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Abstract. A pmnllel scheme using the diwd,·und-t:omJuU method is developed. This partitions the input set 
of :1 problem into subsets, compUies a pani:ll result from each subset. and fina11y employs a merging function to 
obt3in the final answer. B:lSed on :1 linear recurstve program as 3 tool for formalism. a precise ch:mtcteri7..allon 
for problems to be paraJielized by the divid~-und-ctmquer method is obt<!med. The perfonnance of the parnllel 
scheme is analyzed. and a necessary and sufficient condition to achieve linear speedup is obtained. The parallel 
scheme is genera.Jized to include parameters, and a re:ll applic:uion. thefuu.y j01n problem. IS discussed in detail 
usmg the ge nera.Jized scheme . 

I. Introduction 

The Divide-and-Conquer method is a common approach in designing cfflcient algorithms 
13. 4. 8]. Intuitively, in lhis approach. a problem is decomposed into several subproblems of 
smaller sizes, each of which is similar or identical to the original problem; a partial solution 
is produced for each subproblem; ihen, the solution to the original problem is obtatned by 
merging the partial solutions to the subproblems . An example is sorting. where 1he problem 
of sorting a set of elemenls can be decomposed inlo several subproblems. each involving 
the sorting of a disjoin! subset of the original sci. and a sorted list for the original set is 
obtained by combining the sorted lists for !hose subsets. 

The Divide-and-Conquer method is a natural approach in parallel computing Ill. 25, 
37]. li is especially desirable in daia intensive applications, e.g .. in database systems and 
information retrieval systems. In LDL [28], which is a programming language for deductive 
databases. the divide-and-conquer method has been recognized as an important construct 
for potential parallel processing. In [17], it is pointed out thm partitioned parallelism of­
fers much bener opportunities for speedup and scaleup than pipelincd parallelism. and it 
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is recommended to use the divide-and-conquer method for exploiting partitioned paral­
lelism. In [30]. a new data model SYP is presented to capture parallelism in bulk data 
processing. both pipelined parallelism and partitioned parallelism, and divide-and-conquer 
mappings are formalized in the form of transducers. However, two issues have not been 
covered in these articles: one is the characterization of problems that can be parallelized 
by the divide-and-conquer method; another is the performance analysis for such parallel 
processing. 

We focus on the two issues and apply the method to the fuzzy join problem. A linear 
recursive program is used to formalize problems to be parallelized. This program represents 
operations on sets and can be shown to include many problems in the database area and in 
other disciplines. We present a PArallel Divide-And-Conquer Scheme, or PADAC Scheme 
in short. for the linear recursive program. By proving a necessary and sufficient condition, 
we obtain a precise characterization for a problem to be parallelized by the divide-and­
conquer method. 

We analyze the performance of the PADAC Scheme. Linear speedup is the best a parallel 
algorithm can achieve when compared to a fastest sequential algorithm. We give a necessary 
and sufficient condition when the PADAC Scheme can achieve linear speedup. The result is 
a little surprising. Assume that a problem has time complexity O(n'' log'' n). Then linear 
speedup is possible only when c1 = I. For a problem of higher order complexity, i.e .. when 
c 1 > I, linear speedup cannot be achieved. 

A generalization of the linear recursive program and the corresponding PADAC Scheme 
is also obtained. In this way, the divide-and-conquer method is applied to operations on 
sets with parameters, and data duplication is allowed among different processors. Some 
examples have shown the advantage of the generalized PADAC Scheme. We will discuss the 
application of this generalized PADAC Scheme to the fuzzy join problem: linear speedup 
i> demonstrated. 

The rest of the paper is organized as follows. The PADAC Scheme is formally defined 
tn Section 2. and the characterization is discussed in Section 3. The performance of the 
PADAC Scheme is analyzed in Section 4. In Section 5, the generalization of the PADAC 
Scheme is discussed. In Section 6, we apply the generalized PADAC Scheme to solve the 
fuzzy join problem. 

2. The PADAC scheme 

2.1 . A linear recursiv~ program 

We assume that a given problem can be considered as an operation on an input set S to 
produce an answer W _ Operations on sets are very common in database systems and other 
disciplines. For example, every database query language has some aggregate functions, 
which produce some values from a large number of tuples [27, 35}. Many other prob­
lems such as computing transitive closure and processing a join can also be considered as 
operations on sets. In logic programming, a predicate can be interpreted as a procedure 
[26}. In LDL (28], many operations on sets such as sorting are defined hy logic programs . 
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We assume that a given operation on sets can be evaluated by the following linear recursive 
program. 

Program I 
r1 p({x}. W): -sgl(x. W)_ 
r2 p(S. W) : - sel(x. S), 

dif(S, X. SS). 
p(SS, WS), 
sgl(x, u), 
mrg (u, WS, W). 

The predicate sgl(x, u) represents a procedure that produces a result u from a si ngle 
element x (sgl stands for single); the predicate sel(x. S) represents a procedure that selects 
an element x from a given setS (sel stands for select); the predicate dif(S. x, SS) represents 
a procedure that computes the subset SS of S by removing the element x from S (difstands 
for difference); the predicate mrg(u, WS. W) represents a procedure that merges u and WS 
to produce W(mrg stands for merge). In the following. we will use predicate and procedure 
interchangeably. 

The predicate p(S, W) represents the operation on sets to be evaluated, where Sand W 
represent the input set and the answer, respectively. Rule r 1 says that when the input set is 
singleton, i.e., when S = (x}. the answer W is obtained by sgl(x, W ). Rule r2 says that, 
in the general case, an element x is chosen from the input set S by sel(x. S) a result u is 
produced from the selected element x by sgl(x, u). the operation pis carried out recursively 
on the remaining subset SS to produce a partial result WS by p(SS, WS), and the final answer 
W is produced from u and . WS through mrg(11. WS. W). 

We point out here that Program I is actually a program scheme. For an operation 
on sets. after the specifications of those predicates are determined and the corresponding 
codes are written. Program I becomes a concrete program to evaluate the operation. Our 
intention is to construct a systematic approach for evaluating operations on sets in parallel 
using the Divide-and-Conquer Method. This would be especially beneficial for ordinary 
programmers who are accustomed to sequential programs but would like to have their 
programs parallelized. 

Many operations involving sets can be defined in the form of Program I. A query to a 
database can also be considered as an operation on a set (all tuples in the database involved). 
We will discuss two examples in Section 3.2: sorting and computing the transitive closure. 
More examples can be found in [40} including computing the si milarity values between 
documents in information retrieval [32} . the same generation problem. and the UP-FLAT­
DOWN problem in deductive database [5. 23, 35]. 

To describe the execution semantics of Program I, we introduce the following notations. 
Let D and R be two domains. We assume that the inplll setS is a finite subset of D. and the 
answer W is an element of R. The clements of D and R can be either simple values. e.g .. 
numbers. or complex values. e.g .. tuples. records, and even sets. For example. in sorting 
a set of records (with respec t to a numerical lield), the domain D is the set of all records 
of the record type. an input set S is a finite set of records. an answer W is a sorted list 
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of records in S, and the domain R is the set of all sorted lists of records. The predicate 
sgl(x. u) represents a mapping B which transforms a single element x in the input domain 
D to u = B(x) in the output rangeR; the predicate mrg(u , WS, W) represents a merging 
function f which combines the partial results u and IVS to form the answer W, and is 
defined as from R x R to R. 

During an execution of Program I, rule r 2 is called recursively. Each time it is called. an 
elementx is chosen by the predicate sel(x, S). Letx; be the element chosen forthe ith call . 
and x, the las t element left. When only x, is left, rule r1 is applied, and an element u, E R 
is produced by the predicate sgl(x, u). Then, u, is returned to the last call to r2 . An element 
u,_1 is produced from x,_ 1, f(u,_ 1, u,) is computed by mrg(u, WS, W) and returned to 
the previous call to rule r 2. This process continues until the final answer is computed. 

A list VL = [x 1, x2 , ... , x,] with all elements taken from domain Dis a valid list for 
the set {x1 : l :::; i :::; 11 ) with respect to the predicate se/(x. S) if sel(x1• 51) is true for each 
i. where S1 = {Xt : i :::; k :::; n) . The predicate se/(x, S) is used only when S has two 
or more elements. For convenience, we assume that sel(x, {x}) is always true for any x. 
Conceptually, during an execution of Program I, a valid list is generated firs t from the input 
set through the predicate sel(x, S). 

Let L be a list with all elements taken from domain Rand fa binary function on R. We 
define f-back (L ) with respect to f as the result by applying f backward on L . That is 

f-back([u,]) = u 1, and 
f-back([ur. u2, .... u,]) = f(u,. J-back([ u2, ... , u,])), when 11 > I. 

For example. f-back([u 1• u2 , u3 • u4 ]) = J( u ,. j(u2. J( u,, u,))). Assume that. in an 
execution of Program I. a valid list VL = [x,, x2 ..... x,) is generated from S. Let u; = 
B(x;) for each i. and \1LB = [u 1 • u,, ... , u, J. The element "• i> returned from rule r1; from 
the las t call to the recursive rule r2. f(u,_,, u,) = J-back([ u ,_,, u,]) is returned : and so 
on. The final answer IV is f-back(VLB). The execution of the linear recursive program is 
sequential. and the execution semantics can be described as follows: 

A valid Jis t VL = [x 1• x2 ••.• , x,] is generated from the input set S through the 
predicate sel(x . S); 

VL is convened into VLB = [u 1• u2, .... "•) by the mapping 8: 
The final answer W = f-back(VLB). 

2.2. Th e PADAC scheme 

Our PADAC Scheme is developed to evaluate Program I on a shared-nothing architecture 
with K processors for some constant K ~ 2. 1l1at is. each processor has its own main 
memory and secondary memory. and communication is accomplished in some way, say, by 
a bus or via a network. The number of processors or sites. K, is usually limited in practice. 
especiall y in comparison with the input data size. Most research that is devoted to developing 
parallel methods in database environment is carried out under such an assumption [ I . 9. I 3. 
17, 21, 34. 38, 39[. 
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The PADAC Scheme has three phases: dividing phase, processing phase, and merging 
phase. In the dividing phase, we require th at S be partitioned into K non-empty subsets S,. 
So. no element appears in multiple subsets. We assume that some rule has been specified 
such that for any setS £ D a partial order-< can be established on S. The partial order 
-< is required to be defined on the given set S , not necessarily on the entire domain D. 
For example, in sorting a set of numbers, the rule may be the comparison of numbers and 
the panial order is <, the arithmetic predicate less than. That is, x, -< x j if and only if 
x, < x j . On the other hand, in sorti ng a set of records with respect to a numerical fi eld nf, 
the rule may be the comparison of the values of 11j and x1 -< x j if and only if n/; < nf

1
. 

In both cases, the panial order -< can be defined on the entire input domain. In computing 
the transitive c losure of a directed acyclic graph G. the rule may be specified accordi ng 
to reachability, and the partial order -< can be defined as follows. For any pair of edges 
(x , . yJ) and (x2. y2), (x , , y1) -< (x2. Y2l if and only if there is a path from y1 to x2 in the 
graph G. In this case, the parti al order is associated with the input set, and not defined on 
the background domain. 

An element x of S is a minimal (or maximal) element of S, if S has no other element 
y such that y -< x (or x -< y); two different elements x andy are incomparable if neither 
x -< y nor y -< x is true ; for any finite set S, there is a minimal (and a maximal) element: 
a subset S1 c S is called an (proper) initial segmem of S, if S1 # 0 . S - 51 # 0. and 
for any x E S1, any y E S - S1, y -< x is not true. A partial order in which any two 
different elements are not ordered is called the trivial partial order. That is, any e lement is 
a minimal (and maximal) element. any two different elements are incomparable, and any 
proper subset is an initial segment. 

