Py

Distributed and Parallel Databases 5. 405438 (1997)
© 1997 Kluwer Academic Publishers. Manuf: d in The Netherland

A Parallel Scheme Using the Divide-
and-Conquer Method

QI YANG AND SON DAO
Inf ion Science Lab y. Hughes R h Laby ies, Malibu, CA 90265

CLEMENT YU
Department of EECS, University of lllinois ar Chicago. Chicago, IL 60607

NAPHTALI RISHE
Florida International University

Received May 1, 1995; Accepted March 18, 1997

Recommended by: Ahmed Elmagarmid

Abstract. A parallel scheme using the divide-and-conquer method is developed. This partitions the input set
of a problem into subsets, computes a partial result from each subset. and finally employs a merging function to
obtain the final answer. Based on a linear p as a tool for lism, a precise 1

for problems to be p ized by the divide-and-conquer method is obtained. The performance of the parallel
scheme is analyzed, and a necessary and sufficient condition to achieve linear speedup is obtained. The parallel
scheme is lized to include and a real ap the fuzzy jown problem, is discussed in detail
using the generalized scheme.

1. Introduction

The Divide-and-Conquer method is a common approach in designing efficient algorithms
[3. 4, 8]. Intuitively, in this approach, a problem is decomposed into several subproblems of
smaller sizes, each of which is similar or identical to the original problem; a partial solution
is produced for each subproblem; then, the solution to the original problem is obtained by
merging the partial solutions to the subproblems. An example is sorting, where the problem
of sorting a set of elements can be decomposed into several subproblems, each involving
the sorting of a disjoint subset of the original set, and a sorted list for the original set is
obtained by combining the sorted lists for those subsets.

The Divide-and-Conquer method is a natural approach in parallel computing [11, 25,
37]. Itis especially desirable in data intensive applications, e.g., in database sy and

information retrieval systems. In LDL [28], which is a programming language for deductive
databases, the divide-and-conquer method has been recognized as an important construct
for potential parallel processing. In [17], it is pointed out that partitioned parallelism of-
fers much better opportunities for speedup and scaleup than pipelined parallelism. and it




406 YANGET AL.

is recommended to use the divide-and-conquer method for exploiting partitioned paral-
lelism. In [30], a new data model SVP is presented to capture parallelism in bulk data
processing, both pipelined parallelism and partitioned parallelism, and divide-and-conquer
mappings are formalized in the form of transducers. However, two issues have not been
covered in these articles: one is the characterization of problems that can be parallelized
by the divide-and-conquer method; another is the performance analysis for such parallel
processing.

We focus on the two issues and apply the method to the fuzzy join problem. A linear
recursive program is used to formalize problems to be parallelized. This program represents
operations on sets and can be shown to include many problems in the database area and in
other disciplines. We present a PArallel Divide-And-Conquer Scheme, or PADAC Scheme
in short, for the linear recursive program. By proving a necessary and sufficient condition,
we obtain a precise characterization for a problem to be parallelized by the divide-and-
conquer method.

We analyze the performance of the PADAC Scheme. Linear speedup is the best a parallel
algorithm can achieve when compared to a fastest sequential algorithm. We give a necessary
and sufficient condition when the PADAC Scheme can achieve linear speedup. The result is
a little surprising. Assume that a problem has time complexity O (n*' log® n). Then linear
speedup is possible only when ¢; = 1. For a problem of higher order complexity, i.e., when
¢ > 1, linear speedup cannot be achieved.

A generalization of the linear recursive program and the corresponding PADAC Scheme
is also obtained. In this way, the divide-and-conquer method is applied to operations on
sets with parameters, and data duplication is allowed among different processors. Some
examples have shown the advantage of the generalized PADAC Scheme. We will discuss the
application of this generalized PADAC Scheme to the fuzzy join problem: linear speedup
1s demonstrated.

The rest of the paper is organized as follows. The PADAC Scheme is formally defined
in Section 2, and the characterization is discussed in Section 3. The performance of the
PADAC Scheme is analyzed in Section 4. In Section 5, the generalization of the PADAC
Scheme is discussed. In Section 6, we apply the generalized PADAC Scheme to solve the
fuzzy join problem.

2. The PADAC scheme
2.1. A linear recursive program

We assume that a given problem can be considered as an operation on an input set S to
produce an answer W. Operations on sets are very common in database systems and other
disciplines. For example, every database query language has some aggregate functions,
which produce some values from a large number of tuples (27, 35]. Many other prob-
lems such as computing transitive closure and processing a join can also be considered as
operations on sets. In logic programming, a predicate can be interpreted as a procedure
[26]. In LDL (28], many operations on sets such as sorting are defined by logic programs.

A
/

/

/
‘

A o nis e e

THE DIVIDE-AND-CONQUER METHOD 407

We assume that a given operation on sets can be evaluated by the following linear recursive
program.

Program 1
ri o plx}, W) : —sgl(x, W).
rn p(S.W) :—sel(x, S),
dif(S, x. SS).
p(SS, WS),
sgl(x, u),

mrg(u, WS, W).

The predicate sg/(x, u) represents a procedure that produces a result « from a single
element x (sg/ stands for single); the predicate sel(x, S) represents a procedure that selects
an element x from a given set S (sel stands for select); the predicate dif(S, x, SS) represents
a procedure that computes the subset SS of § by removing the element x from S (dif stands
for difference); the predicate mrg(u, WS, W) represents a procedure that merges u and WS
to produce W (mrg stands for merge). In the following, we will use predicate and procedure
interchangeably.

The predicate p(S, W) represents the operation on sets to be evaluated, where S and W
represent the input set and the answer, respectively. Rule r; says that when the input set is
singleton, i.e., when § = {x}, the answer W is obtained by sgi/(x, W). Rule r; says that,
in the general case, an element x is chosen from the input set S by sel(x, S) a result u is
produced from the selected element x by sg/(x, u). the operation p is carried out recursively
on the remaining subset SS to produce a partial result WS by p(SS, WS), and the final answer
W is produced from « and WS through mrg(u. WS, W).

We point out here that Program | is actually a program scheme. For an operation
on sets, after the specifications of those predicates are determined and the corresponding
codes are written, Program | becomes a concrete program to evaluate the operation. Our
intention is to construct a systematic approach for evaluating operations on sets in parallel
using the Divide-and-Conquer Method. This would be especially beneficial for ordinary
programmers who are accustomed to sequential programs but would like to have their
programs parallelized.

Many operations involving sets can be defined in the form of Program 1. A query to a
database can also be considered as an operation on a set (all tuples in the database involved).
We will discuss two examples in Section 3.2: sorting and computing the transitive closure.
More examples can be found in [40] including computing the similarity values between
documents in information retrieval [32], the same generation problem, and the UP-FLAT-
DOWN problem in deductive database [5. 23, 35].

To describe the execution semantics of Program 1, we introduce the following notations.
Let D and R be two domains. We assume that the input set S is a finite subset of D, and the
answer W is an element of R. The elements of D and R can be either simple values, e.g..
numbers, or complex values, e.g.. tuples, records, and even sets. For example, in sorting
a set of records (with respect to a numerical field), the domain D is the set of all records
of the record type, an input set S is a finite set of records, an answer W is a sorted list




408 YANG ET AL.

of records in S, and the domain R is the set of all sorted lists of records. The predicate
sgl(x, u) represents a mapping B which transforms a single element x in the input domain
D to u = B(x) in the output range R; the predicate mrg(u, WS, W) represents a merging
function f which combines the partial results u and WS to form the answer W, and is
defined as from R x R to R.

During an execution of Program 1, rule r; is called recursively. Each time it is called, an
element x is chosen by the predicate sel(x, S). Let x; be the element chosen for the ith call,
and x, the last element left. When only x, is left, rule r, is applied, and an element u, € R
is produced by the predicate sg/(x, u). Then, , is returned to the last call to r,. An element
Up—y is produced from x,—y, f(un-y, u,) is computed by mrg(u, WS, W) and returned to
the previous call to rule r,. This process continues uatil the final answer is computed.

A list VL = [x, x3, ..., X,] with all elements taken from domain D is a valid list for
the set {x; : 1 <i < n} with respect to the predicate sel(x, S) if sel(x;, §;) is true for each
i, where §; = {x; : i < k < n}. The predicate sel(x, S) is used only when S has two
or more el For co i we that sel(x, {x}) is always true for any x.
Conceptually, during an execution of Program 1, a valid list is generated first from the input
set through the predicate sel(x, S).

Let L be a list with all elements taken from domain R and f a binary function on R. We
define f-back(L) with respect to f as the result by applying f backward on L. That is

f-back([uy]) = u,, and
[-back([uy, ua, ..., u,)) = f(u,, f-back([us, ..., u,])), whenn > 1.

For example, f-back([uy, us, uz,us)) = fuy, f(uz, f(us, us))). Assume that, in an
execution of Program 1, a valid list VL = [x;, x, ..., x,] is generated from S. Let u; =
B(x;) foreachi,and VLB = [k, uy, ..., u,). The element w, is returned from rule ry; from
the last call to the recursive rule ry, f(un—1, un) = f-back([u,—y, u,]) is returned; and so
on. The final answer W is f-back(VLB). The execution of the linear recursive program is
sequential, and the execution semantics can be described as follows:

A valid list VL = [x. x5, ..., x,] is generated from the input set § through the
predicate sel(x, S);

VL is converted into VLB = (uy, uy, ..., u,] by the mapping B;

The final answer W = f-back(VLB).

2.2. The PADAC scheme

Our PADAC Scheme is developed to evaluate Program 1 on a shared-nothing architecture
with K processors for some constant K > 2. That is, each processor has its own main
memory and secondary memory, and communication is accomplished in some way, say, by
a bus or via a network. The number of processors or sites, K, is usually limited in practice,
especially in comparison with the input data size. Most research that is devoted to developing
parallel methods in database environment is carried out under such an assumption [1, 9, 13,
17, 21, 34, 38, 39].

THE DIVIDE-AND-CONQUER METHOD 409

The PADAC Scheme has three phases: dividing phase, processing phase, and merging
phase. In the dividing phase, we require that S be partitioned into K non-empty subsets S, .
So, no element appears in multiple subsets. We assume that some rule has been specified
such that for any set S € D a partial order < can be established on S. The partial order
< is required to be defined on the given set S, not necessarily on the entire domain D.
For example, in sorting a set of numbers, the rule may be the comparison of numbers and
the partial order is <, the arithmetic predicate less than. That is, x; < x; if and only if
x; < x;. On the other hand, in sorting a set of records with respect to a numerical field nf,
the rule may be the comparison of the values of nf and x; < x; if and only if nf; < nf,.
In both cases, the partial order < can be defined on the entire input domain. In computing
the transitive closure of a directed acyclic graph G, the rule may be specified according
to reachability, and the partial order < can be defined as follows. For any pair of edges
(x1, y1) and (x2, y2), (x1, y1) < (x2, y2) if and only if there is a path from y, to x; in the
graph G. In this case, the partial order is associated with the input set, and not defined on
the background domain.

An el xof Sisa ! (or maximal) element of S, if S has no other element
y such that y < x (or x < y); two different elements x and y are incomparable if neither
x < ynory < x is true; for any finite set S, there is a minimal (and a maximal) element:
a subset §; C § is called an (proper) initial segment of S, if S; # @, S — S; # @, and
forany x € §;, any y € S — S, y < x is not true. A partial order in which any two
different elements are not ordered is called the trivial partial order. That is, any element is
a minimal (and maximal) element, any two different elements are incomparable, and any
proper subset is an initial segment.

The partition of the input set S in our PADAC Scheme is done according to the partial
order < defined on S. The condition enforced is

(*) Foranyx € S, andany y € §;, y < xisnottrueif i < j,i.c.. noelement
from a later subset can be smaller than any element in any preceding subset.

Such a partition is called a non-decreasing partition. A non-increasing partition could be
defined similarly. But, to simplify the discussion, we use non-decreasing partitions only.

