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Abstract We developed a virtual counseling system which
can deliver brief alcohol health interventions via a 3D anthro-
pomorphic speech-enabled interface—a new field for spoken
dialog interactions with intelligent virtual agents in the health
domain. We present our spoken dialog system design and its
evaluation. We developed our dialog system based on Markov
decision processes framework and optimized it by using rein-
forcement learning algorithms with data we collected from
real user interactions. The system begins to learn optimal
dialog strategies for initiative selection and for the type of
confirmations that it uses during the interaction. We com-
pared the unoptimized system with the optimized system in
terms of objective measures (e.g. task completion) and sub-
jective measures (e.g. ease of use, future intention to use the
system) and obtained positive results.

Keywords Spoken dialog systems - Reinforcement learn-
ing - Intelligent virtual agents and avatars - Conversational
agents - Alcohol - Healthy lifestyle screening - Behavior
change brief intervention

1 Introduction
Intelligent virtual agents (IVA)—also known as embodied

conversational agents (ECA) or virtual humans (VH)—and
spoken dialog systems (SDS) are two emerging fields of
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research which, fogether, could bring a revolution to human-
computer interaction as we know it. Even though the term
ECA includes the notion of spoken dialog, SDS and ECA
communities still do not have a strong connection. While
progress in the spoken dialog system area is complementary
for the development of conversational embodied agents, lat-
est findings in SDS research have not been commonly used
by ECA researchers (and vice versa).

Indeed, although spoken dialog systems (SDS, hence-
forth) research has shown in the past few years that using
reinforcement learning (RL) with MDPs for dialog manage-
ment outperforms older hand-crafted rule-based approaches
[13,56], intelligent virtual agent researchers have not yet inte-
grated these results in their dialog systems. ECA-based sys-
tems usually involve spoken dialog (versus menu options to
choose from), but their dialog management usually still relies
on hand-crafted methods [2,30].

In this project, we bring together latest progress from the
SDS community to the IVA community with the use of RL-
based dialog management integrated with a 3D animated
character (shown in Fig. 1). The 3D animated virtual char-
acter is an interface for a task-based spoken dialog to deliver
brief alcohol interventions to people at-risk of health issues
due to excessive alcohol consumption.

From a computer science perspective, our work aims at
building a fully implemented system to be used as screen-
ing tools to help individuals at risk of health issues, and at
evaluating the system in terms of both, users’ (subjective)
acceptance and dialog system’s (objective) performance.

From a healthcare perspective, we aim at increasing access
to effective evidence-based health interventions with a novel
mode of delivery for computer-based health interventions -
namely delivering health interventions with a virtual coun-
selor. Our screening dialog system brings insight and aware-
nessregarding alcohol problems by using the well established
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Fig. 1 Multimodal embodied conversational agent interface

brief intervention (BI) counseling approach. Bls are short,
well structured, one-on-one counseling sessions, focused on
specific aspects of problematic lifestyle behavior. Bls are
not only ideally suited for people who drink in ways that are
harmful or abusive (which is the current domain of our work),
but BIs have also been used successfully for a variety of target
problem behaviors (e.g. overeating, lack of exercise). There-
fore the results of our research will also have an impact on
dialog systems for diverse behavior change interventions for
healthy lifestyles.

In this article, we give an overview of the current brief
intervention counseling style which our system is based on,
as well as current progress on spoken dialog systems. We
then describe our approach to build a spoken dialog system
integrated with an intelligent virtual character to deliver a
brief intervention for people at-risk regarding their alcohol
consumption. We discuss the results of the evaluation of the
system, and conclude with potential future directions for our
field of research.

2 Related research
2.1 Brief interventions for at-risk behaviors

Excessive alcohol consumption is regarded as a very wor-
risome public health problem in the USA: with approxi-
mately 85,000 of directly or indirectly attributable deaths
per year, excessive alcohol use is the 3rd leading lifestyle-
related cause of death in the United States [29]. In 2006, there
were more than 1.2 million emergency room visits and 2.7
million physician office visits due to excessive drinking [7].
Excessive alcohol use is also a risk factor for many health
and social problems, including motor-vehicle crashes, vio-
lence, suicide, hypertension, unsafe sex, or unintended preg-
nancy. The economic costs of excessive alcohol consumption
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in 2006 were approximately $223.5 billion [7]. To attempt
to address these alarming statistics, healthcare research has
led to the development and deployment of behavior change
interventions that can be delivered efficiently in primary care
offices.

Briefinterventions (BI) are short, well structured, one-on-
one counseling sessions, focused on specific aspects of prob-
lematic lifestyle behavior, and are ideally suited for people
who drink in ways that are harmful or abusive. Bls can be
delivered in 3—5 min [32] and (for alcohol consumption as
a target) aim to moderate a person’s alcohol consumption to
reasonable levels and to eliminate harmful drinking behav-
iors. BIs have a simple approach: they assess an individual’s
patterns of behavior with respect to a problem behavior, pro-
vide tailored feedback, and raise an individual’s awareness
about the problematic behavior. BIs are the top ranked out of
87 treatment styles in terms of efficiency [27]. It is reported
that even a few minutes of discussion about behavioral prob-
lems can be as effective as more extended counseling [1].
Many challenges are involved in delivering BIs to people in
need, such as finding the time to deliver them in busy doctors’
offices, obtaining the extra training that helps staff become
comfortable providing these interventions, and managing the
cost of delivering the interventions [33].

Patients are often encouraged to use computer programs
developed based on BI content in the doctor’s waiting room
or at home, or to access the interventions through the Internet.
Computer-based interventions not only offer privacy, but also
the ability to complete the program anywhere, any time of
the day [38,39,53]. Although computer-based interventions
adapted from one-on-one brief interventions are reported to
have positive effects on reducing patients’ drinking level
[18,39,53], they have high drop-out rates because their users
loose interest with interacting with the system. One study
showed, however, that the delivery of web-based interven-
tions with virtual agents is promising in terms of increasing
people’s intention to use such an intervention versus an inter-
vention delivered with text only [26]. That system however
is not speech-enabled and the user interacts with mouse and
keyboard entries.

We posit that these challenges in administering computer-
based brief interventions, can be overcome with the use of
spoken dialog systems delivered by an intelligent virtual
agents (or embodied conversational agent) which, integrated
together, aim at emulating face-to-face conversation, which
is the focus of our current research.

2.2 Spoken dialog systems

Dialog systems can be classified into two main categories
based on their dialog management technique, which can be
either based on machine learning (e.g. based on reinforce-
ment learning), or hand-crafted. Systems based on RL are
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popular in the SDS community and are reported to work
better than hand-crafted ones for speech-enabled systems
[13,56] against noisy speech recognition. Hand-crafted sys-
tems, on the other hand, can be divided into three subcat-
egories, with dialog management approaches using finite
states [47], plans and inference rules [6,11] or information
states [48].

RL-based dialog systems can learn dialog strategies in
a given dialog state from their prior experiences. The idea
of having a dialog manager (DM) that can learn interac-
tively from its experience is a cost effective methodology
given the alternative approaches: crafting system responses
to all possible user’s input using rules and heuristics [36].
At best, these rules are based on accumulated knowledge
from a trial-and-error experience. At worst, they are based on
intuition and limited experience of the designer. Either way,
because it is extremely challenging to anticipate every possi-
ble user’s input, hand-crafting dialog management strategies
is an error-prone process that needs to be iteratively refined
and tuned [36]. That iterative refinement of course requires
substantial amount of time and effort.

