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ABSTRACT OF THE DISSERTATION

STATISTICAL DIALOG MANAGEMENT FOR HEALTH INTERVENTIONS

by

Ugan Yasavur

Florida International University, 2014

Miami, Florida

Professor Christine Lisetti, Major Professor

Research endeavors on spoken dialogue systems in the 1990s and 2000s have led

to the deployment of commercial spoken dialogue systems (SDS) in microdomains

such as customer service automation, reservation/booking and question answering

systems. Recent research in SDS has been focused on the development of applications

in different domains (e.g. virtual counseling, personal coaches, social companions)

which requires more sophistication than the previous generation of commercial SDS.

The focus of this research project is the delivery of behavior change interventions

based on the brief intervention counseling style via spoken dialogue systems.

Brief interventions (BI) are evidence-based, short, well structured, one-on-one

counseling sessions. Many challenges are involved in delivering BIs to people in need,

such as finding the time to administer them in busy doctors’ offices, obtaining the

extra training that helps staff become comfortable providing these interventions, and

managing the cost of delivering the interventions. Fortunately, recent developments

in spoken dialogue systems make the development of systems that can deliver brief

interventions possible.

The overall objective of this research is to develop a data-driven, adaptable di-

alogue system for brief interventions for problematic drinking behavior, based on

reinforcement learning methods. The implications of this research project includes,

but are not limited to, assessing the feasibility of delivering structured brief health
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interventions with a data-driven spoken dialogue system. Furthermore, while the ex-

perimental system focuses on harmful alcohol drinking as a target behavior in this

project, the produced knowledge and experience may also lead to implementation

of similarly structured health interventions and assessments other than the alcohol

domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning

approaches.

In addition to designing a dialog system, the semantic and emotional meanings of

user utterances have high impact on interaction. To perform domain specific reasoning

and recognize concepts in user utterances, a named-entity recognizer and an ontology

are designed and evaluated. To understand affective information conveyed through

text, lexicons and sentiment analysis module are developed and tested.
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CHAPTER 1

Introduction

Substantial amount of research has been conducted on developing dialogue sys-

tems in the last two decades, and as a result, commercial systems are being deployed

in microdomains such as reservation/booking, customer center automation, or ques-

tion answering systems. More recently, researchers have been concentrating on the

development of dialogue systems which are able to take initiative, reason and infer

while conducting dialogues in microdomains. These latest developments have lead to

a high interest in developing dialogue systems for real world applications such as per-

sonal coaches, companions and virtual counselors, that are more sophisticated than

reservation chatbots. The focus of this research project is the delivery of behavior

change interventions based on the brief intervention counseling style via spoken dia-

logue systems. Although our approach is adaptable to other type of lifestyle issues

(e.g. over-eating, lack of exercise, drug use), in this project we focus on excessive

alcohol consumption as a target behavior.

Excessive alcohol consumption is regarded as a very worrisome public health prob-

lem in the USA: with approximately 85,000 of directly or indirectly attributable

deaths per year, excessive alcohol use is the 3rd leading lifestyle-related cause of

death in the United States [AJDJ04]. In 2006, there were more than 1.2 million

emergency room visits and 2.7 million physician office visits due to excessive drinking

[BHS+11]. Excessive alcohol use is also a risk factor for many health and social prob-

lems, including motor-vehicle crashes, violence, suicide, hypertension, unsafe sex, or

unintended pregnancy. The economic costs of excessive alcohol consumption in 2006

were approximately $223.5 billion [BHS+11]. To attempt to address these alarming

statistics, health-care research has led to the development and deployment of behavior

change interventions that can be delivered efficiently in primary care offices.
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Brief interventions (BI) are evidence-based, short, well structured, one-on-one

counseling sessions, focuses on specific aspects of target behavior, and are ideally

suited for people with unhealthy lifestyles that they would need to change to remain

healthy, for example drinking in ways that are harmful or abusive [NIA06].

BIs can be delivered in 3-5 minutes [MFSV02] and (for alcohol consumption as

a target) aim to moderate a person’s alcohol consumption to reasonable levels and

to eliminate harmful drinking behaviors. BIs are the top ranked out of 87 treatment

styles in terms of efficiency [MW02]. It is reported that even a few minutes of advice

and discussion about behavioral problems can be as effective as more extended coun-

seling [BG92]. Many challenges are involved in delivering BIs to people in need, such

as finding time to administer them in busy doctors’ offices, obtaining the extra train-

ing that helps staff become comfortable providing these interventions, and managing

the cost of administering interventions [NIA06]. These challenges may be mitigated

by the use of technology.

Patients are often encouraged to use computer programs developed based on BI

content in the doctor’s waiting room or at home, or to access the interventions through

the Internet. Computer-based interventions not only offer privacy, but also the abil-

ity to complete the program anywhere, any time of the day [RSB+11, WKS+10,

PSSJC08]. Although computer-based interventions adapted from one-on-one brief

interventions are reported to have positive effects on reducing patients’ drinking level

[RSB+11, WKS+10, HSD05], they have high drop-out rates because their users loose

interest with interacting with the system. One study showed, however, that the deliv-

ery of web-based interventions with virtual agents is promising in terms of increasing

people’s intention to use such an intervention versus an intervention delivered with

text only [LAYR13]. That system however is not speech-enabled and the user inter-

acts with mouse and keyboard entries.
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Recent developments in the spoken dialogue systems area make deployment of sys-

tems that can deliver brief interventions possible. As a natural user interface, spoken

dialogue systems may deliver high-quality consistent interventions to screen problem

drinkers for alcohol misuse and may encourage users to provide honest disclosure

[MF+04].

Since brief interventions on alcohol problems are extensively studied and well

documented by related institutes [NIA06], I selected the alcohol consumption target

behavior. The objective of my dissertation project is to create a dialogue system

based on machine learning based dialogue management techniques for brief alcohol

interventions.

1.1 Statement of the Problem

I posit that the structure and restricted focus of brief interventions (discussed in Sec-

tion 2.5) make it amenable to computational modeling . The overall problem which

my project focuses is development of a proof-of-concept spoken dialogue system that

can deliver brief interventions for problem drinkers. The reinforcement learning

(RL) [SB98] based dialog management approaches will be used which aims at address-

ing prevalent uncertainty in speech-enabled interfaces. Problems in RL are typically

represented based on a mathematical framework called Markov Decision Processes

(MDPs) or Partially observable MDPs.

The overall objective of this dissertation project is experimenting and assessing

applicability of data-driven, adaptable dialog management approaches [YGTW13,

YGK+10a, LKW02] in real-world health domain namely for brief interventions for

drinking problems. The implications of this research project include, but are not

limited to, assessing the feasibility of delivering structured brief health interventions

with a data-driven spoken dialogue system, demonstrating reinforcement learning
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methods for dialogue management in the health domain, demonstrating the feasibility

of modeling relatively long (in terms of number of dialogue turns and number of inputs

required to receive) dialogue interaction with both MDPs and POMDPs. In addition,

as a result of this research project, there will be a baseline system and a dialogue

corpus which can be used in future research in the brief health intervention area. The

produced knowledge and experience may also lead to implementation of similarly

structured brief health interventions using statistical machine learning methods, for

other domains than harmful alcohol consumption (e.g. overeating, lack of exercise,

drug use).

I have divided my research problem into four sub-problems. The first sub-problem

is modelling the brief intervention dialogue with MDPs. MDPs are used for modeling

decision making in uncertain situations. Based on the created MDP model, building

a baseline system and using its evaluation results as training dialogue corpus is the

second sub-problem. The third sub-problem is optimizing dialogue strategies based

on the user population’s interaction experience with the baseline system. The fourth

sub-problem is remodeling the system with Partially Observable Markov Decision

Processes (POMDP) by extending the MDP-based system because it is a more robust

framework for uncertainty.

1.2 Specific Research Questions and Objectives

Success of reinforcement learning-based methods in dialogue management illustrates

that the approach is also promising outperforms the hand-crafted dialogue manage-

ment methods [YGK+10a, YGTW13]. Therefore, this research project aims at ex-

perimenting RL-based techniques in real-world health dialogue application in brief

health interventions domain.
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The goal of the project is finding solutions for the following research questions

in brief intervention domain:

• What kind of abstract state representations best serve adaptivity and learning?

• How to optimize initial exploratory state space to avoid data sparsity prob-

lem and how to specify appropriate reward function which is needed to learn

approximately optimal dialogue strategies?

• How can the large state space be adapted effectively into a tractable subset for

reinforcement learning algorithms?

• How to reduce number of exploratory policies –without compromising from op-

timality of learned policies– for learning approximately optimal dialogue policies

with limited number of training dialogue?

To answer the research questions, the following project objectives are realized:

Objective 1: In this project, I explore different reinforcement learning techniques

and study how they can be applied to the brief intervention dialogue. The overall

goal is to explore possibilities of the state-of-the-art dialogue management

techniques to move away from hand-crafted methods employed in most

of the current health-related dialogue systems (Discussed in section 2.2),

toward data-driven, robust and adaptable dialogue management methods.

Objective 2:

Statistical dialogue systems that are developed in research projects are usually

tested against a baseline in order to make scientific claims. Since there is no baseline

dialogue system for brief interventions, one of the objectives is to establish a baseline

dialogue system. To reach this goal, I first design an initial state-based training

system which can create exploratory data set. Despite being exploratory, this

system provides desired basic functionality. The baseline system which is compared
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with the systems optimized based on reinforcement learning. It helps to assess the

effect of optimization objectively.

Objective 3: Using the training dialogue data which is generated by the baseline

system from the interactions with real users, I build an empirical MDP model

in which transitions of this MDP models the user population’s reactions

and rewards for the various system actions. This model enables to compute

the optimal dialogue policies based on the MDP model. I re-test the system

based on the learned dialogue policies compare it with the baseline system.

Objective 4: Finally I change the modelling strategy to POMDPs by ex-

tending existing MDPs. I train the system again and compare it with the baseline

system and the MDP-based system. The POMDP-based system is expected to be

more robust than the MDP-based system to unseen states.

Some of the main challenges of this project are:

• Creating an appropriate representation of each dialogue state by avoiding data

sparsity problem.

• Modelling the relatively long (comparing to information seeking dialogue sys-

tems) dialogue with MDPs.

• Adapting appropriate reinforcement learning algorithms (e.g. Q-learning) to

the learning in large state spaces which brief intervention dialogue create.

1.3 Outline of the Dissertation

In Chapter 2, I explain the background and related work for spoken dialog systems,

dialogue management, embodied conversational agents, and brief health interven-

tions. This chapter covers rule-based and machine learning based dialog management

methods. It compares and contrasts supervised, and reinforcement learning based
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approaches for dialogue management under machine learning based approaches. I

cover state of the art dialogue management in health dialogue systems and the recent

approaches used in spoken dialogue systems area. Since the system that I develop

has an Embodied Conversational Agent interface, I include a survey for them. Fi-

nally, I describe the counseling style that my application uses to deliver brief health

interventions for problem drinkers.

Chapter 3 describes the approach that is used to develop the system, system

components, how I casted brief intervention as Markov decision processes (MDP),

and many system design details. In Chapter 3, I described the issues with fully

observable MDPs and how can we create a dialogue design tool for health interviews

that rely on reinforcement learning based dialogue management approaches. Chapter

5 describes experiments that I conducted with optimized and random dialog policies

in terms of subjective and objective aspects of the system.

Chapter 6 covers the tool that is develop to recognize named-entities and domain

specific reasoning module for behavioral health. This section describes an ontology de-

sign and a system that exploits the created ontology and a semantic network structure

to recognize entities and reason about behavioral problems. Chapter 7 is dedicated to

sentiment and emotion recognition and it has two sections. First part covers Unified

Semantic Network (USN) that is designed to exploit expert knowledge and evalua-

tion of an algorithm that leverages expert knowledge stored in USN to infer about

affective ratings and sentiment polarity of words. Second part of Chapter 7 covers

sentiment analysis module that can recognize sentiments in short sentences by taking

into account sentiments conveyed by named-entities and compositional semantics.
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CHAPTER 2

Literature Review

Substantial amount of research has been conducted on developing dialogue systems

in restricted microdomains (e.g. flight reservation, information provider systems)

in the 90s and early 2000s. Commercial systems have been deployed for reserva-

tion/booking, customer center automation, and question answering in the last decade

as a result of these early research endeavors [BBC+11]. Recently, researchers have

mostly concentrated on the development of dialogue systems that are able to take

initiative, reason and infer in the domain of the system while conducting dialogue

in microdomains using planning, collaborative problem solving [AFB+06]. In the

last decade, there has been a high interest to develop dialogue systems in real world

application areas such as personal coaches, companions and counselors [CDPW08].

While the current trend in commercial systems involves applying finite state-based

system directed dialogue strategies, research projects have been moving away from

restricted and contrived applications to systems that require flexibility in the man-

agement style of the dialogue (e.g. personal coaches, virtual companions) [McT11].

Although there is no accepted standard for dialogue systems design, an end-to-end

dialogue system architecture (as shown in Figure 6.2) usually includes three modules:

input, output and control [McT02, p. 113]. The input module is commonly composed

of Automatic Speech Recognition (ASR) and Spoken Language Understanding (SLU).

The control module corresponds to the Dialogue Manager, which executes a dialogue

strategy. The output module consists of a Natural Language Generation (NLG)

system and a Text-To-Speech (TTS) engine. Depending on the domain of interest
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Figure 2.1: Dialogue System Architecture [RL11]

and application area, there can be specialized components such as domain reasoner,

planner and specialized databases [FA+98].

2.1 Dialogue Management Overview

The primary focus of this research is dialogue management. The Dialogue Manager

maintains an internal state and decides what dialogue move (speech act) action to

perform next.

There is a wide range of techniques to develop a dialogue manager, and the current

techniques used in industry are different from the ones used in research. The focus of

this research is dialogue management. The Dialogue Manager maintains an internal

state and decides what dialogue move (speech act) action to perform next.

There is a wide range of techniques to develop a dialogue manager, and the current

techniques used in industry are different from the ones used in research. Research sys-

tems study in aim at conveying natural human behavior such as conversing, reasoning

and inferencing, whereas commercial systems aim at being robust to solve a specific
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tasks (e.g. customer service automation). Commercial systems are widely based

on finite state-based [SCDV+98] dialogue management to address their objectives in

terms of robustness.

In finite state-based dialogue management, dialogue states represent the

results of performing a dialogue move from some previous state, and each state leads

to a set of allowable next dialogue moves. The information is thus implicit in the

state itself and the relationship it plays to other states. While the finite state-based

approach is regarded as viable option for simple, scripted dialogue such as reservation

systems, it is not possible to create flexible dialogue systems with this approach.

Finite state-based approaches have often been compared with plan-based approaches

in terms of dialogue modeling .

Plan-based dialog management approaches are viewed as more suitable for

flexible dialogue modelling and research in plan-based models is concerned with rea-

soning domain actions and the goals to which they contribute [FA+98, AFB+06, BR09,

RSL01]. Plan-based approaches are seen as being more opaque than other approaches

in terms of development. The plan-based approaches requires a considerable amount

of procedural processing power. The plan-based operations (e.g. logical inference) are

usually designed based on heuristic rules rather than a well-founded theoretical base.

Plan-based dialogue management methods usually involve reasoning and logical infer-

encing operations. Even though, the approach provides a solid computational model,

it is not entirely clear for these operations how the mental constructs employed in the

model correlate to people’s actual mental states.

An information-state (IS) dialog management approach allows one to com-

bine the two approaches (finite-state and plan-based), using the advantages of each

of them. The information-state may include aspects of dialogue state as well as men-

talistic notions such as beliefs, intentions, plans. “The term information-state of a
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dialogue represents the information necessary to distinguish it from other dialogs, rep-

resenting the cumulative additions from previous actions in the dialog, and motivating

future action” [TL03].

While the information-state approach has been shown to provide a basis for flex-

ible dialogue interaction with rich dialogue state representation, existing IS-based

dialogue managers [TL03, BKLO03, tH11] have a number of general limitations that

stem from the intuition-based design methodology. From the perspective of system

development, the information-state methodology has traditionally been based around

a declarative update rule-based design. The functionality of integrating both user di-

alogue and planning system contributions is encoded as the firing of a complex and

sequential update rules. While a rule-based approach is useful in working within an

overtly declarative programming environment, the operation of resultant rules can be-

come highly opaque. The IS-based dialogue management, like plan-based approaches,

requires the manual specification of update rules that define an action for all possible

dialogue situations. It is not practically possible for the designer to anticipate all the

possible situations of a dynamic dialogue environment. Thus, dialogue management

requires a strategy that can be generalized to unseen events.

2.1.1 Dialogue Management based on Machine Learning

Recent research in dialog management has turned to automated dialog strategy

learning using statistical machine learning techniques (e.g. [RKLL11a, YGTW13,

YGK+10a, TY10]). A major advantage of the statistical dialog management

approach is that it introduces a principled scientific method for improving dialog

strategy design, whereas the previous hand-coded approaches were mainly based on

the designer’s intuition.
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To date, different Machine Learning methods have been applied [LP+07] to auto-

matic dialog management:

• Supervised approaches

• Reinforcement Learning-based approaches

[LP+07] has listed key potential advantages of the statistical computational learn-

ing approaches for dialog system development as following;

• data-driven development cycle

• provably optimal action policies

• a precise mathematical model for action selection

• possibilities for generalization to unseen states

• reduced development and deployment costs for industry.

Supervised Learning v.s. Reinforcement Learning

The nature of a dialog is temporal, and dynamic, and machine learning techniques

are well positioned to be able address these aspects of dialog.

Dialog is temporal in the sense that how good an action is depends on how the

dialog progresses further [RL11]. Taking an action affects the state of the dialog

and thereby affects the options and opportunities available at later times. Thus,

action choice requires foresight and long-term planning with respect to the delayed

consequences of actions as specified by to the dynamics of the environment. Therefore,

it is not possible to present correct input/output move pairs of ideal dialog strategy

behavior. Corpus of dialog usually contains annotations of how good the overall

performance of a specific dialog was (e.g. task success, or user scores), but it does not

have any indication about how good a single action was. In other words, it is hard
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to tell how things should have been exactly done in a particular situation, but it is

possible to tell whether the dialog was successful/satisfying overall.

Supervised learning methods do not model dialog as a sequence of actions and

they only mimic behavior observed in a fixed dialog corpus. Reinforcement Learning

(RL), in contrast, models the problem as sequential decision process with long-term

planning [LKW02, RL11]. Therefore, reinforcement learning is more suitable than

supervised learning to model the temporal aspect of dialog.

Dialog being dynamic describes the fact that dialog takes place in interaction

with a stochastic environment, where conditions change frequently (e.g. the level of

noise) or a dialog partner reacts differently than predicted in a certain situation. This

characteristic requires an approach that is robust to unseen states.

In supervised learning, the learner has to be explicitly instructed what to do

in a specific situation by presenting as many examples as possible. RL learns by

exploration (of uncharted territory) and exploitation (of current knowledge) [SB98].

The ability to explore allows a system to learn strategies which are more robust

to unseen and unpredictable states [RL11, SB98, YGTW13]. The ability to exploit

current knowledge allows learning by experience.

2.1.2 Dialogue Management and Reinforcement Learning

Reinforcement Learning (RL) is A sequential decision making, where the RL agent

interacts with its environment ([SB98]). The environment is defined as: ”anything

that cannot be changed arbitrarily by the agent is considered to be outside of it and

thus part of its environment” [SB98, p. 53] Reinforcement Learning treats dialogue

strategy learning as a sequential optimization problem, leading to strategies that are

globally optimal ([SB98]). Uncertainty can be explicitly represented in RL.
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Figure 2.2: RL with Markov Decision Processes (MDPs): The learning agent travels
through a network of interconnected states. At each time t, the agent is in state st,
takes an action at, transitions into state st+1 according to the transition probability
p(st+1 | st ,at), and receives reward rt+1 [RL11].

Within the RL framework for dialogue development, dialogue strategies are repre-

sented as mappings from states to actions within Markov Decision Processes(MDPs)

[LPE98]. A MDP is formally described by a finite state space S, a finite action

set A, a set of transition probabilities T and a reward function R. The dialogue

strategy learner can be visualized as an agent traveling through a network of inter-

connected dialogue states (see Figure 2.2) [RL11]. Starting in some initial state, the

learning algorithm transitions from state to state by taking actions and collecting

rewards as it goes along. The transitions are non-deterministic, since the dialogue

environment is stochastic and dynamic. RL based on MDPs successfully was used

by [LKW02, LGHS06, RKLL11b] for implementation of statistical dialogue manager.

They tested their system by comparing standard fixed policies and show that the

performance of the learned policy is better than several ”standard” fixed policies. In

a nutshell, the approached followed by [LKW02] in the development of the system is:

• Choosing an appropriate reward measure for dialogues, an appropriate repre-

sentation for dialogue states, and designing a dialogue policy that maps each

state to a set of reasonable actions.
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• Building an initial state-based training system that creates an exploratory data

set. Despite being exploratory, this system still provides the desired basic func-

tionality.

• Using these training dialogues to build an empirical MDP model on the state

space. The transitions of this MDP is modeling the user population’s reactions

and rewards for the various system actions.

• Computing the optimal dialogue policy according to this MDP.

• Reimplementing the system using the learned dialogue strategies.

Recently dialogue systems research has become focused on extension of MDP

model to handle uncertainity more efficiently which is Partially Observable Markov

Decision Processes (POMDP) [YGK+10a, YGTW13]. While MDPs assume that the

entire state space is fully observable, POMDPs provide a framework for modelling

the inherent uncertainty in dialogue systems. POMDPs handle uncertainty by rep-

resenting the current dialogue state as a belief state which is A distribution over the

possible states. The CLASSIC (Computational Learning in Adaptive Systems for

Spoken Conversation) project [JKM+10] used POMDPs with the information-state

approach for dialogue management, which aims to develop a data-driven, machine

learning-based architecture for robust and more adaptable spoken dialogue systems

(http://www.classic-project.org). Some of the results they obtained, are listed below:

• The Hidden Information State system (a POMDP system) improves task success

by 25% in high-noise conditions, when tested in simulation [YGK+10a]

• 5% reduction in word error rate when using predictions from a simulated user

to re-rank n-best lists of speech recognizer’s hypotheses [Lem09]

• Online reinforcement learning improved the commercial application’s comple-

tion rate by 10% with real customers [PLL+10]
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• A statistical planning approach to natural language generation for Information

Presentation (content planning and attribute selection) outperforms hand-coded

policies and a policy learned from human performance. Tested in simulation in

the Tourist Information domain [RLL10]

• Adaptive Natural Language Generation using Reinforcement Learning tech-

niques, evaluation with real users: 12% decrease in time taken, and a 15%

increase in task completion rate [JL10]

Reinforcement learning and MDP can be accepted as state-of-the-art techniques

for data-driven spoken dialogue system development [YGTW13, FL09]. However, the

current systems based on RL and MDPs are usually operating in a tourist information

domain where users may ask about hotels, restaurants, activities in a specific location.

In this project, I aim at employing these techniques to a brief intervention domain for

alcohol. In the next section, I will review current state-of-the-art in health dialogue

systems.

2.2 Dialogue Management in Health Dialogue Systems

Although there is a great interest to develop computer-based conversational systems

which can promote healthy behaviors or perform interventions, there is very limited

experimentation with the state-of-the-art techniques in this area [CDMS07, CD09].

To date there is no system that uses data-driven machine learning-based dialogue

management approaches in the health domain. The purpose of this section is to review

recent health dialogue systems in terms of dialogue management strategy. Health

dialogue systems designed usually based on finite state or rule-based approaches.

Therefore, the aforementioned limitations of these approaches (see section 2.1) also

valid for the health dialogue systems.
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In a recent comprehensive literature review of active assistance technologies in

health-related behavior change systems [KPP+12], covering articles written between

January 2005 and January 2012, 41 health-behavior change systems are identified.

Dialog systems and ECAs are identified as emerging technology themes in the behav-

ior change systems field. It is reported that 19 studies out of 41 use dialog systems

technology. Among those 19 systems, only 1 system uses speech as an input modality

[LL06]. The remaining 19 dialog-based systems use text or menu-based choices as a

style of communication. In the same literature review [KPP+12], it is reported that

8 of the systems use ECAs [Bic05, BSS11, THSh+11, dRNC+06].

There are also dialog systems in other health-related domains such as health and

fitness companions [THSh+11], or virtual support agents for post traumatic stress

disorder [MFD+12]. Although, there has been growing interest to develop multimodal

SDS which can converse, guide, assist or motivate users for different health related

topics [BSS11, FQH+10, MFD+12], to the best of our knowledge, there does not exist

any spoken dialog system for the alcohol consumption domain, which is the focus of

my research.

Furthermore, dialog management for health-related dialog systems have so far

been mostly designed based on finite state dialog management mechanisms such as

hierarchical transition networks [BSS11, BPS+10], plan-based approaches [SBS11b],

or information-state based approaches [MFD+12]. These systems usually do not

have speech recognition integration. Interaction is usually conducted with menu-

based choices, but the system utterances are delivered vocally via text-to-speech or

prerecorded voice [LAYR13, BSS11].