We assume that all non-decreasing partitions for a given S may be generated when
different partitions are possible. That is, we only require condition (*) be enforced, but do
not specify a fixed way in partitioning the input set. In most cases, S should be partitioned
equally such that each processor processes about the same amount of data.

In the processing phase, we require that the original Program 1 be evaluated at each site
with one subset §; as input to produce a partial answer W;. This is carried out independently
without communicating with any other processors. So, the original problem is decomposed
into K identical problems. In an implementation, any other program for the same problem
can be employed to compute W; at each site. That is, Program 1 is used only for the purpose
of formalization and need not be used for execution.

In the merging phase, we require that the merging function f represented by mrg(u. WS,
W) in Program 1 be applied to those W;'s to form the final answer. The merging phase
can also be carried out in parallel. There are different ways to apply f to those W,'s.
To address this issue clearly, we introduce the notation of f-ferms in the following. For




410 YANG ET AL.

a given list [uy, ua, ..., u,], a sublist is a list of the form [u;, ;41 w42, ..., ux], where
| <i <k < n. That is, a sublist contains some consecutive elements of the original list.
Assume that f is a function from R x R to R, and each u; is in R. An f-term on a list is
defined inductively (but informally in logic) as follows:

f-term([u)]) = uy, and
f-term([uy, ua, ..., un)) = f(f-term((uy, ...
where 1<k <n.

\ 4n)),

Jugl), f-term([ug4y, ...

When n > 1, there are more than one way to form an f-term by choosing different values
for k in the above expression. In any case, an f-ferm on a list represents an element in R.
To compute an f-term on a list L with n > 1 elements, L is partitioned into two sublists
L, and L,, and the result is

f-term(L) = f(f-term(L,), f-term(L,)).

The f-back(L) defined in Section 2.1 is an f-term on L by dividing L in a special way.
Although different f-rerms on a list can be formed by dividing the list differently, the
order of the elements in the list is not changed, and f is applied n — 1 times on a list of
n elements. For example, f(f(uy,u2), f(u3, us)) and f(uy, f(uz, f(us, us))) are two
different f-rerms on the list [u,, u3, 3, u3). To compute f(uy, f(uz, f(u3,uy))), which
is the f-back on the list, the function f is applied three times, and the computation is
sequential. For f(f(uy, u2), f(u3,us)), f is applied also three times, but the two f-rerms
f(uy, uz) and f(u3, us) can be computed in parallel.

Different f-rerms on the list [W;, W,, ..., W] represent different ways to combine
those partial answers. Assume K is a power of 2, one way to combine those W;'s in parallel
is to combine f(W;, W;,,) for all odd i's first, and then combine those merged results in
a similar way. However, we do not specify a chosen way to combine those W;'s, and only
require that any two f-terms on a list be the same. That is, the final answer W is an f-term
on the list [W,, W, ..., W], but how f is applied to two adjacent f-terms (with the order
of W,’s in the list unchanged) will not affect the final answer. This implies parallel execution
in the merging phase and gives some flexibility in implementation. Our PADAC Scheme
is represented by the following Algorithm 1, which reflects all these criteria on a parallel
evaluation of Program 1.

Algorithm 1

PHASE 1: § is partitioned non-decreasingly into K non-empty subsets §;;

PHASE 2: Each processor executes independently Program | with §; as the input to
produce W;;

PHASE 3: An f-term on the list [W;, W5, ..., W] is computed as the final answer.
During an execution of Algorithm 1, § is non-decreasingly partitioned into K subsets S;.

Then, K processors are working in parallel: each processor evaluates Program 1, produces

a valid list PL; from S;, converts it to another list PLB; by applying the mapping B to

all elements of PL; and obtains W; = f-back(PLB;). The final answer PW (the answer

B -

411

THE DIVIDE-AND-CONQUER METHOD

generated in parallel) is an f-term on the list [W;, W5, ..., Wg]. Let PL (List generated in
Parallel) be the concatenation of the K valid lists PL, and PLB the concatenation of those
K lists PLB;. Then, PWisan f-termon PLB, since each W; = f-back(PLB;) is an f-term
on PLB;. The execution semantics of the parallel Algorithm | can be described as follows:

The input S is non-decreasingly partitioned into K non-empty subsets S;;

A valid list PL; is generated from S; and converted into PLB; for each i, or a list PL, which
is the concatenation of these PL;’s, is generated from S and converted into PLB, which is
the concatenation of these PLB;’s, in parallel;

The family of W;’s, where W, = f-back(PLB;), is computed in parallel;

The final answer PW isan f-termon[W,, Ws, ..., Wg], whichisalso computed in parallel.

3. A necessary and sufficient condition

In this section, by proving a necessary and sufficient condition, we will give a precise
characterization for a problem to be parallelized by the divide-and-conquer method.

3.1.  The characterization

We now define the concept that the parallel Algorithm 1 is computationally equivalent
to the sequential Program 1. In practical situations, multiple answers are possible for an
operation on a given input set. For example, an EMPLOYEE relation is to be sorted on
the attribute AGE, and two tuples 7, and r, represent two employees with the same age.
After the relation is sorted, we may exchange the positions of the two tuples f, and 1, and
sull get a valid answer. Let sgi(x, S) select a tuple with the smallest value on AGE. Then
the predicate sg/(x, §) has a choice of multiple elements, e.g., when § = {#;, f;}. That is,
multiple valid lists for one input set are possible. On the other hand, both the mapping B
and the merging function f are usually well defined, 1e., B(x;) = B(x;) when x; = x;,
and f(uy, uz) = f(vy, va) when u, vy and u» v>. Then, an answer is determined
by a valid list from S, i.e., one VL gives one answer, and multiple answers are possible
only when multiple valid lists exist. Thus, different executions of the sequential method
can produce nondeterministically a set of valid lists, and the corresponding set of answers.
We require different executions of the parallel method to produce nondeterministically the
same set of valid lists and the same set of answers as the sequential method.

Definition.  For a finite subset S of D, let AVL(S) be the set of all possible valid lists from
§ generated by Program I, and APL(S, K), the set of all possible PL's from S generated by
Algorithm | with K > 2 processors. Algorithm | is said to be Computationally equivalent
to Program | if

(1) For any input § and any K > 2, AVL(S) = APL(S, K): and
(2) For any VL € AVL(S), when it is generated by both Program 1 and Algorithm 1,
Algorithm | gives the same answer as Program 1.




412 YANG ET AL.

Recall that there is a partial order < defined on §; Also the input set S is very large and it
is partitioned into K non-empty subsets non-decreasingly with respect to < in PHASE 1 of
The PADAC Scheme, and all non-decreasing partitions for § may be generated in PHASE
1 of Algorithm 1.

Lemma 3.1.  The following two statements are equivalent:

L. For any finite set S C D, and any x € S, sel(x, S) is true if and only if x is a minimal
element of S.

2. For any finite set S C D, |S| > 1, any x € S, sel(x, S) is true if and only if there is an
initial segment S; of S such that x € S;, and sel(x, S,) is true.

Proof: S 1 =8 2
Suppose sel(x, S) is true, and |S| > 1. We now prove there is an initial segment S; of S
such that x € S; and sel(x, §;) is true. By Statement 1, x is a minimal element of S, i.e.,
for any element y of S, y < x is not true. Then, {x} is an initial segment of § containing
x. Let §; be any initial segment of S containing x. S; is a subset of S, and x is a minimal
element of S. So, x is a minimal element of S;. By Statement 1, sel(x, S;) is true.

Suppose there is an initial segment S; of S such that x € §; and sel(x, S;) is true. We
now prove that sel(x, S) is true. By St lL,xisa l el of §;, i.e., for any
elementy € §;, y < xisnottrue. Forany y € S —§;, y < x is not true either, since x € S;
and §; is an initial segment of S. So, x is a minimal element of S, and, by Statement |,
sel(x, S) is true.

Statement 2 = Statement |
Suppose sel(x, S) is true. We now prove by induction on 2, the number of elements of S,
that x is a minimal element of S. Whenn = 1, § = {x}, and x is a minimal element of
S. When n > 1, by Statement 2, there is an initial segment §; of S such that x € §; and
sel(x, §;) is true. By the definition of an initial segment, forany y € S = §,, y < x is
not true. Since § — §; # @, we have |S;| < |S|. By induction hypothesis, x is a minimal
element of S;. Thus, x is a minimal element of S.

Suppose x is a minimal element of S, we now prove sel(x, S) is true. Since {x} is an
initial segment of §, and sel(x, {x}) is true, sel(x, §) is true by Statement 2. u]

Lemma 3.2. The following two statements are equivalent:

1. For any finite set S C D. and any x € S, sel(x, S) is true if and only if x is a minimal
element of S.

2. AVL(S) = APL(S, K) for any S and any K > 2.

Proof: Statement | = Statement 2

LetS;, i=1,..., K, beanon-decreasing partition of §, where each §; hasn; > Oelements.
Suppose that PL; = [x;), ..., X« ] is a valid list from S;. Let PL be the concatenation of
these PL;’s, that is,

PL = [JLI.....me.xz.l ..... X2 sy XRifly 45l x,;_,,‘].

Then, PL € APL(S, K). We now show that PL € AVL(S), and hence APL(S, K) C AVL(S).
Forany | <i < K,andany | < j <nj,letS;; = {xix : j <k <n;). Since PLy isavalid

s e s e« S

THE DIVIDE-AND-CONQUER METHOD 413

list for Sk, sel(xg_ j, Sk ;) is true forall j, 1 < j < ng. If sel(x; j, S;; U (U,K,”-*,I Sp)) is
true forall 1 <i < K,and | < j < n;, then PL is a valid list for S and is in AVL(S). It is
easy to show that §; ; is an initial segment of S; ; U (U:K=.+1 S),since S;,i=1,..., K.
is a non-decreasing partition, and S; ; is a subset of §;. PL, is a valid list for S, so,
sel(x; j, S; ;) is true. By Statement 1 and Lemma 3.1, sel(x; j, Si.; U (U:K=.+| S1)) is true.
That is, PL € AVL(S), and APL(S, K) C AVL(S).

For any VL € AVL(S), we now show that VL € APL(S, K), and then AVL(S) C
APL(S, K). Let PL = [x),x2,....x,] be a valid list in AVL(S). By the definition of
valid lists and Statement 1, x; is a minimal element of the set {xj 1 i < j < n). That
IS, x; < x, is not true when k > r. VL can be partitioned into K non-empty sublists
VLi,i =1,..., K (since § can be partitioned into K non-empty subsets). Let S; be the
set containing all elements of VL,. Since x; < x, is not true whenk > 1, §,, S5, ..., Sk
is a non-decreasing partition of S, and VL, is a valid list for S; by Statement 1. The con-
catenation of these VL;'s is VL, i.e., VL can be generated by Algorithm 1 in parallel. So,
VL € APL(S, K). Thus, AVL(S) C APL(S, K), and hence AVL(S) = APL(S. K).

S 2= 8 1
We assume Statement 1 is false, and prove Statement 2 must be false too. By Lemma 3.1,
we have the following cases.

Case 1. Forsome § C D, there is an element x € S, such that sel(x, S) is true, but for any
initial segment S; containing x, sel(x. ) is not true.
Suppose S;, j = 1,..., K is a non-decreasing partition of S. No matter x € S, or not,
sel(x, 5y) is not true. That is, no valid list PL; of Sy will have x as the first element. and
no PL € APL(S, K) will have x as the first element. However, since sel(x, S) is true,
there is a valid list in AVL(S) with x as the first element. Then, APL(S, K) ¢ AVL(S)
and APL(S, K) # AVL(S).