The RL-based approach provides the opportunity to auto-
mate the design of dialog management strategies by hav-
ing the system learn these strategies from received reward
signals. Potential advantages of statistical dialog manage-
ment approaches against hand-crafted approaches are listed
by [22] as (1) a data-driven automatic development cycle,
(2) provably optimal dialog action policies, (3) a principled
mathematical model for action selection, (4) possibilities for
generalization to unseen states, and (5) reduced development
and deployment costs.

Approaches for dialog systems based on reinforcement
learning (RL) use Markov decision processes (MDP) [44] or
partially observable Markov decision processes (POMDP)
frameworks [54,57] to develop robust dialog managers [13,
56]. While both MDPs and POMDPs require high amount
of data for training, POMDPs usually suffer from scalability
issues [55,58], and optimization algorithms usually become
intractable with large number of states.

In this paper we used MDP approaches to avoid the men-
tioned problems associated with POMDPs. Unlike the classic
dialog strategy learning approaches [24] in which the system
literally has no knowledge for dialog action selection in the
training stage, our system knows which actions make sense in
each state, despite being non-optimal as in [44]. For example,
taking a farewell action at the beginning of a dialog instead
of greeting does not make sense. Our approach enables our
system to learn dialog strategies faster from a small amount
of dialog corpus than systems with absolutely no knowledge
in the training stage. The ideas that are used in [44] inspired
our system design decisions: as in the NjFun system [44], we
tried to minimize the state space, and to learn dialog policies
from real and small amount of data. We extended and adapted

some of these ideas, such as state representations and policy
design, and applied them to practical health applications.

RL-based dialog systems are mainly used for slot-filling
applications. The domain of the dialog is usually in the
tourist information domain, such as finding information
about restaurants [8,20,57], appointment scheduling [15],
flight reservation [17], or museum guidance [37]. There has
also been work conducted in question-answering [28] and
tutoring domains [9]. The RL-based dialog management par-
adigm was also recently used for assistive technologies [25].

In the mentioned systems, each piece of information is
accepted as a slot which needs to be filled to complete the
task. The total number of slots that current systems can usu-
ally handle are less than 5, and the flow of a dialog is deter-
mined by the slots that need to be filled [44]. One of the
important measures of success of task-based dialogs is their
task completion rate. When the number of the slots that are
needed to be filled increases, the likelihood of successful
completion decreases.

We will discuss how our system can handle a substantially
larger number of slots than has been attempted so far (we have
18 slots). We will also explain how the flow of the dialog does
not depend on unfilled slots, butis rather decided dynamically
during the interaction, which is also a novel approach. For
example, if our system finds out that the person does not have
a drinking problem, it just ends the interaction gracefully.
Hence, the length (in terms of slots) and the flow of the dialog
are not fixed.

Dialog strategy learning is the main concentration of RL-
based dialog systems for the optimization process. Learn-
ing optimal dialog strategies can be performed in two ways:
based on user simulations [14], or based on interactions with
real users in exploration mode [28,44]. Since there is no data
in our domain, we had to follow the latter way. It is worth
mentioning that simulated users can have some shortcom-
ings to realistically reproduce the behaviors of the diverse
real users’ behaviors [41].

2.3 Assistance technologies for health related dialogs

In a recent comprehensive literature review of active assis-
tance technologies in health-related behavior change systems
[21], covering articles written between January 2005 and Jan-
uary 2012, 41 health-behavior change systems are identified.
Dialog systems and ECAs are identified as emerging tech-
nology themes in the behavior change systems field. It is
reported that 19 studies out of 41 use dialog systems tech-
nology. Among those 19 systems, only 1 system uses speech
as an input modality [23]. The remaining 19 dialog-based
systems use text or menu-based choices as a style of com-
munication. In the same literature review [21], it is reported
that 8 of the systems use ECAs [4,5,10,49].
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There are also dialog systems in other health-related
domains such as health and fitness companions [49], or vir-
tual support agents for post traumatic stress disorder [31].
Although, there has been growing interest to develop mul-
timodal SDS which can converse, guide, assist or motivate
users for different health related topics [4,12,31], to the best
of our knowledge, there does not exist any spoken dialog sys-
tem for the alcohol consumption domain, which is the focus
of our research.

Furthermore, dialog management for health-related dia-
log systems have so far been mostly designed based on finite
state dialog management mechanisms such as hierarchical
transition networks [3,4], plan-based approaches [42], or
information-state based approaches [31]. These systems usu-
ally do not have speech recognition integration. Interaction is
usually conducted with menu-based choices, but the system
utterances are delivered vocally via text-to-speech or prere-
corded voice [4,26].

Other than systems that use menu-based interaction, there
are systems that use a different input modality. SimCoach,
for example, is a web-based system which uses text as input
modality, and an interface with an anthropomorphic ECA
which responds to users’ questions with answers prerecorded
by a human. Whereas human voices are still superior to syn-
thetic ones, using pre-recorded utterances means that the sen-
tences that the system can speak are fixed, as opposed to sys-
tems using text-to-speech engines (like ours) which provides
the flexibility of adding new sentences for the system to utter
automatically, i.e. without the need to prerecord new sen-
tences. SimCoach, designed to provide support and health-
care information about post-traumatic stress disorder, incor-
porates information-state approach [48] with dialog moves
with assigned reward values [31]. The Companions project
includes three different systems in the domain of health and
fitness [49], and all of them use speech as input modality.
The dialog management approach in the Companion project
is the information-state approach, and one system (the cook-
ing companion) has an ECA interface.

In the remaining of the article, we discuss our system
design and approach, and our evaluation experiment results.

3 Approach

An overview of our system architecture is shown in Fig.
3, and explained in details in the Sect. 3.5. In short, we
use reinforcement learning for the dialog management, com-
bined with a 3D animated character who converses with the
user with text-to-speech (TTS) utterances (versus fixed prere-
corded sentences). The domain is a task-based spoken dialog
to deliver brief alcohol interventions to people, and identify
whether they are at-risk of health issues due to excessive
alcohol consumption.
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3.1 Dialog structure for brief interventions

According to the clinician’s guide for conducting brief inter-
ventions from the National Institute on Alcohol Abuse and
Alcoholism (NIAAA) [34], a brief intervention for alcohol-
related health problems can be delivered in three sequential
steps:

— Step 1: Screening about alcohol use
— Step 2: Assessing for alcohol use disorders

— Assessment of abuse
— Assessment of dependence

— Step 3: Advising and assisting according to degree of alco-
hol problem

— Advice for at-risk drinkers
— Advice for drinkers with alcohol use disorder

To develop our dialog content, we follow the brief inter-
vention guide for alcohol prepared by NIAAA [33]. The goal
of our dialog system is to deliver alcohol screening and brief
interventions based on this guide. Each step contains a set of
questions.

In Step 1, there are 5 questions. The system asks these 5
questions, and if the user expresses that s/he is not consum-
ing alcohol from time to time, the interaction is gracefully
terminated by the system. Otherwise, the dialog manager
continues to the second step.

In Step 2, in the Assessment of abuse stage, there are
4 questions to assess alcohol abuse indicators. It is enough
to find one indicator of alcohol abuse (e.g. risk of bodily
harm, relationship trouble) to move to the Assessment of
dependence stage (e.g. keep drinking despite problems, not
able to stick to drinking limits). If the system can not find
any indicator of abuse with the 4 questions, it passes to the
dependence stage. In the Assessment of dependence stage
(still in Step 2), there are 7 questions.

