieval system for vehicles moving on (region wide) road

networks.

7.2 Future Work

This dissertation research has addressed most of the core issues involved in a moving

objects database. Solutions are provided to the specific case of moving vehicles on road

networks. However, there are yet important issues, which are either not discussed or not

fully developed. Our next step will be to work on the implementation of the database

 116

system on vehicles moving on road networks, using the data structure, system

architecture and design presented in this dissertation. Then we will focus on the tuning of

the searching performance on some types of queries, and the development of algorithms

to answer other important types of queries, such as nearest neighbor. To itemize, the

future work includes:

- System Implementation. To implement the proposed application system, and then

embed the data and indexing structure to Sem-ODB is part of the main concerns

in the near future plan.

- Reducing the I/O costs on range queries. Based on the experimental results from

the running application, parameters can be adjusted to achieve better I/O

performance for queries, especially the range queries.

- Nearest Neighbor Search. In practice, this family of queries are useful for

companies or government agencies to do their scheduling and/or planning work.

In research, it is a topic of interest to people in several research areas.

- Explore the possibility of a systematic method to partition the space and define

the IETs. After or at the same time that the above tasks are carried out, we can

work on the space partition methods to improve the overall system performance

and speed the data structure and algorithms design for different kinds of MODBs

and related applications.

 117

BIBLIOGRAPHY

[AEG98] P. K. Agarwal, J. Erickson, L. Guibas. Kinetic Binary Space Partitions for

Intersecting Segments and Disjoint Triangles. In Proc. 9th Annu. ACM-SIAM
Sympos. Discrete Algorithms, 107-116, 1998.

[AAE00] P. Agarwal, L. Arge, J. Erickson. Indexing Moving Points. Proceedings of the

19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, 2000.

[AAV01] P. Agarwal, L. Arge, J. Vahrenhold. Time Responsive Indexing Schemes for

Moving Points. Workshop on Algorithms and Data Structures, 2001.

[AG04] V. T. Almeida, R. H. Güting. Indexing the Trajectories of Moving Objects in

Networks. Technicla Report 309, Fernuniversität Hagen, Fachbereich
Informatik, 2004.

[ARR00] F. Araújo, B. Ribeiro, L. Rodrigues. A Neural Network for Shortest Path

Computation. DI–FCUL TR–00–2, Departamento de Informática Faculdade de
Ciências da Universidade de Lisboa Campo Grande, April 6, 2000.

[ASV99] L. Arge, V. Samoladas, J. S. Vitter. On Two-Dimensional Indexability and

Optimal Range Search Indexing. In Proc. 18th Annu. ACM Sympos.Principles
Database Syst., 346-357, 1999.

[Arg01] L. Arge. Some Algorithmic Research Challenges and Opportunities in Geospatial

Applications. 2001.

[Arm01] M. Armstrong. The Four Way Intersection of Geospatial Information and

Information Technology. A White Paper Prepared for the Workshop on the
Intersection of Geospatial Information and Information Technology, 2001.

[BGZ97] J. Basch, L. Guibas, L. Zhang. Proximity Problems on Moving Points.

Proceedings of the 13th Annual Symposium on Computational Geometry, 1997.

[BGH99] J. Basch, L. Guibas, J. Hershberger, Data Structures for Mobile Data, J.

Algoritms, 31(1):1-28, 1999.

[Bas99] J. Basch. Kinetic Data Structures. PhD Thesis, Computer Science Department,

Stanford University, 1999.

[Bent77] J. L. Bently. Solutions to Klee’s Rectangle Problems. Technical Report,

Carnegie-Mellon Univ. Pittsburgh, PA, 1977.

[BP00] K. Beard, H. M. Palancioglu. Estimating Positions and Paths of Moving

Objects. IEEE Seventh International Workshop on Temporal Representation
and Reasoning, 2000.

 118

[BGOW93] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer. On Optimal
Multiversion Access Structures. In Proc. of Symposium on Large Spatial
Databases, Vol. 692, 1993.

[BGOS96] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer. An Asymptotically

Optimal Multiversion B-tree. The VLDB Journal, Vol.5, No.4, pp.264-275, 1996.