Case 2. For some S C D, there is an clement x € S, such that sel(x, S) is not true, but
sel(x. S;) is true for an initial segment S of S.
Suppose S is partitioned into §; and § — S, for K = 2. This s anon-decreasing partition
of S. Since sel(x, S;) is true, there is a valid list for S; has x as the first element, and there
isa PL € APL(S, K) with x as the first element. However, sel(x, S) is not true, and no
valid list in AVL(S) will have x as the first element. That is, APL(S, K) ¢ AVL(S) and

APL(S, K) # AVL(S). a
Assume that VL = [x), x3, ..., x,] is a valid list for S, and «; = B(x;) for each i. Let
VLB =[uy,....ug]. VLBy=[ux 41, ... up,), and  VLBy=[uger, ..., un].

where | < ki < k; < n. Let f be a function from R x R to R, and t; = f-back(VLB,).
J = 1.2.3. The function f is called an associative function w.r.t. valid lists, if for any
valid list VL, and any 1, t; and t; defined above, f(f(1;, ). 1) = f(y, flta,13)). If
f(f(u,v),w) = f(u, f(v.w)) for any u, v, w in R, f is called an associative function
on R. Itis clear from the definitions that an associative function on R is associative w.r.t.
valid lists. A function which is not associative on R, but associative w.r.t. valid lists will
be given in Section 3.2.2 when we discuss the transitive closure problem.




414 YANG ET AL.

Recall that a list VL = [x, X2, ..., x,] isa valid list foraset {x; : | <i < n}ifsel(x;S;)
is true for each i, where §; = [x; : i < j < n}. For asublist VL = [x;, Xis1, ..., x],
where | <i <k < n, there is asubset {x; : i < j < k}. The sublist may or may not be a
valid list for the subset depending on the predicate sel(x, ).

Lemma 3.3. Assume that any sublist of a valid list is a valid list for the correspond-
ing subset. Let VL=[x,,x3, ..., x,] be a valid list, u; = B(x;) for each i, and VLB =
[y, uz, ..., ua) If f is associative w.r.. valid lists, then all f-terms on VLB are equal.

Proof: The proof is by induction on n, and we assume n > 3. Whenn = 3, VL =
[x1, X2, xa], VLB = [uy, u3, u3). Thereareonly two f-termson VLB.i.e.. Ty = f(f(u1, uz),
u3) and Ta = f(uy, f(uz, u3)). Lettj = f-back(u;) =u;, j=1,2,3. Then, Ty = f(f(t;.
1), 13) and T> = f(t;, f(t2, 13)). Since f is associative w.r.t. valid lists, we have 7} = 75

by the definition.

Assume that the statement is true for any valid list with no more than n elements, where
n > 3. Let VL = [x;,X2,....Xn, Xa+1] be a valid list of n+ 1 elements, and VLB =
[y, U3, ..., Up, ty4y], where u; = B(x;). Suppose T is an f-term on VLB. We now prove
T = f-back(VLB). By definition, T = f(T), T;), where T is an f-termon [uy, ..., u],
Tyisan f-termon VLB = [ug 41, ... Up4y]and 1 <k <n.

Ifk = 1,then T} = uy,and T; is an f-rerm on the last n elements of VLB. Since a sublist
of VL is still valid, T> = f-back([ux+1, ..., Un+11) by induction hypothesis. Then,

T = f(Ty. Ts) = fluy., f-back([us 1. ... up11)) = f-back(VLB).

If k > 1, then both T} and T; are f-terms on lists with no more than n elements. Since
a sublist of VL is still a valid list, we have the following by induction hypothesis:

T\ = f-back([uy, ... ux]) = f(uy, f-back([uz, ..., ug))):
T, = f-back([ug+1, ..., Un+1])-

Let VLB, = [u,],VLB; = [uy,..., u], VLBy = [uk41,-.-. Up41]), and t; = f-back
(VLB)), j = 1,2,3. Then, T} = f(t).12) and T = f3. Since f is associative w.r.L.
valid lists, and any sublist of a valid list is still valid, we have the following by induction
hypothesis:

T = f(T),Th) = f(f(t,n).0) = f(h. f(t2, 3))
= f(u, f-back([uz, ..., un+1])) = f-back(VLB). o

Theorem 3.1. Algorithm | is computationally equivalent to Program 1 if and only if

PL. There exists a partial order < on S for any finite subset S of D such that for any x € S,
sel(x, S) is true if and only if x is a minimal element of S with respect to <.

P2. The merging function f is associative w.r.t. valid lists.

Proof: SUFFICIENT.

From P! and Lemma 3.2, for a given S, we have AVL(S) = APL(S, K) for any K > 2.
Suppose that VL € AVL(S), and generated by both Program 1 and Algorithm 1. Let the cor-
responding answer be W and P W respectively. We now prove that W = PW. Itis easy to

PUSUUp——

THE DIVIDE-AND-CONQUER METHOD 415

verify that when P1 holds, any sublist of a valid list is also a valid list for the corresponding
subset. Let VLB be the list obtained from VL by applying B to all elements of VL. Then,
as mentioned before, W = f-back(VLB), and PW is an f-term on VLB. Since VL is valid,
from P2 and Lemma 3.3, PW = W.

NECESSITY.

Case 1. P1 is not true.
From Lemma 3.2, when P1 is not true, AVL(S) # APL(S, K) for some K > 2, and then
Algorithm | is not computationally equivalent to Program 1.

Case 2. P1 is true, but P2 is false.
Since Pl is true, we have AVL(S) =APL(S, K) forany K > 2. LetVL=[x), x3,...,. A
be a valid list, and partitioned into VL) =[xy, ..., xx ], VLa =[up, 41, ..., ug,), VL3 =
[agpns svsw u,), where 1 <k; <kz<n. Let VLBy =[u,, ..., uy, ), VLBy = [ug,41,. ...
Ug,), VLBy = [Ugy41, ..., un), where u; = B(x;). Lett; = f-back(VLB;), j = 1,2,3.
Assume f (1), f(r2,13)) # f(f(11,12), 13). Since VL is a valid list, by P1, x; is a minimal
element of the set {x; : i < j < n}. So, x; < x; is not true if j > i. Let §; be the
set containing all elements of VL;, j = 1,2, 3. Then, §}, 53 and S; is a non-decreasing
partition, and VL, is a valid list from §;. Thus, for the set S containing all elements
in VL, the partition S, S; and S3 may be produced by Algorithm | for K = 3. When
VL is generated this way, PW will be either f (1), (12, 13)) or f(f(r1.12), 1z). But the
two f-terms are not equal. That is, there is an execution of Algorithm 1, the list VL is
generated, but the answer PW is not the same as f-back(VLB), the answer given by
Program | when VL is generated. Thus. Algorithm | is not computationally equivalent
to Program 1. o

Corollary 3.1.  Algorithm | is computationally equivalent to Program | if
Pl and
P2'. The merging function f is associative on R.

Proof: This is because an associative function is associative w.r.t. valid lists. ()

The property P1 guarantees AVL(S) = APL(S, K), while P2 or P2’ ensures the same
answer from a valid list. In P1, the statement that x is @ minimal element can be replaced
by that x is @ maximal element. Then, the parallel algorithm will be modified accordingly.
For the sake of simplicity, we use minimal only.

3.2. Examples

Many examples are given in [40] to illustrate the generality of the PADAC Scheme. Among
them are computing the similarity values between a given query and a set of documents
that have terms in common with the given query in information retrieval [32], sorting,
computing the transitive closure, the same generation problem and the UP-FLAT-DOWN
problem in deductive database [5, 23, 35]. In this subsection, we discuss how to apply the
PADAC Scheme to parallelize the sorting problem and the transitive closure problem. The
performance issue will be discussed in the next section.

e ¢



416 YANG ET AL.

3.2.1. Sorting. We consider sorting based on compare-exchange operations. Assume a

set of numbers are to be sorted into non-decreasing order. The sorting problem can be

formalized into Program 1 in two ways by defining the predicate sel(x, §) and hence the

predicate mrg(u, WS, W) in different ways. In both cases, the predicate sg/(x,u) maps an
1 x into a singleton list u = [x].

-1

Using the trivial order. 'When the predicate sel(x, S) arbitrarily picks an element from §,
the predicate mrg(u, W S, W) represents a function which combines two sorted lists into one.
In the sequential execution, u = [x], and the merging function just inserts x into a proper
position in WS to get W. When those predicates are defined as above, Program | completes
the sorting task and represents the sequential algorithm of sorting by insertion. The partial
order < can be defined as the trivial partial order, i.e., any two different elements are not
ordered and any element is a minimal element. So, the predicate sel(x, S) selects a minimal
element x from S. It is clear that the merging function is associative. By Corollary 3.1, the
sorting problem can be solved by the PADAC Scheme. In the dividing phase, the input set is
arbitrarily partitioned into K subset of about the same size, since the trivial partial order is
used. After each processor finishes sorting a subset, these sorted lists are merged together
to form a sorted list for the input set. This parallel algorithm for sorting is a parallel version
of merge-sorting.

Using the partial order <. When the the predicate sel(x, S) selects the smallest number
x from S, the predicate mrg(u, WS, W) represents the concatenation function, that is, it
appends two lists into one. In this case, Program | represents the sequential algorithm of
sorting by selecting. The partial order < is the arithmetic comparison predicate <. Then,
the predicate sel(x, S) selects a minimal element x from § with respect to <. The merging
tunction is clearly associative. Thus, by Corollary 3.1. the sorting problem can be solved
by the PADAC Scheme using a different partial order. The dividing of the input set is not
trivial any more. Suppose K — 1 different numbers x; are chosen and sorted. Then the
dividing of S can be done by comparing each element in § with these K — | chosen numbers
by binary search. After each subset is sorted, the concatenation of these sorted subsets is
the sorted set. This parallel algorithm for sorting is a parallel version of Quicksorting.

3.2.2. The transitive closure. A binary relation E represents adirected graph G = (V, E),
where the set of vertices V contains all elements in E and the set of edges is the relation E.
Let A be the transitive closure of £ (or G). Then a tuple (x, y) is in A if and only if there
is a path from x to y 1in G [35]. Computing the transitive closure of G clearly represents an
operation from one set to produce another set. The base relation E is the input set and the
relation A is the answer.

In the following we assume G is acyclic, i.e., G has no directed cycles. Some algorithms
for computing the transitive closure of acyclic graphs have been proposed [2, 14, 22, 41].

Using an order based on the reachability. Assume G is acyclic, a partial order < can be
defined on E as follows:

THE DIVIDE-AND-CONQUER METHOD 417

For any pair of edges (x, y1) and (x2, y2), (X1, y1) < (x2, y2) if and only if there
is a path from y; to x; including the case y, = x; (a path of length 0).

Then, an edge (x, y) is a minimal element iff x has no in-coming edges. We assume that
sel((x, y), E) takes a minimal element from £. When E = {(x, y)}, the transitive closure
of E, A, is the same as E, i.e., A = E. So, the predicate sg/((x, y), u) maps a single tuple
(x, y) to a singleton set {(x, y)}. The merging function f; is defined as

fi(A1, A2) = A U Ay U (A 1#4)

where # represents the composition operation (e.g., {(x, y)}#{(y, 2)} = {(x. 2)}).

Let (xo, yo) be a minimal edge, and AS be the transitive closure of ES, the subset of E
without (xo, yo). For any tuple (x, y) in A, the transitive closure of E, there is a path from
xtoyinG. Let (x, z) be the first edge on the path. If (x, z) # (xo, Yo), i.e., either x # xq
orz # yo, then all edges in the path are in £S and (x, y) is in AS, since (xo, yo) is a minimal
edge and xo has no in-coming edges. If x = xq and z = yj, i.c., (xo, yo) is the first edge in
the path, then either yo = y, or there is a path from yq to y with all edges in ES, and (yo, y)
is in AS. As aresult, (x, y) is in {(xo, yo)}#AS. Thus, the transitive closure of E can be
computed as A = f,({(xq. yo)}, AS).

Then, Program | computes the transitive closure of E. The operation # is associative
[35]. and the set union and join clearly satisfy the distributive law, that is,

A1#(A; U Az) = (A1#A;y) U (A #A3)
and
(A1 U A)#A: = (A 1#A3) U (A2#A5).