It is enough to detect 3 dependence indicators to transit
to Step 3, Advice for drinkers with alcohol use disorder.
If the system does not detects 3 dependence indicators, it
transits to Advice for at-risk drinkers. Therefore, the dialog
branches to two separate steps in Step 3: (1) one for at-risk
drinkers, and (2) one for drinkers with alcohol use disorder.
In both branches, the system provides information related
to the assessment of the system. If the system assessed that
the user has an alcohol use disorder, it refers the user to
treatment, asks the user if she or he is ready to change, and
suggests a goal toward a change of drinking patters, based
on the user’s readiness. If the user is an at-risk drinker, it
gauges his or her readiness to change, and provides feedback
and information about the person’s drinking. Therefore in
both stages, the system provides factual information about
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the person’s drinking and suggested drinking limits, and asks
what is the user’s intention to change with a single question.
In total there can be a maximum of 18 different questions in
a single session.

A sample dialog between the system and the user is shown
in Table 1. The dialog we presented in the table covers em

Table 1 Sample dialog

Step 1 Screening about alcohol use, and Step 2 Assessment
of abuse completely. In Step 2 Assessment of dependence,
there are 7 questions, and then the system branches to Step
3. Because of space limitations, we cannot present a longer
dialog. The system uses questions recommended by NIAAA.
It uses simple reflections for confirmations instead of explicit

S1: Hi, My name is Lola, I am a virtual character created to have conversations with you and to teach you

Step I: Use screening

about healthy lifestyles. Today, I'm here to talk about drinking to figure out if you have any issues.

May I ask you few questions about your drinking?

Cl: Yes, sure you can

S2: Do you sometimes drink beer, wine, or other alcoholic beverages?

C2: Well yes, I drink wine or beer sometimes!

S3: How many times in the past year have you had 5 or more drinks in a day?

C3: I think around once a week

S4: Actually, consuming more than 4 drinks on any single day is classified as heavy drinking. So it seems

that you are sometimes going above heavy drinking limits? Is that right?

C4: Yes, that’s correct

Ss5: How frequently do you have an alcoholic beverage each week?

Cs: I think at least 3 days a week
Sé6: On a typical drinking day, how many drinks you have?
C6: I just drink... maybe a bottle of whisky

S7: Sorry, I could not understand your answer, can you please repeat?

C7: I said one bottle of scotch

S8: Ok, thanks for the information you have provided to me about your drinking. Next, I will try to

determine some important effects of your drinking

S9: Have you ever taken risks under the influence, such as drinking and driving, operating a motor vehicle,

or swimming?
C9: No I have not

Step 2: Abuse Assessment

S10: I see, so you are careful to avoid high risk situations after or while having drinks, right?

C10:  Yes, I try to be careful

S11:  Have you continued to drink even though you knew it was causing you trouble with your family or

friends?

Cl11: Ithink yes, I continue to drink while my family complains about my drinking

S12:  Thanks for the information you’ve provided. In the next step, I will ask you questions about potential

dependence-related aspects of your drinking. Is that okay?

C12:  Yes I want to know, please go ahead

S13:  Have you had times when you ended up drinking more than you meant to? Or kept on drinking for

longer than you intended?

C13:  Not usually, but... yes I guess I did

Step 2: Dependence assessment

S14:  Have you found that you have to drink much more than you once did in order to get the effect that you

like?

Cl14: I think my tolerance has increased

S15:  Sorry, I could not understand your answer. Do you need to drink a lot more sometimes to get the same

effect?

C15: Imeant yes, [ need to drink more and more

S16: Ok, sorry but just be sure I got it right: you can not get the same effect as you used to with the same

amount of alcohol. Is that right?
Cl16:  Yes, that is correct

S17:  Have you more than once wanted to stop or cut down on your drinking? Or tried more than once to

stop or cut down but found you couldn’t?
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Table 1 continued

Cl17: Well, I think I tried but I was not that serious about stopping or cutting down

S18: I see, so you really never attempted to stop or cut down. Is that right?

C18: No, it is wrong

S19: Sorry for the misunderstanding, can you please repeat your answer? Have you more than once wanted
to stop or cut down on your drinking but found you couldn’t?

C19: Yes I did but not seriously

S20: Ok, now, when the effects of alcohol are wearing off, have you had trouble sleeping, or found yourself
shaking, nervous, nauseous, or restless?

C20: I found myself sweating and my heart beating fast

S21: Sorry I could not understand your answer. Can you please repeat it?

C22: I said I found myself sweating and my heart beating fast

S22: I am sorry for asking again, but can you repeat your answer please?

C22: I said I am sweating and my heart beats fast when I drink too much

S23: Have you had a period when you spent a lot of time drinking? Or being sick or getting over the bad
aftereffects of drinking?

C23: Yes several times

S24: Thank you very much for all your answers. Now I'd like to just take one or two more minutes of your Step 3: Disorder
time. Is that okay?

C24: Yes, please go ahead

S25: On a scale from 1 to 10, how ready are you to make a change?

C25: I think 7

S26: Great! Just for your information, men who drink more than 4 standard drinks in a day or more than 14

per week, and women who drink more than 3 drinks in a day or more than 7 drinks per week, are at
increased risk of alcohol related problems. Based on your answers, I recommend that you stick with
this limit, or even abstain if you can. I also would like you to track your drinking patterns, and I

could send you a calendar for that if you’d like me to. I'm also going to give you information about
places near you where you can get help if you choose to. Finally, I would like to talk with you again

in 3 months. Is that okay?
S26: Yes, it’s okay

S27: Thanks for talking with me. I hope you’ve learned something useful about your drinking pattern. Good

bye and let’s talk again in 3 months!

confirmations, and examples are shown in Table 1 with the
S4 and S10 system dialog turns.

3.2 Reinforcement learning

We built our system using reinforcement learning. Reinforce-
ment Learning (RL, henceforth) is a sequential decision mak-
ing algorithm, where the RL agent interacts with its environ-
ment [46]. The environment is defined as: “anything that
cannot be changed arbitrarily by the agent is considered to
be outside of it and thus part of its environment” [46, p. 53].
Reinforcement learning treats the learning of dialog strate-
gies as a sequential optimization problem, leading to strate-
gies which are globally optimal [46].

Within the RL framework for dialog development, dialog
strategies are represented as mappings from states to actions
within Markov decision processes (MDP). In other words, a
dialog strategy specifies, for each system state, what is the
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next action to be taken by the system [24]. The MDP frame-
work can be characterized by a 4-tuple (S,A,T,R), where:

— Sis a finite set of states

— A is a finite set of actions

T is a state-transition function such that T'(s, a,s’) =
P(s’|s, a) which describes how the probability of perform-
ing action a in state s will lead to state s’

R(s, a, §') is a local reward function such that R(s, a) =
> . P(als)R(s, a,s’), and the objective of the SDS is to
maximize the gained reward.