[BKSS90] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger. The R*-tree: An Efficient

and Robust Access Method for Points and Rectangles. In Proceedings of ACM
SIGMOD Int'l. Conf. on Management of Data, Vol.19 Issue.2, pp.322-331, 1990.

[BJKS02] R. Benetis, C. Jensen, G. Karciauskas, S. Saltenis. Nearest Neighbor and

Reverse Nearest Neighbor Queries for Moving Objects. IDEAS, 2002.

[BKOS00] M. Berg, M. Kreveld, M. Overmars, O. Schwarzkopf, Computational geometry:

Algorithms and Applications (Second Edition), Springer-Verlag, 2000. pp. 223-
229.

[BM??] A. Boroujerdi, B. Moret. Persistence in Computational Geometry. ??

[Cha86] B. Chazelle. Filtering search: a New Approach to Query-Answering. SIAM

J. Comput., 15(3):703--724, 1986

[CC02] Y. Choi , C. Chung. Selectivity Estimation for Spatio-Temporal Queries to

Moving Objects. Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, 2002.

[CR99] J. Chomicki, P. Z. Revesz. A Geometric Framework for Specifying

Spatiotemporal Objects. In Proc. 6th Intl. Workshop on Time Representation and
Reasoning, 41-46, 1999.

[CAA01-1] H. Chon, D. Agrawal, A. Abbadi. Using Space-time Grid for Efficient

Management of Moving Objects. Second ACM Iinternational Workshop on
Data Engineering for Wireless and Mobile Access, May 2001.

[CAA01-2] H. Chon, D. Agrawal, A. Abbadi. Storage and Retrieval of Moving Objects. In

Proceedings of the International Conference on Mobile Data Management, 2001.

[CAA02] H. Chon, D. Agrawal, A. Abbadi. Query Processing for Moving Objects with

Space-Time Grid Storage Model. Third International Conference on Mobile
Data Management, pp.121, 2002.

[CCT93] J. Clifford, A. Crocker, A. Tuzhilin, On the Completeness of Query Languages

for Grouped and Ungrouped Historical Data Models. Temporal Databases:
Theory, Design and Implementation, pp. 496-533, 1993.

[Cors] CORSIM Overview at http://www.fhwa-tsis.com/corsim_page.htm.

 119

http://www.fhwa-tsis.com/corsim_page.htm

[CFGN01] J. Cotelo, L. Forlizzi, R. Güting, E. Nardelli, M. Schneider. Algorithms for
Moving Objects Databases. FernUniversität Hagen, Informatik-Report 289,
October 2001.

[DOD01] U. S. Department of Defense. Global Positioning System Standard Positioning

Service Performance Standard. http://www.navcen.uscg.gov/gps/geninfo/2001
SPSPerformanceStandardFINAL.pdf.

[DOT03] U.S. Department of Transportation, Federal Highway Administration Next

Generation Simulation Program: http://ops.fhwa.dot.gov/Travel/Traffic_
Analysis_Tools/ngsim.htm.

[EGSS01] J. Eisenstein , S. Ghandeharizadeh , C. Shahabi , G. Shanbhag , R. Zimmermann.

Potpourri: Alternative representations and abstractions for moving sensors
databases. Proceedings of the 10th International Conference on Information
and Knowledge Management, 2001.

[EN00] R. Elmasri, S. Navathe. Fundamentals of Database Systems, Third Edition.

Addison-Wesley, 2000.

[ES02] M. Erwig, M. Schneider. Spatio-Temporal Predicates. IEEE Transactions on

Knowledge and Data Engineering, Vol. 14, No. 4, pp881, 2002.

[ESRI99] ESRI, ArcView Tracking Analyst: Complete Tracking Solutions, May 1999.

[FGNS00] L. Forlizzi , R. Güting, E. Nardelli, M. Schneider. A Data Model and Data

Structures for Moving Objects Databases. ACM SIGMOD Record , Proceedings
of the 2000 ACM SIG MOD International Conference on Management of Data,
Vol. 29 Issue 2, May 2000.

[FGGJ99] A. Frank, S. Grumbach, R. Güting, C. Jensen, M. Koubarakis, N. Lorentzos, Y.

Manolopoulos, E. Nardelli, B. Pernici, H. Schek, M. Scholl, T. Sellis, B.
Theodoulidis, P. Widmayer. Chorochronos: a Research Network for
Spatiotemporal Database Systems. ACM SIGMOD Record, Vol 28 Issue 3, 1999.