Now we show that f; is associative, i.e., for any three binary relations A, A; and As,
Si(An fi(A2, A7) = fi(fi(ArL Ag), Ay).

fi(Ay. fi(As, Ay)
=AU fi(Az, A2) U (A1 #£1(A,, Ay))
=AU (AU Ay U (A2#A1)) U (A1 #(A2 U A3 U (Ax#Ay)))
=A1UAU AU (A2#A;3) U (A #A47) U (A1 #A45) U (A #A,#A3)

filfi(A, Ay), Ay)
= fi(Ay, A2) U A3 U (fi (A}, A2)#A,)
=(A1UA; U (A)#A42)) U A3 U ((A) U Ay U (A #A,))#As)
=A1UA; U (A1#A2) U A3 U (A1#A43) U (A2#A3) U (A #A#A,)
= fi(Ay., fi(Az, A3))

Since both P1 and P2’ are satisfied, by Corollary 3.1, the transitive closure of £ can be
computed in parallel by Algorithm 1.

In PHASE |, E is partitioned non-decreasingly with respectto < into £;,i = 1,2, ..., K.
The in-degree din(x) of node x is maintained for each x, and an edge (x, y) is a minimal




418 YANGET AL.

edge if and only if dis(x) = 0. When such a minimal edge is selected, the value of djx(y)
should be decremented by 1. As aresult, all out-going edges from y become minimal edges
if diy(y) = 0 after the decrementing. Suppose K divides |E|. Then, the first |E|/K edges
taken are in £, the second | E|/K edges taken are in E;, and so on.

In PHASE 2, each processor evaluates independently Program 1 with one subset E; as
the input set to produce A;, the transitive closure of E;. (As mentioned before, any program
for transitive closure can be executed.)

In PHASE 3, the function f; isapplied to the list [A,, A3, ..., Ag]tocompute A. Notice
that f; will be applied K — 1 times and only one join is required each time. This is a benefit
from the non-decreasing partition using the partial order <, since join is a very expensive,
if not the most expensive, operation in database systems.

A merging function not iative but iative w.r.t. valid lists. If the trivial order
is used, then any tuple in £ is a minimal edge. The predicate sgl((x, y), u) represents the
same mapping as mentioned earlier and maps a single tuple (x, y) toasingleton set {(x, y)}.
Let an edge (xo, yo) be taken from E, and the transitive closure of the remaining subset be
AS. As mentioned before, a tuple (x, y) is in the transitive closure if and only if there is a
path from x to y in G. Assume (x, y) € A, but it is not (xo, yo) and not in AS either. Then,
(x, y) is in A iff there is a path from x to y in G containing edge (xo, o). Thus (x, y) is in
{(xo, o) J#AS if (xq, yo) is the first edge on the path (so x = Xo): (x, y) is in AS#{(xo, yo)}
if (xo, yo) is the last edge on the edge (so y = yo): and (x, y) is in AS#{(xo, yo)}#AS if
(x0. yo) is in the middle of the path. Let a merging function f; be defined as follows:

fZ(Al. Az) = A| V] Az V] A|*A1 v} A1”A| U Az“A|“A2.

Then. A can be computed by f2({(xo, yo)}, AS). But function f; is not associative w.r.L.
valid lists. Forexample, let £ = {(1.2), (2, 3), (3,4), (4,5). (5, 6)}. Thelist[(1, 2), (4, 5),
(2, 3). (5. 6). (3. 4)] is a valid list with respect to the trivial order. Let VL; = [(1, 2). (4, 5)],
VL, = [(2.3),(5.6)] and VL; = [(3.4)]. Then, VLB, = [{(1,2)}, ((4,5)}]. VLB, =
[{(2, 3)}, {5, 6)}] and VLB = [{(3,4)}]. Let A, be the transitive closure for the subgraph
represented by VL, i.e.. A; = f-back(VLB;) fori = 1,2,3. It can be verified that the
tuples (2, 5) and (2, 6) are in fo(A}, f2(A2, A3)), butnotin fo(f2(A}, A2), A3). So, fois
not associative with respective to valid lists when the trivial order is used. By Theorem 3.1,
the transitive closure can not be parallelized by the PADAC Scheme with f; and the trivial
order.

Since f> is not associative with respective to valid lists when the trivial order is used, it
is not an associative function. However, it is associative with respect to valid lists when the
partial order < as defined earlier is used. Suppose that VL = [e}, €3, ..., e,] is a valid list
for E according to <, where each ¢; is an edge. Let VL be partitioned into two sublists VL,
and VL,. Let E; be the corresponding set of edges in VL;, and A; the transitive closure of
E; fori = 1,2. Then E, and E; form a non-decreasing partition of E with respect to <,
and there is no path in G with an edge in E; followed by an edge in E,. So, the expression
A2#A, U A#A #A, will produce nothing, and f> becomes f; which has been identified as
an associative function with respect to valid lists when the partial order < is used.

M amci el o

THE DIVIDE-AND-CONQUER METHOD 419

4. Performance analysis

In this section we analyze the performance of the PADAC Scheme. In particular, we discuss
the speedup attained by the PADAC Scheme. The speedup of a parallel algorithm is the
ratio of the response time of a fastest sequential algorithm to that of the parallel algorithm.
That is,

RT(n)
Speedup = o 0. )

where RT,(n) is the response time of a fastest sequential algorithm on an input of size n
and RT),(n, K) is the response time of the parallel algorithm on K processors on an input
of size n. (The subscripts s and p stand for sequential and parallel respectively.)

When Speedup is of the same order as K, that is, when Speedup = C x K for some
constant0 < C < 1, we say that the parallel algorithm achieves linear speedup [25]. Linear
speedup is the best a parallel algorithm can achieve when compared to a fastest sequential
algorithm. This is because that we can use a single processor to simulate a parallel algorithm
on K processors and hence have a sequential algorithm of time K x RT,(n, K). In other
words, if a super-linear speedup is obtained, then we will have a sequential algorithm of
time less than R7, (n). Notice that, RT, (n) should be the response time of a fastest sequential
algorithm. It is often misleading and of limited value to compare a parallel algorithm to a
specific sequential algorithm (instead of a fastest sequential algorithm). For more details,
see, e.g., [25].

The divide-and-conquer method has been applied, either explicitly or implicitly, to par-
allelize many problems. Some experiments showed very slow or even zero speedup [31.
33]. and no theoretical foundation has been given to explain the results. In this section, we
will give a necessary and sufficient condition as to when the PADAC Scheme can achieve
linear speedup. Our analysis shows that linear speedup is not possible unless the problem
is of time complexity O(n log® n) for a constant ¢ > 0. Our theory explains well those
previous experimental results.

4.1.  Notations and as

¢y

We discuss the time complexity and focus on the leading term of each expression to simplify
the analysis. Some Greek letters are used to represent the orders of magnitude in such a
way that, for example, n* may represent ©(n) and n” may represent © (n log n). In such a
case. y represents a higher order of complexity than &, and this is denoted as @ < y. Some
conventional notations are used in the analysis:

g1(n) = O(g2(n)) means that g, (n) is bounded above by g,(n), i.e., there are constants ¢
and ng such that g,(n) < cga(n) forall n > ng;

£1(n) = ©(g2(n)) means g,(n) and g(n) are of the same order of magnitude, i.c., both
g1(n) = 0(ga(n)) and g>(n) = O(g;(n));

g1(n) = o(ga(n)) means that g (n) is of lower order of magnitude than that of g2(n). ie..
for any constant ¢ > 0, there is a constant ng such that g;(n) < cga(n) for all n > ny.




~

;
B S Sy O S WD S [

420 YANG ET AL.

We assume a shared-nothing architecture. Each site has its own main memory and
secondary memory (disks). The input size n can be very large, while the number of
processors K is limited. So, it is assumed that n 3> K. The main memory at a site is not
large enough to keep all data needed, even for a subproblem with a smaller input size after
partitioning. Thus, /O time becomes the dominating factor in the response time and it is
chosen as the performance metric.

The output (or the answer) W may be a single element or a set. When W is a set, we
assume that the output size is a function of the input size, i.e., |[W| = A|S|* for some
constant A > 0 and some order of magnitude «. When W is a single element, [W| = I,
i.e., A = | and @ = 0. Then, in any case, we have |W| = A|S|".

To reach workload balance, the input set S should be partitioned into K subsets of the
same size %. But, in practice, this is not guaranteed, or the partitioning procedure requires
more time than we want to spend. So, we assume that any subset obtained in the dividing
phase has size between ,'T% and A% for some constant A > 1.

We assume that the merging phase can be carried out in log K rounds in parallel according
to a binary tree. The merging function f takes two inputs, say W' and W2, to produce
an output denoted W'-2, and the time complexity T of the merging function should be a
function of |W'| and |W?|. In our analysis, each W/, j = 1,2, is an intermediate result
produced from an original input subset §/ of size n; and, by our assumption, has asize Anf,
and W' is the result produced from the original input subset S; U S; of size n = ny + n.
Then the time complexity of the merge function is a function of the sizes of the two original
subsets, n, and n,, i.e.,

T, (W' IW3]) = g (W[, IW?)) = g, (An]. An) = ga(ny, na).

As indicated above, each subset obtained in the dividing phase has a size between i%
and A% for some constant A > 1. As a consequence, the difference among n;, n; and n 1s
up to a constant factor, and 7, can be expressed as a function of n after replacing both n,

and n; by n, i.e.,
T (W' [W3) = Ty (n).

So we assume that the complexity of the merging function is a function of the original
input size. Let Ty(n) = ©(n#) for some order of magnitude . Then, 8 > a, since the
output of the merge function has a size Anf.

The parallel execution need not be synchronized. To simplify the analysis, we assume
the execution is synchronized, i.e., after the partitioning is done, all processors begin local
processing at the same time, and each round of the merging phase starts after the previous
round is finished at all involved sites. To compute the response time of the parallel scheme,
we will take the maximum time for each phase and each round at all involved sites. This
will worsen the response time of the parallel scheme and serves as a lower bound for our
computed speedup .

We have chosen I/O cost as the performance metric, because I/O operations are much
slower than main memory CPU operations. In parallel ion, ication across
different processors is required. To send a package X from one site to another costs at least

THE DIVIDE-AND-CONQUER METHOD 421

as much as to read X at the receiving site. Thus, the communication cost is not negligible

and should be part of the response time of a parallel execution. The time needed to transfer

a package between two sites is assumed to be proportional to the size of the package, that

is, it takes time Cm| X |, where C,p, is a constant, to send a package X between two sites.
All assumptions we are making in this section are

* The input size is much larger than the number of available processors, i.e., n > K.
The output size is a function of the input size, and |W| = A|S|®.

Each subset obtained in the dividing phase of the parallel scheme has a size between }
and A% for some constant A.

The merging phase takes log K rounds, and the execution is synchronized.

The time complexity of the merging function is a function of the original input size, i.e.,
Ty =Ts(n).

The communication cost is proportional to the size of the package transferred.

*

*

L
K

*

*

Some notations used in the analysis are listed in the following.

n: the input size, i.e., |S| = n;

K the number of available processors:

A: the skew constant, i.e., each subset obtained in the dividing phase has a size between
t#and A% and A > I;

«: the order of magnitude of the output size in the original input size, i.e.. |W| = A|S|%;

B: the (:-dcr of magnitude of the merging function in the original input size, i.e., Ty(n) =
Q(nf);

v+ the order of magnitude of the time complexity of a fastest sequential algorithm (see the
next sub-section).

4.2 The speedup of the PADAC scheme

Let the time complexity of a fastest sequential algorithm be RT.(n)=®(n")=O(n*
log"* n) for some constants ¢; and c;. As mentioned earlier, the /O time is the domi-
nating factor in the response time when processing large amount of data and it is chosen as
the performance metric in our analysis. It is clear that y > 1, since the entire input set has
to be read into the main memory at least once. This implies ¢; > 1. For the parallel PADAC
Scheme, the communication cost should be included in addition to the I/O cost at each site.
Let Div(n, K) be the time for the dividing phase including the I/O time in partitioning the
input set and the cc ication time in sending the partitioned input subsets to their des-
unation sites, Proc(n, K)) the /O time for the local processing phase, and Merge(n. K ) the
time for the merging phase including the communication time to send intermediate results
across site and the I/O time at those merging sites. Then, the response time of the PADAC
Scheme is

RT,(n, K) = Div(n, K) + Proc(n, K) + Merge(n, K).