3.3 Markov decision processes

To develop our system, we needed to represent the internal
states of our system using MDP formalization as described
earlier. States, actions and state transitions needed to be cre-
ated. First, we elicited the state attributes. We considered the
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Table 2 State attributes and values for Step I: screening about alcohol
use

Attribute Values Description

Greet (G) 0,1 Whether the system has greeted the
user

Question (Q) 1,234 Which question is being queried

Confidence (C) 0,1,2,3,4,5,6 0,1,2 for low, medium, and high
confidence of speech recognizer.
3,4 for confirmed or not
confirmed. 5 to indicate system is
waiting for confirmation. 6 is for
to indicate system transit to next
question without confirmation

Value (V) 0,1 Is the value obtained for current

question

Grammar (Gr) 0,1 What type of ASR grammar used,
restrictive or dictation

(non-restrictive) grammar.

Aux (Ax) 0,1,2 Multiple purpose attribute. Use to
indicate number of ReAsks and
semantic valence of the received
answer. If it is O, it indicates, it is

not used in that state.

most important dialog attributes to represent the dialog state
concisely. To avoid the data sparsity problem during training,
we divided the whole system into 5 sections according to the
BI guide steps. Hence, there are 5 MDPs in our system. For
each step, we elicited related state features.

For each state, there are 5 common attributes: Ques-
tion, Confidence, Value, Grammar, and Aux (see Table 2 for
the descriptions of each attribute). There is usually 1 extra
attribute to represent the step-specific requirement at each
step, e.g. Greet because in the first step the system needs to
greet the user first and get consent of the user to start the
dialog. The full list of state features for Step I are listed in
Table 2.

We then designed possible states: for each question, there
are 34 possible states. For Step 1 Use, Step 2 Abuse, Step 2
Dependence, Step 3 At-risk, and Step 3 Disorders, the number
of states are 170, 136, 238, 68 and 68 respectively, i.e. 34
states multiplied by the number of questions in a step). Total
number of states is 680. Each state represents the state of the
conversation.

For example, dialog state /72701 indicates that the sys-
tem has greeted the user (G = 1), the first question has been
queried (Q = 1), the automatic speech recognizer (ASR) con-
fidence level is high (C = 2), the answer value has been
obtained (V = 1), the type of grammar is restrictive (Gr =
0), and that the polarity of the alcohol usage indicator is pos-
itive (Ax = 1).

An alcohol usage indicator is positive if consuming alco-
holic beverages is above recommended limits, and negative

if consumption is below limits. The Aux attribute is used
for multiple purposes, such as keeping track of the number
of re-asked questions, or of the polarity of alcohol problem
indicator. Aux is set to 0 when it is not used.

We refined our state representations by excluding the
states that make no sense and manually checking each state.
For example, state 040111 is a non-sensible state in Step 1.
The system can not be in that state because the system needs
to greet the user first, before it can ask questions. It is not
possible to ask question 4 in the first step without greeting
or without asking prior questions. Excluding non-sensible
states yielded a very large state-space reduction.

We then created our dialog actions for each question. Our
system uses 2 types of initiative dialog actions: system initia-
tive, where the system asks close-ended questions (e.g. Do
you sometimes drink beer, wine, or other alcoholic bever-
ages?), and user initiative, where the system asks open-ended
questions (e.g. Can you briefly talk about your alcohol con-
sumption?). We refer to the system/user initiative terms in the
same manner as they are widely referred to in the SDS com-
munity [43,44]. In the system initiative questions (where the
expected answer is relatively restricted given the close-ended
nature of the questions), the system uses a restrictive gram-
mar for speech recognition (SR). In the user initiative, the
system uses a non-restrictive SR grammar to handle user’s
answer to open-ended questions.

There are 9 possible actions for each question, which are
grouped under 4 categories: (1) Ask actions are used when the
system needs to ask a question to the user for the first time,
which can be performed with the two types of initiatives;
(2) ReAsk actions are used if the system can not understand
the user’s speech, which can also be done with two types
of initiatives; (3) Confirmation actions are used to ask for
confirmation as to whether the system understood what the
user said.

The confirmation actions are system initiated by default,
and are of 3 types: positive, negative and no confirmation.
The positive type is used if the system receives an answer
which reveals alcohol usage/abuse/dependence information.
The negative type is used if the system receives an answer
which indicates no drinking/abuse/dependence problem. The
third type is no-confirmation, and it is used if the system
decides to pass to the next question without confirmation
(possible action at any question). NotConfirmed action is
used if the user gives a negative answer to a confirmation
action.

The available actions for the first question in Step I screen-
ing about alcohol use are shown in Table 3. The first column
is the name of the dialog action, and the second column is the
system utterance. The actual name of the dialog action starts
with the step information (e.g. S1), then the type of dialog
action (e.g. ask), then the question being queried (Q1) and
the initiative type (sys). So S1-AskQ1Sys stands for Step!
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Table 3 Dialog actions For Question] in Step 1

Dialog action System utterance

S1-AskQ1Sys
S1-AskQ1User
S1-ReAskQ1Sys
S1-RaAskQ1User
S1-ConfQ1Pos
S1-ConfQ1Neg
S1-NoConf —
S1-NotConfirmedQ1Sys
S1-NotConfirmedQ1User

Do you sometimes drink beer, wine, or other alcoholic beverages?

Can you briefly talk about your alcohol consumption?

Sorry, I could not understand your answer. Do you sometimes drink beer, wine, or other alcoholic beverages?
Sorry, I could not understand your answer. Can you briefly talk about your alcohol consumption?

So you like to have alcoholic beverages from time to time, is that right?

So you are recently not having any alcoholic beverages, is that right?

I am sorry for the misunderstanding. Do you sometimes drink beer, wine, or other alcoholic beverages?

I am sorry for the misunderstanding, can you briefly talk about your alcohol consumption?

(S1), the question type is Ask, the question being queried is
question one (Q1) and the initiative type is system initiative
(sys).

The number of available actions for each question is 9 (as
for the first question shown in Table 3). Although the length
of the dialog is not fixed, our system asks a maximum of 18
questions. There are 162 available actions (for asking ques-
tions, re-asking questions, and confirmations) for the system
to select from in the longest dialog session (18 questions
multiplied by the number of available actions). There are
dialog actions which are used while transiting from one step
to another step (e.g. from Step 1 to Step 2 Abuse) and dia-
log actions for ending the conversation. There are 2 actions
for giving feedback to at-risk drinkers and to drinkers with
alcohol use disorder at the end of the each session. The total
number of the dialog actions is 169.

After creating the dialog actions, we created the dialog
policies. A dialog policy is a mapping of a state to sensible
dialog actions. We mapped each state to 2 possible dialog
actions based on the initiative or confirmation type. Table 4
shows exploratory dialog policies for Question 1 in Step 1.

As we mentioned earlier, for each question there are 34
states. State updates are performed based on user’s dialog
actions or on systems dialog actions in each dialog turn. In
Table 4, only 30 state-actions mappings that are updated by
the system dialog actions or user dialog actions are shown.
The remaining 4 states are only updated based on user’s dia-
log actions, which is why we did not include them in Table 4.
The reason for this is that, if the system waits for the confir-
mation from the user (i.e. where C =5 as shown in see Table
2), the system dialog actions can not be used to update a state.
In other words, the remaining 4 states need to be updated by
user’s dialog actions. In Table 4, we only show the states that
are updated by the system. However, the states in Table 4 are
the result of the user’s dialog actions since Value Grammar,
Confidence and sometimes Aux are updated by user’s dia-
log actions in each dialog turn. For example, when the user
speaks to the system, the speech recognizer Confidence level
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and Value attributes are updated based on the user’s dialog
action. Our system aims to learn approximately optimal dia-
log strategies for the initiative style and the confirmation type
selection.