[Fren03] E. Frentzos. Indexing Objects Moving on Fixed Networks. In Proc. of the 8th

International Symp. on Spatial and Temporal Databases, pages 289-305, 2003.

[GN93] S. Gadia,S. Nair. Temporal Databases: A Prelude to Parametric Data. Temporal

Databases: Theory, Design, and Implementation, pp. 28-66, 1993.

[Garm] http://www.garmin.com/.

[Geod] http://www.geodan.nl/uk/.

[Geor] www.georgianavigator.com.

[GSS01] R. Greenwald, R. Stackowiak, J. Stern. Oracle Essentials : Oracle9i, Oracle8i

& Oracle8 (2nd Edition). O'reilly, 2001.

 120

http://www.navcen.uscg.gov/gps/geninfo/2001�SPSPerformanceStandardFINAL.pdf
http://www.navcen.uscg.gov/gps/geninfo/2001�SPSPerformanceStandardFINAL.pdf
http://ops.fhwa.dot.gov/Travel/Traffic_Analysis_Tools/ngsim.htm
http://ops.fhwa.dot.gov/Travel/Traffic_Analysis_Tools/ngsim.htm
http://www.garmin.com/
http://www.geodan.nl/uk/
http://www.georgianavigator.com/

[GFPH01] T. Griffiths, A. Fernandes, N. Paton, B. Huang, M. Worboys, C. Johnson, K.
Mason, J. Stell. Spatiotemporal Databases: Tripod: a Comprehensive System for
the Management of Spatial and Aspatial Historical Objects. Proceedings of the
9th ACM International Symposium on Advances in Geographic Information
Systems, 2001.

[GRS98] S. Grumbach, P. Rigaux, and L. Segoufin, Spatio-Temporal Data Handling with

Constraints, In Proc. Sixth ACM Int'l Symp. Advances in Geographic Information
Systems, pp. 106-111, 1998.

[Gut84] A Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In

Proceedings of the SIGMOD Conference, 1984.

[GBEJ00] R. Güting, M. Böhlen, M. Erwig, C. Jensen, N. Lorentzos, M. Schneider, M.

Vazirgiannis. A Foundation for Representing and Querying Moving Objects.
ACM Transactions on Database Systems (TODS), Volume 25 Issue 1. pp1-42,
March 2000.

[HKTG02] M. Hadjieleftheriou, G. Kollios, V. Tsotras, D. Gunopulos. Efficient Indexing

of Spatio-temporal Objects. EDBT, 2002.

[HKT02] M. Hadjieleftheriou, G. Kollios, V. Tsotras. Efficient Indexing of Spatiotemporal

Objects. EDBT, 2002.

[IKK02] Y. Ishikawa, H. Kitagawa, T. Kawashima. Continual Neighborhood Tracking

for Moving Objects Using Adaptive Distances. Proceedings of the International
Database Engineering and Applications Symposium, 2002.

[ITS02] The Intelligent Transportation Society of America. National Intelligent

Transportation Systems Plan: Ten-Year Vision. Jan. 2002.

[Jen02] C. Jensen. Research Challenges in Location-Enabled M-Services. Third

International Conference on Mobile Data Management, Singapore, pp.3, January
2002.

[JBBS01] M. Jones, C. Berkley, J. Bojilova, M. Schildhauer. Managing Scientific

Metadata. IEEE Internet Computing, pp. 59-68, 2001.

[JP02] S. Jung, S. Pramanik. An Efficient Path Computation Model for Hierarchically

Structured Topographical Road Maps. IEEE Transactions on Knowledge and
Data Engineering, pp.1029-1046, 2002.

[KL00] C. Kleiner, U. Lipeck. Efficient Index Structures for Spatio-Temporal

Objects. The 11th International Workshop on Database and Expert Systems
Applications, pp. 881, Sep 2000.

[KGT99-1] G. Kollios, D. Gunopulos, V. Tsotras. On indexing mobile objects. Proceedings

of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, 1999.

 121

[KGT99-2] G. Kollios, D. Gunopulos, V. Tsotras. Nearest Neighbor Queries in a Mobile
Environment. Spatiotemporal Database Management, 119-134, 1999.