422 YANG ET AL.

The merging phase of the PADAC Scheme consists of log K rounds, and the time for the
merging phase depends on the communication cost and the cost for executing the merging
function. As discussed earlier, the time complexity of the merging function is a function
of the original input size, i.e., Ty(n) = ©(n?). The following lemma says that the time
for the merging phase is of the same order of magnitude as the complexity of the merging
function, that is, Merge(n, K) = ©(Ty(n)).

Lemma 4.1. When 8 > 0, the merging phase of the PADAC Scheme has the same time
complexity as the merging function, that is, Merge(n, K) = ©(Ty(n)).

Proof: The merging phase consists of log K rounds. When the merging function is applied
in the last round, the entire original input is involved. That is,

Ty (n) = O(Merge(n, K)).

In the following, we prove Merge(n, K) = O(T;(n)). In each round, some intermediate
results are sent out from sending sites, then the merging function f is applied to two
intermediate results at each merging site to produce a larger intermediate result. So the
time for the ith round consists of two parts, CM;(n, K), the time for communication, and
MG (n, K), the time for merging. The execution is assumed to be synchronized. As a
consequence, CM; should be taken as that needed to transfer a largest possible intermediate
result from all sending sites, and MG; as the maximum time needed to execute the merging
function at all merging sites. Then,

log K
Merge(n. K) = Z(CM,(n. K) +MG;(n. K)).
i=1

In the local processing phase, one processor has a subset of size at most A - and produces
an intermediate result of size at most A(Ag)“. In the first round of the merging phase.
cach sending site sends out a package of size at most A(A£)*; at each merging site, the
merging function takes two arguments and produces an intermediate result of size at most
A(A% x 2)%, which is the output produced from an input subset of size at most (A & x 2). In
general. in the ith round, each sending site sends a package of size at most A(A & x 2=")*;
at a merging site, the merging function f is applied to produce an intermediate result for
an original input subset of size at most A% x 2'. Then the time for the merging function
for the ith round is

MG;(n, K) = o(r, (A%Z)) = o((x% x 2')”)_

The communication time for the ith round is

Cl
CMi(n, K) = O(A(A% . z"-') ) = O(MGy(n. K)).

THE DIVIDE-AND-CONQUER METHOD 423

since the communication cost is proportional to the size of the package sent out and g > a.
The total time for the merging phase is

log X
Merge(n, K) = Y (CMi(n, K) + MG;(n, K))

i=1

log K log X n ]
= ) 10046, n. K+ MG(n, K01 = Y 0 (3 x2 ) )

i=1 i=]
plog K
n . 1 25(k# -1)
=0((r— Ay ) = [ R, L
(( K) ,Z—'.‘(Z)) O(A"xm (25—1))
28 P
26—1 K#

= o(x"nﬂ X ) = 0@n?) = O(T,;(n)).

Since K > 2, the factor %,T—'- is less than 1 and can be dropped from the above expressions.
The magnitude order 8 is treated as a constant number in the above, but the result holds
when it is of the form n©' logq n for some constants C; > 1 and C,. The log K rounds do
not contribute a higher order complexity, because the summation & Y18 (2#)/ is bounded
by a constant % a]

Unlike the merging phase, the time complexity for the dividing phase may involve both
the input size n and the number of processors K. Let the time complexity of the dividing
phase be ©(n** K**). We prove in the following lemma that if the dividing phase takes ime
more than ©( "k"" ). then the PADAC Scheme can not reach linear speedup. The value of
K is assumed to be limited. and the value of n may increase to arbitrarily large. So, both
n’* and n” are the dominating factor in the corresponding expression. That is, if y; < y.
then n” K7 < C'(n” K~') for constant C’" when n is large, and vice versa. We say that
n”* K7 is of a higher order of magnitude than n* K=" if y; > yory; = y and y» > —1.

Lemma 4.2.  The PADAC Scheme can not reach linear speedup if the dividing phase has
time complexity of a higher order than 9(%@).

Proof:

RT.(n) RT.(n) n?

Speedup = = :
peedup RT,,(n, K) = Div(n, K) nn K

If y1 > y, then the speedup will approach zero when n is increasing and it is impossible
to reach linear speedup. Otherwise, y; = y and y, > —1. Then the speedup is

1
Speedup < 5 - K=" = o(K).

Since =y < 1, linear speedup can not be reached. a

e R KT 1



424 YANGET AL.

For example. let RT(n) = ©(n log n) and Div(n, K) =@('I’—°’:%)‘ Since log K = o(K),
we have + = o(r), and Div(n, K) has a higher order of magnitude than 52 The

K
speedup will be at most log K.

s i RT,(n) - RT(n) _nlogn
T RT,(K) C Divin, K)  rem

=log K.

The time complexity of a fastest sequential algorithm is RT,(n) = ©(n*) = ©O(n"
log** n) for some constant ¢; > 1. The merging function in the PADAC Scheme has time
complexity T(n) = ©(n?). The following lemma uncovers the fact that if ¢; > | then
there exists no efficient merge function, i.e., for any merge function f, T (n) is of at least
the same time complexity as RT, (n).

Lemma 4.3. Assume RT.(n) = ©(n”) = ©(n* log” n) and ¢, > 1. Then, for any
merging function f, Ty(n) = Q(RT,(n)).

Proof: The factthat ¢, > 1 implies the fastest sequential algorithm has higher than linear
time complexity, i.e., RT,(n) = ©(n?) and y > 1. We prove that if there exists a merging
function f of time complexity Ty (n) = ©(n#) = o(n?), then there is a sequential algorithm
of time complexity o(RT,(n)), which is faster than the given fastest algorithm.

We apply the divide-and-conquer method to construct such a faster sequential algorithm.
We first sort the input set S in a non-decreasing order, then compute a result u; from each
single element x; in S. and finally apply the merging function f according to a binary tree
to compute the output W for § (see figure 1).

Since the input size n is very large. external sorting is required. The /O time becomes the
dominating factor in sorting and the CPU processing time can be ignored. For a uniprocessor
system. when the main memory size is moderate (contains at least as many pages as the
square root of the total number of pages), the sorting can be completed in linear /O cost
(in two passes) by serial Fastsort [33]. However. as we will see later (Section 3.3). when
n 1s extremely large (or the main memory is not large enough), the /O cost will still be
O (nlogn). So, the sorting cost is of ©(n logn) = o(RT,(n)), since RT(n) = O(n") and
y>1L

Irg(ry)
smi(r, ¥
(r) " ¢ 3
( y T
smi(ra) Irg(r2)
(B )
( )
N SRR SN ’
n.B
Figure 1. ry < ra.sml(ry) < smi(ry). butlrgira) < lrg(ry)

THE DIVIDE-AND-CONQUER METHOD 425

The entire input set can not reside in the main memory. The pages of S are loaded into
the main memory in the sorted order. The pages residing in the main memory at the same
time form a fragment, and we assume that the computation of the partial result from each
fragment can be carried out in the main memory. Each fragment corresponds to a subtree of
the merging tree from the bottom level. Within such a subtree, the I/O cost of the merging
function can be ignored, since no I/O cost is involved. In the following we assume that the
cost of merging data within a fragment is the same as ©((n; + n2)?) and we will obtain an
upper bound of the time complexity for the constructed algorithm.

Without loss of generality, assume n = 2% for some integer L. Then the binary merging
tree has L + 1 levels. We label these levels as in figure 1. At level 0, a result u; is produced
from x; for each element x; in S. To produce «; from x; takes constant time, since only a
single element x; is involved. Then, it takes time O (n) to produce all single results «; from
x;, including the I/O cost.

At level [ > 0, there are % internal nodes. At each such node, the merging function f
takes two intermediate results to produce a larger intermediate result. Each input to the
merging function represents the result for an original input subset of size 2'~!, and the
output of the merging function represents the result for an original input subset of size 2.
Then. the cost of the merging function at a node of level / is T (2') = ©((2')#). Then, the
total cost for all internal nodes in the entire merging tree is

L n L
Z (;) x (2’)" = nZ(Z"")’.
I=1 \“ =1

When 8 = 1, the sumis n x L = nlogn = o(RT,(n)), since RT,(n) = O(n*' log** n)
and ¢; > . When 8 # |, the sum is

((2"")“‘—1 ) e L O e
n x —l_l =n X —m———

28-1 — 28-1 — )
20-1pp-t _ 2p-I
LY S
When B > 1, the sum is % = Q(n?) = o(RT,(n)). When 8 < 1, the sum is
yl"_':# = O(n) = o(RT,(n)), since RT,(n) = O(n“' log n) and ¢; > 1. In any case.

the cost for merging all nodes in the binary tree is of o(RT ,(n)).

The total cost of the constructed algorithm is the sum of the cost for sorting, the cost
for computing all u; (the cost for level 0 in the merging tree) and the cost for merging
all internal nodes in the tree. Since each part in the sum is of o(RT(n)). the constructed
algorithm has time complexity o(RT(n)). (=]

The proof for Lemma 4.3 looks similar to that for Lemma 4.1. But there are 3 nodes at
level / and the costs at all these nodes are taken in account. So the result can not be derived
directly from Lemma 4.1.

Theorem 4.1. Assume the fastest sequential algorithm has time complexity RT,(n) =
©(n*' log'* n) for some constants ¢y = | and c3. Then the PADAC Scheme achieves linear




426 YANGET AL.

speedup if and only if

(1) RT (n) = O(n log* n), ie., c; = 1; -

(2) The dividing phase takes time at most O(E;‘,ﬂ). i.e., Div(n, K) = 0("—"-’%): and

(3) The merging function has time complexity of a lower order of magnitude than RT,(n),
ie, Ty(n) = o(n log® n).

Proof: SUFFICIENCY.
The merging function has time complexity Ty (n) = ©(nf). If B = 0 (e.g., the merging
function is trivial such as list concatenation), then the total time for the merging phase will
be log K. As mentioned earlier, K is assumed to be fixed and n can increase to very large.
Thus, log K = o(RT,(n)), since RT;(n) = ©(n”) and y > 1. Otherwise, # > 0 and by
Lemma 4.1, the merging phase takes time © (T (n)); by condition 3, Ty (n) = o(RT,(n)).
In any case. we have Merge(n, K) = o(RT(n)).

Let RT,(n) = ©(Cnlog® n) (i.e., the leading term has a coefficient C). Since K is
assumed to be fixed while n is increasing, log (A%) = logn +logA — log K = ©(logn).
Then the processing phase takes time

Cx y
Proc(n. K) = @(RT,(A%)) = @)(C()'-I?") log® (A%)) = @(?n log n).

Let Divin, K) = 0(%‘}:1 log®* n) (i.e., the leading term has a coefficient Cyy ). Thus, the
response time of the PADAC Scheme is

RT,(n. K) = Div(n, K) + Proc(n, K) + Merge(n, K)
=0 (CT'I"ln log® n) + 9(%—1: log® n) + o(nlog® n)

i A >
= @(%—u log® n).

The PADAC Scheme reaches linear speedup, because

Speedup < LM _ __Cnlogin ___C
peedup = RT,(n. K) ~ Saiplogiin  Caw+Ch :
NECESSITY.