3.4 Modeling world with interconnected MDPs

To avoid the curse of dimensionality problem, we aimed at
minimizing the number of system states used. Since the BI
dialog requires many dialog turns between the system and a
user, the number of available dialog strategies is very large,
and can make learning optimal policies infeasible with lim-
ited training data. To alleviate this problem, we used separate
MDPs for each phase.

We represent each step or phase of the BI with one MDP
with local goals and reward functions. This approach divided
the problem into 5 interconnected MDPs (shown in Fig. 2)
but, in any interaction with the system, we use a maximum
4 MDPs, i.e. (1) Step 1; (2) Abuse; (3) Dependence; and
(4) one MDP from Step 3 based on Abuse or Dependence
problem. This approach also reduced the number of required
state features for each step, thus reducing the number of states
required.

Since there are two phases in Step 2 (one for querying
alcohol abuse and one for querying alcohol dependence), we
represent Step 2 with two distinct MDPs (as shown in Fig.
2), which greatly reduces the number of exploratory poli-
cies (because it reduces the number of state features) with-
out compromising fine-grained distinctions between dialog
strategies. Because the two phases are independent from each
other, representing each phase with a separate MDP is appro-
priate.

There are two separate MDPs for representing the two
different phases in Step 3. One is used for representing the
model for “At-risk” drinkers who do not have alcohol use
disorder problems (i.e. no abuse nor dependence). The second
one is used to identify drinkers with alcohol use disorders.
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In conclusion, the system is modeled with 5 MDPs. In
each MDP, there are multiple terminal states. Some terminal
states terminate the Step (such as the consent state), and some
terminal states provide transparent transitions to the start state
(or start state distribution) of another MDP (see Fig. 2). At
the same time, the agent receives a positive reward. The agent
also receives immediate positive/negative rewards as showed
in Fig. 2. For details on immediate rewards, please see Sect.
3.6. With this approach, learning the optimal dialog strategy
for an entire dialog is reduced to learning optimal dialog
strategy for each of the MDPs.

3.5 Agent and dialog strategy learning

As shown in Fig. 3, the Agent component of the system
operates as an interface between other main components of

the system. If the system asks a system initiative question,
the Speech Recognizer component operates by using Speech
Recognizer Grammar Specification (SRGS) grammars', and
it outputs Semantic Interpretation for Speech Recognition®
(SISR) tags. If the system uses non-restrictive grammar, it
uses the Semantic Parser to parse the recognized speech. We
use the Phoenix robust semantic parser [52], which requires
to write context-free grammar style recursive grammars to
extract relevant information from the user utterances.
Therefore the Agent component receives SISR tags (i.e.
when the type of system dialog action is system initiative or
closed questions), or Phoenix parse results (i.e. when the type
of system dialog action is user initiative or open questions)

! http://www.w3.0rg/TR/speech-grammar/.

2 http://www.w3.org/TR/semantic-interpretation/.
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Fig. 3 System architecture and dialog manager

according to the initiative type, as semantic interpretations.
The agent updates the system Current State and collects the
Reward according to the reward function (see Sect. 3.6 for the
reward function). It then queries the corresponding Markov
Decision Process with the current state, and receives Dialog
Actions and a Reward information for the current state, and
there might not be any associated rewards.

A reward is received only if the Current State has an asso-
ciated Reward. For example, the final state of each MDP
has associated rewards. The agent sends the received Dia-
log Actions from the MDP and the Current State to the RL
algorithm, and the RL algorithm selects the Best Action—an
action for which the agent received a maximum amount of
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reward in its prior experience— based on the Dialog Cor-
pus (see Sect. 3.8) which is collected from real user interac-
tions.The dialog corpus contains information about gained
rewards at each step and accumulated rewards for a whole
dialog session. The best action is the one that leads the agent
to collect the maximum amount of reward. If the system
is running in exploration/unoptimized mode, it selects dia-
log actions randomly among available actions in that state.
Therefore, the best action selection does not happen in the
unoptimized version which is usually used to collect training
data (exploration mode).

The Best Action is passed to the Natural Language Gen-
erator component, which gives the final form of the sys-
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tem response and passes the text to the Text-to-Speech (TTS)
engine. The embodied conversational agent ECA utters the
response with lip synching. After each dialog turn, the Dia-
log Corpus is updated by the Agent with the old dialog state,
action, the new dialog state and the reward information. Actu-
ally, the corpus contains more information about each turn
but the RL algorithm uses reward signals to select the best
dialog actions in each state.

At the inception of the project, we did not have any data
for optimizing the system for our domain of discourse (the
domain of alcohol use). So we first used the system with an
algorithm which selects a dialog action randomly among the
available ones. Since we have mapped each state to sensible
dialog actions, the system was able to deliver basic unopti-
mized functionality.

After having acquired the Dialog Corpus for the domain
of alcohol abuse—which is itself a contribution as it can be
reused—we used the RL algorithm to learn optimized dialog
policies and select the best action according to available data
(see Sect. 4.2).

Based on each of our MDPs, the expected cumulative
reward Q(s, a) of taking action a from state s can be cal-
culated in terms of Q-values of the next dialog states with
the following equation [46];

0*(s,a) = R(s,a) +y ZP(S’|S, a) max o*’,a). (1)

where P(s'|s, a) is the transition model and R(s, a) is the local
reward function. The y (0 < y < 1) is the discount factor
which is mainly used to indicate the importance of sooner
versus later rewards.

The Q-values in Eq. 1 can be easily computed with a
desired threshold using the Q-value version of the standard
Value Iteration algorithm [46]. The algorithm updates iter-
atively the current value of Q(s, a) based on the current Q-
values, and it stops when the update yields a difference that
is below the threshold. Once the Value Iteration algorithm is
completed, approximately optimal dialog strategies can be
selected by the system, which are essentially dialog actions
with the maximum Q-values. The optimized dialog strategy
must collect the maximum amount of rewards from future
users.

The biggest challenge of this approach is in collecting
enough human-machine dialog data to learn an accurate
model. To avoid the data sparsity problem, we used mini-
mal state representations and approximated the true state of
the system during the interaction. Since the length of the dia-
log is long, a large amount of data is required to optimize the
system. As we describe in Sect. 4.2, we run the systems in
two modes, training/exploration and testing. Training mode
is for data collection, and in testing mode, the system uses

optimized dialog strategies based on the data collected in
training. Therefore, Eq. 1 is used only for testing mode.

3.6 Reward function design

The reward function we use is designed based on the amount
of information collected and the cost of collecting each piece
of information. The agent gets a reward in each question: if
the value is obtained in the first attempt with the ASK type
of action, it gets +10 reward; if on the other hand the value is
not obtained, the agent gets no reward. For each Confirmation
action, if the obtained value is confirmed by the user, it gets
+2, otherwise it gets —2. For each ReAsk action which could
not result in obtaining the necessary information, the agent
receives —3 reward, otherwise it receives +3 reward for the
obtained value. If the obtained value is disapproved by the
user, it deletes the previously gained reward. Therefore the
agent gains a positive or negative reward for each question
and dialog action. In addition to rewards gained per question,
there are rewards in the MDPs which are associated with the
final states. The system receives +15 reward if it is able to
reach any of the final states in any MDP. For example, the
successful completion of Step 1 gives the agent a +15 reward.
In Fig. 2, we depict the immediate rewards and the rewards
that are received from the goal states for each MDPs.