The partition of the input set S in our PADAC Scheme is done according to the partial 
order -< defined on S. The condi tion enforced is 

(*) For any x E S1 and any y E Si , y-< xis not true if i < J, 1.e .. no element 
from a later subset can be smaller than any element in any preceding subset. 

Such a partition is ca lled a non·decreasing partition. A non·increasing partition could be 
defined similarly. But. to simplify the discussion, we use non-decreasing partitions only. 

We assume that all non-decreasing partitions for a given S may be generated when 
different partitions are possible. That is. we only require condition(*} be enforced, but do 
not specify a fixed way in panitioning the input set. In most cases. S should be partitioned 
equally such that each processor processes about the same amount of data. 

In the processing phase. we require that the origi nal Program I be evaluated at each s ite 
with one subset S1 as input to produce a partial answer W1• This is carried out independently 
without communicating with any other processors. So, the original problem is decomposed 
into K identical problems. In an implementation. any other program for the same problem 
can be employed to compute W1 at each site. That is. Program I is used only for the purpose 
of formalization and need not be used for execution. 

In the merging phase, we require that the merging function f represented by mrg(u. WS. 
W) in Program 1 be applied to those W1 's to form the fi nal answer. The merging phase 
can also be carried out in para llel. There are different ways to apply f to those W, 's. 
To address this issue clearly. we introduce the notation of f -terms in the following. For 
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a given list [11 1, 112, ... , 11 0 ], a sublist is a list of the form [111, "•+I· 111+2· ... , lit]. where 
I =:: i =:: k =:: n. That is. a sublist contains some consecutive elements of the original list. 
Assume that f is a function from R x R to R, and each 111 is in R. An f-tenn on a list is 
defined inductively (but informally in logic) as follows: 

f-term([lld) = IIJ, and 
f-term([ll~o 112, ... , 11.]) = f(f-term([IIJ, ... , lit D. f-term([llt+l· ... , 11.])), 
where I =:: k < n. 

When n > I, there are more than one way to form an [-term by choosing different values 
for k in the above expression. In any case, an f -term on a list represents an element in R. 
To compute an f -term on a list L with n > I elements, L is partitioned into two sublists 
L 1 and L2, and the result is 

f-urm(L) = f(f-term(LJ), f-term(L,)). 

The f-back(L) defined in Section 2.1 is an [-term on L by dividing Lin a special way. 
Although different f -renns on a list can be formed by dividing the list differently, the 
order of the elements in the list is not changed, and f is applied n - I times on a list of 
n elements. For example. [(/(11 1, 112). [(11 3 , u4)) and [(11 1, f(u,, f(uJ, "•))) are two 
different [-terms on the list [u 1, 112, "J· u4 ]. To compute [(11 1, [(11 2 , f(uJ, 11 4))), which 
is the f -back on the list, the function f is applied three times, and the computation is 
sequential. For [(/(11 1, 112). /(IIJ, u.)). f is applied also three times, but the two [-terms 
[(11 1 , u,) and [(11 3• 114) can be computed in parallel. 

Different [-terms on the list [W1, W2 , . • , WK] represent different ways to combine 
those partial answers. Assume K is a powerof2. one way to combine those W, 'sin parallel 
is to combine f(W,. W,+ 1) for all odd i's first. and then combine those merged results in 
",imi!Jr way. However. we do not specify a chosen way to combme those W, 's, and only 
require that any two f -terms on a list be the same. That is. the final answer W is an f -rem1 

on the list [ W1• w,, .... W K ], but how f is applied to two adjacent f -terms (with the order 
of W, 'sin the list unchanged) will not affect the final answer. This implies parallel execution 
in the merging phase and gives some flexibility in implementation. Our PADAC Scheme 
is represented by the following Algorithm I. which reflects all these criteria on a parallel 
evaluation of Program I. 

Algorithm I 

PHASE 1: S is partitioned non-decreasingly into K non-empty subsets S,; 
PHASE 2: Each processor executes independently Program I with S1 as the input to 

produce W,; 

PHASE 3: An f -term on the list [ W1, W2, ... , W K} is computed as the final answer. 

During an execution of Algorithm 1. Sis non-decreasingly partitioned into K subsets S,. 
Then. K processors are working in parallel: each processor evaluates Program I. produces 
a valid list PL, from S,. convens it to another list PLB1 by applying the mapping 8 to 
all elements of PL, and obtains W, = f-back(PLB,). The final answer PW (the answer 
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generated in parallel) is an [-term on the list [WJ, w,, ... , WK ]. Let PL (List generated in 
Parallel) be the concatenation of the K valid lists PL, and PLB the concatenation of tho>e 
K lists PLB,. Then. PW is an [-term on PLB. since each W1 = f-back(PLB1) is an [-term 
on PLB, . The execution semantics of the parallel Algorithm I can be described as follows: 

The inputS is non-decreasingly partitioned into K non-empty subsets S1; 

A valid list PL, is generated from S, and convened into PLB1 for each i. or a list PL. which 
is the concatenation of these PL1's, is generated from Sand converted into PLB, which is 
the concatenation of these PLB, 's, in parallel; 

The family of W1's, where W, = f-back(PLB,), is computed in parallel; 
The final answer PW is an [-term on [W1, W2, ... , WK ], which is also computed in parallel. 

3. A necessary and sufficient condition 

In this section. by proving a necessary and sufficient condition, we will give a precise 
characterization for a problem to be parallelized by the divide-and-conq11er method. 

3.1. The characterization 

We now define the concept that the parallel Algorithm I is computationally equivalent 
to the sequential Program I. In practical situations. multiple answers are possible for an 
opcrauon on a given input set. For example. an EMPLOYEE relation is to be soned on 
the attribute ACE. and two tuples r1 and r2 represent two employees with the same age. 
After the relation is sorted. we may exchange the positions of the two tuples r1 and r2 and 
><ill get a valid answer. Let sgl(x. S) select a tuple wtth the smallest value on ACE. Then 
the predicate sgl(x. S) has a choice of multiple elements. e.g .. when S = (11, r2 }. That is. 
multiple valid lists for one input set are possible. On the other hand. both the mapping 8 
and the merging function f are usually well defined. t.e., B(x 1 ) = B(x2) when x 1 = x2• 

and [(11,. "') = /(uJ, Uz) when"' = v1 and"'= v,. Then, an answer is determined 
by a valid list from S. i.e .. one VL gives one answer. and multiple answers are possible 
only when multiple valid lists exist. Thus. different executions of the sequential method 
can produce nondeterministically a set of valid lists. and the corresponding set of answers. 
We require different executions of the parallel method to produce nondcterministically the 
same set of valid lists and the same set of answers as the sequential method. 

Definition. For a finite subsetS of D. let AVL(S) be the set of all possible valid lists from 
S generated by Program I. and APL(S, K), the set of all possible PL's from S generated by 
Algorithm I with K ?. 2 processors. Algorithm I is said to be Computationally equiva lent 
to Program I if 

(I) For any inputS and any K ?. 2. AVL(S) = APL(S. K): and 
(2) For any VL e AVL(S). when 1t is generated by both Program 1 and Algorithm 1. 

Algorithm I gives the same answer as Program I. 
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Recall that there is a partial order-< defined on S; Also the input setS is very large and it 
is panitioned into K non-empty subsets non-decreasingly with respect to -< in PHASE I of 
The PADAC Scheme, and all non-decreasing panitions fo r S may be generated m PHASE 
I of Algorithm I. 

Lemma 3. 1. The following two statements are equivalent: 
I. For any finite set S C D, and any x e S, sel(x, S) is true if and only if x is a minimal 

element of S. 
2. For any finite set S c D, 1 Sl > I, any x e S, sel(x, S) is true if and only if there is an 

initial segment S1 of S such that x e S1• and sel(x , S;) is true. 

P roof: Statement I => Statement 2 
Suppose sel(x, S) is true, and lSI > I. We now prove there is an initia l segmentS, of S 
such that xeS; and sel(x . S,) is true. By Statement I, xis a minimal element of S. 1.e .. 
for any element y of S, y -< x is not true. Then, {x) is an initial segment of S containing 
x. Let S1 be any initial segment of S containing x. S; is a subset of S , and xis a minimal 
e lement of S. So, x is a minimal clement of S1. By Statement I , sel(x, S,) is true. 

Suppose there is an initial segment S1 of S such that x e S1 and sel(x, S;) is true. We 
now prove that sel(x. S) is true. By Statement I, .r is a minimal element of S;. i.e .. for any 
element y e S1, y -<x is not true. For any y E S- S1, y -< .r is not true either, since x E S, 
and S, is an initial segment of S. So. x is a minimal element of S, and, by Statement I. 
sel(x, S) is true. 

Statement 2 => Statement I 
Suppose se/(x, S) is true. We now prove by induction on n, the number of elements of S. 
that x is a minimal element of S . When n = I. S = {x), and xis a minimal e lement of 
S . When n > 1, by Statement 2. there is an initial segment S; of S such that .r e S, and 
,e/(x. S,) is true. By the defi nit ion of an initial segment. for any y E S - S,, y -< x is 
not true. Since S - S, # 0, we have IS;) < lSI. By induct ion hypothesis. x is a minimal 
e lement of S; . Thus, x is a minimal element of S. 

Suppose xis a minimal element of S. we now prove sel(x , S) is true. Since lxl is an 
initial segment of S, and sel(x, {xI) is true. sel(x. S) is true by Statement 2. 0 

Lemma 3.2. The following two statements are equivalent: 
1. For ally fillite set S c D. ami ally .r e S, se/(x. S) is true if and only if x is a millimal 

element of S. 
2. AVL(S) = APL(S. K)Jor ally S alltl ally K ~ 2. 

Proof: Statement I => Statement 2 
Let S1, i = I , . . . , K , beanon-decreasingpanitionof S. where each S, hasn, > Oelements. 
Suppose that PL; = [x1.1, .... x1 .• , ] is a valid list from S1• Let PL be the concatenation of 
these PL, 's. that is. 

PL = [xu . . .. , X1.111 , X2.1, . .. , X2.n~· XK .l· · · ·• XK.nc ]. 

Then, PL eAPL(S. K). We now show that PL eAVL(S). and henceAPL(S. K ) C AVL(S) . 
For any 1 5 i 5 K , and any I 5 j 5 ll ;, let S1.i = lx,,, : j 5 k 5 11 ; ). Since PLK is a valid 

I 
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list for SK, sel(xK . f· SK .;) is true for all j , I 5 j 5 IlK. If se/(x;.J. S;. 1 U <U~.; + 1 S,)) is 
true for all I 5 i < K , and I 5 j 5 n,, then PL is a valid list for Sand is in AVL(S). It is 
easy to show that s,.J is an ini tial segment of s,.J u <U~=t+l S,) , since S, , i = I. ... ' K . 
is a non-decreasing partition, and S1_1 is a subset of S;. PL, is a valid list for S,, so. 

se/(x;.1 , S,_ 1) is true. By Statement I and Lemma 3.1, sel(x1•1• S;.J U <U~., + 1 S,)) is true. 
That is. PL eAVL(S), and APL(S. K) c AVL(S). 