[KM00] F. Korn, S. Muthukrishnan. Influence Sets Based on Reverse Nearest Neighbor

Queries. In Proceedings of ACM SIGMOD International Conference on
Management of Data, Dallas, USA, Volume 29, Issue 2, 2000.

[KY00] J. Kuchar, L. Yang, A Review of Conflict Detection and Resolution

Modeling Methods. IEEE Transactions on Intelligent Transportation Systems,
Vol. 1, No. 4, 2000.

[KM00] T. Kuo, A. Mok. Real-Time Data Semantics and Similarity-Based Concurrency

Control. IEEE Trans. Computers 49(11): pp.1241-1254, 2000.

[KLL02] D. Kwon, S. Lee, S. Lee. Indexing the Current Positions of Moving Objects

Using the Lazy Update R-tree. Third International Conference on Mobile Data
Management, pp. 113, Jan. 2002.

[LULC01] K. Lam, Ö. Ulusoy, T. Lee, E. Chan, G. Li. An Efficient Method for Generating

Location Updates for Processing of Location-Dependent Continuous Queries.
7th International Conference on Database Systems for Advanced Applications,
pp. 0218, 2001.

[LK01] K. Lam, T. Kuo. Real-Time Database Systems Architecture and Techniques.

Kluwer Academic Publishers, 2001.

[Lee96] D.T. Lee. Computational Geometry. ACM Computing Surveys, 1996.

[MU99] Y. Masunaga, N. Ukai. Toward a 3D Moving Object Data Model -- A

Preliminary Consideration. International Symposium on Database Applications
in Non-Traditional Environments (DANTE'99), pp. 302, Nov. 1999.

[MSI02] H. Mokhtar, J. Su, O. Ibarra. OLAP and Constraints: On Moving Object

Queries. Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, 2002.

[MRA00] J. Moreira , C. Ribeiro , T. Abdessalem. Query Operations for Moving Objects

Database Systems. In Proceedings of the Eighth ACM International Symposium
on Advances in Geographic Information Systems, ACM Press New York, NY.
pp.108-114 ISBN:1-58113-319-7, 2000.

[MRS99] J. Moreira, C. Ribeiro, J.-M. Saglio. Representation and Manipulation of Moving

Points: an Extended Data Model for Location Estimation. Cartography and
Geographic Information Science, 26 (1999) 109-123.

[Nav] NavTech. NavStreets Product Guide.2003.

 122

[NHS84] J. Nievergelt, H. Hinterberger, K. C. Sevcik. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Trans. on Database Systems, Vol. 9,
No. 1, pp. 38--71, 1984.

[Nova] http://www.novatel.com/About_Us/racingfx.html

[OBSD] http://www.openbsd.org/

[Ove87] M. Overmars, Computational Geometry on a Grid -- An Overview. 1987.

[PKGT02] D. Papadopoulos, G. Kollios, D. Gunopulos, V. Tsotras. Indexing Mobile

Objects on the Plane. Proceedings of the 13th International Workshop on
Database and Expert Systems Applications, 2002.

[PSZ99] C. Parent, S. Spaccapietra, E. Zimányi. Spatio-temporal Conceptual Models:

Data Structures + Space + Time. Proceedings of the seventh ACM International
Symposium on Advances in Geographic Information Systems, 1999.

[PT00] D. Pfoser, Y. Theodoridis. Generating Semantics-Based Trajectories of Moving

Objects. Proceedings Workshop on Emerging Technologies for Geo-Based
Applications, Ascona, Italy, 2000.

[PJ01] D. Pfoser, C. Jensen. Querying the Trajectories of On-line Mobile Objects.

Second ACM International Workshop on Data Engineering for Wireless and
Mobile Access, May 2001.

[PJ03] D. Pfoser, C. S. Jensen. Indexing of Network Constrained Moving Objects.

Proceedings of the eleventh ACM International Symposium on Advances in
Geographic Information Systems, November 2003.

[PS01] E. Pitoura, G. Samaras. Locating Objects in Mobile Computing. IEEE

Transactions on Knowledge and Data Engineering, pp. 571-592, July 2001.