We have used this approach to perform strategy learning
for each question. Since the system tries to obtain one piece
of information in each question, learning the approximately
optimal actions in each question is useful.

3.7 Speech recognition and language model

In our system, the operation mode of the speech recognizer’
is adapted according to the dialog manager’s action selection.
If the dialog manager asks system initiative questions to the
user, the system uses Speech Recognizer Grammar Specifi-
cation (SRGS) grammars. Even though we refer to system
initiative questions as closed questions, our SRGS grammar
does not restrict the user to answer with short answers such
as yes/no or a number. It can still understand unrestricted
speech. If the system operates in system initiative mode, the
Phoenix parser is not used. Instead Semantic Interpretation
for Speech Recognition (SISR) tags are used. We created a
grammar by first authoring it in Augmented Backus-Naur
Form (ABNF), and then we converted it to SRGS by using
the NuEcho* ABNF editor.

Our system uses our custom dictation grammar while it
operates in user initiative mode. In user initiative mode, we
load two types of grammars in the in-process speech recog-
nizer. One is the SRGS grammar which is prepared for the

3 Microsoft Speech Recognizer.

4 http://www.nuecho.com/en/.
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system initiative version of the current question. If the speech
recognition result is based on dictation grammar, we use the
Phoenix parser, otherwise we use SISR tags. Since the stan-
dard dictation language model is comprehensive, it does not
work well in specialized domains. To address this problem,
we created our own language model by using Windows Vista
Dictation Resource Kit software. It is a tool which enables
the creation of custom speech recognition dictation language
models.

Language models help a speech recognizer decide upon
the likelihood of a word sequence. Hence it is useful indepen-
dently of the acoustics of the word sequences. A language
model lets the recognizer make the right guess when two
different sentences sound similar. For example, both of the
following sentences sound similar: “Because of alcohol, [ had
hard problems” and “Because of alcohol, I had heart prob-
lems”. With a language model on alcohol consumption, the
recognizer knows that the first sentence is more likely to be
what was said than the second one. Furthermore, a language
model does not only give information about homonymes, it
also gives statistical information about which word might
appear after another, among other information. Therefore, if
a language model consists of word sequences that are rele-
vant in a specific context, it is very likely that it will operate
better than a comprehensive language model for English.

To collect the data for the language model, we first col-
lected data using the Mechanical Turk (MT) crowd sourcing
website> after obtaining Internal Review Board approval for
the study. We asked MT participants the same questions that
our system in full mode would ask (after being built from the
process described above and after we have acquired the lan-
guage model). In the instructions, we requested them to role
play a person who is having alcohol problems. Our instruc-
tions were:

“Imagine that you are recently having drinking prob-
lems and that you are talking with a health professional
face-to-face about your drinking problems. The health
practitioner asks you the questions on this page. Please
answer as naturally as possible.”

Because alcohol usage is a very common and univer-
sal social problem that everyone understands, MT users’
answers were relevant. Once can note that we would not nec-
essarily had collected meaningful answers had we asked MT
users, for example, to imagine having some complex disor-
der such as schizophrenia, because most people do not know
what behaviors are associated with this condition. Consum-
ing alcohol in different quantities however, is an experience
that many people can relate to, and therefore the answers that
we collected were very relevant.

> https://www.mturk.com.
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Participants answered the 18 questions. We created the
language model from the responses of 447 MT workers. We
preprocessed it (corrected spelling and grammar problems)
before creating the language model. We improved the lan-
guage model by adding sentences generated based on our
SRGS grammars, and used this language model in our exper-
iments. In the model, there are 7,599 utterances, the average
length of an utterance is 11.82 words, there are 100,679 word
tokens, and 5,423 distinct words.

We used our custom language model in our evaluation
(see Sect. 4.2). We collected the training data from real user
dialogs (described in Sect. 3.8) which includes sound files.
We ran the speech recognizer on the collected sound files and
compared recognitions based on the two language models.
We performed quantitative analysis to compare the Microsoft
standard dictation language model with our custom language
model. We found that when we use our custom language
model, the word error rate is approximately 17 % lower than
the Microsoft standard dictation language model.

3.8 Dialog corpus

We created a very richly annotated XML-based dialog corpus
from the test dialogs, whose size will continue to grow as we
collect more data. The corpus is organized turn by turn. Each
turn element contains: step and state information, question
asked by the system, initiative type, best speech recognition,
grammar type, semantic value or result of the Phoenix parser,
N-best recognitions with confidence score, reward gained
from the question, cumulative reward and sound files. Each
XML log file contains sequences of dialog turns for one dia-
log session.

4 Evaluation
4.1 Participants and procedure

University students represents a very appropriate sample for
target population for brief interventions. The latest report of
NIAAA on college drinking indicated that alcohol problems
are very prevalent among college students [35], and 19 %
of college students (ages 18—24) meet the criteria for alcohol
abuse or dependence®. The use of brief interventions with col-
lege students to educate students about drinking and increase
their awareness is very common [35]. As a result of many
studies, the NIAAA report on college drinking emphasized
that “increased alcohol screening and brief interventions are
feasible and appropriate for identifying and addressing harm-
ful drinking among college students”.

6 From the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSMIV), American Psychiatric Association.


https://www.mturk.com

J Multimodal User Interfaces

In addition, using computer and web-delivered interven-
tions is very well studied in college settings [40,50,51]. For
example, Saitz et al. [40] tested the feasibility of providing
online alcohol screening and brief intervention to more than
one-half of an entire freshman class. The students were con-
tacted through e-mail and invited to take the brief interven-
tion. The researchers found that, in general, unhealthy alco-
hol use—ranging from risky drinking to alcohol abuse and
dependence—decreased following the intervention. Hence,
although we are not assessing the impact of the system on
heath/drinking outcomes (which would require a random-
ized clinical trial outside the scope of this study), our target
population is very appropriate for participating in brief inter-
ventions.

For the evaluation of the system, 89 subjects were
recruited from volunteer university students through fliers
and emails. From 89 participants, 62 of them were males and
27 of them were females; 51 of them were native speakers and
38 of them were non-native speakers, which realistically rep-
resents the diversity of the population in the Miami, Florida
area.

Participants sat in front of a PC computer running the sys-
tems (some the training system and some the testing system
as described below), and responded in English to the ques-
tions asked by the embodied conversational agent shown in
Fig. 1. The computer was equipped with a USB sound card
and a Sennheiser ME 3-ew microphone.

It is important to note that we did not perform any user
training nor speaker adaptation for speech recognition.

After obtaining an oral consent approved by the University
Internal Review Board, we gave the following instructions to
each subject before using the system for both experiments:

— You will be asked questions about your drinking behav-
ior with an avatar/virtual character. You may or may not
have any alcohol related problems, but we just want you
torole-play a person who is having drinking-related prob-
lems and give relevant answers to each question.

— Try to speak clearly and loudly enough.

— Wait until the avatar stops speaking before you answer.

4.2 Objective evaluation results

In the first phase of the study, for the first 52 subjects, the sys-
tem operated in training/exploration mode and selected ran-
dom dialog actions from the available ones in each state (see
Sect. 3.5 for discussion). In the second phase, the remaining
37 subject used the system in testing mode. Since, we mapped
each state to sensible dialog actions, the system could deliver
basic, but expectedly unoptimized functionality. The goal of
the first phase was to collect training data to optimize the
system for initiative and confirmation type selection.