For any VL e AVL(S), we now show that VL e APL(S, K ), and then AVL(S) C 
APL(S, K) . Let PL = [x1, x2, . .. , x.] be a valid list in AVL(S). By the definition of 
valid lists and Statement I, x, is a minimal element of the set {x1 : i 5 j 5 n) . That 
is. x, -< x, is not true when k > t . VL can be panitioned into K non-empty sublists 
VL,, i = I , .. . , K (since S can be panitioned into K non-empty subsets). Let S1 be the 
set containing all elements of VL,. Since x,-< x, is not true when k > t , S1. S2 .. .. . SK 
is a non-decreasing panition of S, and VL, is a valid list for S1 by Statement I. The con­
catenation of these VL, 's is VL, i.e., VL can be generated by Algorithm I in paralle l. So. 
VL e APL(S. K). Thus, AVL(S) C APL(S, K ), and hence AVL(S) = APL(S, K ). 

Statement 2 => Statement I 
We assume Statement I is false, and prove Statement 2 must be fal se too. By Lemma 3.1. 
we have the following cases. 

Case/. For someS c D. there is an clement x E S. such that sel(x, S) is true, but for any 
initial segment S1 containing x. sel(x . S,) is not true. 
Suppose 51 , j = I, . . . , K is a non-decreasing partition of S. No matter x E S1 or not. 
scl(:c . sl) is not true. Thill IS , no valid list PLI of s1 will have X as rhc first element. and 

no PL E APL(S, K) will have .r as the firs t element. However, since sel(x. S) is true. 
there is a valid list in AVL(S) with x as the first clement. Then , A PL(S . K) !/. AVL(S ) 
andAPL(S . K) #AVL(S). 

Case 2. For someS C D, there is an element .r E S. such that sel(x, S) is not true. but 
sel(x. S,) is true for an mitial segment S, of S . 

SupposeS is partitioned into S, and S- S, for K = 2. This is a non-decreasing panition 
of S. Since sel(x. S1) 1s true. there is a valid list for S1 has x as the first e lement. and there 
is a PL E APL(S, K ) with x as the firs t element. However, sel(x, S) is not true. and no 
valid list in AVL(S) will have x as the first e lement. That IS, APL(S, K ) rt. AVL(S) and 
APL(S. K ) -1 AVL(S). 0 

Assume that VL = [.r 1, .r2 • . .. , .r.) is a valid list for S. and u, = B(x;) for each i. Let 

where I 5 k 1 < k2 < n . Let f be a function from R x R toR. and ti = f-back(VLB,) . 
j = I . 2. 3. The fu ncuon f is called an associative function w.r.t. valid lists, if for any 
valid list VL. and any r1. 12 and 1, defined above. /(/(11, r2) , IJ) = /(II. /(12,IJ)) . If 
f(/( u, u), w) = f(u. f ( v. w)) for any u , v. wi n R. f is called an associa tive function 
on R. It is clear from the definitions that an associative function on R is associative w.r.t. 
valid lists. A function which is not associative on R. but associative w.r.t. valid lists will 
be given in Section 3.2.2 when we discuss the transitive closure problem. 
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Recall that a list VL = [x1, x2, ••. , x,] is a valid list for a set {x, : I ~ i ~ n I if sel(x;S;) 
is true for each i, where S1 = {x1 : i ~ j ~ n] . For a sublist VL = [xf, Xi+t , .. . , x,], 
where 1 ~ i ~ k ~ n, there is a subset {x1 : i ~ j ~ k). The sublist may or may not be a 
valid list for the subset depending on the predicate stl(x. S). 

Lemma 3.3. Assume that any sublist of a valid list is a valid list for the correspond­
ing subset. Let VL = [x1, x2, •. . , x,] be a valid list, u; = B(x;) for each i, and VLB = 
[u 1, u2, ••• , u,]. Iff is associative w.r.t. valid lists. then all f-ttrms on VLB are equal. 

Proof: The proof is by induction on n. and we assume n ~ 3. When n = 3, VL = 
[x , ' x,, x~ ). VLB = [u,' u,, IIJ) . There are only tWO f-ttrmson VLB. i.e .. T, = f(f(u I ' u,), 
111) and T, = f (u, . j (u,. II J) ). Let tj = f-back(u,) = u,, j =I. 2, 3. Then. T, = f(f (r, . 
t2 ) , t3 ) and T2 = [(1 1, [(12 , t3 )). Since f is associative w.r.t. valid lists, we have T, = T2 

by the definition. 
Assume that the statement is true for any valid list with no more than n elements. where 

n ~ 3. Let VL = [x1, x2 , ••• , x,, x,+,] be a valid list of n +I elements, and VLB = 
[u 1, u 2 , .. . • u., u, + ,], where u1 = B(x1) . Suppose T is an f -term on VLB. We now prove 
T = f-back(VL B). By definition. T = f(T1, T2), where T, is an f-tum on [u,, ... , u,] , 

T2 is an f-terrn on VLB = [ut+l· ... ·"•+,) and I ~ k ~ n. 
If k = I. then T, = II" and T, is an f -term on the last n elements of VLB . Since a sublist 

of VL is still valid. T2 = f -back([ li t+ 1, • . •• u, + 1]) by induction hypothesis. Then. 

T = f(T1• T2) = f(u 1• f -back([ut+ 1 •••. · " •+ ,])) = f-back(VLB). 

If k > I. then both T1 and T, are f -terms on lists with no more than n elements. Since 
a sublist of VL is still a valid list. we have the following by induction hypothesis: 

T, = f-back([u,, . ... u,J) = f (u ,. f-back ([u, , .... u,))) ; 

T, = f-back([llt+t . .. ., ll, +tll· 

Let VLB 1 = [u,), VLB2 = [u,, ... ,u,]. VLB3 = [ll t+to ··· · "• + ,] , and t1 =[-back 
(VLB1), j = I. 2, 3. Then . T1 = f(r 1. r2) and T2 = r3• Since f is associative w.r.t. 
valid lists. and any sublist of a valid list is still val id. we have the following by induction 
hypothesis: 

T f(T, . T2) = f(f(r,. t,). r,) = [(I , . [(I,, r,)) 

= f(u,, f -back([u,, .... "•+,))) = f-back(VLB). 0 

Theorem 3.1. Algorithm I is computationally equivalent to Program I if and o11ly if 
P 1. There exists a partial order -< on S for a11y finite subset S of D such tltar for a11y .r E S. 

sel(x. S) is true if and only if x is a minimal element of S with respect to -<. 
P2. Th e mergi11g [u11ction f is associative w.r.t. valid lists. 

Proof: SUFACIENT. 
From PI and Lemma 3.2. for a given S, we have AVL(S) = APL(S, K) for any K ~ 2. 
Suppose that VL e AVL(S) , and generated by both Program I and Algorithm I. Let the cor­
responding answer be Wand P W respectively. We now prove that W = PW. It is easy to 
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verify that when PI holds, any sublist of a valid list is also a valid list forthe corresponding 
subset. Let VLB be the list obtained from VL by applying 8 to all elements of VL. Then . 
as mentioned before, W = f -back(VLB), and PW is an f -tum on VLB. Since VL is valid. 
from P2 and Lemma 3.3. PW = W . 

NECESSITY. 

Case I . PI is not true. 
From Lemma 3.2, when PI is not true. AVL(S) 'f. APL(S, K ) for some K ~ 2, and then 
Algorithm I is not computationally equivalent to Program I. 

Case 2. PI is true, but P2 is false . 
Since PI is true, wehave AVL(S) = APL(S . K ) for any K ~ 2. Let VL = [.r 1, x2, ... , .r,] 
be a valid list. and partitioned into VL1 = [x,, . ... Xt, ], VL, = [ut,+l · .... u,1]. VL, = 
[11 t1+t· .. . , u, ], where I ~ kt < k, < n . Let VLBt = [u, , .... u, , ). VLB, = [ut,+t• 
u,, ], VL83 =[ut,+l · .. ··"• )· whereu , = B(x,). Lett1 = f-back(VL81 ). j = 1.2.3. 
Assume f(t 1, f(t2, t3)) 'f. f(f(t 1, t2). t3). Since VL is a valid list, by PI , x1 is a minimal 
element of the set {x1 : i ~ j ~ n] . So. x1 -< x1 is not true if j > i . Let s1 be the 
set containing all elements of VL1 , j = I, 2. 3. Then. S1, S2 and S3 is a non-decreasing 
partition. and VL1 is a valid list from S1. Thus, for the setS containing all elements 
in VL, the partition S1, S2 and S, may be produced by Algorithm I for K = 3. When 
VL is generated this way. PW will be either f(/ 1• J(t2• r,)) or f(f(/ 1• r2 ). r,) . But the 
two f -rums are not equal. That is. there is an execution of Algorithm I. the list VL is 
generated, but the answer P W is not the same as f-back(VLB), the answer given hy 
Program I when VL is generated. Thus. Algortthm I is not computationally equivalent 
to Program I. 0 

Corollary 3.1. Algorithm I is computationally equivalmt to Program I if 
PI and 
P2'. The merging function f is associative 011 R. 

Proof: This is because an associative function is associative w.r.t. valid lists. 0 

The property PI guarantees AVL(S ) = APL(S . K ), while P2 or P2' ensures the same 
answer from a valid list. In Pl. the statement that .r is a mi11imal elemelll can be replaced 
by that r is a maximal element. Then. the parallel algorithm will be modified accordingly. 
For the sake of simplicity. we use minimal only. 

3. 2. Examples 

Many examples are given in [40) to illustrate the generality of the PADAC Scheme. Among 
them are computing the similarity values between a given query and a set of documents 
that have terms in common with the given query in information retrieval [32], sorting. 
computing the transitive closure, the same generation problem and the UP-FLAT-DOWN 
prohlem in deductive database [5 . 23, 35) . In this subsection. we discuss how to apply the 
PADAC Scheme to parallelize the sorting problem and the transitive closure problem. The 
performance issue will be discussed in the next section. 
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3.2. 1. Sorting. We consider sorting based on compare-exchange operations. Assume a 
set of numbers are to be sorted into non-decreasing order. The sorting problem can be 
formalized into Program I in two ways by defining the predicate sel(x. S) and hence the 
predicate mrg(u. WS, W) in different ways. In both cases, the predicate sg/(x,u) maps an 
element x into a singleton list 11 = [x ]. 

Using the trivial order. When the predicate sel(x, S) arbitrarily picks an element from S, 
the predicatemrg(u, W S. W) represents a function which combines two sorted lists into one. 
In the sequential execution, 11 = [x], and the merging function just inserts x into a proper 
position in WS to get W. When those predicates are defined as above, Program I completes 
the sorting task and represents the sequential algorithm of sorting by insertion. The partial 
order -< can be defined as the trivial partial order. i.e .. any two different elements are not 
ordered and any element is a minimal element. So. the predicate sel(x. S) selects a minimal 
element x from S. It is clear that the merging function is associative. By Corollary 3.1. the 
sorting problem can be solved by the PADAC Scheme. In the dividing phase, the input set is 
arbitrarily partitioned into K subset of about the same size, since the trivial partial order is 
used. After each processor finishes sorting a subset. these sorted lists are merged together 
to form a sorted list for the input set. This parallel algorithm for sorting is a parallel version 
of merge-sorting. 

Using the partial order <. When the the predicate se/(x. S) selects the smallest number 
x from S. the predicate mrg(u. W S. W) represents the concatenation function, that is. it 
appends two lists into one. In this case, Program I represents the sequential algori thm of 
sorting by selecting. The partial order-< is the arithmetic comparison predicate <. Then. 
the predicate sel(x. S) selects a minimal element x from S with respect to-<. The merging 
!unction is clearly associative. Thus. by Corollary 3.1. the sorti ng problem can be solved 
by the PADAC Scheme using a different partial order. The dividing of the input set is not 
trivial any more. Suppose K - I different numbers Xt are chosen and sorted. Then the 
divtding of Scan be done by comparing each element inS with these K- I chosen numbers 
by binary search. After each subset is sorted, the concatenation of these sorted subsets is 
the sorted set. This parallel algorithm for sorting is a parallel version of Quicksorting. 