[PSR99] R. Price, B. Srinivasan, K. Ramamohanarao. Spatiotemporal Extensions to

Unified Modeling Language. 10th International Workshop on Database &
Expert Systems Applications, pp. 460, 1999.

[Rish92] N. Rishe. Database Design: The Semantic Modeling Approach. McGraw-Hill,

1992.

[RGMS] J. Roddick, F. Grandi, F. Mandreoli, M. Scalas. Towards a Model for Spatio-

Temporal Schema Selection. 10th International Workshop on Database & Expert
Systems Applications, pp. 434, 1999.

[RN95] S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

1995.

 123

http://www.novatel.com/About_Us/racingfx.html
http://www.openbsd.org/

[SM99] J. Saglio, J. Moreira. Oporto: A Realistic Scenario Generator for Moving
Objects. The 10th International Workshop on Database & Expert Systems
Applications, pp. 426, 1999.

[Sam84] H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM

Computing Surveys (CSUR), Volume 16 Issue 2, 1984.

[SS93] A. Segev, A. Shoshani. A Temporal Data Model Based on Time Sequences.

Temporal Databases: Theory, Design and Implementation, pp. 248-270, 1993.

[SG93] A. Segev, H. Gunadhi. Efficient Indexing Methods for Temporal Relations. IEEE

Transactions on Knowledge and Data Engineering, pp. 496-509, 1993.

[SRF87] T. Sellis, N. Roussopoulos, C. Faloutsos. The R+-tree: A Dynamic Index for

Multi-Dimensional Objects. In Proceedings of the 13th International Conference
on Very Large Data Bases, Brighton, England, pp. 507, 1987.

[SDK01] A. Seydim, M. Dunham, V. Kumar. Location Dependent Query Processing.

Second ACM International Workshop on Data Engineering for Wireless and
Mobile Access, 2001.

[SKTA01] C. Shahabi, M. Kolahdouzan, S. Thakkar, J. Ambite, G. Knoblock. Distributed,

Web-based GIS: Efficiently Querying Moving Objects with Pre-defined Paths in
a Distributed Environment. Proceedings of the 9th ACM International
Symposium on Advances in Geographic Information Systems, 2001.

[SF96] S. Shekhar, A. Fetterer. Path Computation in Advanced Traveler Information

Systems. In Proc. Intelligent Transportation Systems, 1996.

[SFL96] S. Shekhar, A. Fetterer, D. Liu. Genesis: An Approach to Data Dissemination in

Advanced Traveler Information Systems. IEEE Bulletin of the Technical
Committee on Data Engineering, 19(3):40–47, 1996.

[SMWH] R. Sherlock, P. Mooney, A.Winstanley, J. Husdal. Shortest Path Computation:

A Comparative Analysis.

[SWCD97] A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Modeling and

Querying Moving Objects. Proceedings of the 13-th International Conf. on Data
Engineering, Birmingham, UK, 1997.

[SWCD98] P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Querying the Uncertain Position

of Moving Objects. Springer Verlag Lecture Notes in Computer Science, number
1399, pp. 310-337, 1998.

[SAA00] I. Stanoi, D. Agrawal, A. Abbadi. Reverse Nearest neighbor Queries for

Dynamic databases. Proceedings of the ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, pp. 44–53, 2000.

 124

[ŠJLL00] S. Šaltenis, C. Jensen, S. Leutenegger, M. Lopez. Indexing the positions of
continuously moving objects. Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Volume 29 Issue 2, 2000.

[ŠJ02] S. Šaltenis, C. Jensen. Indexing of Moving Objects for Location-Based Services,

In Proceedings of the 18th International Conference on Data Engineering,
pp.463-472, 2002.

[SS93] A. Segev, A. Shoshani. A Temporal Data Model based on Time Sequences.

Temporal Databases: Theory, Design and Implementation, pp. 248-270, 1993.

[SMM99] M. Sède, A. Moine, P. Marceau. Systemic Approach for Spatio-Temporal

Database Structuration. 10th International Workshop on Database & Expert
Systems Applications, pp. 462, 1999.

[TCGJ93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snodgrass. Temporal

Databases Theory, Design, and Implementation. The Benjamin Cummings
Publishing Company Inc. 1993.

[TP02] Y. Tao, D. Papadias. Time-parameterized queries in spatio-temporal databases.

Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, June 2002.