By Lemma 4.2, condition (2) is necessary. If condition (1) is not true, then ¢; > I.
By Lemma 4.3, T, (n) = Q(RT,(n)) and condition (3) is not true. The merging function
has time complexity Ty (n) = ©(n?), and the sequential algorithm has time complexity
RT.(n) = O(n¥), where y > 1. If (3) does not hold, then § > y > 0. By Lemma 4.1,
Merge(n, K) = Q(T;(n)). Let Merge(n, K) = ©(Cpen?) and RT,(n) = ©(Cn?). Then,
the speedup is

RT,(n) RT,(n) CnY¥ - G
< = < —_
RT,(n.K) = Merge(n, K) — Cpen? = Cpye

Speedup =

ISR

THE DIVIDE-AND-CONQUER METHOD 427

Thus the speedup is limited by a constant, since # > y, and hence linear speedup can
not be reached. o

4.3.  An example

We use the sorting problem to illustrate the performance of the PADAC Scheme and discuss
the problem in single-input-and-single-output and multi-input-and-multi-output environ-
ments. The transitive closure problem will be discussed in Section 6 with the generalized
PADAC Scheme.

It has been realized that the /O cost is the dominating factor in the response time for
external sorting. Some algorithms have been proposed to reduce the I/O cost in both
sequential and parallel sorting e.g. [6, 7, 10, 16, 33,]. Most of them assume that the main
memory has a moderate size (contains at least as many pages as the square root of the total
number of pages of the input set), and external sorting can be completed with linear /O
cost (in two passes). The requirement of a moderate main memory size is equivalent to
that the input size n is large but not too large. As will be seen after this paragraph, when
n is extremely large relative to the main memory size, the /O cost for sorting will still
be O(nlogn). Our analysis shows that, under the assumption that sequential sorting can
be done in linear /O cost, linear speedup is not possible in the single-input-single-output
environment. This agrees with previous results, e.g., in [16, 31, 33]. However, under the
asymptotic assumption that sequential sorting takes O (1 log n) /O cost, linear speedup can
be achieved in the single-input-single-output environment. It seems that this has not been
observed before. In the multi-input-and-multi-output environments, linear speedup can be
achieved under either assumptions.

Assume that the main memory can contain M pages of data. Then 2M pages of data
on the average can be sorted by replacement selection (based on a tournament or heapsort
algorithm [24]). Assume that one page contains P elements. Let N = %. i.e., the input set
occupies N pages. Suppose that R = % Then the input set can be sorted by replacement
selection into R runs. After all R runs have been sorted, a sorted set can be computed by
combining these sorted runs. If there are at most M runs. i.e.. R < M, then the first page
of each run s loaded into the main memory and replacement selection can again be used to
merge all the R runs. When the first page of a run becomes empty, the second page of that
run is loaded in, and so on. The sorted set is written out one page at a time. In this way, the
entire input set is scanned twice: one pass for sorting all R runs and one pass for merging
all sorted runs. This is how serial Fastsort [33] sorts in linear I/O time.

When M < R < M?, the original R runs are divided into M larger runs, each of them
has at most M original runs and can be sorted in two passes. After that, the M large runs
can be merged together in the same way. The entire input set will be scanned three times.
In general, if M*~' < R < M*, the entire input set need to be scanned k times before it is
completely sorted. The I/O cost is

N
nlogy R =nlog,, T log,, ﬁ = n(logy n —log, 2PM).

Both P and M are constants. Thus the /O cost for sorting is still O(n logn) when n is
extremely large.

- e




428 YANGET AL.

Single-input-and-singl t. If the partial order < is used, then a non-
decreasing partitioning will generate K subsets suchthatx < yifx € §;, y € S;andi < j.
We need K — | different numbers x;; then an element x of S is in subset S; if and only
If xi_; < x < x; (xo and xg are the possible smallest and largest numbers respectively).
We call these K — 1 numbers partitioning numbers. A set of partitioning numbers can
be obtained easily if it is known that the elements uniformly distributed within a range.
Otherwise, it can be computed by sampling (e.g., [16, 18, 19]), or pre-computation. In any
case, the cost for computing these partitioning numbers can be ignored. After the K — |
partitioning numbers are determined and sorted, an element can be decided to belong to a
unique subset S; by binary search. The entire input set has to be scanned at the starting site,
and the dividing phase takes linear I/O cost, i.e., Div(n, K) = ©(n).

There are two cases. When the input set is extremely large, RT,(n) = O(nlogn). Then
linear speedup will be achieved, since the merging function (concatenation) takes at most
linear I/O time and Merge(n, K) = O(n). When the main memory is moderate (or that
the input set is large but not too large), RT,(n) = O(n); by Lemma 4.2, linear speedup 1s
impossible, since Div(n, K) = ©(n).

If the trivial order is used, then the merging function has linear I/O cost, since the two
sorted subsets to be merged have to be scanned to accomplish the merging. The dividing
phase takes at most linear /O cost. Assume that R7,(n) = O(nlogn), linear speedup will
be achieved. On the other hand, when RT,(n) = O(n), linear speedup can not be achieved
even with the dividing cost ignored, since the last step in merging takes linear /O cost
already. This is why some previous experiment results show very small or zero speedup
[31, 33].

tnut :
(put envir

Multi-input-and-multi-output environment. We assume that the partial order less than is
used. (If the trivial order 1s used, the final merging step has to be carried out in a single site
and multi-output does not make any sense.) In this case, linear speedup will be achieved
both when RT,(n) = ©(n) and when RT;(n) = ©(n).

The input set is initially distributed across all K sites, but not in a non-decreasing manner.
Let 57 be the fragment of S at site j before sorting. Then, the elements of S/ are not sorted;
for two elements x and y in two different sites, each of the three cases may be true: x < y.
x = yorx > y. After sorting, the entire set is still distributed across all K sites, but in a
non-decreasing manner. Let S; be the fragment at site k after sorting. Then, all elements
in S; arc sorted; for two different sites ky # ka, x < y if x € §,, y € S, and k| < ks.

After the K — | partitioning numbers are decided, each site j can partition the initial
fragment S’ into K subsets S} according to these partitioning numbers, where S{ = §/ N
Se = {x:x € § and x,—; < x < xi}, and send S to site k for each k # j. The fragment
after partition at site k is Sy = [J;,<x S{- After S is sorted at site & for each , the entire
input is sorted and resides at the K sites.

Assume that the fragment at each site has a size about % both before and after the
partitioning. Then, the dividing can be completed in time O(%) at asite, including the /O
cost and the communication cost. That is, Div(n, K) = O(%). The merging function is
trivial (concatenation of two sorted sets) and the cost can be ignored, since the output is not
required to be sent to a single site. That is, Ty(n) = O(1). Then by Theorem 4.1, linear
speedup will be achieved for either RT,(n) = O(n) or RT,(n) = O(nlogn).

B e U N

THE DIVIDE-AND-CONQUER METHOD 429

5. A generalization of the PADAC scheme

Some operations on sets need parameters. In some cases, it is convenient to consider part
of the input set as a parameter set. This allows data duplication among different sites. The
following Program 2 is a generalization of the basic linear recursive Program | and uses a
parameter set Z to produce an answer W from an input set S.

Program 2
pUx},Z, W) : —sgl(x,Z, W).
p(S.Z, W) :—selx,S),
dif (S, x, §S),
sgl(x, Z, u),
prm(x, Z,ZS),
p(SS,ZS, WS),

mrg(u, WS, W).

The predicate prm(x, Z, ZS) was not present in Program 1, each other predicate in Pro-
gram 2 was present in Program 1 and has a similar meaning as in Program 1. The new
predicate prm(x, Z, ZS) is used to compute a parameter subset for the remaining input
subset after an element is selected. When the input set is a singleton, a result is produced
by the predicate sgl/(x, Z, W). Otherwise, an element x is selected from S, and a result
u is produced from x using the parameter set Z. To produce a result from the remaining
subset S§=S§ — x, a parameter subset ZS need to be computed. This is carried out by the
predicate prm(x, Z, ZS). After the result WS is produced from SS using ZS, the final result
W is formed from « and WS by the predicate mrg(u, WS, W).

The following Algorithm 2 is our generalized PADAC Scheme which is developed to
evaluate Program 2 in parallel based on the divide-and-conquer method. As before we
assume that a partial order < is defined on a given input set S. Then, in the dividing phase
(PHASE 1), the input set S is partitioned into K subsets non-decreasingly according to <.
In addition, a parameter subset Z; need to be computed for each subset . In the processing
phase (PHASE 2), a partial result W; is produced from each subset S; with the parameter
subset Z;. Finally, the partial results are combined to form the answer W corresponding to
the entire input set § with the parameter set Z.

Algorithm 2

PHASE 1: The input set S is partitioned non-decreasingly into K non-empty subsets S;
the corresponding parameter sets Z are computed.

PHASE 2: Each processor executes independently Program 2 with S; as the input set and
Z, as the parameter set to produce W;.

PHASE 3: The final answer W is computed from these partial results Wy, W3, ..., W
by the merging function.

Algorithm 2 is similar to Algorithm 1 except that a parameter subsct Z; need to be
computed for each input subset Sy in the dividing phase. The intention of non-decreasing

T P T ST e



430 YANG ET AL.

partition of the input set is that, for any input subset S, 1 < k < K, the elements in all
earlier subsets, i.e., in |, ; _; Si, might be selected before any element in Sy (and in any later
subset) is selected in the sequential linear program, Program 2. As a result, the parameter
subset Z; for S; should be the same as that obtained in Program 2 after the elements in
Ui <<« Si have been selected one by one and the predicate prm(x, Z, ZS) has been applied
accordingly. The elements in {J, ; ., Si may be selected in different orders by the predicate
sel(x, S) in Program 2. To guarantee that a unique parameter subset Z; is to be computed
for each input subset Sy, we assume that, for any input subset S;, if the elements in S; can be
selected consecutively in different orders by the predicate sel(x, S) the parameter subset for
the remaining input subset S — §; is the same. When this is true, we say that the predicate
prm(x, ZS. Z) is order-independent. Then, in the dividing phase of Algorithm 2, Z; is to be
computed as the parameter subset for S — | J, _; & ;- In the next section, we will see that in
many applications it is rather simple and straightforward to compute these parameter subsets.

All concepts defined earlier for Program 1 and Algorithm 1 can be defined for Program 2
and Algorithm 2 in the same way or with minor changes, and we can prove similar results
regarding the computational equivalence between the sequential Program 2 and the parallel
Algorithm 2.

Theorem 5.1.  Assume the predicate prm(x, ZS, Z) is order-independent. Algorithm 2 is

computationally equivalent to Program 2 if and only if

Pl. There exists a partial order < on any finite subset S of D such that for any x € S.
sel(x. S) is true if and only if x is a minimal element of S with respect to <.

P2. The function f is associative with respect to valid lists.

Corollary 5.1.  Assume the predicate prm(x,ZS, Z) is order-independent. Algorithm 2
is computationally equivalent to Program 2 if

Pl. and

P2'. The merging function f is associative on R.

6. Applications

In [41), we have shown that the transitive closure problem can be parallelized by the
generalized PADAC Scheme. The set of vertices V is considered as the input set, while
the set of edges E is treated as the parameter set. The partial order on V is a topological
order (We discuss acyclic graphs only.) The predicate sgi(x. Z. u) produces the descendant
set of vertex x (i.e., the set of all tuples (x, y) in the transitive closure with x at the first
position), and requires significant computation, while the merge function is the set union
and trievial. Our simulation results show that in sequential computation our algorithm is
superior to other existing algorithms in most cases, and that in parallel computation linear
speedup 1s achieved.

In the following, we apply the generalized PADAC Scheme to the fuzzy join problem and
show that linear speedup will also be obtained in this application. From the two examples,
we can see that more complicated problems can be parallelized by the generalized PADAC

THE DIVIDE-AND-CONQUER METHOD 431

Scheme. However, the introducing of parameter sets makes it much more difficult to analyze
the performance of the scheme than in the case without parameter sets.