3.2.2. The transitive closure. A binary relationE represents a directed graph C = ( V, E), 
where the set of vertices V contains all elements in E and the set of edges is the relation E. 
Let A be the transi tive closure of E (or C). Then a tuple (x. y) is in A if and only if there 
is a path from x toy in C [35]. Computing the transitive closure of C clearly represents an 
operation from one set to produce another set. The base relation E is the input set and the 
relation A is the answer. 

In the following we assume Cis acyclic. i.e .. C has no directed cycles. Some algorithms 
for computing the transitive closure of acyclic graphs have been proposed [2, 14. 22. 41] . 

Using an order based on the reachabi/ity. Assume G is acyclic, a partial order -< can be 
defined on E as follows: 
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For any pair of edges (x,. y,) and (x,, y,), (x,, y,) -< (.r2 , y2) if and only if there 
is a path from y, to .r2 including the case y1 = x2 (a path of length 0). 

Then, an edge (.r, y) is a minimal element iff x has no in-coming edges. We assume that 
sel((.r. y). E) takes a minimal element from E. When E = [(x. y)). the transitive closure 
of E. A, is the same as E, i.e .. A = E. So, the predicate sgl ((x. y). u) maps a single tuple 
(x. y) to a si ngleton set {(.r. y)). The merging function [ 1 is defined as 

where# represents the compos ition operation (e.g., {(x. y)}#{(y, z)) = {(x. z))). 
Let (xo. Yo) be a minimal edge, and AS be the transitive closure of ES, the subset of E 

without (xo. yo) . For any tuple (x. y) in A, the transi tive closure of E, there is a path from 
x to y in C. Let (x, z) be the first edge on the path. If (x. z) # (x0 , y0 ), i.e .. either x # x0 

or z #yo. then all edges in the path are in ES and (x, y) is in AS, since (xo. y0) is a minimal 
edge and xo has no in-coming edges. If x = x0 and z = y0 , i.e .. (x0 , y0 ) is the first edge in 
the path, then either Yo = y. or there is a path from y0 to y with all edges in ES, and (y0 , y) 
is in AS. As a result . (.r, y) is in {(x0 , y0 )}#AS. Thus, the transitive closure of E can be 
computed as A= f 1({(.ro. y0 )). AS). 

Then. Program I computes the transitive closure of E. The operation # is associative 
[35]. and the set union and join clearly satisfy the distributive law, that is, 

and 

Now we show that /1 is associative. i.e .. for any three binary relati ons A 1• A2 and AJ. 
ft(A,. j',(A, , A~))= f,(f,(A,, A,). A~}. 

[,(A 1• [ 1(A 2 • A ~)) 

=At U [t(A ,. A ~) U (A,#f, (A,, A~)) 

=A, U (A, U A ~ U (A,#A~}} U (A 1#(A, U A~ U (A 2#A~))) 

=A, U A, U A~ U (A,#A~} U (A 1#A,} U (A 1 #A~) U (A 1#A 2#A 1} 

j,(j,(A,, A,), A,) 

=It (A,, A,) u A~ u <ft(A,. A,}#Al) 

= (A, U A, U (A,#A,)) U A ~ U ((A 1 U A2 U (A 1#A 2})#A3) 

=At U A, U (A,#A,} U A, U (At#A~) U (A,#A~) U (A,#A,#A,} 

=/t(A 1• j,(A,. A,)) 

Since both PI and P2' arc satisfied. by Corollary 3.1. the transitive closure of E can be 
computed in parallel by Algorithm 1. 

In PHASE I. E is partitioned non-decrea.•ingly with respect to-< into£,. i = 1. 2 .. . . . K . 
The in-degree c/;.(x) of node .r is maintained for each x, and an edge (x. y) is a minunal 
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edge if and only if d,.(x) = 0. When such a minimal edge is selected, the value of d;,(y ) 
should be decremented by I. As a result, all out-going edges from y become minimal edges 
if d,.(y) = 0 after the decrementing. Suppose K divides IE[. Then, the first lEI/Kedges 
taken are in E 1,the second [E [/ K edges taken are in E2. and soon. 

In PHASE 2. each processor evaluates independently Program I with one subset E; as 
the input set to produce A;, the transi tive closure of E, . (As mentioned before, any program 
for transitive closure can be executed.) 

In PHASE 3,the function ft is applied to the list [At. A2 •... , AK )to compute A. Notice 
that ft will be applied K- I times and only one join is required each time. This is a benefit 
from the non-decreasing partition using the partial order -< , since join is a very expensive, 
if not the most expensive, operation tn database systems. 

A merging function not associmive but associative w.r.t. valid lists. If the trivial order 
is used, then any tuple in Eisa minimal edge. The predicate sgl((x, y). u) represents the 
same mapping as mentioned earlier and maps a single tuple (x, y) to a singleton set {(x , y)). 
Let an edge (x0 , y0) be taken from E. and the transitive closure of the remaining subset be 
AS. As mentioned before, a tuple (x. y) is in the transitive closure if and only if there is a 
path from x to y in G . Assume (x. y) e A. but it is not (xo. Yo) and not in AS either. Then, 
(x. y) is in A iff there is a path from x to y inG containing edge (xo. )'o). Thus (x. y) is in 
((.ro. y0 ))#AS if (x0 , y0) is the first edge on the path (sox = xo): (x. y) is in AS#((xo. yo)) 
if (x0 , y0 ) is the last edge on the edge (so y = yo): and (x. y) is in AS#((xo. )'oll#AS if 
(x0 • y0 ) is in the middle of the path. Let a merging function h be defined as follows; 

Then . A can he computed by /2(((xo. )'o)J. AS). But function /2 is not associat ive w.r.l. 
valid lists. For example. let E = {( 1. 2). (2. 3). (3. 4), (4, 5). (5. 6)). The list [(I. 2). (4 , 5). 
(2, 3). (5. 6). (3. 4)[ is a valid list with respect to the trivial order. Let VL, = [( 1, 2). (4, 5)). 
VL1 = [(2. 3). (5. 6)] and VL~ = [(3. 4)). Then, VL8 1 = [( ( 1. 2)). ((4, 5) )) . VLB2 = 
[((2. 3)). (5. 6))) and VLB, = [[(3. 4))]. Let A, be the transitive closure for the subgraph 
represented by VL,. i.e .. A ; = f-back(VLB,) fori = I. 2, 3. It can be verified that the 
tuples (2. 5) and (2. 6) arc in /2(At. /2( A2. A,)), but not in /2(f2(A 1• A2l. A,). So. his 
not associative with respective to valid lists when the trivial order is used. By Theorem 3.1. 
the transitive closure can not be parallclized by the PADAC Scheme with /2 and the trivial 
order. 

Since h is not associative with respective to valid lists when the trivial order is used. it 
is not an associative function. However. it is associative with respect to valid lists when the 
partial order -< as defined earlier is used. Suppose that VL = [e,. e2 . . . .. e,) is a valid list 
for E according to -<, where each e, is an edge. Let VL be partitioned into two sub lists VL , 
and V~ . Let E, be the corresponding set of edges in VL,, and A, the transitive closure of 
E1 fori = I. 2. Then E 1 and E2 form a non-decreasing partition of E with respect to -<. 
nnd there is no path in G with an edge in E2 followed by an edge in E 1• So, the expression 
A2#A 1 U A2#A 1#A 2 will produce nothing, and h becomes /1 which has been identified as 
an associative function with respect to valid lists when the partial order ~ is used. 
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4. Performance analysis 

In this section we analyze the performance of the PADAC Scheme. In particular, we discuss 
the speedup attained by the PADAC Scheme. The speedup of a parallel algorithm is the 
ratio of the response time of a fastest sequential algorithm to that of the parallel algorithm. 
That is, 

RT,(n) 
Spudup = ---­

RTp(ll , K) 

where RT,(n ) is the response time of a fastest sequential algorithm on an input of size 11 
and RTp(ll , K) is the response time of the parallel algorithm on K processors on an input 
of size 11 . (The subscripts s and p stand for u quenrial and parallel respectively.) 

When Speedup is of the same order as K . that is, when Speedup = C x K for some 
constant 0 < C ::; I, we say that the parallel algorithm achieves linear speedup [25). Linear 
speedup is the best a parallel algorithm can achieve when compared to a fastest sequential 
algorithm. This is because that we can use a si ngle processor to simulate a parallel algorithm 
on K processors and hence have a sequential algorithm of time K x RT1,(11. K ). In other 
words. if a super-linear speedup is obtained, then we will have a sequential algorithm of 
time less than RT,(11 ) . Notice that, RT,(n) should be the response time of a fastest sequential 
algorithm. It is often misleading and of limited value to compare a parallel algorithm to a 
specific sequential algorithm (instead of a fastest sequential algorithm). For more details. 
see. e.g .. [25]. 

The divide-and-conqu~r method has been applied. either explicitly or implicitly. to par­
allclizc many problems. Some experiments showed very slow or even zero speedup [31. 
33[. and no theoret tcal foundation has been given to explain the results. In this section. we 
will give a necessary and sufficient condition as to when the PADAC Schcm< can achieve 
hnear speedup. Our analysts shows that linear speedup is not possible unless the problem 
is of time complexity 0(11log< 11) for a constant c 2: 0. Our theory explains well those 
previous cxperimemal results. 

.J. /. Notations and assumptions 

We discuss the time complexity and focus on the leading term of each expression to s implify 
the analysis. Some Greek letters arc used to represent the orders of magnitude in such a 
way that. for example. n• may represent 0(n) and ,. r may represent 0(nlog n). In such a 
case. y represents a higher order of complexity than a, and this is denoted as a < y. Some 
conventional notations are used in the analysis: 

~:.Cn) = O(g2(n)) means that g,(n) is bounded above by 82(n), i.e .. there arc constants c 
and no such that 8t (n ) 5 cg2(n ) for all 11 2: n0 ; 

!lt(ll) = El(112(11)) means 8t(11 ) and 82(11 ) arc of the same order of magnitude. i.e .. both 
g,(ll) = O(g2(n)) and 112(11 ) = 0(81(n)); 

111 (11 ) = o(g2(n )) means that 111 (n) is of lower order of magnitude than that of g2(n). i.e .. 
for any constant c > 0. there is a constant no such that g 1 (11 ) < cg2(n) for al111 ?_ n0 . 
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We assume a shared-nothing architecture. Each si te has its own main memory and 
secondary memory (disks). The input size 11 can be very large, while the number of 
processors K is limited . So, it is assumed that11 » K. The main memory at a site is not 
large enough to keep all data needed. even for a subproblem with a smaller input size after 
partitioning. Thus, UO time becomes the dominating factor in the response time and it is 
chosen as the performance metric. 

The output (or the answer) W may be a single element or a set. When W is a set, we 
assume that the output size is a function of the input size, i.e., IWI = A ISla for some 
constant A > 0 and some order of magnitude a. When W is a single element. 1 WI = I , 
i.e., A= I and a =0. Then,inany case,we have iWI = AISia. 

To reach workload balance, the input set S should be partitioned into K subsets of the 
same size X· But, in practice, this is not guaranteed, or the partitioning procedure requires 
more time than we want to spend. So, we assume that any subset obtained in the dividing 
phase has size between l:x and '"x for some constant J. > I. 