Other than systems that use menu-based interaction, there are systems that use

a different input modality. SimCoach, for example, is a web-based system which uses

text as input modality, and an interface with an anthropomorphic ECA which re-
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sponds to users’ questions with answers prerecorded by a human. Whereas human

voices are still superior to synthetic ones, using pre-recorded utterances means that

the sentences that the system can speak are fixed, as opposed to systems using text-

to-speech engines (like ours) which provides the flexibility of adding new sentences

for the system to utter automatically, i.e. without the need to prerecord new sen-

tences. SimCoach, designed to provide support and health-care information about

post-traumatic stress disorder, incorporates information-state approach [TL03] with

dialog moves with assigned reward values [MFD+12]. The Companions project in-

cludes three different systems in the domain of health and fitness [THSh+11], and

all of them use speech as input modality. The dialog management approach in the

Companion project is the information-state approach, and one system (the cooking

companion) has an ECA interface.

In the computer-based alcohol intervention area, the interaction conducted based

on menu-based user interfaces [MGM+11, WKS+10, HSD05]. To the best of my

knowledge, there is no spoken dialogue system which performs alcohol interventions.

2.3 Spoken Dialog Systems

Dialog systems can be classified into two main categories based on their dialog man-

agement technique, which can be either based on machine learning (e.g. based on

reinforcement learning), or hand-crafted. Systems based on RL are popular in the SDS

community and are reported to work better than hand-crafted ones for speech-enabled

systems [YGTW13, FL09] against noisy speech recognition. Hand-crafted systems, on

the other hand, can be divided into three subcategories, with dialog management ap-

proaches using finite states [SCDV+98], plans and inference rules [FA+98, BR09] or

information states. [TL03].
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RL-based dialog systems can learn dialog strategies in a given dialog state from

their prior experiences. The idea of having a dialog manager (DM) that can learn

interactively from its experience is a cost effective methodology given the alternative

approaches: crafting system responses to all possible user’s input using rules and

heuristics [PP08]. At best, these rules are based on accumulated knowledge from a

trial-and-error experience. At worst, they are based on intuition and limited expe-

rience of the designer. Either way, because it is extremely challenging to anticipate

every possible user’s input, hand-crafting dialog management strategies is an error-

prone process that needs to be iteratively refined and tuned [PP08]. That iterative

refinement of course requires substantial amount of time and effort.

The RL-based approach provides the opportunity to automate the design of dia-

log management strategies by having the system learn these strategies from received

reward signals. Potential advantages of statistical dialog management approaches

against hand-crafted approaches are listed by [LP+07] as 1) a data-driven automatic

development cycle, 2) provably optimal dialog action policies, 3) a principled mathe-

matical model for action selection, 4) possibilities for generalization to unseen states,

and 5) reduced development and deployment costs.

Approaches for dialog systems based on reinforcement learning (RL) use Markov

decision processes (MDP) [SLKW02] or partially observable Markov decision pro-

cesses (POMDP) [YGK+10a, Wil08] frameworks to develop robust dialog managers

[FL09, YGTW13]. While both MDP and POMDP require high amount of data for

training, POMDPs usually suffer from scalability issues [WY07, YGK+10b], and op-

timization algorithms usually become intractable with large number of states. How-

ever, POMDPs are outperforms the MDP-based systems [YGTW13]. It is possible

to find tractable solutions by using some approximation to solve practical problems

[YGK+10b].
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In first step of this dissertation project, we used MDP approaches to avoid the

mentioned problems associated with POMDPs and to create a baseline for brief

intervention domain. Unlike the very classic dialog strategy learning approaches

[LPE98, SY02, LPE97] in which the system literally has no knowledge for dialog

action selection in the training stage, our system knows taking which actions make

sense in each state despite being non-optimal as in [SLKW02]. For example, taking a

farewell action in the beginning of dialog instead of greeting does not make sense. Our

approach enables our system to learn dialog strategies faster from small amount of

dialog corpus than the systems that has absolutely no knowledge in the training. The

ideas that are used in [SLKW02] had an influence on our system design decisions, as

in NjFun [SLKW02] system we tried to minimize state space and learn dialog policies

from real and small amount of data. We extended and adapted some ideas such as

state representations and policy design to apply to practical health application.

RL-based dialog systems are mainly used for slot-filling applications. The domain

of the dialog is usually in the tourist information domain, such as finding information

about restaurants [JTY12, CGP10, YGK+10a], appointment scheduling [GWM10],

flight reservation [HLG08], or museum guidance [PKKM12]. There has also been work

conducted in question-answering [MGLT12] and tutoring domains [CVL10]. The RL-

based dialog management paradigm was also recently used for assistive technologies

[LGRT13].

In the mentioned systems, each piece of information is accepted as a slot which

needs to be filled to complete the task. The total number of slots that current systems

can usually handle are less than 5, and the flow of a dialog is determined by the slots

that need to be filled [SLKW02, YGK+10b]. One of the important measures of success

of task-based dialogs is their task completion rate. When the number of the slots that

are needed to be filled increases, the likelihood of successful completion decreases.
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I will discuss how our system can handle a substantially larger number of slots

than has been attempted so far (we have 18 slots). We will also explain how the flow

of the dialog does not depend on unfilled slots, but is rather decided dynamically

during the interaction, which is also a novel approach. For example, if our system

finds out that the person does not have a drinking problem, it just ends the interaction

gracefully. Hence, the length (in terms of slots) and the flow of the dialog are not

fixed.

Dialog strategy learning is the main concentration of RL-based dialog systems for

the optimization process. Learning optimal dialog strategies can be performed in two

ways: based on user simulations [GHL06], or based on interactions with real users

in exploration mode [SLKW02, MGLT12]. Since there is no data in our domain, we

had to follow the latter way. It is worth mentioning that simulated users can have

some shortcomings to realistically reproduce the behaviors of the diverse real users’

behaviors [SGY05].

2.4 Embodied Conversational Agents and Spoken Dialog Sys-

tems

Virtual human-like characters that specifically focus on dialog-based interactions are

called Embodied Conversational Agents (ECAs), also known as Intelligent Vir-

tual Agents (IVA). ECAs are digital systems created with an anthropomorphic em-

bodiment (be it graphical or robotic), and capable of having a conversation (albeit

still limited) with a human counterpart, using some artificial intelligence broadly re-

ferred to as an “agent”. With their anthropomorphic features and capabilities, they

interact using humans’ innate communication modalities such as facial expressions,

body language, speech, and natural language understanding, and can also contribute
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to bridging the digital divide for low reading and low health literacy populations, as

well as for technophobic individuals [NK11, BPJ09].

One of the most influential work for the study of virtual animated characters

established that, when provided with social cues by a computer system, humans

react socially similarly to how they would with a human [RN96]. Because latest

ECAs can use their sophisticated multimodal communication abilities to establish

rapport [Pel09, KGWW08a, KGWW08b, WG10, WG09, GOL06, GWGF07, PKG,

MRP08, PI05, HMG11], communicate empathically [PI05, ML07, AVSP07, BBA07,

BWHG09, BW11, AVSP07], and engage in social talk [Klu11, BGP05, Bic05, BG06,

CB03, SBS11a], they have become capable of being as engaging as humans - and have

even been found more engaging than humans at times [GWO07]. In this dissertation,

the developed spoken dialog systems have an ECA interface.

Intelligent virtual agents (IVA) - also known as embodied conversational agents

(ECA) or virtual humans (VH) - and spoken dialog systems (SDS) are two emerging

fields of research which, together, could bring a revolution to human-computer interac-

tion as we know it. Even though the term ECA includes the notion of spoken dialog,

SDS and ECA communities still do not have a strong connection. While progress in

the spoken dialog system area is complementary for the development of conversational

embodied agents, latest findings in SDS research have not been commonly used by

ECA researchers (and vice versa).

Indeed, although spoken dialog systems (SDS, henceforth) research has shown

in the past few years that using Reinforcement Learning (RL) with MDPs for dialog

management outperforms older hand-crafted rule-based approaches [FL09, YGTW13],

intelligent virtual agent researchers have not yet integrated these results in their dia-

log systems. ECA-based systems usually involve spoken dialog (versus menu options
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Figure 2.3: Multimodal Embodied Conversational Agent Interface

to choose from), but their dialog management usually still relies on hand-crafted

methods [MDS+12, BG10].

In this project, I bring together latest progress from the SDS community to the

IVA community with the use of RL-based dialogue management integrated with a

3D animated character (shown in Figure 2.3). The 3D animated virtual character is

an interface for a task-based spoken dialogue to deliver brief alcohol interventions to

people at-risk of health issues due to excessive alcohol consumption.

From a computer science perspective, my work aims at building a fully imple-

mented system to be used as screening tools to help individuals at risk of health

issues, and at evaluating the system in terms of both, users’ (subjective) acceptance

and dialog system’s (objective) performance.
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From a health-care perspective, I aim at increasing access to effective evidence-

based health interventions with a novel mode of delivery for computer-based health

interventions - namely delivering health interventions with a virtual counselor. The

screening dialog system brings insight and awareness regarding alcohol problems by

using the well established brief intervention (BI) counseling approach. BIs are short,

well structured, one-on-one counseling sessions, focused on specific aspects of prob-

lematic lifestyle behavior. BIs are not only ideally suited for people who drink in ways

that are harmful or abusive (which is the current domain of our work), but BIs have

also been used successfully for a variety of target problem behaviors (e.g. overeating,

lack of exercise). Therefore the results of our research will also have an impact on

dialog systems for diverse behavior change interventions for healthy lifestyles.

2.5 Brief Interventions for Alcohol Problems

Unlike traditional alcoholism treatment, which focuses on helping people who are

dependent on alcohol, brief interventions or short, one-on-one counseling sessions are

ideally suited for people who drink in ways that are harmful or abusive [MFSV02].

Brief interventions can be delivered in few minutes and require minimal followup

whereas traditional alcoholism treatment takes many weeks or months.

The purpose of brief interventions is different from formal alcoholism treatment.

Brief interventions generally aim to moderate a persons alcohol consumption to rea-

sonable levels and to eliminate harmful drinking behaviors (such as binge drinking),

rather than to insist on complete avoidance from drinking – although abstinence may

be encouraged, if appropriate [MF+04]. Reducing levels of drinking or changing pat-

terns of harmful alcohol use helps to reduce the negative outcomes of drinking, such as

alcohol-related medical problems, injuries, domestic violence, motor vehicle crashes,

arrests, or damage to a developing fetus.
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Brief interventions typically consist of one to four short counseling sessions with a

trained interventionist (e.g., physician, psychologist, social worker). [MFSV02] looked

at 34 different studies and found that people who received brief interventions when

they were being treated for other conditions consistently showed greater reductions

in alcohol use than comparable groups who did not receive an intervention. People

seeking treatment specifically for alcohol abuse appeared to reduce their alcohol use

about the same amount, whether they received brief interventions or extended treat-

ments (five or more sessions). These findings show that brief interventions can be

an effective way to reduce drinking, especially among people who do not have severe

drinking problems requiring more intensive treatment.

Brief interventions may include approaches such as motivational interview-

ing [MR02]. Motivational interviewing is “a collaborative, person-centered form of

guiding to elicit and strengthen motivation for change” [MR+09a]. It is designed

to elicit intrinsic motivation of people who are resistant to moderating their alcohol

consumption or who do not believe they are drinking in a harmful or hazardous way.

Motivational interviewing [MR02] encourages patients to decide to change for them-

selves by helping to resolve their ambivalence about change. Clinicians also can assist

patients by helping them establish specific goals and build skills for modifying their

drinking behavior.

Delivering Brief Intervention

Brief interventions give patients a simple way to receive care in a comfortable and

familiar setting. Because they are brief, they can be easily incorporated into a variety

of medical practices. Moreover, these approaches offer a lower cost alternative to more

formal alcoholism treatment [MF+04].
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Figure 2.4: First Step of Alcohol Screening and Brief Intervention [NIA06]

Typically a nonspecialist staff who the patient may already trust or feel com-

fortable being treated by such as a physician, a nurse, or physicians assistant in a

primary care setting, or nurse or physicians assistant on a medical unit - delivers the

brief intervention [MF+04].

Supplemental handouts may be provided to patients during the intervention, in-

cluding pamphlets, manuals, or workbooks to reinforce the strategies offered during

the session. Clinicians also can follow up at a later date, either in person or through

the mail, to provide additional assessment and further motivate the patient to achieve

the goals set during the initial meeting. If the brief intervention does not motivate

the patient to reduce alcohol consumption, clinicians can recommend more intensive

treatment.

Many of the challenges involved in administering brief interventions - such as find-

ing the time to administer them in busy doctors offices, obtaining the extra training

that helps staff become comfortable providing interventions, and managing the cost

of using interventions - may be overcome through the use of technology. Patients are
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Figure 2.5: Second Step of Alcohol Screening and Brief Intervention [NIA06]

sometimes encouraged to use computer programs in the doctors waiting room or at

home, or to access the intervention through the Internet, which offers privacy and the

ability to complete the program at any time of day [HSD05, PSSJC08, MGM+11].

The current research is focused on to delivering interventions by incorporating

spoken dialogue technology with anthropomorphic user interfaces such as interac-

tive virtual characters [BSS11, SBS11b, CDPW08]. Pilot results indicate that al-

though users reported they would be most comfortable consulting with a doctor

in person [GBSM+03], they responded positively to the computerized interventions

[Bic05, SBS11b, BPJ09], which were accessible even to those with little computer

experience.
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Figure 2.6: Third Step of Alcohol Screening and Brief Intervention for At-Risk Drink-
ing [NIA06]

Brief Intervention Interaction For Alcohol

According to the clinician’s guide for conducting brief interventions [NIA07a] from

National Institute on Alcohol Abuse and Alcoholism (NIAAA), a brief intervention

can be delivered in three steps;

• Step 1: Asking About Alcohol Use (See Figure 2.4)

• Step 2: Assessing for Alcohol Use Disorders (See Figure 2.5)

– Assessment of Abuse

– Assessment of Dependence

• Step 3: Advising and Assisting according to degree of alcohol problem

– At-risk drinkers (See figure 2.6)
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– Drinkers with alcohol use disorder (See figure 2.7)

The guide provides two methods for the first step (See Figure 2.4) ; a single ques-

tion (about heavy drinking days) or administering a written self-report instrument.

The single interview question can be used at any time, either in conjunction with the

screening instrument or alone. For this project, the system start intervention with

a single question about alcohol use (e.g. ”Do you sometimes drink beer, wine, or

other alcoholic beverages?”). If the client’s answer is no, there is no need to continue

to screening. If the client’s answer is yes, the system will ask about amount of the

alcohol client consumes to find out if the client is at-risk drinker (e.g. ”How many

times in the past year have you had 5 or more drinks in a day”).

If a client is not an at-risk drinker, the system may advise maintaining or lowering

drinking limits according to the situation and offer re-screening annually. If a client is

an at-risk drinker, to get the complete picture of drinking, the system will ask several

questions to query the drinking pattern of a client (e.g. On average, how many days

a week do you have an alcoholic beverage?).

In step 2 (See Figure 2.5), the system will try to determine whether or not there

is a maladaptive pattern of alcohol use that causing clinically significant impairment

or distress. In this step, the system will try to query if a client has alcohol abuse

(e.g. risk of bodily harm, relationship trouble) and alcohol dependence (e.g. kept

drinking despite problems, not been able to stick to drinking limits) problem. If a

patient does not meet the criteria for alcohol abuse or dependence, the patient is

still at-risk for developing alcohol related problems. If a patient has an alcohol use

disorder (dependence or abuse), the next step (step 3) will be different than at-risk

drinkers.

In step 3, if the client is at-risk (See figure 2.6), the system will state its conclusion

according to the guideline and recommend to cut down his/her drinking. Then it will
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Figure 2.7: Third Step of Alcohol Screening and Brief Intervention for Alcohol Use
Disorders [NIA06]

try to asses readiness to change, if the client is not ready to change, the system will

restate its concern for client’s health, encourage reflection by asking positive versus

negatives of drinking and reaffirm its willingness to help when the client is ready.

If a client is ready to change, the system will set a goal, agree on a change plan

and provide educational materials (e.g. pamphlets). In step 3 for the clients who

has alcohol abuse or dependence problems (See figure 2.7), the system will state its

conclusion, negotiate drinking goal and refer to an addiction specialist. A sample

brief intervention dialogue showed in Table A.4. The system performs screening in

the first step with 3 questions. In the second step, it asks a question for assessing

alcohol abuse. Since it elicits indicator of alcohol abuse, it does not ask about alcohol

dependence (one indicator is enough for abuse) and passes to the next step. Based
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on the result from the step 2, the system delivers step 3 which is for people who has

alcohol use disorders. It recommends to see to get professional help.

Table 2.1: Sample Dialog: S shows systems utterance and

C shows user utterance in Turn Column. Second column

shows what user or system utter in each turn. Third

column shows in which step the system is operating in

terms of Brief Intervention.

Turn Utterance Step in BI

S1: Hi, My name is Lola, I am a virtual character created to have

conversations with you and to teach you about healthy lifestyles.

Today, I’m here to talk about drinking to figure out if you have

any issues. May I ask you few questions about your drinking?

C1: Yes, sure you can.

S2: Do you sometimes drink beer, wine, or other alcoholic beverages?

C2: Well yes, I drink wine or beer sometimes!

S3: How many times in the past year have you had 5 or more drinks

in a day?

C3: I think around once a week.

S4: Actually, consuming more than 4 drinks on any single day is

classified as heavy drinking. So it seems like you are sometimes

going above heavy drinking limits? Is that right?

C4: Yes, that’s correct.

S5: How frequently do you have an alcoholic beverage each week? Step 1:

C5: I think at least 3 days a week. Screening

Continued on next page
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Table 2.1 – continued from previous page

Turn Utterance Step in BI

S6: On a typical drinking day, how many drinks you have?

C6: I just drink... maybe a bottle of whisky.

S7: Sorry, I could not understand your answer, can you please re-

peat?

C7: I said one bottle of scotch.

S8: Ok, thanks for the information you have provided me about your

drinking. Next I will try to determine some important effects of

your drinking.

S9: Have you ever taken risks under the influence, such as drinking

and driving, operating a motor vehicle, or swimming?

C9: No I have not.

S10: I see, so you are careful to avoid high risk situations after or

while having drinks, right?

C10: Yes, I try to be careful. Step 2:

Abuse

S11: Have you continued to drink even though you knew it was caus-

ing you trouble with your family or friends?

Assessment

C11: I think yes, I continue to drink while my family complains about

my drinking.

S12: Thanks for the information you’ve provided. In the next step

I will ask you questions about potential dependence-related as-

pects of your drinking. Is that okay?

C12: Yes I want to know, please go ahead.

Continued on next page
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Table 2.1 – continued from previous page

Turn Utterance Step in BI

S13: Have you had times when you ended up drinking more than you

meant to? Or kept on drinking for longer than you intended?

C13: Not usually, but... yes I guess I did.

S14: Have you found that you have to drink much more than you once

did in order to get the effect that you like?

C14: I think my tolerance is increased.

S15: Sorry, I could not understand your answer. Do you need to drink

a lot more sometimes to get the same effect?

C15: I meant yes, I need to drink more and more.

S16: Ok sorry but just be sure: you can not get the same effect with

the same amount of alcohol. Is that right?

C16: Yes, that is correct.

S17: Have you more than once wanted to stop or cut down on your

drinking? Or tried more than once to stop or cut down but found

you couldn’t?

C17: Well, I think I tried but I was not that serious about stopping

or cutting down.

Step 2:

S18: I see, so you really never attempted to stop or cut down. Is that

right?

Dependence

C18: No, it is wrong.

S19: Sorry for the misunderstanding, can you please repeat your an-

swer? Have you more than once wanted to stop or cut down on

your drinking but found you couldn’t?

Continued on next page
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Table 2.1 – continued from previous page

Turn Utterance Step in BI

C19: Yes I did but not seriously.

S20: Ok, now, when the effects of alcohol are wearing off, have you had

trouble sleeping, or found yourself shaking, nervous, nauseous,

restless?

C20: I found myself sweating and my heart beating fast.

S21: Sorry I could not understand your answer. Can you please repeat

it?

C22: I said I found myself sweating and my hard beating fast.

S22: I am sorry for asking again, can you repeat your answer please.

C22: I said I am sweating and my heart beating fast when I drink too

much.

S23: Have you had a period when you spent a lot of time drinking?

Or being sick or getting over the bad aftereffects of drinking?

C23: Yes several times.

S24: Thank you very much for all your answers. Now I’d like to just

take one or two more minutes of your time. Is that okay?

C24: Yes, please go ahead.

S25: On a scale from 1 to 10, how ready are you to make a change?

C25: I think 7 Step 3:

Continued on next page
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Table 2.1 – continued from previous page

Turn Utterance Step in BI

S26: Great! Just for your information, men who drink more than 4

standard drinks in a day or more than 14 per week, and women

who drink more than 3 drinks in a day or more than 7 drinks per

week, are at increased risk of alcohol related problems. Based on

your answers, I recommend you to stick with this limit or even

abstain if you can. I also would like you to track your drinking,

and I will send you a calendar for that. I’m also going to give

you information about places near you where you can get help

if you choose to. Finally, I would like to talk with you again 3

month later. Is it okay?

Disorder

S26: Yes, it’s okay.

S27: Thanks for talking with me. I hope you’ve learned something

useful about your drinking pattern. Good Bye and talk to you

in 3 months.
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CHAPTER 3

Spoken Dialogue System Based on Markov Decision Processes

In the first phase of the spoken dialog systems project, I use Markov Decision

Processes (MDP) for dialog management. In this section, I discuss details of the

system. The most of the system components that are described in this section are

used throughout this research project except the dialog management methodology.

The dialog management methodology in this section is based on MDPs, in the next

section it is based on partially observable MDPs.

3.1 Approach

An overview of our system architecture for MDP-based system is shown in Figure 8.1,

and explained in details in the Section 3.5. In short, we use reinforcement learning for

the dialog management, combined with a 3D animated character who converses with

the user with Text-To-Speech (TTS) utterances (versus fixed prerecorded sentences).

The domain is a task-based spoken dialog to deliver brief alcohol interventions to

people, and identify whether they are at-risk of health issues due to excessive alcohol

consumption.

According to the clinician’s guide for conducting brief interventions from the Na-

tional Institute on Alcohol Abuse and Alcoholism (NIAAA) [NIA07a], a brief inter-

vention for alcohol-related health problems can be delivered in three sequential steps:

• Step 1: Asking About Alcohol Use

• Step 2: Assessing for Alcohol Use Disorders

– Assessment of Abuse

– Assessment of Dependence

• Step 3: Advising and Assisting according to degree of alcohol problem
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– At-risk drinkers

– Drinkers with alcohol use disorder

To develop the dialogue content, we follow the brief intervention guide for alcohol

prepared by NIAAA [NIA06]. The details of brief intervention for alcohol is discussed

in Section 2.5, but I briefly review it in this section. The goal of the dialogue system

is to deliver alcohol screening and brief interventions based on this guide. Each step

contains a set of questions.

In Step 1, there are 5 questions. The system asks these 5 questions, and if the

user expresses that s/he is not consuming alcohol from time to time, the interaction

is gracefully terminated by the system. Otherwise, the dialog manager continues to

the second step.

In Step1, there are 5 questions. The system asks these 5 questions, and if the

user expresses that s/he is not consuming alcohol from time to time, the interaction

is gracefully terminated by the system. Otherwise, the dialog manager continues to

the second step.

In Step 2, in the Assessment of abuse stage, there are 4 questions to assess alcohol

abuse indicators. It is enough to find one indicator of alcohol abuse (e.g. risk of bodily

harm, relationship trouble) to move to the Assessment of dependence stage (e.g. keep

drinking despite problems, not able to stick to drinking limits). If the system can not

find any indicator of abuse with the 4 questions, it passes to the dependence stage.

In the Assessment of dependence stage (still in Step 2), there are 7 questions.

In Step 2, in the Assessment of Abuse stage, there are 4 questions assessing alcohol

abuse indicators. It is enough to find one indicator of alcohol abuse to move to the

assessment of dependence stage. If the system can not find any indicator of abuse

with the 4 questions, it passes to the dependence stage. In the dependence stage,

there are 7 questions.
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It is enough to detect 3 dependence indicators to transit to Step 3, Advice for

drinkers with alcohol use disorder. If the system does not detects 3 dependence

indicators, it transits to Advice for at-risk drinkers. Therefore, the dialog branches

to two separate steps in Step 3: 1) one for at-risk drinkers, and 2) one for drinkers

with alcohol use disorder. In both branches, the system provides information related

to the assessment of the system. If the system assessed that the user has an alcohol

use disorder, it refers the user to treatment, asks the user if she or he is ready to

change, and suggests a goal toward a change of drinking patters, based on the user’s

readiness. If the user is an at-risk drinker, it gauges his or her readiness to change,

and provides feedback and information about the person’s drinking. Therefore in

both stages, the system provides factual information about the person’s drinking and

suggested drinking limits, and asks what is the user’s intention to change with a

single question. In total there can be a maximum of 18 different questions in a single

session.

A sample dialog between the system and the user is shown in Table A.4. The

dialog we presented in the table covers em Step 1 Screening about alcohol use, and

Step 2 Assessment of abuse completely. In Step 2 Assessment of dependence, there

are 7 questions, and then the system branches to Step 3. Because of space limita-

tions, we cannot present a longer dialog. The system uses questions recommended by

NIAAA. It uses simple reflections for confirmations instead of explicit confirmations,

and examples are shown in Table A.4 with the S4 and S10 system dialog turns.