6.1.  Fuzzy joins

In a fuzzy relation [12, 29, 20, 42-44], the value of an attribute of a tuple may represent
either a single number or an interval. For example, a relation about people may have an
attribute AGE. A tuple with a single number, say 28, as the value for the AGE attribute says
the age of the person is 28. A tuple with “about 35™ as the value for the AGE attribute says
that the age of the person is, for instance, between 30 and 40, which represents an interval
[30, 40]. Such a value “about 35" is called a fuzzy number. A tuple may have another kind
of value such as “young” for the AGE attribute, which represents, for instance, an interval
[21, 35]. Such a value “young” is called a fuzzy label. Both fuzzy number and fuzzy label
represent existing but uncertain information. An attribute is called a fuzzy artribute if its
domain contains single values as well as fuzzy numbers or/and fuzzy labels: a relation is
called a fuzzy relation if at least one attribute is a fuzzy attribute.

Consider the join R o<g g7 5 T, where R and T are two fuzzy relations and B is a
common fuzzy attribute. When B is the attribute AGE, the above join requests all pairs of
persons, one from R and another from T, who have the same age. Two persons can not have
the same age if one is 28 and the other is “about 35", since “about 35" means between 30
and 40. However two persons may have the same age if one is 28 and the other is “young”,
or one is “about 35" and the other is “young”, since “young" means between 20 and 35. But
we do not know for sure that they have the same age. So, unlike joins of ordinary relations.
the condition r.B = t.B can only be checked with some uncertainty, since the join values
may represent some uncertain information. We use degrees, which are numbers between 0
and 1, to indicate the uncertainty that the join condition r.B = r.B holds.

We give some notations to define fuzzy joins formally. In general. a value in the domain
of a fuzzy attribute represents a (finite or infinite) subset of the background domain. For
example, AGE = 28 represents a singleton set (28}, “about 35" represents a set of {x : 30 <
v < 40}. Foratuple r of R and a tuple r of T, we use r.B and 1. B to denote either the fuzzy
value or the corresponding subset, and r.B N 1. B represents the ordinary set intersection.
Formally. the join R s<ag g7 p T is carried out as follows.

For any tuple r of R and any tpler of T,

(1) Whenr.BNt.B =@, no tuple is generated from r and 7.
(2) When r.BNt.B # (. adegree. which is a number between 0 and 1 is computed, and a
tuple will be generated from r and ¢ only when the degree is positive.

We do not discuss the issue in this paper how to compute the degree and assume that the
degree can be computed in constant time. Interested readers are referenced to [12, 42, 44).
To compute the join R p<g g7 s T by nested loops, we need to compare each tuple
r € R with all tuples in 7. There is analytical and experimental evidence that hashed join
is the most effective method for joins of ordinary relations, but it is unlikely that the method
can be applied to joins of fuzzy relations effectively. since a value may be an interval as




A e At A o e D

432 YANG ET AL.

well as a single number. Sort-merge join is a good candidate for such joins. Suppose that
both R and T are sorted according to an appropriate partial order based on the join values.
Then, the join proceeds according to the partial order. It is possible that the join of the two
fuzzy relations can be carried out in linear I/O cost after both relations are sorted according
to the partial order (see performance in Section 5.4).

Fuzzy joins are similar to “band joins™ (e.g. [15]). In “band joins”, each value of the
joining attribute is a simple value and represents an interval. However, all intervals for
different joining values are of the same length. Fuzzy joins are much more general than
“band joins”, since each joining value may be an interval as well as a simple value and
different intervals may have different lengths. The method for computing band joins can
not be adopted directly for fuzzy joins, while our algorithm for fuzzy joins includes band
Joins as a special case.

6.2.  Formalizing fuzzy joins by Program 2

Let the domain of the joining attribute B be D. A value v in D may be either a single
number or an interval. When v is an interval, we use b(v) and e(v) to denote the two
(beginning and ending) points, i.e., v = [b(v), e(v)]. When v is a single number, we let
b(v) = e(v) = v. Then, each value corresponds to a pair of ordinary numbers. We define
a linear order on D as follows.

Definition.

I. A linear order on D is defined as follows: for two values vy and v; in D, v; < v, if
b(vy) < b(va), or b(v)) = b(vs) and e(v) < e(vy). For example, [2, 5] < (3, 4] and
[3.4] < [3,5].

2. A partial order on R (or T) is defined as follows: for two tuples r; and ry, r; < ry if
r.B <ry.B.

For two values v; and v, in D, we use v; < v, for v; < v, or v; = v;. For two tuples ry
and r, weusery < ryforry <ryorr.B =ry.B.

Definition.

3. Forany tupler in R, smi(r) is the smallest value v of D thatappearsin 7 and r.B Nv # @,
and Irg(r) is the largest value v of D that appears in T and r.B N v # @.

4. The range of a tuple r of R is a subset of T defined by Rng(r) = {t:t € T and
sml(r) <t.B < lrg(r)}.

For two tuples of R, r; < ry, we have smi(r,) < sml(r;), but it is possible that Irg(r;) <
Irg(ry) (see figure 1). This is because that r; < r; implies b(r;) < b(ry), but it does not
imply e(ry) < e(ry).

A tuple ¢ of T can not join with a tuple r of R if rBN¢.B = @. By the definition of
smi(r) and lrg(r), a tuple ¢ of T can not join with a tuple r of R if 7 is not in Rng(r), i.e.,
either r.B < sml(r) or lrg(r) < t.B. However, it is possible that ¢ can not join with r even
t is in Rng(r) (see figure 2).

THE DIVIDE-AND-CONQUER METHOD 433

AT S Irg(r) A

Figure 2. smi(r) <t.B < Irg(r),butr.BNt.B = 9.

We now formalize the join of two fuzzy relations R s<g g=7 8 T by Program 2. Relation
R is the original input set, relation T is the original parameter set, and the final answer
W is the set containing all tuples generated in the join. (Each tuple in W has a degree of
satisfaction greater than zero.) The predicate sel(r, R) selects a minimal tuple r from R
according to the partial order < on R. The predicate sg/(r, T, u) carries out the join between
tuple 7 and all tuples of T in Rng(r) and can be written as sg/(r, Rng(r), u), and u is the set
containing all tuples generated from the join between r and Rng(r). The remaining input
subset RS is obtained by the predicate dif (R, r. RS) by removing from R the selected tuple r.
The parameter set 7S for RS is obtained by the predicate prm(r, T, TS) by removing from T
those tuples that are not in Rng(r) and precede the tuples in Rng(r). These removed tuples
will not be used for the join with any later tuples of R, since r is a minimal tuple of R and
sml(r) < sml(r’) for any tuple r’ in the remaining subset RS. The predicate mrg(u, WS, W)
forms the final answer W by taking the union of u and WS. Then the following program
computes the join of two fuzzy relations.

Program FuzzyJoin

pUr), T, W) : — sgl(r, Rng(r), W).

p(R, T, W) : —sel(r.R),
dif (R, r. RS),
sgl(r, Rng(r), u).
prm(r, T, TS),
p(RS, TS, WS),
mrg(u, WS, W).

It can be seen that Program FuzzyJoin performs the join of two fuzzy relations in a
Sort-merge manner.

6.3.  Parallelizing fuzzy joins by the generalized PADAC scheme

A partial order < is defined on the input set R, the predicate sel(r, R) selects a minimal
tuple from R, and the predicate mrg(u, WS, W) represents the set union which is apparently
associative. By Theorem 5.1, the join of two fuzzy relations can be parallelized by the
generalized PADAC Scheme.

We discuss the parallel scheme in a multi-input and multi-output environment. Initially,
both R and T are distributed across the K sites, but not according to the partial order <.




434 YANG ET AL.

The partition of R is carried out the same way as in sorting, and in processing phase each
subset of R will be sorted. We discuss the dividing of T in the following. We use R/ (T/)
to denote the subset of R (T) at site j before re-distribution, and Ry (7}) the subset of R
(T) at site k after.

After K — 1 partitioning tuples for R are determined, R is non-decreasingly partitioned
into K subsets R, and atuple r of Risin Rgif x,—y, <r =< x¢, 1 < k < K, where xo and xx
are the possible minimal and maximal tuples of R respectively. For each tuple r in a subset
Ry, the tuples of T in Rng(r) are needed to perform the join. The parameter set T for R,
will be U,ek‘ Rng(r). Let b(k) = min{b(r.B) : r € R} and e(k) = max{e(r.B) : r €
Ry ). Then each subset R of R determines an interval [b(k), e(k)] and the corresponding
parameter subset Ty = {t € T : 1. BN [b(k), e(k)] # B}. We call these K intervals dividing
intervals for T. Notice that the K intervals [b(k), e(k)] may intersect each other, and those
subsets 7; may intersect too. Even the intervals [b(k), e(k)] do not intersect, there still may
be some overlap between different subsets T}.

The computation of the dividing intervals for T and the dividing of T can also be carried
out in parallel at all sites. Let R} = R/ N Ry, i.e., R is the set of tuples that will be sent
from site j tosite k. Let b/ (k) = min{b(r.B) : r € R{}and e/ (k) = max{e(r.B) : r € R]}.
At each site j, the values of b/ (k) and e/ (k) for all k are computed when R/ is partitioned
into R/, and they are sent to all other sites after the partitioning of R is completed. Then at
each site k, the K dividing intervals (b(k), e(k)] for T are computed by b(k) = min{b’ (k) :
| < j < K}ande(k) = max{e/(k) : 1 < j < K}. The same K intervals [(b(k), e(k)] are
computed at all sites, because each site has the same b/ (k) and e/ (k). Let T/ be defined in
the same way as for R}. Then atsite j, T/ is divided into K subsets T;/. A tuple of 7; is in
T[ if t.B N [b(k), e(k)] # @. The K dividing intervals can also be sorted according to the
linear order < on the domain D, and a binary search can be employed on the K intervals.
After a tuple is determined to belong to 7}/, the preceding and following intervals should
be examined since the tuple may be in multiple intervals.

We give a parallel algorithm derived from our PADAC Scheme in the multi-input-and-
multi-output environment. Step (1) through (6) form the dividing phase of the PADAC
Scheme, Step (7) is the processing phase of the PADAC Scheme, and the merging phase of
the PADAC Scheme is not shown in the algorithm. Some Steps, say Step 2 and 3, can be
interleaved.

Algorithm MIMO-fuzzy join

(1) Decide K — I partitioning tuples for R.

(2) At cach site j, partition R/ into K subsets R} according to the partitioning tuples
decided in (1); compute b/ (k) and e’ (k) for all k. :

(3) Ateach site j, send R} to site k for each k; send all b/ (k) and e/ (k) to all sites k # j.

(4) Ateach site j, compute the same K dividing intervals (b(k). (e(k)] for T by
b(k) = min{b’ (k) : | < j < K} and e(k) = max{e/(k) : 1 < j < K}.

(5) At each site j, divide T/ into K subsets 7; according to the K dividing intervals
decided in (4).

(6) Ateach site j, send T}/ to site k for each k.

THE DIVIDE-AND-CONQUER METHOD 435

(7) Ateachsite k, perform the sort-merge join between Ry and Ty, where Ry = U, ;.x R{
and Ty = Uy, ¢ -

6.4. Performance

After both R and T are sorted, the merge join can be completed in linear /O cost (see next
paragraph). If we assume that both R and T are very large and that sorting takes O (n log n)
/O cost, then the join of two fuzzy relations needs O (n, log n, + n; log n2) I/O cost, where
ny, = |R| and n, = |T|. That is, the sorting cost is the dominating factor. Then, fuzzy
join can be parallelized with linear speedup under this assumption, since sorting can be
parallelized by the PADAC Scheme with linear speedup in this case (Section 3.3). In the
following, we assume that the main memory has a moderate size, or both R and T are large
but not too large. As explained earlier in Section 3.3, sorting takes linear I/O cost. Thus, the
Join of two fuzzy relations can be carried out in linear I/O time in sequential computation.
That is, RT, = O(n, + n3).