We assume that the merging phase can be carried out in log K rounds in parallel according 
to a binary tree. The merging function f takes two inputs, say W 1 and W2, to produce 
an output denoted wu, and the time complexity T1 of the merging function should be a 
function of I W 'I and 1 W2 1. In our analysis, each W i, j = I, 2, is an intermediate result 
produced from an original input subset Si of size n i and, by our assumption, has a size An~ , 

and W '-2 is the result produced from the original input subset S1 U S2 of size 11 = 11 1 + 11 2. 

Then the time complexity of the merge function is a function of the sizes of the two original 
subsets. n1 and n2. i.e .. 

As indicated above, each subset obtained in the dividing phase has a size between J: X 
and A'i" for some constant A > I. As a consequence. the difference among 11 1• n1 and n is 
up to a constant factor. and T1 can be expressed as a function of 11 after replacing both 11 1 
and 112 by 11. i.e .. 

So we assume that the comp lexity of the merging function is a function of the original 
input size. Let Tr(n) = 8(nP) for some order of magnitude {J. Then, {J 2: a , since the 
output of the merge function has a size Anj. 

The parallel execution need not be synchronized. To simplify the analysis. we assume 
the execution is synchronized, i..e .. after the partitioniDlJ is done, all processors begin local 
processing at the same time. and each round of the merging phase starts after the previous 
round is finished at all involved sites. To compute the response time of the parallel scheme. 
we will take the maximum time for each phase and each round at all involved sites. This 
will worsen the response time of the parallel scheme and serves as a lower bound for our 
computed speedup . 

We have chosen UO cost as the performance metric, because UO operations are much 
slower than main memory CPU operations. In parallel execution, communication across 
different processors is required . To send a package X from one site to another costs at least 
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as much as to read X at the receiving site. Thus. the communication cost is not negligible 
and should be part of the response time of a parallel execution. The time needed to transfer 
a package between two sites is assumed to be proportional to the size of the package. that 
is. it takes time C,,.IXI . where C,,. is a constant. to send a package X between two sites. 

All assumptions we are making in this section are 

* The input size is much larger than the number of available processors, i.e., 11 » K. 
* The output size is a function of the input size, and 1 WI = A ISla. 
• Each subset obtained in the dividing phase of the parallel scheme has a size between J: X 

and A -;f for some constant A. 
• The merging phase takes log K rounds, and the execution is sy nchronized. 
• The time complexity of the merging function is a function of the original input size, i.e., 

T1 = T1(n). 

• The communication cost is proportional to the size of the package transferred. 

Some notations used in the analysis are listed in the foll owi ng. 

n: the input size. i.e .. lSI= n; 
K : the number of available processors; 
!..: the skew constant. i.e .. each subset obtained in the dividing phase has a size between 

±t and At. and A> 1: 
a: the order of magnitude of the output size in the original input size. i.e .. IWI = A ISla: 
{3: the order of magnitude of the merging function in the original input size. i.e .. Tf (n) = 

El(nP); 

Y: the order of magnitude of the time complexity of a fastest sequential algorithm (see the 
next sub-section). 

.J.2. The speedup of the PADAC scheme 

Let the time complexity of a fastest sequential algorithm be RT, (n) = 8{11Y) = 8(n '' 

log'' n) for some constants C t and c2. As mentioned earlier, the UO time is the domi­
nating factor in the response time when processing large amount of data and it is chosen as 
the pcrformam:c metric in our analysis. It is clear that y ~ I , si nce the entire input set has 
to be read into the main memory at least once. This implies c1 2: 1. For the parallel PADAC 
Scheme, the communication cost should be included in addition to the UO cost at each site. 
Let Div(n. K) be the time for the dividing phase including the UO time in partitioning the 
input set and the communication time in sending the partitioned input subsets to their des­
ttnation si tes. Proc(n . K) the UO time for the local processing phase. and Merge(11 . K) the 
ttmc for the merging phase mcluding the communication time to send intermediate results 
across site and the UO time at those merging sites. Then. the response time of the PADAC 
Scheme is 

RT1,(n. K ) = Div(n. K) + Proc(n, K) + Merge(n. K) . 
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The mergmg phase of the PADAC Scheme consislS of log K ro unds, and the lime for the 
mergmg phase depends o n the communication cost and the cost for executing the merging 
fu nctum. As discussed earlier, the time complexi ty of the merging function is a function 
of the original input size. i.e .. T1 (n) = E!(nP) . The fo llowing lemma says that the time 
for the merging phase is of the same order o f magnitude as the complexity o f the merging 
functiOn. that is, Merge(n , K) = E!( T1(n )). 

Lemma 4.1. When {3 > 0. the merging phase of the PADAC Scheme has the same time 
complexity as the merging function. that is, Merge(n . K ) = E!(Tf(n)). 

Proof: The merging phase consists o f log K rounds. When the merging function is applied 
in the las t round. the entire orig inal input is involved. That is, 

0(n) = O(Merge(n. K )). 

In the following , we prove Merge(n. K ) = 0 (T1(n )). In each round. some intermediate 
resu lts are sent o ut from sending si tes, then the merg ing function f is applied to two 
intermediate results at each merging site to produce a larger intermediate result. So the 
time for the ith round consists of two pariS, CM;(n , K ), the time for communication, and 
MG, (n . K) , the time for merging. The execution is assumed to be sy nchro nized. As a 
consequence, CM, should be taken as that needed to trans fer a largest possible intermediate 
resu lt from all sending si tes, and MG, as the max imum time needed to execute the merging 

functio n a t a ll merging sites. Then. 

losK 

Mcrg e(n . K ) = L ICM,(n. K ) +MG,(n . K ) ). 

·~' 

In the local process ing phase. one processor has a subset of size at most >--;f and produces 
an mtermediate result of size at most A(>.-;f )0

. In the first round of the merging phase. 
eac h send ing si te sends out a package of size at most A(>--;f )"; at each merging s ite. the 
merging function takes two argumenlS and produces an intermediate result of size at most 
A('--;f x 2)", which is the output produced from an input subset of size at most (>--;f x 2) . In 
genera L in the ith round. each sending site sends a package of size at most A(>--;f x 2'- 1)" : 
at a merg ing s ite. the merging function f is applied to produce an intermediate result fo r 
an a n g inal input subset of size at most -'i x 2' . Then the time for the merg ing function 
for the ith round is 

TI>e com munication time fo r the i th round is 

CM,(n. K ) =a( A(-'~ x z•-'J) = O (MG, (n . K )). 

/ 
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smce the communication cost is proportional to the size of the package sent out and fJ ~ a. 
The total time for the mergi ng phase is 

log X 

Merge(n. K ) = L (CM,(n. K) + MG;(n, K )) ,_, 

Since K ?. 2, the factor K;;' is less than I and can be dropped from the above expressions. 
The magnitude order {3 is treated as a constant number in the above, but the result holds 
when it is of the form n c' loge' n for some constants C1 ?. I and C2. The log K rounds do 

not contribute a higher order complexity, because the summation f,; :L~,K (2p); is bo unded 

by a constant 2;~ 1 • 0 

Un like the merging phase. the time complex ity for the d1viding phase may involve both 
the 1npu1 size n and the number of processors K . Let the 11me complexity of the dividing 
pha>c be 8(n'' K"). We prove in the following lemma that1fthe div1ding phase takes lime 
more than E!( RT;t> ). 1hcn the PADAC Scheme can not reach linear speedup. The value of 
K i, assumed to be limited. and the value o f n may increase to arh itraril y large. So, both 
n•·· an"d n' arc the dom inating factor in the corresponding expression. That is. if y1 < y. 
then n'' K" < C'(nY K - 1) fo r constant C' when n is large. and vice versa. We say that 
, r• K" is of a higher order o f magnitude than nY K - 1 if y1 > y or y1 = y and l"l > -I. 

Lemma 4.2. The PADAC Scheme cannot reoch li11ear speedup if the dividi11g phase has 
time complexity of a higher order tha11 8( RT;/"1). 

Proof: 

RT,(n) RT,(11 ) n Y 
Speedup= ---- < ---- = ---. 

RTp(ll. K ) Div(11. K ) n'' K n 

If Yl > y. then the speedup will approach zero when n is increas ing and it is Impossible 
10 reach linear speedup. Otherwise. y1 = y and y2 > - I. Then the speedup is 

I 
Speedup< K r: = K -rz = o( K ). 

Since-)':! < I. linear speedup can not be reached. 0 
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For example. let RT,(n ) = 8(nlogn) and Oiv(n. K ) = 8(~). Since log K = o( K ). 

we have i' = o( 10~ K ), and Div(n. K ) has a higher order of magnitude than RT;t>. The 
speedup will be at most log K. 

RT,(n) RT, (n) nlogn 
Speed11p = ---- < ---- = - 1- = log K . 

RTp(n , K ) Oiv(n, K ) ~ 

The lime complexi ty of a fastest sequential algorithm is RT,(n ) = 8(n') = 8(11 '., 
log'' 11) for some constant c1 ?; I. The merging function in the PADAC Scheme has time 
complexity T1(n) = 8(nP). The following lemma uncovers the fact that if c1 > I then 
there exists no efficient merge function, i.e .. for any merge function f , T1(n ) is of at leas t 
the same lime complexity as RT, (11 ). 

Lemma 4.3. Assume RT, (n) = 8(n') 
mergingfimction f , Tr(n ) = Q(RT, (n)). 

8(11 '' log"' n) and c1 > I. Then, for any 

Proof: The fact that c1 > I implies the fastest sequential algorithm has higher than linear 
time complexi ty, i.e .. RT, (n ) = 8(nY) andy > I. We prove that if there exists a merging 
functi on f of time complexity T1(n ) = 8(nP) = o(n'), then there is a sequential algori thm 
of time complexi ty o(RT.,(n )) . which is faster than the given fastest algorithm. 

We apply the divide-and-conquer method to construct such a faster sequential algorithm. 
We first son the input set S in a non-decreasi ng order. then compute a result u1 from each 
, ingle element x, inS. and finally apply the merging function f according loa binary tree 
to compute the output W for S (see figure I). 

Since the input size 11 is very large. external sorting is required. The UO lime becomes the 
uommatmg factor in sorting and the CPU processing time can be ignored. For a uniprocessor 
svstem. when the main memory size is moderate (contains al least as many pages as the 
>quare root of the to tal number of pages). the sorting can be completed in linear UO cost 
(m two passes) by serial Fastson [33) . However. as we will see later (Section 3.3). when 
11 ts extremely large (or the main memory is not large enough). the UO cost will still be 
O(nlogn). So. the sorting cost is of8(11lOg 11 ) = o( RT,(n)), since RT,(n ) = 8(nY) and 
y > I. 

1ml(r t) lrg(rt) 

•ml(r,) lrg(r,) 

r 1.B 

.. --------' 
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The entire input set can not reside in the main memory. The pages of S are loaded into 
the main memory in the sorted order. The pages residing in the main memory at the same 
lime form a fragment. and we assume lhal lhe computation of the partial result from each 
fragment can be carried out in the main memory. Each fragment corresponds loa subtree of 
the merging tree from the bouom level. Within such a subtree. the UO cost o f the mergi ng 
function can be ignored, s ince no UO cost is involved. In the following we assume lhal the 
cost of merging data within a fragment is the same as 8((111 + 112)P) and we will obtain an 
upper bound of the time complexity for the constructed a lgorithm. 

Without loss of generality, assume 11 = 1L for some integer L . Then the binary mergi ng 
tree has L + I levels. We label these levels as in figure I . At level 0. a resu lt u, is produced 
from x, for each element x, inS. To produce u, from x, takes constant time. since only a 

single clement x1 is involved. Then, it lakes time O(n) to produce all single results"' from 
x,. inc luding the UO cost. 