Table S Task completion rate: training versus testing

Evaluation measure Training  Testing A p value
Self-report completion  0.1538 0.5675 0.4137 0.0402
Real completion 0.03846 0.4594 0.42094  0.0434
Step 1: Assessment 0.3461 0.7297 0.3836 0.0371
Step 2: Abuse 0.3076 0.6216  0.3139 0.1058
Step 2: Dependence 0.1923 0.6216 0.4293 0.0300

In the second phase of the experiment, the users used the
optimized system. Even though the number of subjects is not
very large to compute the optimal dialog strategies, it was
sufficient to compute approximately optimal dialog strate-
gies. We observe the positive effects of optimization while
testing the optimized system.

4.2.1 Task completion evaluation

In Table 5, we present the results of our task completion eval-
uation: Column 1 “Evaluation Measure” is the type of eval-
uation; Column 2 “Training” is the mean of task completion
measure obtained for the training system; Column 3 “Test-
ing” is the mean of task completion for the optimized sys-
tem; Column 4 “A” shows the difference between testing and
training averages; and Column 5 “p value” is the statistical
significance value obtained using the standard two-sample t
test over subject means.

We show the average values of binary task completion
across 52 training dialogs and 37 testing dialogs. At the end
of the each interaction, we asked questions to each subject.
One of them was “Did you complete the intervention?”. If
they completed the intervention, the binary completion value
was +1, otherwise it was —1. The task completion reported
(and perceived) by the subjects is referred to in Table 5 as
Self-Report Completion.

The additional Real Task Completion measure is defined
because perceived task completion and real task comple-
tion are different. Real task completion indicates whether
or not the system obtained all the answers for each question
itasked. The perceived (self-report) task completion is differ-
ent because, if the system can not obtain the answer in three
attempts, it skips that question without having an answer and
the user is not aware of it.

Three other task completion metrics show the real task
completion for each step. The training and testing blocks
show averages of binary task completion for each individual
version of the system. Since the difference between “real
completion” and completion rates for Step 3 is negligible,
we do not report it.

Each row shows a different task completion information
and compares the two versions of the system. The first row
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is the Self-Report Task Completion (perceived) for the whole
intervention. The difference between the two versions is sta-
tistically significant (p = 0.0402 < 0.05)”. As mentioned
above, the perceived task completion refers to when the
subject could complete the intervention, even though there
may exist some questions which the system could not obtain
answers to, but the user was not aware of it.

The second row shows the Real Task Completion, which
means that the system did obtain an answer for each question
asked. The mean values are lower than self-report comple-
tion because the system was able to complete sessions by
skipping questions. For example, according to the NIAAA
guide for brief interventions which we followed (see details
above) [33], it is enough to obtain 1 abuse indicator with the
4 questions which query alcohol abuse. If the system could
not obtain an answer to the first three question but obtained
an answer to the forth one, the user could still complete the
session but from the system’s perspective, there are questions
which it could not obtain answers to. The difference between
the training and the testing system for real task completion
is statistically significant (p = 0.0434 < 0.05).

The difference in task completion rate for the Step I:
Assessment is statistically significant (p = 0.0371 < 0.05)
for the training and testing versions. Step 1 contains five
questions, and since the dialog length is short, a higher task
completion rate is expected for both of the versions.

The difference in task completion rate for the Step 2: Abuse
is not statistically significant (p = 0.1058 > 0.05). This is
because of the length of the this step. However, as mentioned
in the NIAA guide for brief interventions [33], it is sufficient
to find a 1 abuse indicator to pass to the “Step 2 Dependence”
step.

The difference in task completion rate for Step 2: Depen-
dence is statistically significant (p = 0.0300 < 0.05). This
step is long and the system needs to identify three indicators
by using 7 questions. The task completion rates for each sub-
steps of Steps 3: Advise converge to real task completion rate
because it is the end of the intervention. Since the difference
between real completion and completion rates for Step 3 is
negligible, we did not report it.

The task completion rate in the training dialogs is 58 %,
and for the optimized system it is 77 %, an improvement
of task completion rate of 19 %. Although the results we
obtained are statistically significant for most of our task-
completion criteria, for data hungry reinforcement learning
algorithms with a large number of system states, a larger
number of subjects will allow us to draw conclusions about
the optimality of the learned policies. However, as shown in
Fig. 4, we compared Q values for each episode. An episode

7 Conventionally, a p value less than 0.05 is considered statistically sig-
nificant, a p value less than 0.10 is considered indication of a statistical
trend.
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Fig. 4 Q values for each episode, the X axis shows the number of
episodes and the Y axis shows the log-scale Q values

can be defined as completing one question and passing to
the next question. Completion of a question does not mean
that the system obtained the information it was trying to get.
As discussed earlier, it is possible for the system to transit
to the next question without having obtained the informa-
tion, and in that case, the system receives negative reward.
We described the details of the reward function in Sect. 3.6.
We show the improvement of Q-values for each episode in
Fig. 4. We have 21 episodes because we have 18 questions,
plus transitions between MDPs. As shown in Fig. 4, the opti-
mized policy performed better, even though it is not optimal.
We have to note that optimal policy represents the highest
reward that the system can achieve, whereas the random pol-
icy and the optimized policy represent the average score that
the system collected in training and testing operation modes,
respectively.

4.2.2 Dialog evaluation

In addition to task metrics, we looked at Dialog Metrics to
measure the number of turns for successful completions, and
the number of words per turn.

The average length of a dialog is 31.9 turns, the shortest
completed dialog is 24 turns and the longest one is 43 turns.
The length of the dialog is significantly larger than similar
RL-based systems [13,44,57]. For Step 1, Step 2 abuse, Step
2 Dependence and Step 3, the average length of the dialog are
respectively: 9.6, 4.8 and 13.4, and 4.1. The average number
of words used or recognized in each turn is 3.3.

4.3 Subjective evaluation results

4.3.1 User’s experience

After the subjects completed the intervention, the subjects
answered a survey aimed at evaluating the user’s experience

with the system. The survey has two parts, the first part has 4
yes/no questions and the second part is a 34-item question-
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naire about the subject’s assessment and experience with the
system.

In the first part, we asked questions about reuse “Would
you use the system in future?”, and ease of use “Is the sys-
tem easy to use and is it easy to understand how to use the
system?”, and “Did the system understood what you said”
and “Did you know what to say to the system in each turn”.
Since these 4 questions are not directly related with dialog
strategies and we want to see the complete picture, we did
not compare test and training systems.

Our evaluation of the subjective aspects shown in Fig.
5 demonstrates that acceptability of the system by users is
very high in terms of Ease of Use (81 Yes versus 8 No) and
Intention to Reuse (63 Yes versus 26 No) the system. The
What to say to system shows that sometimes users do not
know how to answer the system questions. We believe that
the reason can be that when the system is in user initiative
mode (open questions), the subjects may not be sure to what
extend they should provide details. The System understood
criteria shows that most of the users think that the system
understood what they said. We postulate that this is achieved
with our ample use of confirmation questions that the system
utters when not sure.

4.3.2 Subjective assessment of speech interfaces

In the second part of the subjective assessment, we used a 34-
item questionnaire named Subjective Assessment of System
Speech Interfaces (SASSI) [16]. It is a widely used evaluation
questionnaire in the SDS community. The subjects answered
arandomized list of SASSI questionnaire on a 7-point Likert
scale. The SASSI questionnaire queries 6 aspects of the user’s
assessment and experience with the system. These aspects
are Accuracy, Likeability, Cognitive Demand, Annoyance,
Habitability, and Speed of the system.