3.2 Reinforcement Learning Background

I built the system using reinforcement learning. Reinforcement Learning (RL, hence-

forth) is a sequential decision making algorithm, where the RL agent interacts with

its environment [SB98]. The environment is defined as: “anything that cannot be
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changed arbitrarily by the agent is considered to be outside of it and thus part of

its environment” [SB98, p. 53]. Reinforcement learning treats the learning of dia-

log strategies as a sequential optimization problem, leading to strategies which are

globally optimal [SB98].

Within the RL framework for dialogue development, dialogue strategies are repre-

sented as mappings from states to actions within Markov Decision Processes (MDPs)

[LPE98]. In other words, a dialog strategy specifies, for each system state, what is

the next action to be taken by the system [LPE98, SY02]. The MDP framework can

be characterized by a 4-tuple (S,A,T,R), where:

• S is a finite set of states

• A is a finite set of actions

• T is a state-transition function such that T(s, a, s′) = P(s′| s, a) which describes

how the probability of performing action a in state s will lead to state s′

• R(s, a, s′) is a local reward function such that R(s, a) =
∑

a P(a|s)R(s, a, s′),

and the objective of the SDS is to maximize the gained reward.

3.3 Markov Decision Processes

To develop the system, I needed to represent the internal states of the system using

MDP formalization as described earlier. States, actions and state transitions needed

to be created. First, I elicited the state attributes. I considered the most important

dialog attributes to represent the dialog state concisely. To avoid the data sparsity

problem during training, I divided the whole system into 5 sections according the BI

guide steps. Hence, there are 5 MDPs in the system. For the each step, I elicited

related state features.
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For each state, there are 5 common attributes: Question, Confidence, Value,

Grammar, and Aux (see Table 3.1 for the descriptions of each attribute). There is

usually 1 extra attribute to represent the step-specific requirement at each step, e.g.

Greet because in the first step the system needs to greet the user first and get consent

of the user to start the dialog. The full list of state features for Step 1 are listed in

Table 3.1.

I then designed possible states: for each question there are 34 possible states. Each

state represents the state of the conversation. For example, dialogue state 112101

indicates that the system has greeted the user (G=1), the first question has been

queried (Q=1), the ASR confidence level is high (C=2), the value is obtained (V=1),

the type of grammar is restrictive (Gr=0) and that the polarity of the alcohol usage

indicator (i.e. positive or negative indicator such as consuming alcoholic beverages

above limits is positive, below limits is negative) is positive (Ax=1). The Aux feature

is set to 0 when it is not used. It is used for multiple purposes such as keeping track

of the number of re-asked questions or of the polarity of alcohol problem indicator.

Table 3.1: State attributes and values for Step 1: Asking About Alcohol Use
Attribute Values Description
Greet (G) 0,1 Whether the system has greeted the user
Question (Q) 1,2,3,4 Which question is being queried
Confidence (C) 0,1,2,3,

4,5,6
0,1,2 for low, medium, and high confidence of
speech recognizer. 3,4 for confirmed or not con-
firmed. 5 to indicate system is waiting for confir-
mation. 6 is for to indicate system transit to next
question without confirmation

Value (V) 0,1 Is the value obtained for current question
Grammar (Gr) 0,1 What type of ASR grammar used, restrictive or

dictation (non-restrictive) grammar.
Aux (Ax) 0,1,2 Multiple purpose attribute. Use to indicate num-

ber of ReAsks and semantic valence of the received
answer. If it is 0, it indicates, it is not used in that
state.
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Table 3.2: Dialog Actions For Step 1 Question1
Dialog Action System Utterances
S1-AskQ1Sys: Do you sometimes drink beer, wine, or other alcoholic

beverages?
S1-AskQ1User: Can you briefly talk about your alcohol consumption?
S1-ReAskQ1Sys Sorry, I could not understand your answer. Do you

sometimes drink beer, wine, or other alcoholic bever-
ages?

S1-RaAskQ1User: Sorry, I could not understand your answer. Can you
briefly talk about your alcohol consumption?

S1-ConfQ1Pos So you like to have alcoholic beverages time to time,
is that right

S1-ConfQ1Neg so you are recently not having any alcoholic bever-
ages, is that right

S1-NoConf —
S1-NotConfirmedQ1Sys I am sorry for the misunderstanding do you some-

times drink beer, wine, or other alcoholic beverages?
S1-NotConfirmedQ1User I am sorry for the misunderstanding, can you briefly

talk about your alcohol consumption?

We refined our state representations by excluding the states that make no sense

and manually checking each state. For example, state 040111 is a non-sensible state

in Step 1. The system can not be in that state because the system needs to greet

the user first, before it can ask questions. It is not possible to ask question 4 in the

first step without greeting or without asking prior questions. Excluding non-sensible

states yielded a very large state-space reduction.

For Step 1 Use, Step 2 Abuse, Step 2 Dependence, Step 3 At-risk, and Step 3

Disorders, the number of states are 170, 136, 238, 68 and 68 respectively, i.e. 34

states multiplied by the number of questions in a step). Total number of states is

680.

I then created our dialog actions for each question. The system uses 2 types

of initiative dialog actions: system initiative, where the system asks close-ended

questions (e.g. Do you sometimes drink beer, wine, or other alcoholic beverages?),

and user initiative, where the system asks open-ended questions (e.g. Can you
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briefly talk about your alcohol consumption?). We refer to the system/user initia-

tive terms in the same manner as they are widely referred to in the SDS community

[SLKW02, SKL+00]. In the system initiative questions (where the expected answer

is relatively restricted given the close-ended nature of the questions), the system uses

a restrictive grammar for speech recognition (SR). In the user initiative, the system

uses a non-restrictive SR grammar to handle user’s answer to open-ended questions.

There are 9 possible actions for each question, which are grouped under 4 cate-

gories: 1) Ask actions are used when the system needs to ask a question to the user

for the first time, which can be performed with the two types of initiatives; 2) ReAsk

actions are used if the system can not understand the user’s speech, which can also

be done with two types of initiatives; 3) Confirmation actions are used to ask for

confirmation as to whether the system understood what the user said.

The confirmation actions are system initiative by default, and are of 3 types:

positive, negative and no confirmation. The positive type is used if the system re-

ceives an answer which reveals alcohol usage/abuse/dependence information. The

negative type is used if the system receives an answer which indicates no drink-

ing/abuse/dependence problem. The third type is no-confirmation, and it is used if

the system decides to pass to the next question without confirmation (possible action

at any question). NotConfirmed action is used if the user gives a negative answer to

a confirmation action.

The available actions for the first question in Step 1 Screening About Alcohol Use

are shown in Table 3.2. The first column is the name of the dialog action, and the

second column is the system utterance. The actual name of the dialog action starts

with the step information (e.g. S1), then the type of dialog action (e.g. Ask), then

the question being queried (Q1) and the initiative type (Sys). So S1-AskQ1Sys stands
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for Step1 (S1), the question type is Ask, the question being queried is question one

(Q1) and the initiative type is system initiative (Sys).

The number of available actions for each question is 9 (as for the first question

shown in Table 3.2). Although the length of the dialog is not fixed, our system asks

a maximum of 18 questions. There are 162 available actions (for asking questions,

re-asking questions, and confirmations) for the system to select from in the longest

dialog session (18 questions multiplied by the number of available actions). There

are dialog actions which are used while transiting from one step to another step (e.g.

from Step 1 to Step 2 Abuse) and dialog actions for ending the conversation. There

are 2 actions for giving feedback to at-risk drinkers and to drinkers with alcohol use

disorder at the end of the each session. The total number of the dialog actions is 169.

After creating the dialog actions, I created the dialog policies. A dialog policy is

a mapping of a state to sensible dialog actions. I mapped each state to 2 possible dia-

log actions based on the initiative or confirmation type. Table 3.3 shows exploratory

dialog policies for Question 1 in Step 1.

As we mentioned earlier, for each question there are 34 states. State updates

are performed based on user’s dialog actions or on systems dialog actions in each

dialog turn. In Table 3.3, only 30 state-actions mappings that are updated by the

system dialog actions or user dialog actions are shown. The remaining 4 states are

only updated based on user’s dialog actions, which is why we did not include them

in Table 3.3. The reason for this is that, if the system waits for the confirmation

from the user (i.e. where C=5 as shown in see Table 3.1), the system dialog actions

can not be used to update a state. In other words, the remaining 4 states need to

be updated by user’s dialog actions. In Table 3.3, we only show the states that are

updated by the system. However, the states in Table 3.3 are the result of the user’s

dialog actions since Value Grammar, Confidence and sometimes Aux are updated
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Table 3.3: Explaratory Policies For Step 1 Question 1

States Available Actions per State
G Q C V Gr Ax
1 1 0 0 0 0 S1-ReAskQ1Sys, S1-ReAskQ1User
1 1 0 0 1 0 S1-ReAskQ1Sys, S1-ReAskQ1User
1 1 0 0 0 1 S1-ReAskQ1Sys, S1-ReAskQ1User
1 1 0 0 0 2 S1-AskQ2Sys, S1-AskQ2User
1 1 0 0 1 1 S1-ReAskQ1Sys, S1-ReAskQ1User
1 1 0 0 1 2 S1-AskQ2Sys, S1-AskQ2User
1 1 0 1 0 1 S1-ConfQ1Pos, S1-NoConf
1 1 1 1 0 1 S1-ConfQ1Pos, S1-NoConf
1 1 2 1 0 1 S1-ConfQ1Pos, S1-NoConf
1 1 0 1 1 1 S1-ConfQ1Pos, S1-NoConf
1 1 1 1 1 1 S1-ConfQ1Pos, S1-NoConf
1 1 2 1 1 1 S1-ConfQ1Pos, S1-NoConf
1 1 0 1 0 2 S1-ConfQ1Neg, S1-NoConf
1 1 1 1 0 2 S1-ConfQ1Neg, S1-NoConf
1 1 2 1 0 2 S1-ConfQ1Neg, S1-NoConf
1 1 0 1 1 2 S1-ConfQ1Neg, S1-NoConf
1 1 1 1 1 2 S1-ConfQ1Neg, S1-NoConf
1 1 2 1 1 2 S1-ConfQ1Neg, S1-NoConf
1 1 6 1 1 1 S1-AskQ2Sys, S1-AskQ2User
1 1 6 1 1 2 S1-Q1End, S1-Q1End
1 1 6 1 0 1 S1-AskQ2Sys, S1-AskQ2User
1 1 6 1 0 2 S1-Q1End, S1-Q1End
1 1 3 1 0 1 S1-AskQ2Sys, S1-AskQ2User
1 1 3 1 1 1 S1-AskQ2Sys, S1-AskQ2User
1 1 3 1 0 2 S1-Q1End, S1-Q1End
1 1 3 1 1 2 S1-Q1End, S1-Q1End
1 1 4 1 0 1 S1-NotConfirmedQ1Sys,S1-

NotConfirmedQ1User
1 1 4 1 1 1 S1-NotConfirmedQ1Sys,S1-

NotConfirmedQ1User
1 1 4 1 0 2 S1-NotConfirmedQ1Sys,S1-

NotConfirmedQ1User
1 1 4 1 1 2 S1-NotConfirmedQ1Sys,S1-

NotConfirmedQ1User
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Figure 3.1: Representation Of World Model With MDPs

by user’s dialog actions in each dialog turn. For example, when the user speaks to

the system, the speech recognizer Confidence level and Value attributes are updated

based on the user’s dialog action. Our system aims to learn approximately optimal

dialog strategies for the initiative style and the confirmation type selection.

3.4 Modeling World with Interconnected MDPs

To avoid the curse of dimensionality problem, I aimed at minimizing the number

of system states used. Since the BI dialog requires many dialog turns between the

system and a user, the number of available dialog strategies is very large, and can

make learning optimal policies infeasible with limited training data. To alleviate this

problem, I used separate MDPs for each phase.

I represent each step or phase of the BI with one MDP with local goals and reward

functions. This approach divided the problem into 5 interconnected MDPs (shown in
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Figure 3.1) but, in any interaction with the system, we use a maximum 4 MDPs, i.e.

1) Step 1; 2) Abuse; 3) Dependence; and 4) one MDP from Step 3 based on Abuse

or Dependence problem. This approach also reduced the number of required state

features for each step, thus reducing the number of states required.

Since there are two phases in Step 2 (one for querying alcohol abuse and one for

querying alcohol dependence), I represent Step 2 with two distinct MDPs (as shown

in Figure 3.1), which greatly reduces the number of exploratory policies (because

it reduces the number of state features) without compromising fine-grained distinc-

tions between dialog strategies. Because the two phases are independent from each

other, representing each phase with a separate MDP is appropriate. It also provides

advantages in terms of learning dialogue strategies less amount of data.

There are two separate MDPs for representing the two different phases in Step 3.

One is used for representing the model for “At-risk” drinkers who do not have alcohol

use disorder problems (i.e. no abuse nor dependence). The second one is used to

identify drinkers with alcohol use disorders.

In conclusion, the system is modeled with 5 MDPs. In each MDP, there are

multiple terminal states. Some terminal states terminate the Step (such as the consent

state), and some terminal states provide transparent transitions to the start state (or

start state distribution) of another MDP (see Figure 3.1). At the same time, the

agent receives a positive reward. The agent also receives immediate positive/negative

rewards as showed in Figure 3.1. For details on immediate rewards, please see Section

3.6. With this approach, learning the optimal dialog strategy for an entire dialog is

reduced to learning optimal dialog strategy for each of the MDPs.
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Figure 3.2: System Architecture and Dialogue Manager

3.5 Agent and Dialogue Strategy Learning

As shown in Figure 8.1, the Agent component of the system operates as an interface

between other main components of the system. If the system asks a system initia-

tive question, the Speech Recognizer component operates by using Speech Recognizer

Grammar Specification (SRGS) grammars1, and it outputs Semantic Interpretation

for Speech Recognition2 (SISR) tags. If the system uses non-restrictive grammar, it

uses the Semantic Parser to parse the recognized speech. We use the Phoenix robust

semantic parser [War91], which requires to write context-free grammar style recursive

grammars to extract relevant information from the user utterances.

Therefore the Agent component receives SISR tags (i.e. when the type of system

dialog action is system initiative or closed questions), or Phoenix parse results (i.e.

when the type of system dialog action is user initiative or open questions) according

to the initiative type, as semantic interpretations. The agent updates the system

Current State and collects the Reward according to the reward function (see section

1http://www.w3.org/TR/speech-grammar/
2http://www.w3.org/TR/semantic-interpretation/
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3.6 for the reward function). It then queries the corresponding Markov Decision

Process with the current state, and receives Dialog Actions and a Reward information

for the current state, and there might not be any associated rewards.

A reward is received only if the Current State has an associated Reward. For

example, the final state of each MDP has associated rewards. The agent sends the

received Dialog Actions from the MDP and the Current State to the RL algorithm,

and the RL algorithm selects the Best Action - an action for which the agent received a

maximum amount of reward in its prior experience - based on the Dialog Corpus (see

section 3.8) which is collected from real user interactions.The dialog corpus contains

information about gained rewards at each step and accumulated rewards for a whole

dialog session. The best action is the one that leads the agent to collect the maximum

amount of reward. If the system is running in exploration/unoptimized mode, it

selects dialog actions randomly among available actions in that state. Therefore, the

best action selection does not happen in the unoptimized version which is usually

used to collect training data (exploration mode).

The Best Action is passed to the Natural Language Generator component, which

gives the final form of the system response and passes the text to the Text-to-Speech

(TTS) engine. The embodied conversational agent ECA utters the response with lip

synching. After each dialog turn, the Dialog Corpus is updated by the Agent with the

old dialog state, action, the new dialog state and the reward information. Actually,

the corpus contains more information about each turn but the RL algorithm uses

reward signals to select the best dialog actions in each state.

At the inception of the project, I did not have any data for optimizing the system

for our domain of discourse (the domain of alcohol use). So I first used the system

with an algorithm which selects a dialog action randomly among the available ones.
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Since I have mapped each state to sensible dialog actions, the system was able to

deliver basic unoptimized functionality.

After having acquired the Dialog Corpus for the domain of alcohol abuse - which is

itself a contribution as it can be reused - we used the RL algorithm to learn optimized

dialog policies and select the best action according to available data (see section 5.2).

Based on each of our MDPs, the expected cumulative reward Q(s, a) of taking

action a from state s can be calculated in terms of Q-values of the next dialog states

with the following equation [SB98];

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′|s, a) max
a′

Q∗(s′, a′). (3.1)

where P (s′|s, a) is the transition model and R(s, a) is the local reward function.

The γ (0 ≤ γ ≤ 1) is the discount factor which is mainly used to indicate importance

of sooner versus later rewards.

The Q-values in Equation 1 can be easily computed with a desired threshold using

the Q-value version of the standard Value Iteration algorithm [SB98]. The algorithm

updates iteratively the current value of Q(s, a) based on the current Q-values, and

it stops when the update yields a difference that is below the threshold. Once the

Value Iteration algorithm is completed, approximately optimal dialog strategies can

be selected by the system, which are essentially dialog actions with the maximum Q-

values. The optimized dialog strategy must collect the maximum amount of rewards

from future users.

The biggest challenge of this approach is in collecting enough human-machine

dialog data to learn an accurate model. To avoid the data sparsity problem, we used

minimal state representations and approximated the true state of the system during

the interaction. Since the length of the dialog is long, a large amount of data is

required to optimize the system. As we describe in Section 5.2, we run the systems
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in two modes, training/exploration and testing. Training mode is for data collection,

and in testing mode, the system uses optimized dialog strategies based on the data

collected in training. Therefore, Equation 3.1 is used only for testing mode.

3.6 Reward Function Design

The reward function we use is designed based on the amount of information collected

and the cost of collecting each piece of information. The agent gets a reward in each

question: if the value is obtained in the first attempt with the ASK type of action,

it gets +10 reward; if on the other hand the value is not obtained, the agent gets

no reward. For each Confirmation action, if the obtained value is confirmed by the

user, it gets +2, otherwise it gets -2. For each ReAsk action which could not result

in obtaining the necessary information, the agent receives -3 reward, otherwise it

receives +3 reward for the obtained value. If the obtained value is disapproved by

the user, it deletes the previously gained reward. Therefore the agent gains a positive

or negative reward for each question and dialog action. In addition to rewards gained

per question, there are rewards in the MDPs which are associated with the final

states. The system receives +15 reward if it is able to reach any of the final states

in any MDP. For example, the successful completion of Step 1 gives the agent a +15

reward. In Figure 3.1, we depict the immediate rewards and the rewards that are

received from the goal states for each MDPs.

I have used this approach to perform strategy learning for each question. Since

the system tries to obtain one piece of information in each question, learning the

approximately optimal actions in each question is useful.
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3.7 Speech Recognition and Language Model

In the system, the operation mode of the speech recognizer3 is adapted according

to the dialog manager’s action selection. If the dialog manager asks system initia-

tive questions to the user, the system uses Speech Recognizer Grammar Specification

(SRGS) grammars. Even though I refer to system initiative questions as closed ques-

tions, the SRGS grammar does not restrict the user to answer with short answers such

as yes/no or a number. It can still understand unrestricted speech. If the system op-

erates in system initiative mode, the Phoenix parser is not used. Instead Semantic

Interpretation for Speech Recognition (SISR) tags are used. We created a grammar by

first authoring it in Augmented Backus-Naur Form (ABNF), and then we converted

it to SRGS by using the NuEcho4 ABNF editor.

The system uses our custom dictation grammar while it operates in user initia-

tive mode. In user initiative mode, we load two types of grammars in the in-process

speech recognizer. One is the SRGS grammar which is prepared for the system ini-

tiative version of the current question. If the speech recognition result is based on

dictation grammar, we use the Phoenix parser, otherwise we use SISR tags. Since

the standard dictation language model is comprehensive, it does not work well in

specialized domains. To address this problem, we created our own language model

by using Windows Vista Dictation Resource Kit software. It is a tool which enables

the creation of custom speech recognition dictation language models.

Language models help a speech recognizer decide upon the likelihood of a word

sequence. Hence it is useful independently of the acoustics of the word sequences. A

language model lets the recognizer make the right guess when two different sentences

sound similar. For example, both of the following sentences sound similar: “Because of

3Microsoft Speech Recognizer
4http://www.nuecho.com/en/
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alcohol, I had hard problems” and “Because of alcohol, I had heart problems”. With a

language model on alcohol consumption, the recognizer knows that the first sentence is

more likely to be what was said than the second one. Furthermore, a language model

does not only give information about homonyms, it also gives statistical information

about which word might appear after another, among other information. Therefore,

if a language model consists of word sequences that are relevant in a specific context,

it is very likely that it will operate better than a comprehensive language model for

English.

To collect the data for the language model, we first collected data using the Me-

chanical Turk (MT) crowd sourcing website5 after obtaining Internal Review Board

approval for the study. We asked MT participants the same questions that our system

in full mode would ask (after being built from the process described above and after

we have acquired the language model). In the instructions, we requested them to role

play a person who is having alcohol problems. Our instructions were:

“Imagine that you are recently having drinking problems and that you are talking

with a health professional face-to-face about your drinking problems. The health prac-

titioner asks you the questions on this page. Please answer as naturally as possible.”

Because alcohol usage is a very common and universal social problem that everyone

understands, MT users’ answers were relevant. Once can note that we would not

necessarily had collected meaningful answers had we asked MT users, for example,

to imagine having some complex disorder such as schizophrenia, because most people

do not know what behaviors are associated with this condition. Consuming alcohol

in different quantities however, is an experience that many people can relate to, and

therefore the answers that we collected were very relevant.

5https://www.mturk.com
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Participants answered the 18 questions. We created the language model from the

responses of 447 MT workers. We preprocessed it (corrected spelling and grammar

problems) before creating the language model. We improved the language model by

adding sentences generated based on our SRGS grammars, and used this language

model in our experiments. In the model, there are 7,599 utterances, the average

length of an utterance is 11.82 words, there are 100,679 word tokens, and 5,423

distinct words.

We used our custom language model in our evaluation (see section 5.2). We

collected the training data from real user dialogs (described in Section 3.8) which

includes sound files. We ran the speech recognizer on the collected sound files and

compared recognitions based on the two language models. We performed quantitative

analysis to compare the Microsoft standard dictation language model with our custom

language model. We found that when we use our custom language model, the word

error rate is approximately 17% lower than the Microsoft standard dictation language

model.

3.8 Dialog Corpus

I created a very richly annotated XML-based dialog corpus from the test dialogs,

whose size will continue to grow as we collect more data. The corpus is organized

turn by turn. Each turn element contains: step and state information, question asked

by the system, initiative type, best speech recognition, grammar type, semantic value

or result of the Phoenix parser, N-best recognitions with confidence score, reward

gained from the question, cumulative reward and sound files. Each XML log file

contains sequences of dialog turns for one dialog session.
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CHAPTER 4

Spoken Dialogue System Based on POMDP and Health Screening

Dialogues

Latest progress in speech recognition technology, together with advances in the

field of conversational intelligent virtual agents (IVA), have created new possibili-

ties to develop a variety of useful applications to address contemporary health-care

challenges. Because current automatic speech recognizers (ASR) are still regarded

as a noisy input channel, they need to be backed up with a mechanism to operate

against noisy recognitions. As discussed earlier chapters, in the spoken dialog sys-

tems (SDS) area, latest research has mostly concentrated on addressing this problem

by employing stochastic and data-driven dialog management (DM) methodologies,

namely reinforcement learning based approaches [YGTW13, FL09]. Whereas there

is growing interest to develop speech-enabled conversational applications among IVA

researchers [STA+10, THSh+11], speech has not been a widely used input channel.

Speech-enabled interfaces has great potential to address health-care problems by in-

creasing accessibility of health-care services for patients. Speech-enabled interfaces,

however, face a variety of challenges, such as operating in noisy environments, ex-

pected low cooperativeness of users, accuracy and precision requirements for the re-

ceived information. Although research in spoken dialog systems area has a potential

to foster development of health dialog systems, the approaches that are used in SDS

area for dialog management, are not widely used in the development of health dialog

systems, except few examples [LGRT13, YLR13].

The work in this section aims to bridge the gap between SDS and IVA research and

use findings from the SDS community for DM in the applications of IVAs in the health

domain. More specifically, the concentration in this section is twofold. First, I created

a dialog manager design tool which enables the creation of stochastic data-driven
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dialog managers for structured health dialog interviews. The tool can be used to

create spoken dialog systems for initial screening of patients, conducting brief health

interventions and information-providing applications. It employs the techniques that

are used in latest SDS research which provide resiliency while operating under noisy

ASR outputs. Second, I developed an SDS integrated with a multi-modal embodied

conversational agent for delivering an alcohol screening and brief intervention for

youth.

The work in this chapter also improves the ideas presented in Chapter 3 by us-

ing partial observable Markov Decision Processes instead of fully observable MDPs.

In this section, I still work on alcohol domain but for youth instead of adults to

demonstrate of applicability of the tool to similarly structured health interviews.

4.1 Underage Drinking Problems and Computer-based In-

terventions

Alcohol known as the most commonly used and abused substance, is the cause of

4,300 annual underage deaths [fDCC+08]. Although drinking under the age of 21 is

not legal, 11% of all alcohol consumed in the United States is drunk by people aged

12 to 20 years [fRE05] and more than 90% of it is consumed in the form of binge

drinks [fRE05]. In 2010, underage alcohol consumption caused 189,000 emergency

room visits because of injuries and other conditions linked to alcohol use [Abu13].