At level/ > 0. there are g., internal nodes. AI each such node, the merging function f 
takes two intermediate results 10 produce a larger intermediate result Each input lo the 
merging function represents the resull for an original input subset of size 21- 1. and the 
output of the merging function represents the result for an original input subset of size 2'. 
Then. the cost of the merging functional a node of level/ is T1(11

) = 8((21)P). Then. the 
total cost for all internal nodes in the entire merging tree is 

When fJ = I. the sum is 11 x L = nlogn = o(RT,(n) ), si nce RT,(n ) = El(n'' log'' 11 ) 

and c 1 > I. When fJ "# I. the sum is 

II X - I = ll X ----:-,:-___ _ (
(:!~-1 )L+I _ 1 ) 2P-I x (2L)P-I _ 2~-1 

2~ - 1 - I 2~- 1 - I 
2#-1 11P-I _ 2# - 1 

=II X 2/f-\- I 

When fJ > I. the sum IS 2'-i;>_:;-•• = B(nP) = u(RT,,(n )). When fJ < ! , the sum IS 
1'-~':.1;~;'•' = O (n ) = u(RT,(n )), since RT,(n ) = 8(n'' log'' 11 ) and c 1 > I. In any case. 
the cost for mergi ng all nodes in the binary tree is of o(RT,(n)) . 

Tile IO ta! cost of the constructed algorit hm is the sum of the cost for sorting. the cost 
for l:Omputing all u, (the cost for level 0 in the merging tree) and the cost for mcrgmg 

all Internal nodes 111 the tree. Since each pari in the sum is of o(RT,,(n) ). the constructed 
algoruhm has lime complexity o(RT, (n )) . 0 

The proof for Lemma 4 .3 looks similar to that for Lemma 4. 1. But there are F nodes at 
leve l/ and the costs at all these nodes are taken in account. So the result can nol be denved 
directly from Lemma 4. 1 . 

Theorem -t l . Assume the fastest sequelllial alf,:orithm has time complexity RT,(n) 
(-)(n' logt: n )fnr some consta11ts c: 1 ~ I ami c2. Th en the PADAC Schem,• achh•\·es /wear 
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speedup if and only if 
(I) RT,(n) = 0(n loge' 11) . i.e .. c , = I; 

(2) The dividing phase rakes time at rnasr O(RT;/"'). i.e .. Div(n, K ) = 0 (" 
1"{' • ); and 

(3) The mergingfimcrion has rime complexity of a lower order of magnitude than RT,(n ). 

i.e .. T1 (n) = 0(11 loge: n). 

Proof: SUFFICIENCY. 
The merging function has time complexity T1 (n) = 0(nfl). If fJ = 0 (e.g .. the merging 
function is trivial such as list concatenation), then the total time for the merging phase will 
be log K. As mentioned earlier, K is assumed to be fixed and 11 can increase to very large. 
Thus. log K = o(RT,(n )). since RT,(n) = 0(11') and y ;:: I. Otherwise, /3 > 0 and by 
Lemma 4.1, the merging phase takes time 6(T1 (11)); by condition 3. T,(n) = o(RT,(11)). 

In any case. we have Merg<(n . K) = o(RT,(11)). 
Let RT,(11) = 6(C11log"' 11) (i.e., the leading term has a coefficient C). Since K is 

assumed to be fixed while n is increasing, log (.<fl) = Iog11 +log.<- log K = 0(1ogn). 
Then the processing phase takes time 

Let Oiv(11. K) = 0( £r11 log"' 11) (i.e .. the leading term has a coefficient CJ,). Thus. the 
response time of the PADAC Scheme is 

RT1,(11. K ) = Div(11, K) + Proc(11. K ) + Merge(11. K ) 

= o(C;, 11 loge: 11) + e(~.< 11 Iog01 11) + a(11 log'' 11) 

(
C.Jn· +C>- . ) = e --K--n logq n . 

The PADAC Scheme reaches linear speedup. because 

RT:,(n ) 
Speedup = =-=---"-'-::-:­

RTr(n . K) 

Cnlog"' 11 = __ c __ x K . 

Cmr;Cl·IIIOgcl " CJ;" + CA 

NECESS ITY. 
By Lemma 4.2. condition (2) is necessary. If condition ( I ) is not true, then Ct > I. 

By Lemma 4.3. T1 (11) = r!(RT_,(11 )) and condition (3) is not true. The merging function 
has time complexity T1 (11) = 0(11fl), and the sequential algorithm has time complexity 
RT, (11) = 8(11 '), where y ?:: I. If (3) does not hold. then fJ ?:: y > 0. By Lemma 4.1. 
Mer11e(11. K) = r!(T1(11)). Let Merge(11, K ) = 0(C,., 11fl) and RT,(11) = 0(C11'). Then. 
the speedup is 

RT,(11) RT, (11) C11' C 
Speedup= ---- < = -- < -

RT
1
,(11. K) Merge(11. K ) C,., 11~ - C,., . 
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Thus the speedup is limited by a constant. si nce /3 ?:: y. and hence linear speedup can 
not be reached. o 

4.3. An example 

We use the sorting problem to illustrate the performance of the PADAC Scheme and discuss 
the problem in single-input-and-single-output and multi-input-and-multi-output environ­
ments. The transitive closure problem will be discussed in Section 6 with the generalized 
PADAC Scheme. 

It has been realized that the 110 cost is the dominating factor in the response time for 
external sorting. Some algorithms have been proposed to reduce the 110 cost in both 
sequential and parallel sorting e .g. [6, 7. 10, 16. 33,]. Most of them assume that the main 
memory has a moderate size (contains at least as many pages as the square root of the total 
number of pages of the input set). and external sorting can be completed with linear 110 
cost (in two passes). The requirement of a moderate main memory size is equivalent to 
that the mput size n is large but not too large. As will be seen after this paragraph. when 
11 is extremely large relative to the main memory size. the 110 cost for sorting will sti ll 
be O(n Iogn). Our analysis shows that , under the assumption that sequential sorting can 
be done in linear 110 cost, linear speedup is not possible in the single-input-single-output 
environment. This agrees with previous results. e.g .. in [ 16. 31, 33] . However. under the 
asymptot ic assumption that sequen tial sorting takes O(n log n) 110 cost. linearspcedup can 
he achieved in the single-input-si ngle-output environment. It seems that this has not been 
observed before. In the multi-input-and-multi-output environments. linear speedup can be 
achieved under either assumptions. 

Assume that the main memory can contain M pages of data. Then 2M pages of dma 
on the average can be sorted by replacement selection (based on a tournament or hcapsort 
algorithm (24}). Assume that one page contai ns P elements. Let N =];.i .e .. the mput set 

occup1es N pages. Suppose that R = {f;. Then the input set can be sorted by replacement 
selection into R runs. After all R runs have been sorted . a sorted set can be computed hy 
combining these sorted runs. If there are m most M runs. i.e .. R ::; M. then the first page 
of each run IS loaded into the mam memory and replacement selectiOn can again be used to 
merge all the R runs. When the first page of a run becomes empty. the second page of that 
run is loaded in. and so on. The sorted set is written out one page at a time. In this way. the 
ent ire input set is scanned twice: one pass for sorting all R runs and one pass for merging 
all sorted runs. This is how serial Fastsort (33! sorts in linear 110 time. 

When M < R ::; M 2
• the original R runs are divided into M larger runs. each of them 

has at most M origi nal runs and can be sorted in two passes. After that . the M large runs 
can be merged together in the same way. The entire input set will be scanned three times. 
In general. if M'-' < R::; M'. the entire input set need to be scanned k times before 11 IS 

completely sorted. The UO cost is 

N " "log, R = 11log, 
2

M = 11 log, 
2

PM = 11(log,"- log, 2PM). 

Both P and Marc constants. Thus the UO cost for sorting is still 0(11 log11l when 11 i' 
I!Xtrcmcly large. 
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Single-input-and-single-output environment. If the partial order < is used, then a non­
decreasing partiuoning will generate K subsets such that X ~ y if X E S;. y E sl and i < j. 
We need K - I different numbers x,; then an element x of S is in subset S; if and only 
if x,_, < x ~ X; (xo and XK are the possible smallest and largest numbers respectively). 
We call these K - I numbers partitioning numbers. A set of partitioning numbers can 
be obtained easi ly if it is known that the elements uniformly distributed within a range. 
Otherwise, it can be computed by sampling (e.g., [16. 18, 19]), or pre-computation. In any 
case, the cost for computing these partitioning numbers can be ignored. After the K - 1 
partitioning numbers are determined and sorted, an element can be decided to belong to a 
unique subsetS; by binary search. The entire input set has to be scanned at the starting site, 
and the dividing phase takes linear 1/0 cost, i.e. , Div(n , K) = 9(n). 

There are two cases. When the input set is extremely large, RT,(n) = O (nlogn). Then 
linear speedup will be achieved, since the merging function (concatenation) takes at most 
linear 1/0 time and Merge(n , K) = O(n) . When the main memory is moderate (or that 
the input set is large but not roo large), RT,(n) = O(n); by Lemma 4.2, linear speedup IS 

impossible. since Div(n. K) = 9(n). 
If the trivial order is used . then the merging function has linear 1/0 cost, since the two 

sorted subsets to be merged have to be scanned to accomplish the merging. The dividing 
phase takes at most linear 1/0 cost. Assume that RT,,(n) = O(n log n), linear speedup will 
be ach1eved. On the other hand. when RT,(n) = O(n), linear speedup can not be achieved 
even with the dividing cost ignored, since the last step in merging takes linear UO cost 
already. This is why some previous experiment results show very small or zero speedup 
131. 33J. 

Mnlti-inplll-and-multi-outplll environment. We assume that the partial order less titan is 
used. (If the tnv1al order 1s used . the final mergmg step has to be carried out 10 a smgle site 
and multi-output does not make any sense. ) In this case. linear speedup will be achieved 
hoth when RT,(n ) = 6(n) and when RT,,(n) = 6(n). 

The input set is in itially distributed across all K sites. but not in a non-decreasing manner. 
Let S1 be the fragment of Sat site j before sorting. Then, the elements of Sl are not sorted: 
fortwo elements x andy in two different sites, each of the three cases may be true: x < y. 
.I = .r or x > y. After sorting, the entire set is still distributed across all K sites. but in a 
non-decreasing manner. Let S, be the fragment at site k after sorting. 1l1en. all elements 
inS, arc sorted : for two different sites k 1 # k2, x ~ y if x E s ,,, y E s,, and k 1 < k2. 

After the K - I partitioning numbers are decided. each site j can partition the initial 
fragment S1 into K subsets sf according to these parutwning numbers, where Sf = Sl n 
s, = {x: x E S1 and x,_, < x ~ x,), and send Sf to site k for each k # j. The fragment 

after partition at Sitek iss, = u, ~j~K S{ After s, is sorted at s ite k for each k, the entire 
input is sorted and resides at the K si tes. 

Assume that the fragment at each site has a size about t both before and after the 
partlllOning. 1l1en. the dividing can be completed in time 0( t) at a site, including the 1/0 
cost and the communication cost. That is. Div(11 , K ) = O (tl. The merging function IS 

trivial {~..:onca tcnation of two sorted sets) and the cost can be ignored, since the output is not 
required to be sent to a si ngle site. That is. r ,(n) = 0(1). Then by Theorem 4. 1.1inear 
speedup will be achieved for either RT,(11) = 0(11) or RT.,(11) = O(lllog n ). 
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5. A generalization of the PADAC scheme 

Some operations on sets need parameters. In some cases. it is convenient to consider part 
of the input set as a parameter set. This allows data duplication among different sites. The 
following Program 2 is a generalization of the basic linear recursive Program I and uses a 
parameter set Z to produce an answer W from an input setS. 