[TPZ02] Y. Tao, D. Papadias, J. Zhang. Aggregate Processing of Planar Points. EDBT,

2002.

[TPS02] Y. Tao, D. Papadias, Q. Shen. Continuous Nearest Neighbor Search. In

Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

[TPS03] Y. Tao, D. Papadias, J. Sun. The TPR*-Tree: An Optimized Spatio-Temporal

Access Method for Predictive Queries. VLDB, 2003.

[TMP03] Y. Tao, N. Mamoulis, D. Papadias. Validity Information Retrieval for Spatio-

Temporal Queries: Theoretical Performance Bounds. SSTD, 2003.

[TUW97] J. Tayeb, Ö. Ulusoy, O. Wolfson. A Quadtree Based Dynamic Attribute

Indexing Method. The Computer Journal, 1997.

[TSPM98] Y. Theodoridis, T. Sellis, A. Papadopoulos, Y. Manolopoulos. Specifications for

Efficient Indexing in Spatiotemporal Databases. In Proc. 10th International Conf.
Scientific and Statistical Database Management, pp. 123-132, 1998.

[TWZC02] G. Trajcevski, O. Wolfson, F. Zhang, S. Chamberlain. The Geometry of

Uncertainty in Moving Objects Databases. Proceedings of the International
Conference on Extending Database Technology (EDBT02), Prague, Czech
Republic, March 2002.

 125

[TWXN02] G. Trajcevski, O. Wolfson, B.o Xu, P. Nelson. Real Time Traffic Updates in
Moving Objects Databases. Proceedings of the 13th International Workshop on
Database and Expert Systems Applications, 2002.

[Trim] TRIMARC www.trimarc.org, The GCM Travel Web site www.gcmtravel.com.

[USCen] http://www.census.gov/acs/www/Products/Profiles/Single/2002/ACS/Tabular/38

0/38000US49921.htm

[VV99] P. Varman, R. Verma. An Efficient Multiversion Access Structure. IEEE

Transactions on Knowledge and Data Engineering, pp.391-409, 1999.

[VW01-1] M. Vazirgiannis, O. Wolfson. A Spatiotemporal Query Language for Moving

Objects. Proceedings of the 7th International Symposium on Spatial and
Temporal Databases, Los Angeles, CA, July 2001.

[VW01-2] M. Vazirgiannis and O. Wolfson. A Spatiotemporal Model and Language for

Moving Objects on Road Networks. In Proceedings of the 7th International
Symposium on Advances in Spatial and Temporal Databases, pp20--35, 2001.

[Wash] www.wsdot.wa.gov/traffic, The Washington State Department of Transportation.

[WCDJ98] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, G. Mendez. Cost and

Imprecision in Modeling the Position of Moving Objects. Proceedings of the
14th International Conf. on Data Engineering, Orlando, FL, 1998.

[WSXZ99] O. Wolfson, P. Sistla, B. Xu, J. Zhou, S. Chamberlain, Y. Yesha, N. Rishe.

Tracking Moving Objects Using Database Technology in DOMINO.
Proceedings of The 4th NGITS Workshop, Zikhron-Yaakov, Israel, pp. 112-
119, July 1999.

[WJSC99] O. Wolfson, L. Jiang, P. Sistla, S. Chamberlain, N. Rishe, M. Deng. Databases

for Tracking Mobile Units in Real Time. Proceedings of the Seventh
International Conference on Database Theory (ICDT), Jerusalem, Israel, pp.
169-186, Jan 1999.

[WSCY99] O. Wolfson, P. Sistla, S. Chamberlain, Y. Yesha. Updating and Querying

Databases that Track Mobile Units. Special Issue of the Distributed and Parallel
Databases Journal on Mobile Data Management and Applications, 7(3), 1999.

[WXC00] O. Wolfson, B. Xu, S. Chamberlain. Location Prediction and Queries for

Tracking Moving Objects. IEEE 16th International Conference on Data
Engineering, Sandiego CA, 2000.

[Wol02] O. Wolfson. Moving Objects Information Management: The Database Challenge.

The Proceedings of the 5th NGITS Workshop, Caesarea, Israel, June 2002.

[Wor94] M. Worboys. A Unified Model for Spatial and Temporal Information. The

Computer Journal, Vol 37, no. 1, pp25-34, 1994.