The magnitude of social costs of underage drinking is very high. It has been

evidenced by studies that computer-delivered interventions have positive effect on

reducing alcohol consumption and binge drinking among underage drinkers [WMM12,

CSSE+09]. Delivering interventions using conversational interface with ECAs has

been shown to increase engagement and intention to use behavior change systems

[LAYR13], and have positive impact on the acceptance of computer interventions.
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4.2 Alcohol Screening And Brief Intervention For Youth

In this section, I introduce the domain and the content of the system. I use the

pocket guide from National Institute on Alcohol Abuse and Alcoholism (NIAAA) for

alcohol screening and brief interventions for youth [oHS11], which is publicly available

online. The system strictly follows the guidelines specified by the pocket guide1. For

the questions that the system ask, I use the content in the full version.

The initial screen and brief intervention has 3 steps: 1) Step 1: Ask the two

screening questions; 2) Step 2: a) Guide Patient, b) Assess Risk 3) Advise and

Assist.

In Step 1: Ask the Two Screening Questions, the system asks the age or the type

of school the person is pursuing, if friends of the user is drinking or not, and if user is

drinking or not. According to the age or the school type. The system stores the inputs

that it receives for the first 3 questions in the dialog history. If the patient does not

drink, the system goes to Step 2a: Guide Patient. If the friends of the patient drink,

the system takes different path. Without depending on friends’ drinking status, it

reinforces healthy choices, elicits and affirms reasons to stay alcohol free and educates

the patient about alcohol consumption. For a patient who does not drink and with

no drinking friends, it ends the conversation by asking for re-screening the next year

again. For a patient who has drinking friends, it explores the patients’ plans to stay

alcohol free when friends drink, advise and offer to re-screen next year. If the patient

drinks, it goes to Step 2b: Assess Risk.

For a patient who drinks, the system transits to Step 2b: Assess Risk. For a

patient who has high risk, the system conducts brief motivational interviewing. Brief

motivational interviewing roughly queries patient about drinking patterns, problems

1The full NIAAA guide is 40 pages, and the pocket guide is a lot shorter summarized
version of it.
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experienced or risks taken. It also asks if parents know about the patient’s drinking

issues and refers the patient to treatment. For a patient with moderate drinking,

it gives brief advice, if patients does not have alcohol problem. If a patient has an

alcohol problem, it conducts brief motivational interviewing as in the case of high

risk, asks if parents know and arranges follow-up. The system provides brief advice,

and reinforces healthy decisions. The details of the intervention can be accessed in

NIAAA website2.

4.3 System Architecture Overview

As can be seen in Fig. 4.1, the spoken dialog system contains Speech Recognizer, a

text-to-speech (TTS) engine as user interface combined with a 3-dimensional animated

ECA. The speech recognizer operates in two modes, system initiative (i.e. restricted

grammar) and user initiative (i.e. non-restrictive grammar). If the system asks a sys-

tem initiative question, the Speech Recognizer component operates by using Speech

Recognizer Grammar Specification3 (SRGS) grammars, and it outputs Semantic In-

terpretation for Speech Recognition4 (SISR) tags. For the Custom Language Model I

used a crowd sourcing service 5. A statistical language model assigns a probability

to a sequence of n words by means of a probability distribution. Language models

help a speech recognizer figure out how likely a word sequence is, independent of

the acoustics. This lets the recognizer make the right guess when two different sen-

tences sound the same. I asked the questions the system asks to Mechanical Turk

workers. I collected answers from 1,075 participants to create the language model.

I use the Phoenix Semantic Parser [War91] for extracting relevant information from

2http://www.niaaa.nih.gov/Publications/EducationTrainingMaterials
3http://www.w3.org/TR/speech-grammar/
4http://www.w3.org/TR/semantic-interpretation/
5https://www.mturk.com
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Figure 4.1: Architecture of the multimodal spoken dialog system: u and a denote
user and system dialog actions, νn denotes estimated user dialog action, h denotes
dialog history, b is systems belief for the estimated state S ′.

the Speech Recognizer outputs. Belief estimator calculates the estimated dialog state

based on n-best speech recognitions and the dialog policy component decides for the

next system dialog action. I describe the methodology that I use for the dialog man-

agement (i.e. belief estimator and dialog policy components) in Section 4.4 in detail.

The Natural Language Generator (NLG) module contains templates for system dialog

actions. According to dialog action selection, the NLG module gives the final form to

the dialog action which is the text to be spoken by the ECA. Microsoft Speech API6

compliant TTS engine generates phonemes for the ECA system. The ECA system

speaks to the user with lip synchronization and some simple non-verbal behaviors

(e.g. head movements).

4.4 Approach

As I have indicated before, health interview dialogs are different than dialogs found

in the tourist information domain which is the most widely domain studied by SDS

6http://msdn.microsoft.com/en-us/library/ee125663(v=vs.85).aspx
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researchers. The main goal of health interview dialogs is to collect initial screening

information, educate patient, increase awareness and, if needed, refer the patient

to a treatment. There is usually published plan of standardized health interviews

(e.g. [HHEA+10, SRC+05, NIA07a]) by national or international health institutions.

So the system has to conduct the conversation according to that plan. The system

usually needs to ask one question at a time and in a specific order, while the flow

of the dialog adapts according to the received answers. In other words, the inputs

received by the system influence the future steps of the conversation (i.e. sequential

or branching). Unlike tourist information systems that do not involve different dialog

execution plans such as branching dialog plans or conditional steps that might be

followed based on answer of single or multiple questions, the system does.

Standardized health interviews have a common pattern and structure. The plan of

the interview might contain 3 patterns; 1) sequential independent questions (where the

future questions do not change according to current answer); 2) branching questions

(each different answer causes the system to ask a different question); 3) composite

questions (asking a composite question depends on answer of multiple prior questions).

A standardized health interview might contain one or multiple patterns together.

While designing a dialog manager for standardized health interviews, the sys-

tem designer needs to consider all three patterns based on the standardized assess-

ment/intervention guide. The purpose of asking each question might aim at receiving

one (i.e. closed question) or more (i.e. open-ended questions or mixed-initiative

questions) pieces of information. However, at the very least, each question aims at

receiving a single very explicit piece of information (i.e. closed questions) from the

user. This requirement affects the operation mode of the Speech Recognizer.

For the open-questions, the Speech Recognizer uses unrestricted recognition gram-

mar, whereas for closed questions, it use restricted grammars (e.g. SRGS). Therefore,
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the system actions changes according to the dialog strategy. For example, a system

might use an open question but if it can not recognize (e.g. because of low confi-

dence scores) and/or extract (i.e. this operation is performed by the semantic parser

module on ASR outputs) the expected information, it might re-ask the question in a

closed-style to get the minimum required information. Re-asks and implicit or explicit

confirmations are widely used system actions in information-seeking dialog systems.

Therefore, the type of system actions that are used to get each piece of information,

are usually all the same.

4.4.1 Belief Monitoring and Partially Observable Markov De-

cision Processes

Each system has to track a dialog state which usually contains some important dialog

state attributes such as: ASR confidence level, grammar type, information about

whether the received answer is confirmed or not, number of re-asks. Each state is

mapped to a dialog action that is called Dialog Policy. To optimize the system, a

reward function is designed. I can formalize the defined mechanism with the Markov

decision processes (MDP) framework which described earlier in Chapter 8.3. I briefly

described below again.

MDP framework can be characterized by a tuple (S,A,T,R), where: S is a finite

set of states, A is a finite set of actions, T is a state-transition function such that

T(s’, a, s) = p(s’ | s,a) which describes the probability of performing action a in

state s’ will lead to state s, R(s, s’) is a local reward function, and the objective of

the SDS is to maximize the gained reward.

MDP assumes that the entire state space is fully observable. However, it is par-

tially observable in SDSs because of imperfect ASR outputs. An SDS with Partially
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Observable Markov Decision Processes (POMDP) model attempts to address the

partially observable nature of SDS state spaces [WY07]. According to SDS-POMDP

model, at each dialog turn, a user has a goal g in mind (e.g. answering with the num-

ber of days in week s/he drinks, or whether the alcohol causes any health problems).

The system takes a dialog action a (e.g. how many days in a week do you drink

alcoholic beverage?) and user replies with action u (”I usually drink on weekends”).

The speech recognizer outputs the N-best list of recognitions ν = {ν1, ν2, ...., νn} with

the estimated confidence scores indicating the likelihood of each recognition being

correct P (u|ν) while processing the audio. A history variable h keeps track of the

relevant dialog history (e.g. receipt of each piece of information, confirmation status

of each piece of information). Because ASR is a noisy sensor, g, u, h are not fully

observable by the system. Instead, the system maintains a distribution over these

values b. Given some existing distribution b(g, h), and observations a and ν ′, an

updated distribution b′(g′, h′) can be computed [WY07, Wil10]:

b′(g′, h′) = k
∑
ν′

P (u′|ν ′)
∑
h

P (u′|g′, h, a)P (h′|g′, u′, h, a)
∑
g

P (g′|a, g)b(g, h) (4.1)

where P (u′|g′, h, a) gives how likely user actions are; P (h′|g′, u′, h, a) gives how

the dialog history evolves; and P (g′|a, g) gives how the user’s goal may change. k is

a normalizing factor.

POMDPs grow exponentially with the number of possible user goals, and it is not

possible to calculate this update in real time. This means that POMDP usually suffer

from scalability issues [WY07, YGK+10b]. To overcome this problem, a distribution

over the set of partitions of user goals {p1, p2, ...., pn} is maintained, each partition pn

indicates a collection of user goals, and each user goal can be belong to exactly one

partition. The belief in a partition is the sum of the dialog states it contains.
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It is assumed that the user’s goal is fixed during the interaction, and that error-

prone ASR confusions between recognitions not on the ASR N-best list are uniform.

These two assumptions allows to compute [YGK+10b]:

b′(g′, h′) = k
∑
ν′

P (u′|ν ′)
∑
hεp′

P (u′|p′, u′, h, a)P (p′|p)b(g, h) (4.2)

where P (p′|p) shows the fraction of belief in p which p′ would have if p were split

into p′ and p − p′ : P (p′|p) = b0(p
′)/b0(p) and P (p − p′|p) = b0(p − p′)/b0(p), where

b0(p) is the prior probability of a partition p [YGK+10b].

The partitioning is performed in the following way: first each recognition in the

N-best list is compared to each existing partition; if user action can split the partition,

the partition is divided. Then the belief in each partition (and dialog histories) is up-

dated using Equation (2). To avoid exponential growth of the number of partitions,

low confidence partitions are combined by summing up their beliefs. This approach

usually allows to take into account 2-3 N-best recognitions [YGK+10b]. This prob-

lem is addressed by applying incremental partition recombination for tracking dialog

state by using a larger number of N-best recognitions [Wil10]. I use the incremental

partition combination approach in dialog state tracking [Wil10].

4.4.2 Representing Patterns in Health Interviews As Progra-

matic Objects

The goal of my approach is to create a tool to design custom dialog managers which

employs POMDPs as an underlying mechanism. As a result, a dialog designer can

just specify the content-related information (e.g. question to be asked, an information

that need to be provided) and connections between the each question in the interview.

To facilitate the process, we created an API to design dialog managers.
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Each question in the intervention represented as an object which encapsulates the

dialog policies and the transition information. In other words, each question object

consist of a POMDP with transition information to successor step. Since the most

of the dialog actions have similar purposes such as asking a question, confirmations,

and re-asking a question, it is possible create parameterized patterns that are en-

capsulated in programmatic objects. Basically, each question object contains all the

underlying basic functionality for each piece of information which can be customized.

The questions objects can be considered as nodes of a graph, the transitions between

questions can be considered as edges that requires a key value to transit from one

node to another. The key value is a piece of information that the system tries to get

from a user in a particular question. I described details of the design later in this

section, but Fig. A.4 is an example of the described structure.

In my design, I considered the 3 dialog patterns (i.e. linear/sequential, branching,

and composite) for health interviews that I covered in Section 4.4. Each question

(i.e. system dialog action which might be question or sometimes a piece of infor-

mation) is represented as a question programmatic object. Each question object

contains question specific information; 1) question text which might contain several

versions according to initiative type; 2) type of node (i.e. root or not root) 3) type

of successor nodes (i.e. single or multiple); 4) semantic key types (i.e. any, specific,

composite): any is used for linear/sequential transitions where the next transition

does not depend on any semantic key, specific type is used to indicate that the transi-

tion branching is based on simple semantic keys that are extracted from user actions,

composite keys indicate that transition depend on answer of multiple prior questions;

5) semantic keys; 6) dialog actions such as ask, confirm, re-ask; 7) edges which are

connectors between other question objects. Each question object contains the default

dialog actions (confirmations, re-asks) except the specific question (i.e. because style
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Figure 4.2: Demonstrates sample dialog structure that could be created with the
dialog design tool which includes three different dialog patterns that do exist in the
alcohol intervention dialog for youth. Cubes represents question objects, edges be-
tween cubes represents semantic keys to transit from one question to another, circled
area shows underlying POMDP mechanism for each question object.

to request information can be generalized for other actions but not for the actual

question) however each action can be modified by the user. In addition each question

object contains underlying POMDP mechanism that is discussed in section 4.4. The

questions are connected to each other by directed edges (see Fig. A.4) which have

a key that represents the required input to transit to the next question (i.e. the

required input could be specific, composite or any).

A dialog designer should instantiate a question object with at least 4 parameters

1) the question text, 2) the semantic keys which are used to create edges from current

node to successor nodes, 3) the prior node which indicates which is the prior of the

current node, and 4) the semantic-key-to-connect indicates which edge of the prior

node it should connect. If it is desired, the default dialog actions included in a

question object also can be modified.
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The dialog agent makes transitions between the questions using received semantic

keys and, in each question, the internal state transitions depend on POMDP mechan-

ics. I depicted a sample dialog plan structure in Figure A.4. An agent has knowledge

about which question it is working on but it only has belief about what state it could

be in POMDP for that question.

As a concrete example of a dialog design, I use NIAAA pocket guide which is

described in Section 4.2. The first question that the system needs to ask is the age

of or the type of school where the person studies. Since it has 3 possible answers

and the required number semantic key for transition is one, and each one will transit

to different question, the dialog pattern type is branching and the semantic key type

is specific. The system developer should also specify the type of node, if it is root

node or not (the first question is always root node). When the system developer (SD)

specifies all of the required parameters. The system creates a question with its edges

to connect to successor questions.

For the elementary school students, the SD needs to create a new question object

to ask if any of the student’s friend are drinking alcoholic beverages. This question

has a prior question which is the root question. The type of answer will not change the

next question that will be asked by the system, in other words there is no branching.

Therefore, the type of successor is single. Semantic key type is any, because the type

of answer to transit successor does not matter.

The next question is branching (if patient drinks or not), however, according to the

answers that are received to the current and previous questions and the system tran-

sits to step 2: guide patient. Branching is done based on the composite key (patient

drinks or not, patient’s friends drink or not). Therefore, the third question successor

type is multiple and semantic key type is composite (i.e. I showed the composite key

but can’t show the branching in the figure because of the space limitation).
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Creating question objects which encapsulates POMDP mechanism is as easy as

specifying some content-related parameters. Also for each dialog action, the system

developer needs to create SRGS and Phoenix grammars. While the system works on

a question, it tracks the dialog state seamlessly using the stochastic approach that I

discuss.

4.5 Discussion

I created dialog manager design tool for creating dialog managers for delivery of stan-

dardized health interviews. It will increase the accessibility of state of the art dialog

management approaches to non-experts. Also, I adapted the latest methodologies

that are used by the SDS community to health dialogs. I discussed my implemen-

tation for alcohol screening and brief intervention for underage drinkers. As future

work, I plan to test the system with real users for both objective and subjective mea-

sures. For the programming tool, I plan to create functionality to handle additional

dialog patterns.
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CHAPTER 5

Experiments with Optimized and Random Dialog Policies

In this section, I discuss my experiment that is conducted to evaluate spoken

dialog system with real users. The evaluation concentrates on two aspects of the

system, objective and subjective aspects.

5.1 Sample Population

University students represents very appropriate sample for target population for brief

interventions. The latest report of NIAAA on college drinking indicated that alco-

hol problems are very prevalent among college students [NIA07b] and 19% of col-

lege students (18-24 ages) met criteria for alcohol abuse or dependence1. The use

of brief interventions with college students to educate students about drinking and

their increase awareness is very common [NIA07b]. As a result of many studies, the

NIAAA report on college drinking emphasized that ”increased alcohol screening and

brief interventions are feasible and appropriate for identifying and addressing harmful

drinking among college students”.

In addition, using computer and web-delivered interventions is very well studied

in college settings [WHCM05, WN05, SPF+07]. For example, Saitz et al. [SPF+07]

tested the feasibility of providing online alcohol screening and brief intervention to

more than one-half of an entire freshman class. The students were contacted through

e-mail and invited to take the brief intervention. The researchers found that, in

general, unhealthy alcohol use - ranging from risky drinking to alcohol abuse and

dependence - decreased following the intervention. Hence, although we are not as-

sessing the impact of the system on heath/drinking outcomes (which would require

1From the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSMIV), American Psychiatric Association.
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a randomized clinical trial outside the scope of this study), our target population is

very appropriate for participating in brief interventions.

For the evaluation of the system, 89 subjects were recruited from volunteer univer-

sity students through fliers and emails. From 89 participants, 62 of them were males

and 27 of them were females; 51 of them were native speakers and 38 of them were

non-native speakers, which realistically represents the diversity of the population in

the Miami, Florida area.

Participants sat in front of a PC computer running the systems (some the training

system and some the testing system as described below), and responded in English

to the questions asked by the embodied conversational agent shown in Figure 2.3.

The computer was equipped with a USB sound card and a Sennheiser ME 3-ew

microphone.

It is important to note that we did not perform any user training nor speaker

adaptation for speech recognition.

After obtaining an oral consent approved by the University Internal Review Board,

we gave the following instructions to each subject before using the system for both

experiments:

• You will be asked questions about your drinking behavior with an avatar/virtual

character. You may or may not have any alcohol related problems, but we just

want you to role-play a person who is having drinking-related problems and

give relevant answers to each question.

• Try to speak clearly and loudly enough.

• Wait until the avatar stops speaking before you answer.
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5.2 Evaluation Results

In the first phase of the study, for the first 52 subjects, the system operated in train-

ing/exploration mode and selected random dialog actions from the available ones in

each state (see section 3.5 for discussion). In the second phase, the remaining 37

subject used the system in testing mode. Since, we mapped each state to sensible

dialog actions, the system could deliver basic, but expectedly unoptimized function-

ality. The goal of the first phase was to collect training data to optimize the system

for initiative and confirmation type selection.

In the second phase of the experiment, the users used the optimized system. Even

though the number of subjects is not very large to compute the optimal dialog strate-

gies, it was sufficient to compute approximately optimal dialog strategies. I observe

the positive effects of optimization while testing the optimized system.

5.2.1 Task completion evaluation

In Table 5.1, we present the results of our task completion evaluation: Column 1

“Evaluation Measure” is the type of evaluation; Column 2 “Training” is the mean of

task completion measure obtained for the training system; Column 3 “Testing” is the

mean of task completion for the optimized system; Column 4 “4” shows the difference

between testing and training averages; and Column 5 “p-value” is the statistical

significance value obtained using the standard two-sample t-test over subject means.

I show the average values of binary task completion across 52 training dialogs

and 37 testing dialogs. At the end of the each interaction, I asked questions to each

subject. One of them was “Did you complete the intervention?”. If they completed

the intervention, the binary completion value was +1, otherwise it was -1. The task
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Table 5.1: Task Completion Rate: Training versus Testing

Evaluation Measure Training Testing 4 p-value
Self-Report Completion 0.1538 0.5675 0.4137 0.0402

Real Completion 0.03846 0.4594 0.42094 0.0434
Step1: Assessment 0.3461 0.7297 0.3836 0.0371

Step2 Abuse 0.3076 0.6216 0.3139 0.1058
Step 2 Dependence 0.1923 0.6216 0.4293 0.0300

completion reported (and perceived) by the subjects is referred to in Table 5.1 as

Self-Report Completion.

The additional Real Task Completion measure is defined because perceived task

completion and real task completion are different. Real task completion indicates

whether or not the system obtained all the answers for each question it asked. The

perceived (self-report) task completion is different because, if the system can not

obtain the answer in three attempts, it skips that question without having an answer

and the user is not aware of it.

Three other task completion metrics show the real task completion for each step.

The training and testing blocks show averages of binary task completion for each

individual version of the system. Since the difference between “real completion” and

completion rates for Step 3 is negligible, we do not report it.

Each row shows a different task completion information and compares the two

versions of the system. The first row is the Self-Report Task Completion (perceived)

for the whole intervention. The difference between the two versions is statistically

significant (p = 0.0402 < 0.05)2. As mentioned above, the perceived task completion

refers to when the subject could complete the intervention, even though there may

2Conventionally, a p-value less than 0.05 is considered statistically significant, a p-value
less than 0.10 is considered indication of a statistical trend.
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exist some questions which the system could not obtain answers to, but the user was

not aware of it.

The second row shows the Real Task Completion, which means that the system

did obtain an answer for each question asked. The mean values are lower than self-

report completion because the system was able to complete sessions by skipping

questions. For example, according to the NIAAA guide for brief interventions which

we followed (see details above) [NIA06], it is enough to obtain 1 abuse indicator with

the 4 questions which query alcohol abuse. If the system could not obtain an answer

to the first three question but obtained an answer to the forth one, the user could

still complete the session but from the system’s perspective, there are questions which

it could not obtain answers to. The difference between the training and the testing

system for real task completion is statistically significant (p = 0.0434 < 0.05).

The difference in task completion rate for the Step 1: Assessment is statistically

significant (p = 0.0371 < 0.05) for the training and testing versions. Step 1 contains

five questions, and since the dialog length is short, a higher task completion rate is

expected for both of the versions.

The difference in task completion rate for the Step 2: Abuse is not statistically

significant (p = 0.1058 > 0.05). This is because of the length of the this step. How-

ever, as mentioned in the NIAA guide for brief interventions [NIA06], it is sufficient

to find a 1 abuse indicator to pass to the “Step 2 Dependence” step.

The difference in task completion rate for Step 2: Dependence is statistically

significant (p = 0.0300 < 0.05). This step is long and the system needs to identify

three indicators by using 7 questions. The task completion rates for each sub-steps

of Steps 3: Advise converge to real task completion rate because it is the end of the

intervention. Since the difference between real completion and completion rates for

Step 3 is negligible, we did not report it.
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The task completion rate in the training dialogs is 58%, and for the optimized

system it is 77%, an improvement of task completion rate of 19%. Although the results

we obtained are statistically significant for most of our task-completion criteria, for

data hungry reinforcement learning algorithms with a large number of system states,

a larger number of subjects will allow us to draw conclusions about the optimality of

the learned policies. However, as shown in Figure 5.1, we compared Q-values for each

episode. An episode can be defined as completing one question and passing to the

next question. Completion of a question does not mean that the system obtained the

information it was trying to get. As discussed earlier, it is possible for the system to

transit to the next question without having obtained the information, and in that case,

the system receives negative reward. We described the details of the reward function

in Section 3.6. We show the improvement of Q-values for each episode in Figure 5.1.

We have 21 episodes because we have 18 questions, plus transitions between MDPs.

As shown in Figure 5.1, the optimized policy performed better, even though it is not

optimal. We have to note that optimal policy represents the highest reward that the

system can achieve, whereas the random policy and the optimized policy represent

the average score that the system collected in training and testing operation modes,

respectively.

5.2.2 Dialogue Evaluation

In addition to task metrics, we looked at Dialog Metrics to measure the number of

turns for successful completions, and the number of words per turn.

The average length of a dialog is 31.9 turns, the shortest completed dialog is 24

turns and the longest one is 43 turns. The length of the dialog is significantly larger

than similar RL-based systems [SLKW02, YGK+10a, FL09]. For Step 1, Step 2 abuse,

Step 2 Dependence and Step 3, the average length of the dialog are respectively: 9.6,
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Figure 5.1: Q-values for each episode, x axis shows episode and Y axis shows log-scale
Q-values.

4.8 and 13.4, and 4.1. The average number of words used or recognized in each turn

is 3.3.

5.2.3 Subjective Evaluation

After the subjects completed the intervention, the subjects answered a survey aimed

at evaluating the user’s experience with the system. The survey has two parts, the

first part has 4 yes/no questions and the second part is a 34-item questionnaire about

the subject’s assessment and experience with the system.

In the first part, we asked questions about reuse “Would you use the system in

future?”, and ease of use “Is the system easy to use and is it easy to understand

how to use the system?”, and “Did the system understood what you said” and “Did

you know what to say to the system in each turn”. Since these 4 questions are not
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directly related with dialog strategies and we want to see the complete picture, we

did not compare test and training systems.

The evaluation of the subjective aspects shown in Figure 5.2 demonstrates that

acceptability of the system by users is very high in terms of Ease of Use (81 Yes versus

8 No) and Intention to Reuse (63 Yes versus 26 No) the system. The What to say to

system shows that sometimes users do not know how to answer the system questions.

We believe that the reason can be that when the system is in user initiative mode

(open questions), the subjects may not be sure to what extend they should provide

details.

The System understood criteria shows that most of the users think that the system

understood what they said. We postulate that this is achieved with our ample use of

confirmation questions that the system utters when not sure.