Program 2 
p((x). Z, W): -sgl(x, Z. W) . 
p (S . Z , W) : -sel(x. S) , 

dif(S, X. SS), 

sgl(x, Z , u ), 

prm(x , Z. ZS). 
p (SS. ZS. WS) . 
mrg(u, WS, W ). 

The predicate prm(x. Z, ZS) was not present in Program I. each other predicate in Pro­
gram 2 was present in Program I and has a similar meaning as in Program I. The new 
predicate prm(x, Z , ZS) is used to compute a parameter subset for the remaining input 
subset after an e lement is selected. When the input set is a sing leton. a result is produced 
by the predicate sgl(x , Z. W ). Otherwise. an element x is selected from S. and a result 
u is produced from x using the parameter set z. To produce a result from the remaining 
subset SS = S - x. a parameter subset ZS need to be computed. This is carried out by the 
predicate prm(x, Z , ZS) . After the result WS is produced from SS using ZS. the final result 
W is formed from u and IVS by the predicate mrg(u , WS, W) . 

The following Algorithm 2 is our generalized PADAC Scheme which is developed IO 

evaluate Program 2 in parallel based on the divide-a11d-conquer method. As before we 
assume that a partial order -< is defined on a given input setS. Then . in the dividing phase 
(PHASE I), the input setS is partitioned into K subsets non-decreasingly according to-< . 

In addition , a parameter subset z, need to be computed for each subsetS,. In the processing 
phase (PHASE 2). a partial result w, is produced from each subset S, with the parameter 
subset z,. Finally. the partial results arc combined to form the answer W corresponding to 
the entire input setS with the parameter set Z . 

Algorithm 2 

PHASE 1: 1l1e input setS is partitioned non-decreasingly into K non-empty subsets S,; 
the corresponding parameter sets z, arc computed. 

PHASE 2: Each processor executes indcpendemly Program 2 with S1 as the input set and 
z, as the parameter set to produce w,. 

PHASE 3: The final answer W is computed from these partial results IV, , W2, . . .. W K 

by the merging functi on. 

Algori thm 2 is similar to Algorithm 1 exccpl that a parameter subset z, need to he 
computed for each input subset S, in the dividing phase. The intenlion of non-decreasing 
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partition of the input set is that, for any input subset S,, I < k ::; K , the elements in all 
earlier subsets. i.e .. in U 1 <I <k S1, might be selected before any element in S, (and in any later 
subset) is selected in the sequential linear program, Program 2. As a result. the parameter 
subset z, for S, should be the same as that obtained in Program 2 after the elements in 
U 1 ~,., S, have been selected one by one and the predicate prm(x, Z, ZS) has been applied 
accordingly. The elements in Ul <i<k S; may be selected in different orders by the predicate 
sel(x. S) in Program 2. To guararnee that a unique parameter subset z, is to be computed 
for each input subsets., we assume that, for any input subset S1, if the elements inS; can be 
selected consecutively in different orders by the predicate sel(x, S) the parameter subset for 
the remaining input subsetS- S1 is the same. When this is true, we say that the predicate 
prm(x, ZS. Z) is order-independell/. Then, in the dividing phase of Algorithm 2, z, is to be 
computed as the parameter subset for S- Ut <i <k S1. In the next section, we will see that in 
many applications it is rather simple and straightforward to compute these parameter subsets. 

All concepts defined earlier for Program I and Algorithm 1 can be defined for Program 2 
and Algorithm 2 in the same way or with minor changes. and we can prove similar results 
regarding the computational eq11ivalence between the sequent ial Program 2 and the parallel 
Algorithm 2. 

Theorem 5.1. Ass11me th~ predicate prm(.r. ZS, Z) is order-independent. Algorithm 2 is 
compllla tionally equivalent to Program 2 if and only if 
Pl. There exists a partial order-< on any finite s11bset S of D such that fo r any .r e S. 

sel(x. S) is true if and only if x is a minimal element of S with respect to -<. 

P2. The J11nction f is associative with respect to valid lists. 

Corollary 5.1. Ass11me the predicate prm(x, ZS. Z) is order-independem. Algorithm 2 
is compwatinnally eq11ivalent to Program 2 if 
Pl. and 
P2'. The merxingfunction I is associative on R. 

6. Applications 

In (41 }. we have shown that the transitive closure problem can be parallelized by the 
generalized PAOAC Scheme. The set of vertices V is considered as the input set. while 
the set of edges E is treated as the parameter set. The partial order on V is a topological 
order (We discuss acyc lic graphs only.) The predicate sgl(.r. Z. u ) produces the descendant 
set of vertex x (i.e .. the set of all tuples (.r, y) in the transitive closure with x at the first 
position) . and requires significant computation. while the merge function is the set union 
and trievtal. Our si mulation results show that in sequential computation our algorithm is 
superior to other existing algorithms in most cases. and that in parallel computation linear 
speed up ts achieved . 

In the follow ing. we apply the generalized PADAC Scheme to the fuzzy join problem and 
show that linear speedup will also be obtained in this application . From the two examples. 
we can sec that more complicated problems can be parallelized by the generalized PADAC 

/ 
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Scheme. However, the introducing of parameter sets makes it much more difficult to analyze 
the performance of the scheme than in the case without parameter sets. 

6. 1. FIIZZ)' joins 

In a fuzzy relation [12, 29. 20. 42-44], the value of an auribute of a tuple may represent 
either a single number or an interval. For example, a relation about people may have an 
attribute AGE. A tuple with a si ngle number, say 28, as the value for the AGE attribute says 
the age of the person is 28 . A tuple with "about 35" as the value for the AGE attribute says 
that the age of the person is, for instance, between 30 and 40, which represents an interval 
[30. 40]. Such a value "about 35" is called a fuzzy number. A tuple may have another kind 
of value such as "young" for the AGE attribute. which represents. for instance, an interval 
]21. 35]. Such a value "young" is called a fuzzy label. Both fuzzy number and fuzzy label 
represent existing but uncertain in formation. An auribute is called a /ll'l.zy arrribwe if its 
domain contai ns single values as well as fuzzy numbers or/and fuzzy labels; a relation is 
called a/IIZZ)' relarion if at least one attribute is a fuzzy attribute. 

Consider the join R ""'• .8 =r 8 T. where R and T are two fuzzy relations and B is a 
common fuz.zy attribute. When B is the attribute AGE. the above join requests all pairs of 
persons. one from Rand another from T , who have the same age. Two persons can not have 
the same age if one is 28 and the other is "about 35", since "about 35" means between 30 
and 40. However two persons may have the same age if one is 28 and the other is "young". 
or one is "about 35" and the other is "young", si nce "young" means between 20 and 35. But 
we do not know for sure that they have the same age. So. unlike joins of ordinary relations. 
the condition r. B = 1.8 can only be checked with some uncertainty. si nce the join values 
may represent some uncertain mformation. We use degrees. which are numbers between 0 
and I. to muicatc the uncertainty that the join condition r.B = t . B holds. 

\Vc give some notations to define fuzzy joins formally. In general. a value in the domain 
of a fuzzy attribute represents a (finite or tnfinitc ) subset of the background domain. For 
example. AGE= 28 represents a si ngleton set (28}. "about 35" represents a set of (.r; 30 ~ 
' ::0 40} . For a tuple r of R and a tuple 1 ofT. we user. B and 1. B to denote citherthe fuzzy 
value or the corresponding subset. and r. B n t. B represents the ordinary set intersectiOn. 
Formally. the join R ""'• B=T 8 T 1s camcd out as foll ows. 

For any tuple r of R and any tuple t ofT. 

(I ) When r. B n t . B = 0, no tuple is generated from r and t. 
(2) When r. B n t . B f ill . a degree. wh1ch is a number between 0 and I is computed . and a 

tuple will be generated from rand t only when the degree is posit ive. 

We do not discuss the issue in this paper how to compute the degree and assume th~t the 
degree can be computed in constant time. Interested readers are referenced to [ 12. 42. 44] . 

To compute the join R ""'R .B=T 8 T by nested loops. we need to compare each tuple 
r e R with all tuples in T . There is analytical and experimental evidence that hashed jotn 
is the most effective method for joins nf ordinary relations. but it is unlike ly that the method 
can he applied to joins of fuzzy relations effectively. since a value may he an interval as 
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we ll as a single number. Sort-merge join is a good candidate for such joi ns. Suppose that 
both R and T are sorted according to an appropriate partial order based on the join values. 
Then, the join proceeds according to the partial order. It is possible that the join of the two 
fuzzy relations can be carried out in linear UO cost after both relations arc sorted according 
to the partial order (see performance in Section 5.4). 

Fuzzy joins are similar to " band joins" (e.g. [ 15]). In "band joins", each value of the 
joining attribute is a s imple value and represents an interval. However, all intervals for 
ditferent joining values arc of the same length. Fuzzy joins are much more general than 
"band joins", since each joining value may be an interval as well as a simple value and 
different intervals may have different le ngths. The method for computing band joins can 
not be adopted directly for fuzzy joins, while our algorithm for fuzzy joins includes band 
joms as a special case. 

6.2. Formalizing fuzzy joins by Program 2 

Let the domain of the joining attribute B be D. A value v in D may be either a single 
number or an interval. When v is an interval, we use b(v) and e(v) to de note the two 
(beginning and ending) points, i.e., v = [b(v}, e(v) ). When vis a single number, we let 
b(v) = e(v) = v. Then, each value corresponds to a pair of ordinary numbers. We define 
a linear order on D as follows. 

Definition. 

I. A linear order on D is defined as follows: for two values v1 and v2 in D. v1 -< u2 if 
b(v1) < b(u2), or b(v 1) = b(v2) and e(v,) < e(v2). For example, [2, 5] -< [3. 4] and 
[3. 4] -< [3, 5]. 

2. A partial order on R (or T) is defined as follows: for two tuples r 1 and r2, r 1 -< r2 if 
r1.8-< r2.8. 

For two values Vt and v2 in D, we use v1 :::0 v2 fo r Vt -< v2 or Vt = v2. For two tuples r1 

and ' 2· we use r1 ~ r2 for r 1 -< r2 or r1 .B = r1.8 . 

Definitum. 

3. For any tuplcr in R, sml(r ) is the smallest value v of D that appears in T and r. B n v # 0, 
and lrg (r) is the largest value v of D that appears in T and r.B n v # 0. 

4. The range of a tuple r of R is a subset of"T defined by Rng(r) = [t : t e T and 
sml(r) ::=' t. B :::0 lrg(r ) }. 

For two tuples of R, r1 -< r2, we have sml(r,) :::0 sml(r2), but it is possible that/rg(r2) -< 
lrg(r,) (see fi gure I). This is because that r1 -< r2 implies b(r,) ::<: b(r2), but it does not 
imply e(r ,) ::<: e(r2). 

A tuple t of T can not join with a tuple r of R if r . 8 n t .8 = 0. By the definition of 
sml(r) and lrg(r) , a tuple tofT can not join with a tuple r of R ift is not in Rng(r ), i.e .. 
either t .B -< sml(r) or lrg(r )-< t.B. However, it is possible that t can not join with r even 
t is in Rng(r ) (see figure 2). 