The items in Accuracy are related to whether the sys-
tem recognizes user’s input correctly and does what the user
expects. The items in Likeability include statements about
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Fig. 6 Assessment—negative (1), neutral (4), positive (7)

the opinion and feelings of the user about the system. Cogni-
tive Demand summarizes the level of effort needed to use the
system and the user’s feelings arising from this effort. The
Annoyance includes statements such as “the interaction with
the system is repetitive/boring/irritating”. Habitability con-
tains statements related to whether the user knows what to
say and knows what the system is doing. The Speed contains
only 2 items related to the speed of the system. We com-
pared two versions of the system (training and testing) for
the SASSI evaluation. As discussed earlier, 52 subjects used
the training system and 37 subjects used the testing version
of the system.

We show the results in Fig. 6. In the 7-point Likert scale,
1 is the lowest negative score (strongly disagree), 4 is neutral
score (neither agree nor disagree) and 7 is the highest score
(strongly agree). We actually compared two versions of the
system but our goal was also to assess the overall performance
of the system for speed and habitability categories, because
both versions of the system do not have any difference in
terms of features which are assessed by speed and habitability
measures. To be consistent, we compared habitability and
speed measures, as we did for other subjective measures.
The results for habitability and speed correlate our viewpoint,
because the mean values are very close, as showed in Fig. 6.

In Table 6, we show mean values for each evaluation cate-
gory for both versions of the system, the difference between
mean values, and p values. We obtained p values by perform-
ing the standard two-sample t test. Column 1 is the type of
evaluation; Column 2 is the mean of the evaluated subjective
category for training; Column 3 is the mean of the evaluated
subjective category training (optimized) system; Column 4
shows the difference between test and training averages; and
Column 5 is the statistical significance value obtained using
the standard t test.

Accuracy of the system improved in the test version: the
results show that there is a statistical significance between the
two versions (p = 0.0360 < 0.05). This result indicates that
the optimized system can select better dialog strategies then
the training system which randomly selects dialog strategies.
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Table 6 Subjective evaluation categories: training versus testing

Evaluation measure Training Testing A p value
Accuracy 4.6435 5.3363 0.6928 0.0360
Likebility 5.7286 6.1830 0.4544 0.0928
Cognitive Demand 5.2000 5.3435 0.1435 0.6394
Annoyance 4.7596 4.1540 0.6056 0.0472
Habitability 4.000 3.8200 0.1800 0.6302

Likeability of the system improved slightly in the test ver-
sion. As can be seen, both versions of the system have very
high scores for likeability. It is possible to draw two conclu-
sions: first the acceptance rate of the system is high; second,
although the difference between the two versions is not sta-
tistically significant (p = 0.0928 > 0.05), the optimized
behavior of the system provides more desirable interactions.

The mean values of cognitive demand and habitability are
very close for the training and testing versions (see Table 6).
Therefore p values are not statistically significant. However,
we can infer that the required cognitive demand is slightly
higher than neutral level for both versions. Habitability of
the system is almost neutral for both of the versions.

We believe that there is a connection between accuracy
and annoyance categories, because if the number of re-
asks and confirmation increases, the annoyance level might
increase. For the test version, the reported annoyance level
decreased and the result is statistically significant (p =
0.0472 < 0.05). Since the accuracy also increased for the
test version, it might have had a significant impact on the
decrease of annoyance.

5 Implications

Health screening and assessment dialogs are different than
dialogs that are found in information-seeking applications
usually studied by SDS researchers. The main goal of brief
behavior change interview dialogs is to collect initial screen-
ing information, educate patients, increase their awareness
about potential problem behaviors and, if needed, refer the
patient to a treatment. This is usually the plan of standard-
ized health interviews (e.g. [19,34,45]) by national or inter-
national health institutions. So the system has to conduct
the conversation according to that plan. The system usually
needs to ask one question at a time and in a specific order,
while the flow of the dialog adapts according to the received
answers. The length of the dialog is also longer than current
information-seeking dialogs.

Our work have several implications. Our reduced state
space representation with multiple MDPs enables to learn
approximately optimal dialog policies with a relatively low
amount of data. Even though we designed the system for
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brief alcohol interventions, the approach that we use is eas-
ily applicable to any other similar health interviews (e.g. eat-
ing behaviors, exercising behaviors, use of drugs). Indeed,
brief interventions are adaptable and useful for a variety of
life-style related issues that target one specific problematic
behavior.

Secondly, our collected dialog corpus will help the devel-
opment of future data-driven research projects in the health
domain.

Thirdly, we connect this work with the notion of intelligent
virtual agents (IVA). Whereas we focussed our current dis-
cussion on our efficient approach for a spoken dialog-based
interaction, our work is directly linked with our research on
the graphical animation of the intelligent virtual agents that
deliver the spoken intervention. In a recent study [26], we
showed that empathic virtual agents that deliver computer-
based behavior change interventions are much more engag-
ing than the currently available text-only computer-based
interventions. We created a model of empathic communi-
cation for an IVA to deliver behavior change interventions:
in brief, the agent can sense the user’s facial expressions and
answers, and adjusts its non-verbal responses accordingly
(e.g. express concern or encouragement) to deliver its mes-
sages. Whereas there are debates about the impact of virtual
characters communicating empathically with humans, our
results showed that people are 31 % more likely to use our
empathic agent system compared to using the same inter-
vention content delivered instead with text-only. We are cur-
rently in the process of integrating and evaluating our empa-
thy agent model with the dialog manager discussed in this
article.

Lastly, the performance of our system has also convinced
medical and healthcare personnel to conduct randomized
clinical trials to evaluate health outcomes and potentially
deploy our system in clinicians’ waiting rooms and commu-
nity centers. Whereas computer scientists might think that
the healthcare profession could be threatened by the cre-
ation of such virtual counselor technologies, they are instead
quite enthusiastic about getting technological assistance to
address some of the nations’ current epidemics (e.g. obesity,
overweight, which put people at risk of a variety of chronic
conditions such as diabetes, cardiovascular diseases, among
others). Virtual counselors have many advantages, including
increased accessibility to cost effective health interventions
for people in need, increased anonymity and therefore self-
disclosure of at-risk behaviors, which in turn leads to better
healthcare, among many others [26].

6 Conclusion and future research

We created a spoken embodied conversational system which
uses the Reinforcement Learning (RL) paradigm for dialog
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management. The system is able to learn dialog strategies
for initiative and confirmation selection. Our contributions
to the SDS domain include the creation of a RL paradigm to
the completely new domain of behavior change—where our
dialog length is 4-5 times longer and where the nature of the
dialog is less restricted than spoken dialog systems operated
in tourist information domain.

We contributed to the healthcare domain with the first
system to use speech as an input medium with a RL-based
approach. Our initial evaluation showed that the dialog man-
agers that are optimized with RL have the potential to reach
optimal behavior, given enough training data.

Our future research will involve extending our evaluation
with more training data, and testing the optimized system
with a larger number of subjects. Our system currently takes
into account the best recognition of the speech recognizer.
We plan to use partial observability concepts to deal with
uncertainty, which stems from speech recognizer hypotheses:
future versions may work with N-best speech recognitions
instead of best speech recognition.
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