In the second part of the subjective assessment, we used a 34-item questionnaire

named Subjective Assessment of System Speech Interfaces (SASSI) [HG00]. It is a

widely used evaluation questionnaire in the SDS community. The subjects answered

a randomized list of SASSI questionnaire on a 7-point Likert scale. The SASSI ques-

tionnaire queries 6 aspects of the user’s assessment and experience with the system.

These aspects are Accuracy, Likeability, Cognitive Demand, Annoyance, Habitability,

and Speed of the system.

The items in Accuracy are related to whether the system recognizes user’s input

correctly and does what the user expects. The items in Accuracy are related to

whether the system recognizes user’s input correctly and does what the user expects.

The items in Likeability include statements about the opinion and feelings of the user

about the system. Cognitive Demand summarizes the level of effort needed to use

the system and the user’s feelings arising from this effort. The Annoyance includes

statements such as “the interaction with the system is repetitive/boring/irritating”.
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Figure 5.2: Subjective Evaluation

Habitability contains statements related to whether the user knows what to say and

knows what the system is doing. The Speed contains only 2 items related to the speed

of the system.

We compared two versions of the system (training and testing) for the SASSI

evaluation. As discussed earlier, 52 subjects used the training system and 37 subjects

used the testing version of the system. We show the results in Figure 5.3. In the 7-

point Likert scale, 1 is the lowest negative score (strongly disagree), 4 is neutral score

(neither agree nor disagree) and 7 is the highest score (strongly agree).

We actually compared two versions of the system but our goal was also to assess

the overall performance of the system for speed and habitability categories, because

both versions of the system do not have any difference in terms of features which

are assessed by speed and habitability measures. To be consistent, we compared

habitability and speed measures, as we did for other subjective measures. The results
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Figure 5.3: Assessment - Negative (1) Neutral (4) Positive (7)

for habitability and speed correlate our viewpoint, because the mean values are very

close, as showed in Figure 5.3.

In Table 5.2, we show mean values for each evaluation category for both versions of

the system, the difference between mean values, and p-values. We obtained p-values

by performing the standard two-sample t-test. Column 1 is the type of evaluation;

Column 2 is the mean of the evaluated subjective category for training; Column 3

is the mean of the evaluated subjective category training (optimized) system; Col-

umn 4 shows the difference between test and training averages; and Column 5 is the

statistical significance value obtained using the standard t-test.

Accuracy of the system improved in the test version: the results show that there

is a statistical significance between the two versions (p = 0.0360 < 0.05). This

result indicates that the optimized system can select better dialog strategies then the

training system which randomly selects dialog strategies.
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Table 5.2: Subjective Evaluation Categories: Training versus Testing

Evaluation Measure Training Testing 4 p-value
Accuracy 4.6435 5.3363 0.6928 0.0360
Likebility 5.7286 6.1830 0.4544 0.0928

Cognitive Demand 5.2000 5.3435 0.1435 0.6394
Annoyance 4.7596 4.1540 0.6056 0.0472
Habitability 4.000 3.8200 0.1800 0.6302

Likeability of the system improved slightly in the test version. As can be seen,

both versions of the system have very high scores for likeability. It is possible to draw

two conclusions: first the acceptance rate of the system is high; second, although the

difference between the two versions is not statistically significant (p = 0.0928 > 0.05),

the optimized behavior of the system provides more desirable interactions.

The mean values of cognitive demand and habitability are very close for the train-

ing and testing versions (see Table 5.2). Therefore p-values are not statistically sig-

nificant. However, we can infer that the required cognitive demand is slightly higher

than neutral level for both versions.

Habitability of the system is almost neutral (i.e. 4 in 7 point Likert scale) for both

of the versions.

We believe that there is a connection between accuracy and annoyance categories,

because if the number of re-asks and confirmation increases, the annoyance level might

increase. For the test version, the reported annoyance level decreased and the result

is statistically significant (p = 0.0472 < 0.05). Since the accuracy also increased for

the test version, it might have had a significant impact on the decrease of annoyance.

77



5.3 Implications

Health screening and assessment dialogs are different than dialogs that are found in

information-seeking applications usually studied by SDS researchers. The main goal

of brief behavior change interview dialogs is to collect initial screening information,

educate patients, increase their awareness about potential problem behaviors and, if

needed, refer the patient to a treatment. This is usually the plan of standardized

health interviews (e.g. [HHEA+10, SRC+05, NIA07a]) by national or international

health institutions. So the system has to conduct the conversation according to that

plan. The system usually needs to ask one question at a time and in a specific order,

while the flow of the dialog adapts according to the received answers. The length of

the dialog is also longer than current information-seeking dialogs.

Our work have several implications. Our reduced state space representation with

multiple MDPs enables to learn approximately optimal dialog policies with a rel-

atively low amount of data. Even though we designed the system for brief alcohol

interventions, the approach that we use is easily applicable to any other similar health

interviews (e.g. eating behaviors, exercising behaviors, use of drugs). Indeed, brief

interventions are adaptable and useful for a variety of life-style related issues that

target one specific problematic behavior.

Secondly, our collected dialog corpus will help the development of future data-

driven research projects in the health domain.

Thirdly, we connect this work with the notion of intelligent virtual agents (IVA).

Whereas we focussed our current discussion on our efficient approach for a spoken

dialog-based interaction, our work is directly linked with our research on the graph-

ical animation of the intelligent virtual agents that deliver the spoken intervention.

In a recent study [LAYR13], we showed that empathic virtual agents that deliver

computer-based behavior change interventions are much more engaging than the cur-
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rently available text-only computer-based interventions. We created a model of em-

pathic communication for an IVA to deliver behavior change interventions: in brief,

the agent can sense the user’s facial expressions and answers, and adjusts its non-

verbal responses accordingly (e.g. express concern or encouragement) to deliver its

messages. Whereas there are debates about the impact of virtual characters com-

municating empathically with humans, our results showed that people are 31% more

likely to use our empathic agent system compared to using the same intervention con-

tent delivered instead with text-only. We are currently in the process of integrating

and evaluating our empathy agent model with the dialog manager discussed in this

article.

Lastly, the performance of our system has also convinced medical and health-

care personnel to conduct randomized clinical trials to evaluate health outcomes and

potentially deploy our system in clinicians’ waiting rooms and community centers.

Whereas computer scientists might think that the healthcare profession could be

threatened by the creation of such virtual counselor technologies, they are instead

quite enthusiastic about getting technological assistance to address some of the na-

tions’ current epidemics (e.g. obesity, overweight, which put people at risk of a va-

riety of chronic conditions such as diabetes, cardiovascular diseases, among others).

Virtual counselors have many advantages, including increased accessibility to cost

effective health interventions for people in need, increased anonymity and therefore

self-disclosure of at-risk behaviors, which in turn leads to better healthcare, among

many others [LAYR13].

5.4 Discussion

I created a spoken embodied conversational system which uses the Reinforcement

Learning (RL) paradigm for dialog management. The system is able to learn dialog
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strategies for initiative and confirmation selection. Our contributions to the SDS

domain include the creation of a RL paradigm to the completely new domain of

behavior change - where the dialog length is 4-5 times longer and where the nature of

the dialog is less restricted than spoken dialog systems operated in tourist information

domain.

We contributed to the health-care domain with the first system to use speech

as an input medium with a RL-based approach. The initial evaluation showed that

the dialog managers that are optimized with RL have the potential to reach optimal

behavior, given enough training data.

The future research will involve extending our evaluation with more training data,

and testing the optimized system with a larger number of subjects. Our system

currently takes into account the best recognition of the speech recognizer. We plan to

use partial observability concepts to deal with uncertainty, which stems from speech

recognizer hypotheses: future versions may work with N-best speech recognitions

instead of best speech recognition.
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CHAPTER 6

Recognizing Named-Entities and Domain Specific Reasoning For

Behavioral Health

Named-Entity Recognizers (NERs) are an important part of information extrac-

tion systems in annotation tasks. Although substantial progress has been made in

recognizing domain-independent named entities (e.g. location, organization and per-

son), there is a need to recognize named entities for domain-specific applications in

order to extract relevant concepts. As described earlier my motivation is to develop

a dialogue system to address some of the latest worldwide epidemics of behavioral

issues (e.g. over eating, lack of exercise, alcohol and drug consumption). I focused

on the domain of behavior change, especially lifestyle change because unhealthy be-

haviors are often associated with many health problems [Wil02]. For the dialogue

system I developed a system to recognize of named entities related with the un-

healthy behaviors has a crucial importance in language understanding. Recognizing

named-entities gives possibility to integrate domain related knowledge to discourse.

However, there is no named-entity recognizer designed for the lifestyle change domain

to enable applications to recognize relevant concepts.

I describe the design of an ontology for behavioral health based on which I devel-

oped a NER augmented with lexical resources. My NER automatically tags words and

phrases in sentences with relevant (lifestyle) domain-specific tags (e.g. [un/]healthy

food, potentially-risky/healthy activity, drug, tobacco and alcoholic beverage). I dis-

cuss the evaluation that I conducted with manually collected test data. In addition,

I discuss how my ontology enables systems to make further information acquisition

for the recognized named entities by using semantic reasoners.

Because identifying behavioral concepts in text or user utterances requires some

world knowledge, I created a behavioral health ontology to model world knowledge
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for behavioral health problems, and a named-entity recognition system based on the

ontology.

As discussed later, traditional named-entity recognition (NER) task focuses on

finding and tagging proper nouns into predefined set of classes such as location,

organization or person [TKSDM03]. In addition to these mentioned named-entities,

recognizing numerical and temporal entities such as date, time, percentage, money

have also been studied by researchers [FGM05].

By contrast, in order to address my focus on behavioral health, I am interested in

extracting information about behavior-related concepts which are generally classified

as common nouns. Specifically, my main goal is to classify named-entities into cate-

gories that are essential for the design and development of behavior health [Mat80]

systems, which are mostly focused on lifestyle changes.

In the next section, I discuss latest research conducted in the named-entity recogni-

tion field and I compare domain-independent NERs against domain-dependent NERs.

I then describe my general approach for the design and development of my behavioral

health ontology. Finally I discuss the evaluation of my system and the current results

that I obtained on a manually collected data set

6.1 Background in Named Entity Recognition

Ontology-based named entity recognition, annotation, and information extraction is

used successfully in different domains including extracting relevant concepts in biolog-

ical literature [MKS04] and the business intelligence domain [SFMB07]. In the food

domain, Weigand et al. [WRL+12] designed a lexical resource for German, to perform

relation extraction for recommending products and assisting online customers. A typ-

ical relation type is pairs of food items that are suitable to be consumed together. In

addition to the relation types, each food in a relation is classified into healthy and
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unhealthy categories. This system takes also into account context-dependent health-

iness (i.e. having a medical condition such as allergy) which requires background

information about a user.

Although ontology-based approach can be seen similar to using gazetteers (list of

names of entities) approach in NER, the ontology approach provides additional ad-

vantages in terms of making further reasoning and knowledge acquisition for extracted

concepts. I will discuss it in more detail in the following sections.

Traditional domain-independent named-entity recognition mainly concentrates on

using supervised techniques to classify proper nouns into small number of predefined

categories [TKSDM03], [NS07]. The disadvantage of this method is the need for

collecting and gathering hundreds of labeled training data. Although there is available

data for common categories (e.g. location, organization and person), for domain-

specific categories it is not the case. Collecting and labeling hundreds of training

data is not feasible for domains which deal especially with common names. Because

common names (e.g., apple, gym, whiskey) do not have specific word-level features

(i.e., orthographic information, orthographic patterns) as proper names (e.g., Apple,

IBM, Henry Ford, 3M) which are used widely in supervised systems [NS07], the

feature space for common names is a lot more restricted than the feature space of

proper names.

Also document and corpus features including multiple occurrences, local syntax,

and corpus frequency are not really useful for common names. Although these as-

pects are disadvantages in terms of using supervised techniques in recognizing com-

mon names, there is a possibility to use alternative approaches (e.g. lexical semantic

networks, lexical ontologies) which are not directly available for proper name recog-

nition, because there is no dictionary or lexical resource containing all proper names

which are constantly being created.

83



Moreover, Krupka and Hausman [KH98] showed that using extensive gazetteers

for proper name recognition does not really improve recognition accuracy.

The goal is to recognize health behavior related named-entities while user is in-

teracting with the dialog system that I described before. Recognizing and classifying

domain specific entities from utterances is the first step towards my the goal. Having

an OWL ontology introduces additional possibilities for the recognized entities by

using reasoners to classify them into further categories which has crucial importance

in autonomous agent-based dialogue systems.

6.2 Approach

The NER uses 6 labels to tag recognized named entities. These are (1) healthy and

unhealthy food labels for behaviors related with diet; (2) healthy and potentially-

risky activity labels for exercise and alcohol consumption related behaviors (activity

may involve alcohol such as partying); (3) healthy and potentially-risky place labels

for exercise and alcohol consumption ( place may have or involve alcohol such as night

club); (4) alcoholic beverage label to recognize alcoholic beverages; (5) drug label

to recognize drugs; (6) and tobacco label to label tobacco products. If the system

can not find polarized label (e.g., healthy food, healthy activity, and potentially-risky

place), it uses neutral labels (e.g., food, activity and place).

In addition to using ontology and modeling knowledge using the Web Ontology

Language (OWL) [MvH04], the system is augmented with WordNet [Mil95a]. Word-

Net is used, if a concept does not exist in the ontology.

The advantage of my ontology-based augmented approach is twofold. First, it does

not require to build and maintain extensive gazetteers because the system uses seman-

tic network structure based on WordNet. WordNet-based named entity recognition

has been implemented successfully for domain-independent NER by extracting trig-
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Figure 6.1: Behavioral Health Ontology

ger words from WordNet [MNPT02], and in video annotation applications based on

semantic similarity [QGF10]. Second, my system’s domain is easily modifiable which

makes it ontology-dependent but domain-independent. Therefore, I have adopted

a different approach based on an extendable ontology model augmented with the

WordNet. Although my NER can be only used for applications that are focused on

lifestyle change, it is possible to use the application in different domains by changing

the domain of the underlying ontology. In the next section I will discuss my ontology

design.

6.3 Ontology Design

I have designed my behavioral health ontology in Protégé [KFNM04] with OWL 2. A

small snapshot of my ontology is presented in Figure 6.1.There are 6 top level classes

which correspond to categories of named entities. In total there are 60 classes, 490

individuals, and 20 object properties in my current behavioral health ontology.
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Healthiness, unhealthiness and potentially-riskiness are defined to address most

prevalent risky health behaviors such as obesity, excessive alcohol consumption, drug

and tobacco use. For categorizing foods into the healthy and unhealthy categories, I

considered following aspects based on [WRL+12]’s approach :

• Sugar content of the food item.

• Fat content of the food item.

• Artificial additives and extensive industrial processing of the food item.

For example broccoli is an instance of the Vegetable class which is the subclass

of the Healthy Food class and chocolate is an instance of the snack class which is

subclass of the Unhealthy Food.

Activity and Place concepts are defined in terms of Healthy/Unhealthy Food, Al-

coholic Beverage, Tobacco and Drug concepts. I defined relationships between the

ontology concepts by using the object properties such as HaveOrInvolve and Taken-

PlaceAt (see Figure 6.1). As an example, a Potentially-risky Activity (e.g., drinking

alcoholic beverage, eating junk food, smoking) may have or involve Unhealthy Food

(e.g., fast food), Alcoholic Beverage (e.g., vodka) or tobacco products. I also de-

fined the object properties which allows to perform knowledge acquisition between

the Healthy/Potentially-risky activity and Place ontology classes. As an example

Potentially-Risky Activity assumed to be taken placed at a Potentially-Risky Place

(fast food restaurant). For a subset of the ontology structure which shows the rela-

tionships between ontology concepts (see Figure 6.1).

Individuals in the ontology structure represent instances of each class. For exam-

ple, grape is an individual of Fruit class and transitivity between class structures

implies that grape is also individual of Healthy Food class (fruit is a subclass of

healthy food). In addition to entities with common names, for some classes I include

proper names which are frequently used for some ontology classes. For example,
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Burger King is an individual of fast food restaurant class which is a subclass

of Potentially-Risky Place class because fast foods are generally classified as un-

healthy. The Alcoholic Beverage class also contains many instances which has

proper names (e.g. beer, vodka, whiskey brands).

I have also defined anonymous classes based on relationships between concepts

using object properties. Object properties such as ”haveOrInvolve” allow my sys-

tem to make some inferences, including inferences which are not directly indicated

based on the class hierarchy. For example ”having or involving alcoholic beverage”

is explicitly specified as Potentially-Risky Activity, if I query my ontology by using

OWL description logic (DL) query with ”drinking some Jack Daniels”, it can infer

that Jack Daniels is a whiskey, whiskey is a Spirit, spirit is an Alcoholic Beverage,

and using Alcoholic Beverage is a Potentially-Risky Activity. Although it is not re-

quired for NER task, for applications that require additional information about the

recognized entities, my ontology structure can be queried to retrieve taxonomic in-

formation about the entities. In the next section I will discuss WordNet which has a

semantic network structure and used to augment my ontology.

6.4 WordNet

WordNet is a lexical database of English [Mil95a]. All word groups including nouns are

grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.

Synsets are interconnected by conceptual-semantic and lexical relations. WordNet

can be used as a lexical ontology based on hypernym/hyponym relationships between

noun synsets. These relationship structure can be interpreted as super-class and

subclass relationship as in ontology classes.

WordNet Distance: Semantic distance, similarity, and semantic relatedness

are being used interchangeably by researchers and used in annotation, word sense
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disambiguation, information extraction, information retrieval, etc. Since, there are

different measures proposed for relatedness or distance [PPM04], it is important to

distinguish these terms.

Budanitsky and Hirst [BH06] distinguish semantic relatedness as a more gen-

eral concept of similarity. They attempt to demonstrate the difference between

relatedness and similarity by an example: ”Similar entities are semantically related

by virtue of their similarity (bank-trust-company), but dissimilar entities may also

be semantically related by lexical relationships such as meronymy (car-wheel) and

antonymy (hot-cold), or just by any kind of functional relationship or frequent as-

sociation (pencil-paper, penguin-Antarctica, rain-flood).” Therefore, similarity and

relatedness does not refer to the same concept.

The semantic distance term generates even more confusion in terms of related-

ness and similarity. Therefore, there are different approaches to calculate it. The

semantic distance I am referring to is the distance in hypernym/hyponym tree. As I

have mentioned before, WordNet can be interpreted as an ontology based on hyper-

nym/hyponym relations. Thus distance between two words in hypernym/hyponym

tree is more compatible with my goals for NER than relatedness or similarity concepts.

I used RiTa.WordNet1 library to calculate semantic distance. The algorithm cal-

culates the distance between any two senses of the two words (results is normalized

within 0-1) with the specified Part-Of-Speech(POS) tag. For my purposes I use noun

as POS tag. The algorithm (1) finds common parents of the two words, (2) calcu-

lates the minimum distance (shortest path) to the common parent from either of the

words, (3) calculates the distance from the common parent to root of tree, and (4)

normalizes the result (see Algorithm 2).

1http://www.rednoise.org/rita/wordnet
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Figure 6.2: The System Architecture

6.5 Architecture

The NER performs tasks to locate nouns in the sentences based on the output of

the Stanford Part-Of-Speech Tagger, then the identified nouns are lemmatized with

the lemmatizer available in Stanford CoreNLP tool [TKMS03a]. The identified and

lemmatized nouns are passed to the Tagger algorithm to be labeled into the fol-

lowing categories: (1) Healthy Food; (2) Unhealthy Food; (3) Healthy Activity; (4)

Potentially-risky Activity; (5) Healthy Place; (6) Potentially-risky Place; (7) Drug;

(8) Alcoholic Beverage; and (9) Tobacco. The system may use neutral labels from on-

tology for tagging, if the system can not identify polarized label for the named-entity

(e.g. instead of unhealthy food, food label can be used).

Tagger algorithm (1) queries classes in the ontology, if it finds a matching class,

it traverses the ontology to higher level classes to find a appropriate tag; (2) if the

lemma is not equal to the name of any classes, it queries individuals in the ontology

and finds the class of an individual (if the individual exists) and traverses the ontology

to find an appropriate label; (3) a) if the noun does not exist in the ontology, it uses

the distance algorithm (see Algorithm 2), the ranker component (see Figure 6.2)

compares the distance between each class and the parameter noun, and then the

tagger algorithm selects the class with the minimum distance to the noun; b) if the

selected class is a first level class (e.g. Alcoholic Beverage, Drug/Narcotic) and the

89



distance is less than the threshold distance, it tags the name with the corresponding

label; c) if the selected class is in lower position (e.g. Beer, Cannabis) in the hierarchy

and the distance is less than the threshold distance, it tags with the corresponding

tag.

The intuition behind using different distances for different level classes is as follows:

if the minimum distance of a parameter noun is calculated for a lower level class in the

ontology, it is expected that parameter noun is also a specific term, so the minimum

distance to their common parent in hypernym/hyponym tree is expected to be short.

For example, if the noun is margarita and the closest ontology class is martini, the

expected distance is short because martini is a low level class in ontology. If martini

did not existed in ontology and shortest distance to margarita is from alcohol class, the

expected distance is longer than the distance of specific class because alcohol class is a

high level class. For this specific example the distance between margarita and martini

is 0.1 and their common parent is cocktail in tree hierarchy. The distance between

margarita and alcohol is 0.3 where alcohol is the parent of margarita (common parent

is alcohol too). Therefore using different threshold values for different level classes in

the ontology helps to fine tune coverage of extension based on WordNet.

6.6 Data and Evaluation

Since there was no tagged data in behavioral health domain, I collected the test

data manually from a variety of related websites which have relevant domains. For

example, I have used meal recipe websites to find data related with the food domain.

I have collected 88 sentences with 220 named-entities. Two annotators tagged the

collected test data with the aforementioned labels. Then I performed two experiments

with my NER. The recognition of an entity without healthy, unhealthy or potentially-

risky label for the food, activity and place entities considered wrong. For example, if
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Algorithm 1 Tagger

if Is parameter noun(pn) a class in ontology then
Tag the noun with super class of corresponding class

else if Is pn individual in ontology then
1.Find class Of the individual
2.Find super class of individual’s class
Tag the pn with the super class

else
1.Compare minimum distance between noun and Ontology classes by using Dis-
tance algorithm (See Algorithm 2)
2.Select the class with shortest path to the noun
3.If Selected class is first level and distance is less than higher-threshold
return it as Tag
4.If selected class is not first level and distance is less than lower-threshold
return it as Tag
Otherwise do not tag

end if

an entity recognized as food without having healthy/unhealthy label, I did not count

it as a correct recognition. Since the alcoholic beverage, drug and tobacco ontology

classes are all considered as unhealthy or potentially-risky in terms of behavioral

health, the recognition of an entity in these categories does not need an additional

label.

The experiment results are presented in Table 6.1. The first experiment was

conducted using 0.2 as the distance threshold to the high level classes and 0.1 distance

threshold the low level classes in the ontology. Second experiment was conducted

using 0.3 as the distance threshold to the high level classes and 0.2 distance threshold

to the low level classes. The performance of the NER is measured with F β=1 rate:

F β =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ precision+ recall

with β=1 [Rij79]. Where, Precision is the percentage of the named entities which

are correctly recognized by the system and Recall is the percentage of the named

entities present in the test data that are recognized by the system. A recognized
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Distance Precision Recall F β=1

0.1 and 0.2 83.32% 71.28% 76.80%

0.2 and 0.3 65.55% 81.44% 72.64%

Table 6.1: Behavioral Named Entity Recognizer Evaluation Results

named entity is correct only if it is the exact match of the corresponding entity in

the manually tagged file. First, I conducted the experiment with the higher distance

threshold values, so, the precision was low because of the false positives (unexpected

results). The high number of false positive results were caused by the high threshold

distances in the WordNet tree. I encountered many problems due to the word-sense

ambiguity. For example ice and glass words were labeled as drug because ice and

glass as a slang refer to a kind of drug. I observed many similar problems to this

example in the first experiment.

Algorithm 2 Distance Algorithm

Locate the common parent of the two lemmas by checking each sense of each lemma

if No common parent found then
return 1

else
1.Calculate min distance to common parent (the shortest path from either lemma
to common parent)
2.Calculate distance from common parent to root (length of the path from com-
mon parent to the root of WordNet ontology)
3.Calculate and return the normalized distance to common parent as:
(minDistToCommonParent / (distFromCommonParentToRoot + minDistTo-
CommonParent))

end if

In the second experiment, the precision increased significantly while recall de-

creased. It was the result of the low threshold values for the distances. In this

experiment the number of false positives decreased significantly while false negatives

(missing results) increased. It was the result of the decreased coverage of the system
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due to the low distance threshold. I did not observe as many unexpected results as

in the first experiment because of the slangs but I observed an increase in unlabeled

named-entities.

Another factor which affects the results is the output of the part-of-speech tagger

and lemmatizer. Although they worked with high accuracy in general, for some cases

they did not give expected output.

Overall, although precision, recall and F-Measure results are not high, the results

are acceptable for the first version and promising for the future versions.

6.7 Discussion

I designed a named-entity (NE) recognizer for the lifestyle change domain. I ad-

dressed the differences between traditional NE recognition and the domain specific

NE recognition. To address my problem in recognizing lifestyle related entities in

text, I designed a behavioral health ontology. Based on my ontology model, I created

a named entity recognizer. Also, I identified other possible use-cases of my ontol-

ogy. To extend the ontology for the named-entity recognition purposes, I augmented

it with the WordNet. I used a hypernym/hyponym tree and calculated distances

between synsets.