- - ~/~ . 
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lrg(r ) 

1.8 

r.B 

FiJ:ure 2. .fm/(r) -< 1.8 -< lrg(r). but r. B n r.B = "'· 

We now formalize the join of two fuzzy relations R l><lR .B=T.B T by Program 2. Relation 
R is the original input se t, relation T is the original parameter set, and the final answer 
W is the set containing all tuples generated in the join. (Each tuple in W has a degree of 
satisfaction greater than zero.) The predicate sel(r, R) selects a minimal tuple r from R 
according to the partial order -< on R . The predicate sgl(r, T, 11 ) carries outthe join between 
tuple r and all tuples o fT in Rng(r ) and can be written as sgl(r, Rng(r ), u}, and 11 is the set 
containing all tuples generated from the join between rand Rng(r ). The remaining input 
subsetRS is obtained by the predicatedif(R, r. RS) by removing from R the selected tuple r. 
The parameter set TS for RS is obtai ned by the predicate prm(r, T , TS) by removing from T 
those tuples that are not in Rng(r ) and precede the tuples in Rng(r ). These removed tuples 
will not be used for the join with any later tuples of R, si nce r is a minimal tuple of Rand 
sm/(r) ::=' sml(r ' ) for any tuple r' in the remaining subset RS. The predicate mrg(u , WS, W) 

forms the fi nal answer W by taking the union of 11 and WS. Then the following program 
computes the join of two fuzzy re lations. 

Program FuzzyJoin 
p([rl. T, W): -sgl(r, Rng(r), W). 
fl( R , T , W) : - sel(r. R ). 

dif(R, r. RS). 
sgl(r , Rng(r) , 11). 

prm(r, T. TS), 
p(RS, TS. WS), 
mrg(u . WS, W). 

It can be seen that Program FuzzyJoin performs the join of two fuzzy relations in a 
sort-merge manner. 

6.3. Parallelizingfuzzy joins by the generalized PADA C scheme 

A partial order -< is defined on the input set R, the predicate sel(r, R) selects a minimal 
tuple from R. and the predicate mrg(u , WS. W) represents the set union which is apparently 
associative. By Theorem 5.1. the join of two fuzzy relati ons can be parallclized by the 
generalized PADAC Scheme. 

We discuss the para llel scheme in a multi-input and multi-output environment. Initially, 
both R and T arc distributed across the K sites, but not according to the part ial order -<. 
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The partition of R is carried out the same way as in sorting, and in processing phase each 
subset of R will be sorted. We discuss the dividing ofT in the following. We use R 1 (T 1 ) 

to denote the subset of R (T) at site j before re-distribution, and R, (T,) the subset of R 
(T} at site k after. 

After K - I partitioning tuples for R are determined, R is non-decreasingly partitioned 
into K subsets Rt and a tuple r of R is in Rt if Xt-l -< r ~ x,. I :5 k :5 K , where x0 and xK 
are the poss ible minimal and maximal tuples of R respectively. For each tuple r in a subset 
R., the tuples ofT in Rng(r) are needed to perform the join. The parameter set T, for R, 
will be U, •• , Rng(r). Let b(k) = min{b(r.B) : r E R,} and e(k) = max{e(r.B) : r E 

R, }. Then each subset R, of R determines an interval [b(k), e(k)] and the corresponding 
parameter subset Tt = (1 e T: t.Bn[b(k) ,e(k)] # 0}. We call these K intervals dividing 
intervals forT. Notice that the K intervals [b(k), e(k)J may intersect each other, and those 
subsets T, may intersect too. Even the intervals [b(k), e(k)J do not intersect, there sti ll may 
be some overlap between different subsets Tt . 

The computation of the dividing intervals forT and the dividing ofT can also be carried 
out in parallel at all si tes. Let Rf = R' n Rt. i.e., R{ is the set of tuples that will be sent 

from site j to site k. Let bi(k) = min(b(r.B) : r E R{} and ei(k) = max{e(r.B) : r E Ri} . 
At each site j, the values of b' (k) and e' (k) for all k are computed when R' is partitioned 
into Ri, and they are sent to all other sites after the partllioning of R1 is completed. Then at 
each site k, the K dividing intervals [b(k). e(k)} forT arc computed by b(k) = min(b' (k) : 
I :5 j :5 K } and e(k) = max(e'(k): I :5 j :5 K} . The same K intervals [b(k). e(k)} arc 
computed at all sites, because each site has the same b1 (k) and e1 (k). Let Ti be defi ned in 

the same way as for R{ Then at site j, T t is divided into K subsets Ti- A tuple t of T1 is in 

T/ if t.B n [b(k). e(k)J # 0. The K dividing intervals can also be sorted according to the 
It near order-< on the domain D. and a binaty search can be employed on the K intervals. 
After a tuple is determined to belong to T/, the precediog and following intervals should 
be cxammed si nce the tuple may be in multiple intervals. 

We give a parallel algorithm derived from our PADAC Scheme in the multi -i nput-and· 
multi-output environment. Step ( I) through (6) form the dividing phase of the PADAC 
Scheme. Step (7) is the processing phase of the PADAC Scheme. and the merging phase of 
the PADAC Scheme is not shown in the algorithm. Some Steps. say Step 2 and 3, can be 
interleaved. 

A lgorithm MIMO-fuuy join 

( I) Decide K - I partitioning tuples for R. 
(2) At each site j. partition R' into K subsets Ri according to the partitioning tuples 

decided m ( I): compute b' (k} and e1 (k) for all k. 
(3) At each site j, send Rf to site k for each k: send all b' (k) and ei (k) to all sites k # j . 
(4) At each sttc j. compute the same K dividing intervals [b(k). (e(k)] fot T by 

h(k} = min[b'(k): I :5 j :5 K} and e(k) = max[e1 (k): I :5 j :5 K}. 
(5) At each sue j. divide T' into K subsets T/ according to the K dividing intervals 

decided in (4). 
(6) At each site j. send Ti to site k for each k. 
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(7) At each sitek. perform the sort-mergejoi n between R, and T, , where R, = U 1 ~1 ~K Ri 

and Tt = Ul!:J!:K Tj · 

6.4. Performance 

After both R and Tare sorted. the merge join can be completed in linear UO cost (see next 
paragraph). If we assume that both Rand Tare vety large and that sorting takes O(IIIOgll) 
IIOcost, then the join of two fuzzy relations needs 0(11 1 Jog 11 1 + 11 2 Jog11,) IIOcost. where 
n 1 = [R[ and n2 = [T [. 111at is, the sorting cost is the dominating factor. Then, fuzzy 
join can be parallelized with linear speedup under this assumption, since sorting can be 
parallclized by the PADAC Scheme with linear speedu p in this case (Section 3.3). In the 
following, we assume that the main memory has a moderate size. or both Rand T are large 
but not too large. As explained earlier in Section 3.3, sorti ng takes linear 110 cost. Thus, the 
JOin of two fuzzy relations can be carried out in linear UO time in sequential computation. 
That is. RT, = 0 (111 + 11 2). 

To perform the merge-join in linear UO cost. the tuples of R are loaded into the main 
mcmoty o ne page at a time in the sorted order. Let CR be the current page of R in the 
memory, and b(CR) = mi11{b(r.B) : r E CR} and e(CR) = mux{e(r.B) : r E CR}. 1l1e 
value o f b(CR) is equal to b(r' .B). where r' is the first (minimal) tuple of CR: the value 
of e( CR) is obtai ned by scanning all tuples in CR and can be computed when R is being 
;orted. The tuples ofT that may join with any tuples in CR are in U,eCR Rng(r ). A tuple 
I ofT precedes the tuples in u,.CRRilg(r) if e(t.B) < b(CR): it follows the tuples in 
U,«'R R11g(r) if b(t.B) > e(CR). The pages ofT arc loaded into the main memory one 
h) one m the <ortcd order. If a page ofT contatns o nly tuples that precede those tuples in 

U.ecR RIIJ:(r). then the page is useless m current as well as tn I mer JOinmg and should be 
d1~Cardcd . Th1s IS bec~lUSC sm/(r1) ~ sml(r2 ) 1f r1 ~ r2. If a page contains some tuples 111 

the 'ct U,ecR R11g(r). then the JOin IS petformed and the page slays in the main memory. 
<tncc some tuples in the page may join with some tuples in the next page of R. If a page 
contains one tuple that follows the tuples tn U,ecR R11g( r ). then no later pages ofT ate 
needed for the page CR of R and should not be loaded in . Then. the join w.r.t. the current 
page of R is completed. and several pages of T may res ide in the mam memoty. For the 
next current page of R. the values of b(CR) and e(CR) arc modified he fore the joining. The 
pages ofT in the main memoty arc exammcd first . and the first few pages may be discarded 
unmediately if they contain only tuples preceding the tuples in U,ecR R11g(r). Some later 
pages ofT may need to be loaded in. It ts clear that the join can he compieted in linear 110 
cost as long as the main memoty can keep o ne page of Rand the maximal number of pages 
ofT that cover U,eCR R11g(r) for any single page o f R. 

We discuss parallel execution under assumptions similar to that in Section 3. We assume 
that each site k does not have enough main mcmoty to keep the entire su hset R, or T,. and the 
1/0 cost is again the dominating factor for local processing at each site. The communication 
cost s ho uld he included. We assume that there is no contention in the network. e.g .. there 
is a link between any pair of si tes. and the communication cost at a site is proportional to 
the amount of data sent out from and received at that site. The cost in the merging phase is 
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ignored, that is, the produced tuples are scauered across all sites and not required to send to a 
single site. For example, another operation, say another join, is to be performed in parallel. 
For ordinary (non-fuzzy) relations, many parallel joining algorithms are evaluated under a 
uniform distribution assumption. e.g .. [34, 36] . The following are similar assumptions for 
fuzzy relations 

• Both relations R and T are initially distributed evenly across the K sites. 
• A set of K - 1 partitioning tuples that partitions R into K subsets of about the same size 

exists or can be decided efficiently. 
• The K dividing intervals [b(k). (e)] divide T into K subsets of about the same size. 
• The interval of each tuple ofT is relative small w.r.t . the length of those dividing intervals 

[ (k). e(k)] so that one tuple of T will appear in at most two subsets ofT. This is usually 
true for fuzzy applications. 

Under these assumptions, the cost of the dividing phase (Step 1 through 6 in Algorithm 
MIMO-FuzzyJoin) is Div(n 1 , n2, K) = 0<7>· 

Step (I): The set of partitioning tuples for R can be computed by sampling; the sampling 
cost is small and can be ignored. since the sample size is usually small. Alternatively. 
the set of partitioning tuples for R can be pee-computed and updated periodically. Thus. 
the cost of the pre-computation can be amortized over many queries. 

Step (2): the 1/0 cost is 0 ( !Jt) at a site ; 
Step (3): the communication cost is O(!jt) at a site: 
Step (4): the computation of the K intervals does not incur extra UO cost: 
Step (5): the UO cost is O ('Jt) at a site: 
Step (6): the communication cost is O('Jt) at a site. 

For the processing phase (Step (7)), each site has an input subset R, of size O(!jt) and 
a parameter subset T, of size 0( !Jt ). and the merge-join can be carried out in parallel with 
O(T) UO cost at a site provided the main memory at each site has a moderate size. Thus. 
the tota l UO cost at each site is 0<7>. and Algorithm MIMO-FuzzyJoin will achieve 
li near speedup. 

7. Summary 

A linear recursive program is used to formalize problems to be parallelized by the divide­
and-conquer method. A necessary and sufficient condition which characterizes problems 
solvable by the divide-and-conquer method in parallel is obtained. and a parallel scheme 
is developed. The performance of the parallel scheme is analyzed. and a necessary and 
sufficient condition is obtained as to when linear speedup can be achieved . A generalization 
of the PADAC Scheme is developed . and a real application, the fuzzy join problem. is 
paralleli zed by the generalized PADAC Scheme with linear speedup. 

i 
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