To perform the merge-join in linear /O cost, the tuples of R are loaded into the main
memory one page at a time in the sorted order. Let CR be the current page of R in the
memory, and b(CR) = min{b(r.B) : r € CR)} and ¢(CR) = max{e(r.B) : r € CR}. The
value of b(CR) is equal to b(r'.B), where r' is the first (minimal) tuple of CR: the value
of ¢(CR) is obtained by scanning all tuples in CR and can be computed when R is being
sorted. The tuples of T that may join with any tuples in CR are in |, .z Rng(r). A tuple
t of T precedes the tuples in [ J, g Rng(r) if e(r.B) < b(CR); it follows the tuples in
U, ccr Rng(r) if b(t.B) > e(CR). The pages of T are loaded into the main memory one
by one in the sorted order. If a page of T contains only tuples that precede those tuples in
(U, <cr Rng(r). then the page is useless in current as well as in later joining and should be
discarded. Ths is because sml(ry) =< sml(ry) if ry < ry. If a page contains some tuples in
the set |, ¢ Rng(r). then the join is performed and the page stays in the main memory.
since some tuples in the page may join with some tuples in the next page of R. If a page
contains one tuple that follows the tuples in | J, .z Rng(r). then no later pages of T are
needed for the page CR of R and should not be loaded in. Then, the join w.r.t. the current
page of R is completed, and several pages of T may reside in the main memory. For the
next current page of R, the values of 5(CR) and ¢(CR) are modified before the joining. The
pages of T in the main memory are examined first, and the first few pages may be discarded
immediately if they contain only tuples preceding the tuples in | J, ., Rng(r). Some later
pages of T may need to be loaded in. It is clear that the join can be compieted in linear /O
cost as long as the main memory can keep one page of R and the maximal number of pages
of T that cover | J, .z Rng(r) for any single page of R.

We discuss parallel execution under assumptions similar to that in Section 3. We assume
that each site k does not have enough main memory to keep the entire subset Ry or 7y, and the
1/0 cost is again the dominating factor for local processing at each site. The communication
cost should be included. We assume that there is no contention in the network, e.g., there
is a link between any pair of sites, and the communication cost at a site is proportional to
the amount of data sent out from and received at that site. The cost in the merging phase is




436 YANG ET AL.

ignored, that is, the produced tuples are scattered across all sites and not required to send to a
single site. For example, another operation, say another join, is to be performed in parallel.
For ordinary (non-fuzzy) relations, many parallel joining algorithms are evaluated under a
uniform distribution assumption, e.g., [34, 36]. The following are similar assumptions for
fuzzy relations

* Both relations R and T are initially distributed evenly across the K sites.

* Asetof K — | partitioning tuples that partitions R into K subsets of about the same size
exists or can be decided efficiently.

* The K dividing intervals [b(k), (e)] divide T into K subsets of about the same size.

* The interval of each tuple of T is relative small w.r.t. the length of those dividing intervals
[(k). e(k)] so that one tuple of T will appear in at most two subsets of 7. This is usually
true for fuzzy applications.

Under these assumptions, the cost of the dividing phase (Step 1 through 6 in Algorithm
MIMO-FuzzyJoin) is Div(ny, ny, K) = O(%E%).

Step (1): The set of partitioning tuples for R can be computed by sampling; the sampling
cost is small and can be ignored, since the sample size is usually small. Alternatively,
the set of partitioning tuples for R can be pre-computed and updated periodically. Thus,
the cost of the pre-computation can be amortized over many queries.

Step (2): the I/O cost is 0(’#) at a site;

Step (3): the communication cost is O (%) at asite;

Step (4): the computation of the K intervals does not incur extra I/O cost;

Step (5): the /O cost is O(’-kl) at a site;

Step (6): the communication cost is O(’7'§) at a site.

For the processing phase (Step (7)), each site has an input subset Ry of size O(%) and
a parameter subset T of size O("#). and the merge-join can be carried out in parallel with
O(™%) /O cost at asite provided the main memory at each site has a moderate size. Thus,
the total /O cost at each site is O(*="2), and Algorithm MIMO-FuzzyJoin will achieve
linear speedup.

7. Summary

A linear recursive program is used to formalize problems to be parallelized by the divide-
and-conquer method. A necessary and sufficient condition which characterizes problems
solvable by the divide-and-conquer method in parallel is obtained, and a parallel scheme
is developed. The performance of the parallel scheme is analyzed, and a necessary and
sufficient condition is obtained as to when linear speedup can be achieved. A generalization
of the PADAC Scheme is developed, and a real application, the fuzzy join problem, is
parallelized by the generalized PADAC Scheme with linear speedup.

THE DIVIDE-AND-CONQUER METHOD 437

Acknowledgments

Research supported in part by NASA (under grant NAGW-4080) and ARO(under grant DAH
04-96-1-0049, DAAH 04-96-1-0278, DAAH 04-0024/BMDO).

References
1. R. Agrawal and H.V. Jagadish, “Multip itive closure " Proc. Int’l. Symp. on Databases
in Parallel and Distributed Systems, Austin, Tex., Dec. 1988, pp. 56-66.
2. R. Agrawal and H.V. Jagadish, “Hybrid itive closure algorithms,” Proc. 16th Int’l. Conf. Very Large Data

Bases, Brisbane, Australia, Aug. 1990, pp. 326-334.

3. A.V. Aho, J.E. Hopcropt, and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-
Wesley, 1974,
4. S. Baase, Cq Algori Introdi to Design and Analysis, 2nd ed., Addison-Wesley, 1988.

w

. F. Bancilhon and R. Ramakrishnan, “An amateur’s introduction to recursive query processing strategies.”
Proc. ACM-SIGMOD Intel. Conf. on the Management of Data, 1986.

. B. Baugste and J. Greipsland, “Parallel sorting methods for large data on a hypercube database computer.”
Proc. the Sixth Int'| Workshop on Database Machine, pp. 127-141. 1989.

. M. Beck. D. Bitton, and W.K. Wilkinson, “Sorting large files on a backend multiprocessor,” IEEE Trans. on
Computers, vol. 37, no. 7, pp. 769-778, 1988.

=

~

8. J.L. Bentley and M.1. Shamos. “Divide-and for linear exp time,” Info. Proc. Letts, pp. 87-91.
Feb. 1978.
9. D. Bitton, H. Boral, D.J. DeWitt, and W.K. Wilkinson, “Parallel i for the ion of relational

database operations.” ACM Trans. on Database Systems, vol. 8. no. 3, 1983.

G.E. Blelloch, C.E. Leiserson, B.M. Maggs. C.G. Plaxton. S.J. Smith, and M. Zagha, “A comparison of

sorting algorithms for the i hine CM-2." Proc. the 3rd Annual ACM SPAA. 1991.

S. Bondeli. “Divide and conquer: A parallel algorithm for the solution of a tnidiagonal linear system of

equations.” Parallel Computing, voi. 17, July 1991.

12. P Bosc. M. Galibourg, and G. Hamon, “Fuzzy querying with SQL: Extensions and implementation aspects.”
Fuzzy Sets and Systems, vol. 28, pp. 333-349. 1988.

13 18:5.C dakis and P.C. Kanellakis, ““Parallel evaluation of
on Principles of Database Systems, 1986.

4. S.Darand H.V. Jagadish, “A sp gtree itive closure
Tempe, Arizona, Feb. 1992, pp. 2-11.

15, D. DeWitt. J. Naughton, and D.A. Schneider, “An of quijoi ithms.” VLDB 1991.
pp. 443-452.

16. D. DeWitt, J. Naughton, and D.A. Schneider. “Parallel sorting on a shared-nothing architecture using proba-
bilistic splitting,” IEEE PDIS, pp. 280-291. 1991.

17. D. DeWittand J. Gray. “Parallel database systems: The future of high performance database systems.” CACM.
pp- 85-98, July 1992.

18. D. DeWitt. J. Naughton. D.A. Schneider. and S. Seshadri. “Practical skew handling in parallel joins.” VLDB.
1992, pp. 27-40.

19. W.D. Frazer and A.C. McKellar, “Sampl A pling app
vol. 17. no. 3. pp. 496-507, July 1970.

20. “Fuzzy LUNA—Fuzzy database system library user’s manual and fuzzy LUNA—fuzzy database system

library reference manual,” OMRON Corporation. 1992.

S. Ganguly. A. Silberschatz, and S. Tsur. “A framework for the parallel processing of datalog queries.” Proc.

ACM SIGMOD Intel. Conf. on the Management of Data. Atlantic City, NJ. 1990.

22. K.-C. Guh and C. Yu, “Efficient of ialized lized
parallel environment.” IEEE Transaction on K
August 1992,

10.

rule queries.” Proc. Sth ACM Symp.

" Proc. 8th Int’l Conf. Data Engineenng.

h to minimal storage tree sorting.” JACM.

21,

q

closure in and
vol. 4, no. 4, pp. 371-381.

ledge and Data E

B



438 YANG ET AL.

23. L.J. Henschen and S.A. Nagvi, “On compiling queries in recursive first-order databases,” JACM, vol. 31,
no. 1, 1984

24. D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Reading, Mass., vol. 3, Addi
Wesley, 1973,

25. ET. Leighton. Introduction to Parallel Algori and Archi Morgan Kauf 1991.

26. J.W. Lloyd, Foundations of Logic Pr ing. 2nd edition, Springer-Verlag, 1987.

27. D. Maier, The Theory of Relational Databases, Computer Science Press: Rockvill, MD, 1983.

'S

43
44

. O. Wolfson and A. Silb “Distributed ing of logic p

. S. Nagviand S. Tsur, A Logical Language for Data and Knowledge Bases, Computer Science Press, 1989.
. H. Nakajima, T. Sogoh, and M. Arao, “Fuzzy database language and library: Fuzzy extension to SQL." Proc.

of the Second IEEE International Conference on Fuzzy Systems, pp. 477-482, 1993.

. D.S. Parker, E. Simon, and P. Valduriez, *SVP—a model capturing sets, streams, and parallelism,” Proc. 18th

VIDB, pp. 115-126, 1992.

. M.J. Quinn, “Parallel sorting algorithms for tightly coupled p " Parallel Computing, vol. 6,

pp. 349-367, 1988.

. G. Salton, Automatic Text Processing, Addison Wesley, 1989.
. B.Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren, and B. Vaughan, “FastSort: A distributed single-input

single-output external sort.” SIGMOD, pp. 94-101, 1990.

. D.A. Schneider and D.J. DeWitt, “A performance evaluation of four parallel algorithms in a shared-nothing

multiprocessor environment.” Proc. ACM SIGMOD. pp. 110-121, 1989.
J. Ullman, Database and Knowledge-Base Systems, Computer Science Press, Inc., 1988.

. P. Valduriez and G. Gardarin, “Join and ij i fora i hine,” ACM

TODS., vol. 9, no. 1, pp. 133-161, March 1984.

. B.W. Wah and G. Li, “Optimal parallel evaluation of AND trees.” Journal of Parallel and Distributed Com-

puting, vol. 10, pp. 1-17. 1990.
" Proc. ACM-SIGMOD Intl. Conf.

P 8!

on the Management of Data, 1988.

0. Wolfson and A. Ozeri, “A new paradigm for parallel and distributed rule-processing.” Proc. ACM SIGMOD
Intel. Conf. on the Management of Data. 1990.

Q. Yang and C. Yu, “Parallelization by the divide-and-conquer method.” IEEE Systems. Man and Cybernetics
Conference, Chicago, 1992, pp. 1265-1270.

Q. Yang. C Yu.C. Liu, S. Dao, and T. Pham, “A hybnd itive closure algori for and parallel
7 ing." IEEE Data Engineering, H . pp. 348355, 1994,

Q Yang. C. Liu. J. Wu. C. Yu. S. Dao. and H. Nakajima. “Efficient processing of nested fuzzy SQL quenes.”
IEEE 11th 1 i C on Data Eng Taiwan, 1995, pp. 131-138.

L.A. Zadeh. * Fuzzy logic.” IEEE Computer, pp. 83-93, Apnil. 1988,

W Zhang. C. Yu. G. Wang, T. Pham, and H. Nakajima. “A relational model for1 isequernies,” |

Symposium on Methodologies in Intelligent Systems. Trondheim, Norway, 1993.




	CCF03272019
	CCF03272019_0001