I conducted two experiments with different distance threshold values and reported

the results. I observed that threshold distance has a significant effect on precision and

recall. While high threshold values increase the recognition rate, it causes unexpected

false positives because of wrong labels. I believe that I can address this issue by using

dynamic distance threshold for different ontology classes in future. Although resulting

precision, recall and F-Measure results are not high, they are acceptable for the first

version and promising for the future versions. In the future versions of my named-

entity recognizer, I will conduct experiments with the dynamic distance thresholds.
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Finally, the NER is available to use in most prevalent behavior related health

applications. It can enable to recognize domain-related named entities in user ut-

terances or any kind of text. In addition, making inferences is very important for

dialog systems, it enables to perform inferences based on recognized concepts and

relationships between concepts.
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CHAPTER 7

Lexical Resources & Semantic Networks

Discussing issues about at-risk behaviors such as heavy drinking are highly emo-

tional for people to talk about (e.g. shame, discouragement, anger, hopefulness, sat-

isfaction, pride). Empathy and positive regard toward the client are therefore critical

therapeutic conditions to create an atmosphere of safety and acceptance where clients

feel free to explore and change [MR09b]. The sentiment and emotion recognition is

first step of understanding conveyed emotion and act appropriately. To recognize

conveyed emotions and sentiments from user utterances I create lexical resources for

prior sentiment polarities and affective ratings of words. I also created general pro-

pose unified semantic network (USN) which is augmented with affective information

and ontologies. The sentiment and affective ratings lexicons are created by exploiting

expert knowledge stored in USN. I discuss details starting from next section.

7.1 Lexical Resources & Semantic Networks

Identifying innate or prior sentiments and affective ratings (i.e. valence, arousal, and

dominance) of words is a challenging task. It has been studied by a variety of research

groups in the last decade. In this section my approach relies on expert knowledge

to compute prior sentiment polarities and affective ratings of words. I unified ex-

isting lexical resources by using a graph-database. The connected nature of lexical

resources makes it possible to use linked data representations. Recent advancements

in graph database systems have demonstrated that it is possible to develop highly

scalable graphs. There is a substantial amount of work conducted in the development

of semantic networks and specific purpose lexical resources (e.g. sentiment or affect

lexicons) which contain explicit and accurate information. I am interested in leverag-

ing existing resources to derive new knowledge by exploiting the potential information
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based on connections between lexical resources. In conjunction with capabilities of

graph databases, relationships between distinct lexical resources provide a consider-

able potential for exploiting existing relational information by using graph queries and

graph-based inference algorithms. I built a new graph-based semantic network from

existing resources. I designed new inference algorithms that can exploit the potential

knowledge that exists between interconnected semantic networks. My particular in-

terest is sentiment and affect recognition. Unified Semantic Network (USN) contains

affective ontological information. I designed new graph traversal algorithms to infer

sentiments and affects that words convey. I evaluated the results against well-known

lexical resources for sentiments and affects. The results show that it is possible accu-

rately infer prior sentiments and affective ratings conveyed by words. Based on my

approach, I provide new highly-accurate lexicons for sentiments and affect ratings for

75,658 words, made available to the research community. In addition, USN can be

used for general purposes, such as inference about word similarity and relatedness, by

using some of the proposed algorithms or by creating new algorithms. I also provide

full access to USN for research purposes. USN is likely to have many implications, not

only in terms of development of new domain-specific lexicons by inference, but also in

discovering new information for words using the rich linked data representation that

brings together many lexicons and semantic networks.

7.2 Introduction

The development of semantic networks and lexicons is a very laborious process, usu-

ally takes years of intensive human effort. In the last half-century a substantial

number of resources developed which relies on expert knowledge [SDS66, Mil95b,

Osg57, BL99]. However, not much work has been conducted to link available seman-

tic networks and lexicons to derive highly accurate knowledge by exploiting potential
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semantic information in the connections between distinct resources to address a vari-

ety of needs, which is my current approach. Graph-databases are well positioned to

provide the required infrastructure, not only for link-data representation, but also for

information exploitation from multi-source data.

A high number of lexical databases, specific purpose word lists, and semantic

networks have been developed in the last decades. They can be linked by using graph-

databases which introduces new possibilities, not only for performing new inferences,

but also for discovering new insights that are induced by multiple sources. Some of

the current resources are just designed to address specific important problems such as

lexicons for sentiment polarities [WWH05, ES06, GGT13, HL04], or lexical resource

for affective knowledge [SV04, NPI09, BL99, WKB13], which are also my focus in this

paper. The main well-known limitation of the domain-dependent, manually-created

lexical resources is that, for words that do not exist in the lexicon, it is not possible

make any inference or estimation about relevant aspects [SV04, BL99, WWH05].

However, these contain accurate information that can be used as expert knowledge

or gold standard. The comprehensive domain dependent lexicons which are created

automatically usually contain noisy information [ES06, GGT13]. In construction of

the graph, I use manually-created lexicons for the sake of accuracy.

Some of the lexical resources such as FrameNet [BFL98] , WordNet [Mil95b], Gen-

eral Inquirer [SDS66], ProbBank [PGK05], and VerbNet [Sch05], target more general

and less constrained problems than specific purpose lexicons. Each general purpose

lexical resource aims at providing different insights about lexical entities. For exam-

ple, WordNet is indisputably the most popular lexical resource that concentrates on

providing ontological information such as hyponymy and hypernymy for words that

are grouped as synonym sets. While these aspects are very important for natural lan-

guage processing applications, they don’t provide domain-dependent insights. Since
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WordNet is a semantic network, it allows to perform inferences that are not directly

available in WordNet such as word similarity and relatedness [HSO98]. However, the

main shortcoming of WordNet is the sparsity of the connections between synonym

sets. That is also valid for other general purpose semantic networks [Sch05, BFL98].

I use WordNet [Mil95b] and General Inquirer [SDS66] as a backbone of my graph-

database, which enable to exploit multi-source information.

I have three direct contributions to the field. The first contribution is the creation

of unified expandable semantic network which connects multiple semantic networks

and lexical resources as a core graph and make possible multi-source information ex-

ploitation. My unified expandable semantic network is easily expandable and adapt-

able to new domains, and makes it possible to populate new lexicons from small lists.

I discuss it in Section 7.5. The second contribution is the creation of new sentiment

lexicon for prior polarities of words for all alphabetic entries in WordNet which con-

sist of 75,568 words (i.e. I excluded alphanumeric entries and phrases). The tests

show that my results are better than SentiWords [GGT13] which can be regarded

as state-of-the-art and most comprehensive lexicon for prior polarities of words that

is generated by using SentiWordNet [ES06]. Third I generated a new lexicon for

affective ratings of 75,568 words, which is one of the most comprehensive lexicon

generated so far for prior affective ratings of words. The currently available affective

rating lexicons are created manually by experts [BL99] or by crowd-sourcing methods

[WKB13]. The results show that my affective ratings have high correlation with the

expert knowledge or crowd-sourced lexicons.

In the remaining of this section, I discus related work, the structure of the graph,

my approach for generating sentiment and affective rating lexicons, and the evaluation

of the results.
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7.3 Background on Lexical Resources

The idea of unifying lexical resources is not new, it has been studied before by some

research groups. For example, Lei et al. [SM05] combined WordNet [Mil95b], VerbNet

[Sch05], and FrameNet [BFL98] to create richer knowledge-base for robust semantic

parsing. In another unified network called BabelNet, lexicographic and encyclopedic

knowledge from WordNet and Wikipedia were integrated [NP10]. UBY is defined as a

large-scale unified lexical-semantic resource by its creators [GEKH+12], that gathers

together 9 lexical resources in English and German and includes WordNet, Wikipedia,

Wikitionary, FrameNet, and VerbNet as English resources. The goal is usually enrich-

ing available data by using other resources, and it is not possible to exploit individual

connections between words and concepts. In my system, I provide the opportunity to

make multi-source inferences, rather than simply focus on enrichment for labeling the

words. In addition, I provide an environment which enables the use of an SQL-like

expressive graph query language called Cypher, and graph traversal algorithms (e.g.

shortest path). I use WordNet as a core of USN which is usually the core of all unified

resources. Therefore WordNet can be used an interface to integrate unified resources

to my semantic network such as [SM05, NP10, GEKH+12].

One of my main focus is exploiting prior sentiments of words. There are many

sentiment lexicons that have been built in the last decade [WWH05, ES06, GGT13,

HL04]. Some of them are manually created, and therefore they are not comprehen-

sive but accurate (e.g. MPQA [WWH05] and Bing Liu’s opinion lexicon [HL04]).

Some of them are automatically created, so that they are comprehensive, but they

contain noisy information [ES06, GGT13]. For example, SentiWords [GGT13] is au-

tomatically generated based on SentiWordNet [ES06] for prior polarities of words.

SentiWordNet [ES06] is generated by automatically annotating all WordNet synsets

according to their degrees of positivity, negativity, and neutrality, by using semi-
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supervised methods. General Inquirer (GI) [SDS66] is another lexical resource which

contains word lists for sentiments in addition to other purposes: it is accurate but

not comprehensive. Unified Semantic Network (USN) relies on MPQA [WWH05]

and General Inquirer [SDS66] for sentiment inferences. Sentiment lexicons are freely

available for research purposes but there are exceptions [PFB01]. My goal is creating

a free, comprehensive, and highly accurate lexicons that are generated automatically

based on other manually created lexicons.

I also aim at creating a comprehensive lexicon for affective ratings. Affective rat-

ings have three components: valence (the pleasantness of the stimulus), arousal (the

intensity of emotion provoked by the stimulus), and dominance (the degree of con-

trol exerted by the stimulus). So far, nearly all research has been conducted based

on Affective Norms of English Words (ANEW) [BL99] for 1,034 words. Warrinet et

al. [WKB13] has extended the database to 13,915 words by using crowd-sourcing.

Bestgen et. al. [BV12] has also used ANEW and extended the database to 17,350

words by using a corpus-based approach. While [BL99] and [WKB13] can be ac-

cepted as gold standards, Warriner et al. [WKB13] has low correlations with human

rated affects. General Inquirer (GI), which is integrated with USN, contains affec-

tive categories for valence, arousal and dominance, based on Osgood’s three semantic

dimensions [Osg57]. I use GI to populate affective ratings of words and, I use the

gold standards mentioned above for testing the results. In USN, I also include Word-

NetAffect [SV04] which is another resource that mostly contains ontological affective

information (rather than an extensive list of words).

The above lexicons are useful for a wide range of tasks, but they are fixed resources.

Building lexicons can have three benefits, 1)much larger lexicons can be developed

inferentially; 2) different dimensions of sentiment that might be pressing for specific

tasks can be captures; 3)it is possible to develop lexicons that are sensitive to the
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norms of specific domains. I can develop lexicons that are sensitive to the norms of

specific domains. Three most popular approaches are possible to create new lexicons,

simple WordNet propagation, weighted WordNet propagation, and semi-supervised

methods. In simple WordNet propagation, the algorithm starts with small number of

seed words, and then populates the list by using WordNet relations [AB06, GSS07].

In weighted WordNet propagation, the algorithm uses propagation, not only for the

senses of the original seed set, but also attaches scores to words, reflecting their

intensity [BGHM+08]. Supervised and semi-supervised approaches are also widely

used for lexicon creation [ES06, BV12]. My approach relies on exploitation of multi-

source lexical resources by using graph traversal algorithms, and the details of my

approach is described in Section 7.7.

7.4 Storing Semantic Data As A Graph

Graph databases offer several key advantages against alternative methods, such as

using relational databases, or semi structured text files and spreadsheets. They pro-

vide scheme-less and efficient storage for semi structured data. Semantic networks

can be seen as an arbitrarily connected set of points, so that they are semi-structured.

The relationships between concepts are beyond the capability of referential integrity

concept which is used in relational databases usually. The conceptual relationships

contain many irregularities and require that they be stored with rich relationships

among concepts. This makes it impossible to fit them in a scheme of a tabular struc-

ture. The possibility to express semantic concepts and their relations in a similar

way to how we visualize them when communicating the ideas, removes obstacles in

performing deep inferences easily, and also allows for their storage to be similar to

the way we think about them. Thus graph databases are regarded as white-board

friendly.
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Graph databases create new opportunities for the querying the semantic networks

which was not possible, or very hard to express, in prior storage methods. It is possible

to express queries as traversals in addition to SQL-like queries. Graph databases are

fast when it comes to query linked information: it is possible to perform fast deep

traversals instead of slow SQL queries that span many table joins. It is very natural

to express semantic networks related problems (e.g. distance between two synonym

sets) with traversals.

While we represent a semantic network visually, we naturally draw some nodes to

represent the words and edges to represent relations, which is basically a simple graph

database. The graph database paradigm provides increased expressiveness, scalabil-

ity, functionality to perform complex queries, and also enables to make inferences

using graph algorithms (e.g. Dijkstra, Shortest Path). The graph databases have

recently become very popular in the social networking area as they facilitate social

network analysis. The algorithms that are used in social networks are also usable in

semantic network analysis to perform inferences about words.

To increase the expressiveness of the semantic networks and perform multi-source

inferences, I created USN. The unified knowledge enables to ask interesting questions,

and to go beyond simple inferences by exploiting inter-network relations.

Graph databases are usually compared to RDF triples. While it is possible to

store RDF triples in graph databases and run SPARQL queries on them, it might

not be possible every time to transform graph databases to RDF triples. There are

some subtle, but important, differences which stem from graph morphisms. Graph

databases can store various types of graphs, including undirected or directed graphs,

weighted graphs, hyper-graphs whereas RDF triple can only store edge-labeled graphs.

Edge-labeled graphs provide the ability to denote the way in which two vertices are

related that is not sufficient to represent all relationships in a multi-source semantic
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network. The ability to naturally represent different graph morphisms enable to unify

multiple resources. For example, WordNet relations are directed, to represent General

Inquirer categories, hyper-graphs are needed which allow an edge to connect to an

arbitrary number of vertices. To represent affective ratings, I use weighted graph.

Therefore, my semantic network contains multiple types of graph together.

I created the graph database using Neo4j1 platform. Neo4j has a query language

called Cypher2. The database can be queried with a web-based interface and the

results can be visualized (an example showed in Figure 7.2). The language drivers

are available for most of the mainstream programming languages including, but not

limited to, Java, .NET Framework languages and Python.

Neo4j can scale to a few billions of nodes, relations and properties in a single

machine [HP13]. It is possible to expand the current database to multiples of its

current size, therefore there is room for expanding it for specific needs.

7.5 Core Structure of Unified Semantic Network

There has been a lot of work done in the creation of semantic networks and lexical

resources in the last decades. These resources help to develop many applications,

usually by requiring extra effort to adapt, or reuse, to build new lexical resources

according to the domain of the application. In this section I discuss my approach in

building the unified lexical resource from existing resources. The resource will lead to

development of new approaches based on semantic relations. USN has the flexibility

of being extended for new lexical requirements, as well as being queried with SQL-like

query language.

1http://www.neo4j.org/
2http://www.neo4j.org/learn/cypher
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Figure 7.1: Sample of Structure of the Graph

I started to build USN by using WordNet 3.1 [Mil95b]. I grouped the differ-

ent senses of each word by using word and part-of-speech tag pairs. I removed all

entries in WordNet which do not convey any semantic meaning such as numeric en-

tries (100st, 11), alpanumeric strings (e.g. 1-dodecanol, BLU-82) and phrases (e.g.

phase space, physical process). I included 91,984 distinct word and part-of-speech

tag pairs. I included all the WordNet ontological relationships (i.e. HYPERNYMY,

HYPONYMY, MERONYMY, and HOLONYMY ) with their original names as graph

edges. I augmented it by using General Inquirer [SDS66]. General Inquirer (GI) con-

tains 182 categories which are grouped under 26 groups. There are 81,988 relations

between words and General Inquirer categories, which are denoted by GIR (General

Inquirer Relation) type relations. For example, EMOT category contains emotion

related words, Pleasur category contains words that are indicating the enjoyment

of a feeling, including words indicating confidence, interest and commitment. Both
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Figure 7.2: A snapshot from query result visualizer which shows relations of word
Love in WordNet, General Inquirer and MPQA. Arrow labels shows the relation-
ship type. GIR is General Inquirer Relationship. SENTI is sentiment relationship.
HYPERNYMY is WordNet hypernym relationship.

EMOT and Pleasur are grouped under the parent category ”pleasure, pain, virtue” as

depicted in the Figure 7.1. The coverage of GI is not limited to affective knowledge. It

contains comprehensive categories, including but not limited to Osgood tree semantic

dimensions [Osg57] (e.g. strong-week, positive-negative, active-passive), motivation

related word categories (e.g. Need, Goal, Try, Persist), cognitive orientation word

categories (e.g. Think, Know, Perceive), among others..

Each word can fall under multiple categories which describe a word in terms of

multiple aspects. In total, GI contains 11,790 words. I grouped each word and part-

of-speech tag pair, as I did for WordNet. In the graph, I included approximately

10,191 word from GI. I created a category node in my graph for each GI category,
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and linked each word (which was previously acquired from WordNet) in that category

to the category node.

7.6 Affective Knowledge

The prevalent affective information in text-based communication started to gather a

lot of attention from natural language processing researchers. There is wide interest

to develop future human computer interaction applications which take into consid-

eration a user’s emotions [KPJD13], motivation, frustration [MKC10], attention and

engagement [CLH12, CHH12, PHA+10]. As it has been discussed, there has been a

substantial effort to create lexicons for affective knowledge [SV04, NPI09, WWH05,

ES06, HL04, GGT13, BL99, WKB13].

The domain of an application has an effect in determining what type of affec-

tive information is needed. For example, sentiment polarity information is relevant

for movie reviews [SPW+13a, PL08], whereas for e-learning systems, attention and

frustration information is more relevant [CGSG04a]. However, the lexicons created

up-to-date only take into account Ekman’s 6 basic emotions (i.e. happiness, sadness,

fear, anger, disgust and surprise) [Ekm92] that are usually very limited [SV04], or

affective ratings (i.e. valence, arousal or dominance) [BL99, WKB13] which are more

comprehensive but not enough, or sentiment polarity lexicons [WWH05].

The limitedness of the emotional labels used in categorical approaches (e.g. Ek-

man’s 6 basic emotions) usually fails to describe the complex range of emotions that

can occur in text-based communication. To address the limitations of distinct emotion

labels, the dimensional approach can be used to represent emotions [Rus79, Whi89].

Because this approach represents emotions using 2 or 3 dimensions (valence and

arousal, and sometimes the third dimension of dominance), it is also more compati-

ble with the dimensional meaning representation of words [Osg57]. The more recent
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emotion models also use multi-dimensional approaches, such as the Plutnick’s wheel of

emotions which consists of 8 basic emotions and 8 advanced emotions each composed

of 2 basic ones [Plu01].

Since the graph structure allows to represent each word in terms of multiple aspect,

it is possible to express the emotions that a word convey using multiple dimensions.

Therefore, I decided to incorporate Parrott’s tree structured list of emotions [Par01],

which is comprehensive hierarchical list of emotions. It contains multi-dimensional

emotional models as well as the basic emotion categories. To bridge the gap between

Parrot’s emotional tree structure and other models, I used affective ratings that are

available in general inquirer [Osg57]. I also integrated WordNet Affect [SV04] as a

lexical resource, which contains list of words for Ekman’s six basic emotions. The

new lexicons can be easily generated by the proposed algorithm in Section 7.7 for

fine-grained emotions of Parrot’s emotion model.

For sentiment polarities of words and subjectivity scores, I integrated MPQA

lexical resource [WWH05] which contains approximately 8,222 words. For sentiment

polarities of words, GI also provides a list.

Emoticons used for symbolic representation of a facial expression have become

standard way to convey feelings in text-based communication [Lo08, WD01]. Emoti-

cons are used frequently in recognition of sentiments and emotions from texts [GBH09,

KWM11, Rea05]. I linked emoticons from multiple sources that are popular, such as

Yahoo messenger, Skype and Facebook. I associated each emoticon with its polarity

and related emotions. The users of USN can query and find out semantic valence and

conveyed emotion using standard emoticons.

I also linked emotions that are specifically experienced during a learning experi-

ence. According to several studies ([BDRG10, CGSG04b, GDC+08, WK06]), there

are negative and positive prominent emotions experienced during problem solving,
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reasoning and comprehension of technical material. I incorporated engagement and

disengagement categories to the graph (see Figure 7.1), which is useful for applica-

tions in tutoring and e-learning domains [GD11, CGSG04a]. Disengagement is usually

related to the negative affect states of frustration, boredom, anxiety and confusion,

while engagement is usually linked to the positive states of delight, curiosity and

surprise. Most of these emotions are included in Parrott’s ontological tree structured

list of emotions [Par01]. I simply defined engagement and disengagement in terms

of other emotions. In addition, I used the categories (i.e. valence, cognitive orien-

tation, motivation first level categories) from GI to define learning related emotions.

Adding new concepts to graph database is most of the time as easy as reusing existing

knowledge to define new one.

7.7 Creating New Lexicons for Prior Sentiment Polarities &

Affective Ratings

As I described in previous sections, USN contains richly connected multi-source ac-

curate data. My hypothesis is that by exploiting the connections between the multi-

source data, I can generate highly accurate and comprehensive lists for variety of

purposes. My special focus area is sentiment and affective information. I designed an

algorithm called ”discounted shortest path” to exploit the information stored in the

graph.

As a background, I explained before the resources that I use in the graph. One of

them is WordNet that contains ontological relationships between the synsets. Other

one is General Inquirer which contains large number of categories including but not

limited to sentiment polarities and affective rating word lists. I also integrated MPQA

to the graph, it contains list of words for prior sentiment polarities. In the lowest
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Figure 7.3: An example from the graph

layer of the graph, there are word and part of speech tag pairs (i.e. word nodes) and

there are relationship between them, this structure is basically WordNet. On top of it,

there are connections to GI and MPQA categories. For example, I have 3 categories

(or nodes to represent categories), positive, negative, and neutral for MPQA. Each

category is connected to the words in WordNet level. For example, in MPQA there

are several thousands of words in positive category, for each of them I establish a link

between MPQA positive node and word-part-of-speech tag pair. In my algorithm I

exploit information from these 3 resources.

My algorithm briefly, receives a word and pos tag pair and calculates score of

positivity, negativity, and neutrality for prior sentiment polarities and calculates score

for valence, arousal, and dominance for affective ratings.

Discounted Shortest Path algorithm receives a word and returns a score which

represents discounted score for destination category. For example, if a word is in

MPQA positive category (e.g. vacation), it has a direct connection to positive MPQA
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node, the distance is one, the score is also one, there is no need to discount. However,

if there was no connection from queried word to destination, the system tries to find

shortest path to destination by traversing hypernym and hyponym links of WordNet,

and also to find categorical information, it uses Senti link to connect MPQA. The

discounting is performed only for WordNet links. For example, if the shortest path

is 4 which contains 3 WordNet links and 1 MPQA link, degree of discount factor

becomes 3. The intuition is, there are around 8000 words in MPQA which has score

1 for positivity, negativity, or neutrality. Hypernym and hyponym of these words are

not directly connected to MPQA sentiment categories, but connected via WordNet

links, for each WordNet link, I discount because the distance increases.

As an example in Figure 7.3, I demonstrate simple discounting for dominance score

calculation. GI Strong category is on of the Osgood’s three semantic dimensions

[Osg57] which contains words relating with dominance affective rating. The word

vision is not directly available in the category but multi-source structure of the lexicon

makes it possible to compute discounted score. In formula 7.1, γ is discount coefficient

and n is the number of WordNet links on shortest path to a target graph. For the case

of vision word, the target category is Strong GI category and number of WordNet

links on shortest path are two. For the affective ratings, I use 0.95 as discount

coefficient, for sentiment scores I used 0.90 as discount coefficient.

p = γn (7.1)

I execute discounted shortest path algorithm 4 times for positivity to find path to

MPQA Positive and GI Positive categories by traversing hypernym and hyponoym

relationships and I calculate the average. For negativity score, I do same but the

destination is MPQA Negative and GI Negative nodes. For neutrality score, I execute
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it two times for MPQA Neutral category by traversing hypernym and hyponoym links.

The reason is there is not a neutrality category in GI.

It is sometimes not possible to calculate the shortest path, because there might not

be a path from the word that I try to find sentiment for. In those cases, I calculate

top 10 conceptually similar words to the input word by using GI categories. The

conceptual similarity is calculated by finding the number of common GI categories,

two or more words belong to, and limiting to top 10 words which have highest number

of shared GI categories. For example, I calculated the top 10 conceptually most similar

words to “frustration”, I get following result ”frustrated, anguish, guilt, hurt, anxiety,

distress, upset, disturbed, disappointment, scared”. I perform this 2 times, in first

time I find set of 10 similar words to the input, in second turn, I find the set of 10

most similar word to each of the 10 words that I find in first turn. In addition, I

use synonyms from WordNet. Then I try to calculate discounted shortest path to

target category for each word and calculate the average. That gives us the score for

positivity, negativity, or neutrality and affective rating scores.