 126

http://www.census.gov/acs/www/Products/Profiles/Single/2002/ACS/Tabular/38�0/38000US49921.htm
http://www.census.gov/acs/www/Products/Profiles/Single/2002/ACS/Tabular/38�0/38000US49921.htm
http://www.wsdot.wa.gov/traffic

Appendix A Semantic Schema for Road Segments and Vehicles
APPENDICES

Dynamic_ Attributes

Roadid: integer

time: time
velocity: real
distance: real
easting: real

northing: real

Static_Attributes

Vid: integer
make: string
model: string
year: integer

Location

zone: integer
easting: real

northing: real
address: string

Discrete _Attributes

Road_Segment

Roadid : integer

Starteasting : real
Startnorthing : real
Endeasting : real
Endnorthing : real
Zone: integer
Length : real

Speed_limit: real

Vehicle

next (1:m)

Ownership
owner: string

start_time: time

Use
use: string

start_time: time

Color
color: string

start_time: time

Destination
start_time: time

run_on (1:m)

on (m:1)

at (m:m)

has (m:m)

dest (m:m)

own_by (m:m)

use (m:m)
static (m:m)

dyn (m:m)

dis (m:m)

col (m:m)

 127

Appendix B Map of Greater Miami Area

Inside the Yellow Rectangle, Sized 95km×132km , is the Area Where
Vehicles Would Most Likely Appear.

 128

Appendix C Two Sample Road Segments Layout in Miami Florida

a. about 175 segments/km2 -- Miami Down Town

 129

b. about 210 segments/km2 -- Miami SW 8th Street

 130

VITA

XIANGYU YE

July, 1967 Born, Hubei, China

1988 B.E. in Computer Engineering
Tsinghua University
Beijing, China

1991 M.E. in Electronic Engineering
China University of Mining and Technology
Beijing, China

1991 – 1994 Software Engineer
Software Engineering Research Lab,
Chinese Academy of Sciences
Beijing, China

1994 – 1997 System Engineer / Manager, System Integration
Computer Network Information Center,
Chinese Academy of Sciences
Beijing, China

1997 – 2000 Research Associate
High Performance Database Research Center,
Florida International University
Miami, Florida

2001 M.S. in Computer Science
Florida International University
Miami, Florida

2000 - 2003 Research/Teaching Assistant
School of Computer Science,
Florida International University
Miami, Florida

 131

	Florida International University
	FIU Digital Commons
	7-13-2004

	An Indexing Structure and Application Model for Vehicles Moving on Road Networks
	Xiangyu Ye
	Recommended Citation

	INTRODUCTION
	Thesis Overview

	RELATED WORK
	Data Model and Data Structures
	Indexing Structures
	Handling of Uncertainty and Imprecision
	Query Languages
	Implementation and Applications

	DATA MODEL AND DATA STRUCTURE
	Data Model
	3.1.1 Handling of Imprecision

	Data Structure
	Indexing Structure
	3.3.1 Introduction to Segment Tree
	3.3.2 Indexing Structure
	3.3.2.1 Indexing the Road Segments
	3.3.2.2 Indexing Vehicle’s Motion

	Query Processing
	3.4.1 Path Computation
	3.4.2 Answering the Queries

	Conclusion

	SYSTEM ARCHITECTURE
	Overview
	4.1.1 Distributed Architecture
	4.1.2 Centralized System Organization

	Meeting the Real-Time Requirements
	Storage Management
	Transaction and Concurrency Control
	Backup and Recovery
	Other Issues
	4.6.1 System Security
	4.6.2 Query Processing
	4.6.3 User Interface

	Conclusion

	IMPLEMENTATION
	System Requirements Analysis
	Setup the Parameters
	Hardware Platform and Operating System
	Software Development
	Conclusion

	OTHER CONSIDERATIONS
	Embedding the Data Structure into Sem-ODB
	Extend The Indexing Structure
	6.2.1 Indexing Objects Moving in Free 2-d Space
	6.2.2 Indexing Objects Moving in Higher Dimensional Space

	Data Warehousing

	CONCLUSION
	7.1 Dissertation Contributions
	7.2 Future Work

	BIBLIOGRAPHY
	APPENDICES
	VITA