I compute prior polarity labels from positivity, negativity, and neutrality scores. I

use two formulas that are written below fm and fd. The formula fm computes absolute

value of twos scores, fd computes difference between them. Each formula yields

accurate result against different lexicons (see Section 7.8). These formulas are used

in SentiWords to calculate prior polarities from posterior polarities of SentiWordNet,

fm =


f(PositiveScore), f(PositiveScore) > f(NegativeScore)

−f(NegativeScore), otherwise.

fd = f(PositiveScore)− f(NegativeScore)
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7.8 Evaluation

I perform 2 evaluations to test accuracy of the designed algorithms. First to test

the generated sentiment lexicon against other automatically generated comprehen-

sive prior sentiment polarity lexicons. Second I performed tests for testing affective

ratings.

7.8.1 Prior Sentiment Polarities

I generated new sentiment lexicon based on the discounted shortest path algorithm

(see section 7.7). I evaluated prior polarities by comparing SentiWords which is

recently published lexicon derived from SentiWordNet. SentiWordNet contains pos-

terior polarities of words for each senses of the words, that is semi-automatically

created. SentiWords is very comprehensive, it contains prior sentiment polarity for

each word-part of speech tag pair. I conducted two tests using the fm and fd formulas

that are mentioned above. I get %63.8 correlation with SentiWords, when I use fm.

When I used fd, I get %85.5 correlation with SentiWords. While SentiWords is very

comprehensive it is not the gold standard, it is automatically generated from another

semi-automatically created lexicon. I used Bing Liu’s opinion lexicon (4685 negative

and 1978, total 6663 words) which is annotated by humans, that can be used as a

gold standard. I conducted two tests based fm and fd formulas. I get %72.4 for nega-

tives and %75.7 for positives accuracy with fd formula. I get %86.6 for negatives and

%86.0 for positives accuracy with fm formula. I also tested SentiWords against Bing

Liu’s opinion lexicon. Prior polarities in SentiWords matched %40.1 of the negatives

words, and %42.1 of the positive words.
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I generated 2 lexicons with fm and fd which are available online3. Since fm

performed better against gold standard, it contains more accurate prior polarities.

My sentiment lexicon contains 75658 which is basically all alphabetic word entries in

WordNet (lemma and pos combinations).

7.8.2 Affective Ratings

I evaluated the discounted shortest path based on Norms of valence, arousal, and

dominance for 13,915 English lemmas [WKB13]. In this lexicon, there are scores

between 1-10 for each affective rating category. The algorithm calculates scores but

not in same scale. I make discreet 2 categories for each affective rating, high and low.

I divided highest scores to 2, and scores below half of highest score are labeled as low

and scores above half of highest score are labeled as high. For the calculated scores,

0-0.5 is labeled as low, 0.5-1.0 is labeled as high. The test yields for valence %75.7,

for arousal %82.2, and for dominance %72.2 of the time same labels with the gold

standard. I generated a new lexicon which contains 75658 word part of speech tag

pairs. It is most comprehensive affect ratings lexicon that is created up-to-date. I

used categories (i.e. Osgood’s three semantic dimensions [Osg57]) available in General

Inquirer to generate this lexicon. The results are acceptable but I believe that if same

method will be used to generate lexicon in conjunction of gold-standard, it might yield

more accurate result. I did not do that because I want to test the system against the

gold standard. Finally, the affective ratings lexicon is available to use for research

purposes.

3usn.cis.fiu.edu
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7.9 Discussion and Implications of Unified Semantic Net-

work

I created a graph-based unified semantic network from multiple general purpose se-

mantic networks and lexicons. I augmented them with affective lexicons and semantic

networks. I demonstrated the potential of multi-source information exploitation by

testing the results against well-known lexicons. I created new comprehensive lexicons

for prior sentiment polarities and affective ratings. Affective ratings lexicon is the

most comprehensive one that is created to the best of my knowledge. Prior polari-

ties lexicon is also comprehensive and the results show that, it yields more reliable

prior sentiment polarities than currently available state-of-the-art lexicons. The both

lexicons that I created are available for research purposes. In addition, the graph

database will be fully available to use for research purposes. It can be accesses in the

following web page4.

4usn.cis.fiu.edu
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CHAPTER 8

Sentiment Analysis

Associating words with prior sentiment labels and affective ratings does not help

to fully understand conveyed affective information. To address that I developed a

sub-module that can enable to recognize posterior sentiments in short sentences such

as user utterances or news headlines. The sentiment recognizer takes into account in-

teractions between words by using compositional semantics. Together with behavioral

health named-entity recognizer (described in Chapter 6), lexical resources (described

in Chapter 7), and sentiment analysis module can provide complete solution for emo-

tion polarity recognition.

There has recently been growing interest in sentiment polarity (or valence) and

emotion sensing using a variety of signals. Text, as a communication channel, gathers

a substantial amount of interest for recognizing its underlying sentiment (valence

or polarity), affect or emotion (e.g. happy, sadness). I consider recognizing the

valence of a sentence as a prior task to emotion sensing. In this section, I discuss

my approach to classify sentences/user utterances in terms of emotional valence. The

supervised system performs syntactic and semantic analysis for feature extraction.

My system processes the interactions between words in sentences using dependency

parse trees, and it can identify the current polarity of named-entities based on on-

the-fly topic modeling. I compared the performance of three rule-based approaches

and two supervised approaches (i.e. Naive Bayes and Maximum Entropy). I trained

and tested the system using the SemEval-2007 affective text dataset, which contains

115



news headlines extracted from news websites. The results show that the systems that

I designed outperform the systems demonstrated in SemEval-2007.

8.1 Introduction

In the last decade, emotion and sentiment analysis research has become a highly

active field due to the increased necessity to recognize emotions, sentiments, opinions

or affects conveyed through text. The possible applications which might benefit from

recognizing affective information acquired from text, include but are not limited to

sentiment analysis for customer reviews [PL08], opinion mining [LZS09], reputation

management systems [YN05], affective and natural language user interfaces, such as

spoken dialogue systems [THSh+11, YALR13]. My system concentrates on sentence

level emotion polarity recognition (i.e. positive or negative), which I consider as a

prior task to emotion recognition.

I use SemEval-2007 Task 14 affective text dataset, to evaluate the system [SM07].

The dataset is composed of news headlines which were extracted from news web-

sites (e.g. Google News, CNN). Headlines typically contain several words and are

often written with the intention to provoke emotions to attract the attention from

the readers. These characteristics of headlines make them suitable to use in emotion

recognition and polarity classification tasks. The specific challenge is the small num-

ber of words available for the analysis. Although, there is a general intuition that all

words can potentially convey affective meaning [SVS06], the coverage of available lex-

ical resources [SV04, ES06, SDS66] falls short for annotating words in headlines. The

coverage limitation is actually expected for headlines because of the small number of

words. I choose headlines as a dataset because both user utterances in dialogues and

headlines are short, so the same difficulty is valid also for user utterances.
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The intuition is that the importance or effect of each word for the overall polarity

assessment is inversely proportional to the length of a headline. In other words, the

contribution of each word to the emotional polarity of a headline increases while

the number of words in a headline decreases. Based on this intuition, strictly using

the contribution of each word for polarity assessment in a headline is crucial. In the

lexical resources for affect or sentiment annotation, there are usually adjectives, verbs,

adverbs and common nouns which are useful for emotion or polarity recognition.

However, proper nouns (person, location and organization names) in headlines also

evoke emotions and positive or negative sentiments for readers. Therefore it has an

influence on the polarity of the whole sentence. Even proper nouns may dominate

the other sentiment-bearing words which are retrieved from the lexical resources. For

example (“Asia seeks breakthrough on North Korea”), there are two main sentiment

bearing entities, Asia and North Korea. If I omit these two proper nouns, it is very

likely that I will lose the opportunity to recognize the polarity of the sentence. In

addition, some of the words or proper nouns may have more influence than others

to overall sentiment polarity, in this case, North Korea dominates other sentiment

bearing words in the headline and it becomes the main influence on the polarity.

The sentiment conveyed by proper nouns evolves by time and current events (e.g.

natural or man-made disasters, economic developments, political developments). For

example, Japan usually evokes positive sentiments on people but if there is a recent

disaster, such as an earthquake or nuclear disaster, it evokes negative sentiments. The

proper nouns in sentences can be identified by any standard named entity recognizers

[FGM05] which can recognize location, person and organization entities. The real

difficulty is deciding the current sentiment polarity of the recognized named entities.

I addressed this problem in the system which is discussed in the Approach section.
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In sentiment polarity recognition, a sentence might contain positive or negative

polarity words, but a sentence does not necessarily have the same polarity as a whole.

To take into account the interactions between words instead of handling the words in-

dependently, I applied dependency parsing and some linguistics rules, such as polarity

reversal.

8.2 Related Work

Sentiment analysis has gathered the attention of many research groups from variety of

areas, such as affective computing, linguistics and psychology. There is a substantial

amount of work done using different approaches, that can be categorized in 2 main

categories (i.e. rule-based and statistical approaches). Ruled-based systems usually

try to apply linguistic compositionality rules [NPI11] and create highly comprehensive

lexicons (i.e. in conjunction with possible compositionality rules) [NPI09] to perform

sentiment analysis on text at sentence and phrase level. Machine learning approaches

are also frequently applied to the sentiment analysis problem, such as linguistically

inspired deep neural networks [SPW+13b], graphical models [NIK10] and classical

supervised learning techniques [ARS05]. In addition, micro-blogging websites also get

the attention of researchers for sentiment analysis [PP10, KWM11]. In these studies,

emoticons, as a different modality, are used for sentiment polarity recognition. In this

project, I discuss and compare my model to the systems presented at SemEval-2007,

where the same corpus of news headlines was used. The main emphasis is on affect

of named-entities and prevalent compositionality in headlines.

Five teams participated to SemEval-2007 Task-14: Affective Text, with five sys-

tems for valence classification and three systems for emotion labeling. The CLAC sys-

tem used a knowledge-based, domain-independent, unsupervised approach [AB07]. It

uses 3 knowledge sources, a list of sentiment-bearing words, a list of polarity reversal
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words, and a set of rules that define the results of combination of sentiment-bearing

words with polarity reversal words. The CLAC-NB system uses a Naive Bayes classi-

fier without feature extraction to assess the performance of this basic machine learning

technique [AB07]. The UPAR7 system [Cha07] used a rule-based approach, where a

list of words for high tech acronyms, celebrities was used in addition to SentiWordNet

[ES06] and WordNetAffect [SV04] lexical resources. The SICS used a valence anno-

tation approach based on a word-space model and set of seed words which is based

on the idea of creating two points in a high-dimensional word space, one representing

positive valence, the other representing negative valence, and projecting each headline

into this space [SKE07]. The SWAT system used a supervised methodology by imple-

menting an uni-gram model trained to annotate. Moreover, they added an additional

set of 1000 headlines for training [KSW07]. Therefore, the demonstrated systems in

SemEval-2007 [SM07], did not consider the contribution of sentiment-bearing named-

entities. Since the news headlines very commonly contain proper nouns, there is a

good chance to improve the reported results, if the proper names are used in sentiment

polarity determination.

8.3 Approach

I used five different approaches for classification after performing the feature extrac-

tion. I am using the Stanford dependency parser [DMMM+06], the part-of-speech

tagger [TKMS03b] and the named-entity recognizer [FGM05] as software packages

for feature extraction. I use MPQA Opinion Corpus [WWH05] and General Inquirer

[SDS66] as lexical resources to identify sentiment orientation of words. To process

the interaction between words, the system uses dependency parsing. The named-

entity recognizer is used to recognize locations, organizations (e.g. company names,

acronyms) and person names. Then, the syntactic parser is used for word-level anal-
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Figure 8.1: System Architecture

ysis. The flow of information among the components of the system is depicted in

Figure 8.1.

8.3.1 Named-Entities and Topic Modeling

I observed that most of the news headlines (82% of SemEval DataSet) contain named-

entities which influence the overall sentiment polarity of each headline. Therefore,

I needed to consider the influence of a named-entity to the overall polarity for an

accurate sentiment classification. I am using the Stanford named-entity recognizer

to find locations (e.g. Middle East, Gaza), organization names (e.g. Apple, Google,

European Union) and person names (e.g. Obama, Madonna), all of which are named-

entities. However, the real difficulty is, there is no lexical resource to annotate identi-

fied named-entities with the polarity information. To address this problem of finding

the sentiment valence for named entities, I performed topic modeling on web news

resources (i.e. Google News, CNN). As it is depicted in Figure 8.1, with each identi-
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fied named-entity, the system searches on the web to find news articles and gathers

top 30 most relevant news articles to the searched named-entity. Then the system

performs topic modeling on the news articles retrieved from the web.

Topic modeling provides a simple way to analyze large volumes of unlabeled text.

A ”topic” consists of a cluster of words that frequently occur together. Using con-

textual clues, topic models can connect words with similar meanings and distinguish

between uses of words with multiple meanings. I used the Mallet1 library for topic

modeling.

A topic model with a cluster of 30 words derived from 30 news articles was re-

trieved from the web. In other words, I represented the recognized named-entity with

30 words to decide the polarity of the named-entity. The cluster of words was tagged

using the sentiment polarity lexical resources. The topic model polarity decider com-

ponent selects the aggregated overall polarity of a topic which actually represents the

recognized named-entity. I am using a simple algorithm to decide the overall polarity.

If the polarity of a word is positive, it adds 1. If it is negative it subtracts 1, if it is

neutral, it does nothing. If the aggregated polarity is greater than 0, the polarity of

named-entity is positive. If it is less than 0, the polarity of named-entity is negative.

For example, in Figure 8.2, Gaza (city name) is identified as a named-entity. Since

it is a proper noun, it does not exist in any of the lexical resources. The system would

search the web to retrieve 30 news articles about Gaza and perform topic modeling

on them to obtain the related word set. The topic modeling component identified

”Israel, air strike, attack, bomb, war, Hamas, terror, refugee, crisis, rocket” as top 10

words. As previously stated, the system searches for 30 words, all of which are then

annotated using the lexical resources. Afterwards, the polarity score for the Gaza

named-entity is automatically determined as negative using the previous algorithm.

1http://mallet.cs.umass.edu/
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Figure 8.2: Dependencies

8.3.2 Features and Interactions Between Words

The polarity of a whole sentence can not be calculated without considering interac-

tions between words, as it can be seen in Figure 8.2 for the sentence ”Kidnapped AP

photographer freed in Gaza”. There are two negative words (kidnapped, Gaza) and

one positive polarity reversal word (freed). If the text is analyzed without considering

interactions between words and dependencies, it is very likely that the results might

end up with a negative classification. However, as it can be seen in Figure 8.2, even

though sub-trees bears negative sentiment, the word ”freed” reverses the polarity of

the whole sentence.

The system uses two types of features, node features and edge features. Node

features represent each node in dependency tree, and edge features represent the

interactions between words. Node features include the prior polarity of a word which

can be obtained from the lexical resources, polarity reversal, resulting polarity and

pos-tag. Edge features represent interaction between sub-trees. For example, in

Figure 8.2, kidnapped is negative, AP is neutral which is an organization name,
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Node Features
a ti
b ti&mi

c ti&mi&ri
d ti&si
e ti&ci
f ti&fi

Table 8.1: Node Features

photographer is neutral, the negative polarity of kidnapped propagates to the sub-

tree where photogtapher is the root. The system not only uses the tree structure for

word interactions, but also uses dependencies. For this case, the first dependency,

directly shows the relationship between the words photographer and kidnapped. For

the entity Gaza, my system uses topic modeling, explained in the Named-Entities

and Topic Modeling section that yielded a negative polarity. However, the word freed

reverses the meaning of the whole sentence.

The polarity reversal feature of a node riε{0, 1}, represents whether or not it

reverses the polarity of other words. A polarity reversal word list was prepared so

that the property ri in identified words it is set to 1 otherwise it is 0. The described

list was constructed from General Inquirer in the same methodology used in [CC08]. I

collected words which belong to either NOTLW or DECREAS categories from General

Inquirer (the dictionary contains 121 polarity reversing words). [CC08] categorized

polarity reversal words into two distinct categories: function-word negators, such as

not, and content-word negators, such as eliminate. The polarity reversal of a phrase

handles only content-word negators, and function-word negators are handled based

on the result of Stanford dependency parser which gives the negation (neg) relation

directly.

In Table 8.1 and Table 8.2, I show the features I used in this project. Features

(a)-(f) in Table 8.1 represents node features for the i -th word, which is a node in the
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Dependency Features
A tg&td
B tg&td&rd
C tg&td&rd&md

D tg&td&cg&cd&R

Table 8.2: Dependency Features

dependency tree. In Table 8.1, ti denotes polarity of a node, mi denotes prior polarity

of a node. Prior polarity of a node miε{+1, 0,−1} is the innate sentiment of a word

obtained from the polarity lexical resources. As described before ri represents polar-

ity reversal word, si denotes surface form, ci denotes coarse-grained part-of-speech

(POS) tag, fi denotes fine-grained POS tag. Features (A)-(D) in Table 8.2 represents

dependency features for each dependency governor (head) and its dependent. In Ta-

ble 8.2, tg denotes polarity of governor, td denotes polarity of dependent, rd polarity

reversal word for dependent, md denotes prior polarity as in node features table, cg

denotes coarse-grained pos tag for governor, cd denotes coarse-grained polarity tag

for dependent and R denotes the dependency relationship type (e.g. negation).

After feature extraction including named-entities and interactions between words,

I used rule-based and supervised systems to decide the polarity label of a sentence

and compare the results.

8.4 Experiments

I conducted the experiments of sentiment classification in SemEval 2007 Affective

text news headline corpora.
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8.4.1 Data

The dataset consisted of news headlines from major news resources such as New York

Times, CNN, and BBC News. The headlines are collected for two main reasons.

First, the high load of emotional content, as they describe major national or world-

wide events and are written in a style meant to attract the attention of the readers.

Second, the structure of headlines was appropriate to make sentence-level annotations

of emotions. Two different annotated datasets were made available: one is a devel-

opment dataset consisting of 250 headlines, and the other with 1,000 headlines. For

the experiments I only use valence (positive/negative annotation). The interval for

the valence annotations was set to [-100, 100], where 0 represents a neutral headline,

-100 represents a highly negative headline, and 100 corresponds to a highly positive

headline. Even though, annotations are fine-grained, I used coarse-grained annota-

tions with positive [50, 100], negative [-100, -50] and neutral (-50, 50). Moreover, I

used 750 headlines for training and 500 headlines for testing.

It was reported that the test dataset was independently labeled by six annotators,

who were instructed to select the appropriate emotions for each headline based on

the presence of words or phrases with emotional content, as well as the sentiment

polarity invoked by the headline. The agreement evaluations were conducted using

the Pearson correlation measure, with an inter-annotator agreement of 78.01.

8.4.2 Compared Methods

I compared five methods with a different set of features, 3 rule-based methods as used

in [NIK10] without using major polarity in training data and 2 supervised classifica-

tion methods (Naive Bayes and Maximum Entropy) described below. Ai denotes the

set of all the ancestor nodes of i-th word in the dependency tree, and val(x) is defined

as:
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val(x) =


+1, (x > 1),

−1, (x < 0),

0 (x = 0).

Voting without Polarity Reversal

The polarity of the headline is decided by voting of each node’s prior/innate polarity

which also includes polarity of each named-entity which is obtained through topic

modeling.

p = val(
n∑
i=1

mi) (8.1)

Voting with Polarity Reversal

Similar to Voting without polarity reversal, except that the polarities of phrases which

have odd numbers of reversal phrases in their ancestors are reversed before voting.

p = val(
n∑
i=1

mi

∏
jεAi

(−1)rj) (8.2)

Rule

The sentiment polarity of a headline is deterministically decided based on rules, by

considering the polarities of sub-trees. The polarity of the sub-tree whose ancestor

is the i-th word is decided by voting the prior polarity of the i-th word and the

polarities of the sub-trees whose ancestor nodes are the modifiers of the i-th word.

The polarities of the modifiers are reversed if their governor phrase had a reversal

word. The decision rule is applied from bottom to top, the polarity of root node is

decided at last.
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Method Acc. Prec. Rec. F1
Voting w/o PR 0.6613 0.4916 0.5378 0.5103
Voting w/ PR 0.6253 0.4553 0.5191 0.4851
Rule 0.644 0.4855 0.6195 0.5394
Näıve Bayes 0.6606 0.4921 0.6461 0.5564
Maximum Entropy 0.7673 0.5849 0.7411 0.6518

Table 8.3: Experiment Results for Sentiment Analysis

p = val(mi +
∑
j:hj=i

ti(−1)ri) (8.3)

Supervised Classification

I have used the Naive Bayes and Maximum Entropy methods for classification using

the Mallet machine learning package. It is important to note that I used 750 news

headlines as a training data and 500 as testing data.

8.4.3 Experiment Results

I have conducted the experiments using five different approaches. The results are

presented in Table 8.3. The table columns from left to right shows, method used

to decide polarity of a headline, accuracy, precision, recall and F1 measure. The

performance of each method is measured with accuracy and Fβ rate as shown in

Equation 4 [Rij79].

Fβ =
(β2 + 1) ∗ precision ∗ recall
β2 ∗ precision+ recall

(8.4)

The performance of the rule-based approaches is close to each other, the Naive

Bayes approach performed slightly better than the rule-based approaches. The Max-

imum Entropy classifier achieved better results compared to the other 4 methods.
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When I compare the results with the accuracy of the systems presented in SemEval-

2007 Affective Text task [SM07], my methodology outperformed the demonstrated

systems. The highest reported accuracy and F1 score in SemEval are 0.5510 and

0.4243 respectively. My best performing system’s (i.e. maximum-entropy classifier)

accuracy and F1 score are 0.7673 and 0.6518 (see Table 8.3) respectively. I believe

that the main factor in improvement is taking into account the polarity information

of the named-entities by performing topic modeling on news articles. It is easily ob-

servable that in news headlines there are many proper names and named entities,

and the number of the words in each headline is little. If a system does not use

sentiment polarity information for a named-entity, it skips important information for

overall polarity of a headline. As I discuss in the Named-Entities and Topic Mod-

eling Section, upon running the Stanford named-entity recognizer on the trial data

provided in SemEval-2007, I find that 82% percent of the headlines contain at least

one named-entity.

8.5 Discussion

In this section, I discussed my approach and experiments to perform sentiment po-

larity classification on the SemEval-2007 Affective Text data. The system uses some

of the available sentiment polarity lexical resources and polarity reversal words for

feature extraction. Also I performed topic modeling to decide sentiment polarity of

each named-entity. The results show that the consideration of named-entities has a

positive effect on sentiment polarity classification. My approaches outperformed the

systems presented in SemEval-2007. Although I did not test it, I believe that the sys-

tem can be used in other domains for sentence level sentiment polarity classification.

As a future research, it is possible test the system on different domains, such as user

utterances (if any data becomes available) and movies reviews datasets.
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CHAPTER 9

Conclusions

This chapter describes summary of my contributions and possible future research

directions.

9.1 Summary

In this dissertation, I mainly focused on delivery of brief health interventions via

multimodal spoken dialogue systems. In the health dialogue systems area, the main-

stream dialogue management mechanism is using rule-based approaches. On the

other hand, in spoken dialogue systems area, dialogue management mechanisms are

based on reinforcement learning. The domain of the problems is usually tourist in-

formation domain in RL-based systems. My contribution has impact to two areas

dialog systems and health dialogue. First, I applied fist time RL-based techniques

to real-world health dialogue. Second I used recent methods that are used in SDS

community and avoid mainstream dialogue management approaches that are used in

the health domain.

I developed tools to reason, recognize concepts, annotate emotional ratings of

words, and analyze sentiments. For the dialogue system, I developed a system to

recognize of named entities related with the unhealthy behaviors, it has a crucial

importance in language understanding. Recognizing named-entities gives possibility

to integrate domain related knowledge to discourse. I designed an ontology that

enables to reason about behavioral health concepts.

Discussing issues about health behaviors such as heavy drinking are highly emo-

tional for people to talk about (e.g. shame, discouragement, anger, hopefulness, sat-

isfaction, pride). To enable recognizing sentiments and emotions conveyed through

user utterances, I developed lexical resources and a sentiment analysis tool which can
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recognize sentiments from a small number of words. As a semantic resource, I created

two lexicons and one semantic network. Although these resources can be used in the

domain of my research, they can be used as general purposes. I created one lexicon for

prior affective ratings (valence, dominance and arousal) of words, which is most com-

prehensive resource for affective ratings up-to-date. I also created a lexicon for prior

sentiment polarities. Both lexicons are generated by using unified semantic network

that I created by using existing resources that enable to exploit expert knowledge.

I evaluated all resources that I developed against state-of-the-art resources. They

yielded significantly better performance.

9.2 Future Directions

The spoken dialogue system can be extended in several directions. In terms of dia-

logue management, the approach can be tested with different health screening and

assessment interviews. Development of a user simulator can be very useful to auto-

mate testing. From the corpus that I collected for language modelling, it is possible

to create virtual patients. Virtual patients can be used to simulate users. This can

provide an advantage in system optimizations. Virtual Patients can also be used to

train people for brief intervention delivery skills [LPTK09, KPG+07, SHJ+06]. In

addition, dialogue act level simulators can be created from the dialogue corpus that

is collected from real interactions. This corpus contains automatic speech recogni-

tion output, system dialog action, semantic value of recognition and reward signal for

each dialogue turn. User simulations are important for automatic dialogue strategy

learning and the evaluation of dialogue strategies. There are variety of different user

simulation methods and it is an active research area [ELP97, GHL05, SWSY06]. This

dialog corpus can be used to create simulated users. If statistics becomes available

for each question system ask (alcohol related facts), the system might have a better
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observation model. For example, if the system has data about relationship between

excessive alcohol use and abuse indicators (i. e. drinking related accidents, injury or

relationship problems), the system might have observation model based on statistics.

It might help to track dialogue state more accurately.

Since the system has an embodied conversational agent interface, emotion recogni-

tion based on modalities other than text can improve the interaction. Currently, the

non-verbal communication only depends on facial expressions, body gestures can im-

prove it. In addition, the system can benefit from having social dialogue mechanism

that aims to establish working alliance and rapport with a user.

I believe that there is still room for improvement for the named-entity recognizer

that I developed. The ontology can be expanded, and more conceptual relationships

might be created. In the named-entity recognizer, I used WordNet [Mil95c] as a

semantic network. USN might be used instead of WordNet because it contains multi-

source information in addition to WordNet ontologies. It is possible to extract multi-

source information from USN by using graph algorithms as we demonstrated. I believe

that potential of multi-source information can be used, if behavioral health ontology

can be imported to USN. In addition, to expand the underlying ontology, ontology

extraction/learning tools can be used such as OntoLT [BS04].

Sentiment analysis module, USN, named-entity recognizer, and behavioral health

ontology can be together used to perform emotion and sentiment recognitions. I de-

veloped each system/resource separately, and they are tested separately. I believe

together they provide required framework for sentiment and emotion recognition.

The connection can be done in following way, sentiment analyzer needs to use on

sentiment polarity lexicons and named-entities. Behavioral named-entity recognizer

(B-NER) can find named-entities in user utterances, topic modeler module in senti-

ment analyzer can find sentiment polarity of a named-entity that is found by B-NER.
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In addition, as a more comprehensive lexicon than MPQA, automatically generated

prior sentiment polarity lexicon (described in Chapter 7) can be used. It is possible to

compute affective ratings of named-entities by using affective-ratings lexicon. Since

the affective ratings lexicon is very comprehensive, it is possible to compute affective

ratings of sentences by modifying lexicons that relies on sentiment recognizer.
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Whos there? Can a Virtual Agent Really Elicit Social Presence?

[PKKM12] Alexandros Papangelis, Nikolaos Kouroupas, Vangelis Karkaletsis, and
Fillia Makedon. An adaptive dialogue system with online dialogue
policy learning. In Proceedings of the 7th Hellenic conference on Arti-
ficial Intelligence: theories and applications, SETN’12, pages 323–330,
Berlin, Heidelberg, 2012. Springer-Verlag.

[PL08] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foun-
dations and trends in information retrieval, 2(1-2):1–135, 2008.

[PLL+10] Ghislain Putois, France Lannion, Romain Laroche, France Issy-les
Moulineaux, and Philippe Bretier. Enhanced monitoring tools and on-
line dialogue optimisation merged into a new spoken dialogue system
design experience. In Proceedings of the SIGDIAL 2010 Conference,
pages 185–192, 2010.

[Plu01] Robert Plutchik. The Nature of Emotions. American Scientist,
89(4):344+, 2001.

[PP08] Tim Paek and Roberto Pieraccini. Automating spoken dialogue man-
agement design using machine learning: An industry perspective.
Speech communication, 50(8):716–729, 2008.

[PP10] Alexander Pak and Patrick Paroubek. Twitter as a corpus for sentiment
analysis and opinion mining. In LREC, 2010.

[PPM04] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Word-
net::similarity: measuring the relatedness of concepts. In Demonstra-
tion Papers at HLT-NAACL 2004, HLT-NAACL–Demonstrations ’04,
pages 38–41, Stroudsburg, PA, USA, 2004. Association for Computa-
tional Linguistics.

148



[PSSJC08] David B Portnoy, Lori a J Scott-Sheldon, Blair T Johnson, and
Michael P Carey. Computer-delivered interventions for health pro-
motion and behavioral risk reduction: a meta-analysis of 75 random-
ized controlled trials, 1988-2007. Preventive medicine, 47(1):3–16, July
2008.

[QGF10] Yu Qiu, Genliang Guan, and Dagan Feng. Improving News Video
Annotation with Semantic Context. 2010 International Conference on
Digital Image Computing: Techniques and Applications, pages 214–219,
December 2010.

[Rea05] Jonathon Read. Using emoticons to reduce dependency in machine
learning techniques for sentiment classification. In Proceedings of the
ACL Student Research Workshop, pages 43–48. Association for Com-
putational Linguistics, 2005.

[Rij79] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 2nd edition, 1979.

[RKLL11a] Verena Rieser, Simon Keizer, Xingkun Liu, and Oliver Lemon. Adap-
tive information presentation for spoken dialogue systems: Evaluation
with human subjects. In Proceedings of the 13th European Workshop
on Natural Language Generation (ENLG), 2011.

[RKLL11b] Verena Rieser, Simon Keizer, Xingkun Liu, and Oliver Lemon. Adap-
tive information presentation for spoken dialogue systems: evaluation
with human subjects. In Proceedings of the 13th European Workshop on
Natural Language Generation, ENLG ’11, pages 102–109, Stroudsburg,
PA, USA, 2011. Association for Computational Linguistics.

[RL11] Verena Rieser and Oliver Lemon. Reinforcement Learning for Adaptive
Dialogue Systems. 2011.

[RLL10] Verena Rieser, Oliver Lemon, and Xingkun Liu. Optimising information
presentation for spoken dialogue systems. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, ACL
’10, pages 1009–1018, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[RN96] B. Reeves and C Nass. The Media Equation: How People Treat Com-
puters, Television, and New Media Like Real People and Places. Uni-
versity of Chicago Press, New York, NY, 1996.

149



[RSB+11] Heleen Riper, Viola Spek, Brigitte Boon, Barbara Conijn, Jeannet
Kramer, Katherina Martin-Abello, and Filip Smit. Effectiveness of
e-self-help interventions for curbing adult problem drinking: A meta-
analysis. J Med Internet Res, 13(2):e42, Jun 2011.

[RSL01] Charles Rich, Ace L. Sidner, and Neal Lesh. Collagen: Applying collab-
orative discourse theory to human-computer interaction. AI Magazine,
22:15–25, 2001.

[Rus79] James A Russell. Affective space is bipolar. Journal of personality and
social psychology, 37(3):345, 1979.

[SB98] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction, volume 1. Cambridge Univ Press, 1998.

[SBS11a] Daniel Schulman, Timothy Bickmore, and C.L. Sidner. An Intelli-
gent Conversational Agent for Promoting Long-term Health Behavior
Change using Motivational Interviewing. In 2011 AAAI Spring Sym-
posium Series, pages 61–64, 2011.

[SBS11b] Daniel Schulman, Timothy W. Bickmore, and Candace L Sidner. An
Intelligent Conversational Agent for Promoting Long-Term Health Be-
havior Change using Motivational Interviewing. In Association for the
Advancement of Artificial Intelligence (AAAI) Spring Symposium Se-
ries, pages 61–64. Association for the Advancement of Artificial Intel-
ligence (www.aaai.org), 2011.

[SCDV+98] S. Sutton, R. Cole, J. De Villiers, J. Schalkwyk, P. Vermeulen, M. Ma-
con, Y. Yan, E. Kaiser, B. Rundle, K. Shobaki, et al. Universal speech
tools: The cslu toolkit. In Proceedings of the International Conference
on Spoken Language Processing (ICSLP), pages 3221–3224. Sydney,
Australia., 1998.

[Sch05] Karin Kipper Schuler. Verbnet: A broad-coverage, comprehensive verb
lexicon. 2005.

[SDS66] Philip J Stone, Dexter C Dunphy, and Marshall S Smith. The general
inquirer: A computer approach to content analysis. 1966.

[SFMB07] Horacio Saggion, Adam Funk, Diana Maynard, and Kalina Bontcheva.
Ontology-based information extraction for business intelligence. In Pro-
ceedings of the 6th international The semantic web and 2nd Asian con-

150



ference on Asian semantic web conference, ISWC’07/ASWC’07, pages
843–856, Berlin, Heidelberg, 2007. Springer-Verlag.

[SGY05] Jost Schatzmann, Kallirroi Georgila, and Steve Young. Quantitative
evaluation of user simulation techniques for spoken dialogue systems.
In 6th SIGdial Workshop on DISCOURSE and DIALOGUE, 2005.

[SHJ+06] Amy Stevens, Jonathan Hernandez, Kyle Johnsen, Robert Dickerson,
Andrew Raij, Cyrus Harrison, Meredith DiPietro, Bryan Allen, Richard
Ferdig, Sebastian Foti, et al. The use of virtual patients to teach med-
ical students history taking and communication skills. The American
Journal of Surgery, 191(6):806–811, 2006.

[SKE07] Magnus Sahlgren, Jussi Karlgren, and Gunnar Eriksson. Sics: Va-
lence annotation based on seeds in word space. In Proceedings of the
Fourth International Workshop on Semantic Evaluations (SemEval-
2007), pages 296–299, Prague, Czech Republic, June 2007. Association
for Computational Linguistics.

[SKL+00] Satinder Singh, Michael Kearns, Diane J Litman, Marilyn A Walker,
et al. Empirical evaluation of a reinforcement learning spoken dialogue
system. In AAAI/IAAI, pages 645–651, 2000.

[SLKW02] Satinder Singh, Diane Litman, Michael Kearns, and Marilyn Walker.
Optimizing dialogue management with reinforcement learning: Experi-
ments with the njfun system. Journal of Artificial Intelligence Research,
16:105–133, 2002.

[SM05] Lei Shi and Rada Mihalcea. Putting pieces together: Combining
framenet, verbnet and wordnet for robust semantic parsing. In Com-
putational Linguistics and Intelligent Text Processing, pages 100–111.
Springer, 2005.

[SM07] Carlo Strapparava and Rada Mihalcea. Semeval-2007 task 14: Affective
text. In Proceedings of the 4th International Workshop on Semantic
Evaluations, pages 70–74. Association for Computational Linguistics,
2007.

[SPF+07] Richard Saitz, Tibor P Palfai, Naomi Freedner, Michael R Winter,
Alexandra Macdonald, John Lu, AL Ozonoff, David L Rosenbloom,
and William Dejong. Screening and brief intervention online for college
students: the ihealth study. Alcohol and Alcoholism, 42(1):28–36, 2007.

151



[SPW+13a] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christo-
pher D Manning, Andrew Y Ng, and Christopher Potts. Recursive
deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1631–1642, 2013.

[SPW+13b] Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christo-
pher D Manning, Andrew Y Ng, and Christopher Potts. Recursive
deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1631–1642, 2013.

[SRC+05] Karen L Steinberg, Roger A Roffman, Kathleen M Carroll, Bonnie
McRee, TF Babor, M Miller, R Kadden, D Duresky, and R Stephens.
Brief counseling for marijuana dependence: a manual for treating
adults. Center for Substance Abuse Treatment, Substance Abuse and
Mental Health Services Administration Rockville, MD, 2005.

[STA+10] William Swartout, David Traum, Ron Artstein, Dan Noren, Paul De-
bevec, Kerry Bronnenkant, Josh Williams, Anton Leuski, Shrikanth
Narayanan, Diane Piepol, et al. Ada and grace: Toward realistic and
engaging virtual museum guides. In Intelligent Virtual Agents, pages
286–300. Springer, 2010.

[SV04] Carlo Strapparava and Alessandro Valitutti. Wordnet affect: an af-
fective extension of wordnet. In LREC, volume 4, pages 1083–1086,
2004.

[SVS06] Carlo Strapparava, Alessandro Valitutti, and Oliviero Stock. The af-
fective weight of lexicon. In Proceedings of the Fifth International Con-
ference on Language Resources and Evaluation, pages 423–426, 2006.

[SWSY06] Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and Steve Young.
A survey of statistical user simulation techniques for reinforcement-
learning of dialogue management strategies. The Knowledge Engineer-
ing Review, 21(02):97–126, 2006.

[SY02] Konrad Scheffler and Steve Young. Automatic learning of dialogue
strategy using dialogue simulation and reinforcement learning. In Pro-
ceedings of the second international conference on Human Language
Technology Research, pages 12–19. Morgan Kaufmann Publishers Inc.,
2002.

152



[tH11] M. ter Maat and D. K. J. Heylen. Flipper: An information state com-
ponent for spoken dialogue systems. In H. Vilhjálmsson, S. Kopp,
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[YGK+10b] Steve Young, Milica Gašić, Simon Keizer, François Mairesse, Jost
Schatzmann, Blaise Thomson, and Kai Yu. The hidden information
state model: A practical framework for pomdp-based spoken dialogue
management. Computer Speech & Language, 24(2):150–174, 2010.

155
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APPENDIX A

List of Dialog Actions of Spoken Dialog System

Table A.1: Step 1: Dialog Actions

Dialog Action Utterance

GreetS Hello, My name is Lola, I am a virtual character created to have

conversations with you and teach you about healthy lifestyles.

Today, I’m here to talk about drinking to figure out if you have

any issues. May I ask you few questions about your drinking?

ReAskGreetingS I am sorry. I could not understand your answer. To answer

my question, you can say, I want to continue or I don’t want to

continue.

ReAskGreetingU I could not understand. Can you please repeat your answer?

NotConfirmedGreet I think I misunderstood. Let me ask again, may I ask you few

questions about your drinking?

GreetEndS Thanks, if you decide to talk about your drinking later, I am

always available for you to talk about your drinking. Good bye.

AskQ1S Do you sometimes drink beer, wine, or other alcoholic beverages?

AskQ1U Can you briefly talk about your alcohol consumption?

ReAskQ1S Sorry, I could not understand your answer. Do you sometimes

drink beer, wine, or other alcoholic beverages?

ReAskQ1U Sorry, I could not understand your answer. Can you briefly talk

about your alcohol consumption?

NotConfirmedQ1 I am sorry for the misunderstanding, do you sometimes drink

beer, wine, or other alcoholic beverages?

Continued on next page
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Table A.1 – continued from previous page

Dialog Action Utterance

Q1End Since your told me that you do not consume alcoholic beverages,

you do not need to continue with the screening. Thanks for your

time.

AskQ2S How many times in the past year have you had 5 or more drinks

in a day?

AskQ2U Can you approximately estimate the number of times in the last

12 months you had 5 or more drinks in a day?

ReAskQ2S Sorry, I could not understand your answer. How many times in

the past year have you had 5 or more drinks in a day?

ReAskQ2U Sorry, I could not understand your answer. Can you approxi-

mately estimate the number of times in the last 12 months you

had 5 or more drinks in a day?

NotConfirmedQ2 I am sorry for the misunderstanding, can you repeat your answer

for estimating the number of times in the past year you had 5

or more drinks in a day?

AdviseQ2 Very good, just for your information, I want to mention to you

some maximum recommended limits. For healthy men up to

age 65, no more than 4 drinks in a day and no more than 14

drinks in a week are recommended as the maximum drinking

limits. For healthy women and healthy men over age 65, no

more than 3 drinks in a day and no more than 7 drinks in a

week are recommended as maximum drinking limits. It would

be great for your health to stay within these limits.

Continued on next page
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Table A.1 – continued from previous page

Dialog Action Utterance

AskQ3S On average how many days a week do you have an alcoholic

drink?

AskQ3U How frequently do you have an alcoholic drink each week?

ReAskQ3S Sorry, I could not understand your answer. On average how

many days a week do you have an alcoholic drink?

ReAskQ3U Sorry, I could not understand your answer. How frequently do

you have an alcoholic drink each week?

NotConfirmedQ3 Sorry about that, can you repeat your answer for the number of

days in a week you have an alcoholic drink?

AskQ4S On a typical drinking day, how many drinks do you have? Is it

more than 4 or 5 drinks?

AskQ4U On a typical drinking day, how many drinks do you have?

ReAskQ4S Sorry, I could not understand your answer. On a typical drinking

day, how many drinks do you have? Is it more than 4 or 5 drinks?

ReAskQ4U Sorry, I could not understand your answer. On a typical drinking

day, how many drinks do you have?

NotConfirmedQ4 Sorry for asking again, can you repeat your answer about the

number of drinks you have on a typical drinking day?

Continued on next page
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Table A.1 – continued from previous page

Dialog Action Utterance

TransQ4ToSAbuse Thanks for the information you have provided about your drink-

ing. Let me mention to you some maximum recommended limits.

For healthy men up to age 65, no more than 4 drinks in a day

and no more than 14 drinks in a week are maximum drinking

limits. For healthy women and healthy men over age 65, no

more than 3 drinks in a day and no more than 7 drinks in a

week are recommended as maximum drinking limits. Next I will

try to determine some important aspects of your drinking. Is

that okay?

Table A.2: Step 2 Abuse: Dialog Actions

Dialog Action Utterance

AskQ1S Have you more than once driven a car or another vehicle while

you were drinking? Or after having had too much to drink?

ReAskQ1S Sorry, I could not understand your answer. Have you more than

once driven a car or other vehicle while you were drinking? Or

after having had too much to drink?

AskQ1U Have you gotten into situations while drinking or after drinking

that increased your chances of getting hurt, like swimming, us-

ing machinery, or walking in a dangerous area or around heavy

traffic?

Continued on next page
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Table A.2 – continued from previous page

Dialog Action Utterance

ReAskQ1U Sorry, I could not understand your answer. Have you or someone

else been injured as a result of your drinking in last year?

NotConfirmedQ1 I am sorry for the misunderstanding, can you repeat your answer

please? Have you ever taken risks under the influence such as

drinking and driving?

AskQ2S Have you continued to drink even though you knew it was caus-

ing you trouble with your family or friends?

ReAskQ2S Sorry, I could not understand your answer. Have you ever had

trouble with your family or friends because of your drinking?

AskQ2U Is your drinking causing any problems with your family or

friends? If yes, can you briefly mention what kind?

ReAskQ2U Sorry, I could not understand your answer. Is your drinking

causing any problems with your family or friends?

NotConfirmedQ2 I am sorry for the misunderstanding, can you please repeat your

answer? Have you ever had trouble with your family or friends

because of your drinking?

AskQ3S Have you had a period when your drinking or being sick from

drinking often interfered with taking care of your home or family

or caused you job troubles or school problems?

ReAskQ3S Sorry, I could not understand your answer. Did your drinking

cause you to fail any of your responsibilities?

Continued on next page
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Table A.2 – continued from previous page

Dialog Action Utterance

AskQ3U Have you had a period when your drinking or being sick from

drinking?often interfered with your responsibilities? Can you

briefly mention?

ReAskQ3U Sorry, I could not understand your answer. Have you ever failed

to do what is expected from you because of your drinking?

NotConfirmedQ3 Sorry, can you repeat your answer. Did your drinking cause you

to fail any of your responsibilities?

AskQ4S Have you been arrested, held at a police station, or had any

other legal problems because of your drinking?

ReAskQ4S Sorry, I could not understand your answer. Have you ever had

legal problems such as arrests, DUIs or any other?

AskQ4U Have you ever had legal problems because of your drinking?

ReAskQ4U Sorry, I could not understand your answer. Have you ever had

legal problems?

NotConfirmedQ4 Sorry for asking again, can you repeat your answer? Did you

have any legal problem because of your drinking such as arrests

or DUIs ?

TransToDep Thanks for the information. In the next section I will try to

determine some important dependence related aspects of your

drinking. Is that okay?
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Table A.3: Step 2 Dependence: Dialog Actions

Dialog Action Utterance

AskQ1S Have there been times when you ended up drinking more than

you meant to? Or kept on drinking for longer than you intended?

ReAskQ1S Sorry, I could not understand your answer. Have you had times

when you ended up drinking more than you meant to? Or kept

on drinking for longer than you intended?

AskQ1U Have there been times when you ended up drinking more than

you meant to? Or kept on drinking for longer than you intended?

If yes, can you tell me about those times?

ReAskQ1U Sorry, I could not understand your answer. Have there been

times when you ended up drinking more than you meant to? Or

kept on drinking for longer than you intended? If yes, can you

tell me about those times?

NotConfirmedQ1 I am sorry for the misunderstanding, can you repeat your answer

please? Have there been times when you ended up drinking more

than you meant to? Or kept on drinking for longer than you

intended?

AskQ2S Have you found that you have to drink much more than you once

did to get the effect you want?

ReAskQ2S Sorry, I could not understand your answer. Do you need to drink

a lot more sometimes to get the same effect?

AskQ2U Have you found that you have to drink much more than you once

did to get the effect you want? Can you describe it?

Continued on next page
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Table A.3 – continued from previous page

Dialog Action Utterance

ReAskQ2U Sorry, I could not understand your answer. Do you usually have

the same effects with same amount of alcohol?

NotConfirmedQ2 I am sorry for the misunderstanding, can you repeat your answer

please? Do you usually have same effects with same amount of

alcohol?

AskQ3S Have you more than once wanted to stop or cut down on your

drinking? Or tried more than once to stop or cut down but found

you couldn’t?

ReAskQ3S Sorry, I could not understand your answer. Have you more than

once wanted to stop or cut down on your drinking?

AskQ3U Have you more than once wanted to stop or cut down on your

drinking? Or tried more than once to stop or cut down but found

you couldn’t? If yes, what happened?

ReAskQ3U Sorry, I could not understand your answer. When you try to cut

down or quit, do you have signs of withdrawal?

NotConfirmedQ3 Sorry, can you repeat your answer. When you try to cut down or

quit, do you have signs of withdrawal such as tremors, sweating,

nausea or insomnia?

AskQ4S When the effects of alcohol are wearing off, have you had trouble

sleeping? Found yourself shaking? Nervous nauseous restless

sweating or with your heart beating fast?

ReAskQ4S Sorry, I could not understand your answer. Do you keep drinking

despite having recurrent physical or psychological problems?

Continued on next page
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Table A.3 – continued from previous page

Dialog Action Utterance

AskQ4U When the effects of alcohol are wearing off, have you had trouble

sleeping? Did you find yourself shaking? Or nervous, restless,

sweating or with your heart beating fast?

ReAskQ4U Sorry, I could not understand your answer. Do you keep drinking

despite having recurrent problems?

NotConfirmedQ4 Sorry for asking again, can you please repeat your answer? Do

you keep drinking despite having recurrent physical or psycho-

logical problems?

AskQ5S Have you had a period when you spent a lot of time drinking?

Or being sick or getting over the bad aftereffects of drinking?

ReAskQ5S Sorry, I could not understand your answer. Do you spend a lot

of time drinking? For example, do you loose time from work or

school due to drinking?

AskQ5U Have you had a period when you spent a lot of time drinking?

Or being sick or getting over the bad aftereffects of drinking? If

yes, can you briefly talk about it?

ReAskQ5U Sorry, I could not understand your answer. Do you spend a lot

of time for drinking?

NotConfirmedQ5 Sorry for asking again, can you repeat your answer? Do you

spend a lot of time drinking? For example, do you lose time

from work or school due to drinking?

Continued on next page
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Table A.3 – continued from previous page

Dialog Action Utterance

AskQ6S In order to drink, have you given up or cut down on activities

that were important or interesting to you or gave you pleasure

such as spending less time with your family and friends because

of your drinking?

ReAskQ6S Sorry, I could not understand your answer. Do you spend less

time with your family and friends because of your drinking?

AskQ6U In order to drink, have you given up or cut down on activities

that were important or interesting to you or gave you pleasure?

ReAskQ6U Sorry, I could not understand your answer. Do you spend less

time on other matters such as activities that had been important

or pleasurable?

NotConfirmedQ6 Sorry for asking again, can you repeat your answer? Do you

spend less time on activities you like such as spending time with

your family and friends?

AskQ7S Have you continued to drink even though you knew it was making

you feel depressed or anxious, or causing health problems?

ReAskQ7S Sorry, I could not understand your answer. Have you continued

to drink even though you knew it was making you feel depressed

or anxious, or causing a health problem?

AskQ7U Have you continued to drink even though you knew it was making

you feel depressed or anxious? Or causing a health problem. If

yes, can you briefly explain?

Continued on next page
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Table A.3 – continued from previous page

Dialog Action Utterance

ReAskQ7U Sorry, I could not understand your answer. Have you continued

to drink even though you knew it was making you feel depressed

or anxious? Or causing a health problem. If yes, can you briefly

tell me about it?

NotConfirmedQ7 Sorry for asking again, can you repeat your answer? Have you

continued to drink even though you knew it was making you feel

depressed or anxious or causing health problems?

TransToFinal Thanks for the information you provided. I will just take one or

two more minute of your time.

Table A.4: Step 3 At Risk: Dialog Actions

Dialog Action Utterance

Step1 Sometimes you are exceeding medically recommended limits. I

strongly recommend that you cut down or quit and I’m willing to

help. Is it okay to talk a few more minutes about your drinking?

Step2S On a scale of 1 to 10, how ready are you to make a change?

Step2U Are you willing to consider making changes with your drinking?

Continued on next page
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Table A.4 – continued from previous page

Dialog Action Utterance

Step3N As I mentioned before, your drinking is more than what is med-

ically safe. Just for your information, men who drink more than

4 standard drinks in a day or more than 14 per week, and for

women who drink more than 3 in a day or more than 7 per week,

are at increased risk for alcohol related problems. I really want

to help you when you feel ready for making change. Is it okay?

Step3Y Great, Just for your information, men who drink more than 4

standard drinks in a day or more than 14 per week, and women

who drink more than 3 in a day or more than 7 per week are

at increased risk for alcohol related problems. I recommend you

to stick with this limit or abstain. I would also like you to keep

track your drinking, and so I will send you a calendar for that if

that’s fine with you. Finally, I would like to talk with you again

3 months from now. Is it okay?
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