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Abstract—A multimedia big data mining framework con-
sisting of two phases for interesting event detection in soccer
videos has been proposed in this paper. In the pre-processing
phase, it utilizes the multi-modal multi-filtering content analysis
techniques for shot boundary detection and feature extraction.
A pre-filtering process based on domain knowledge analysis is
then applied to clean the noise and obtain a candidate set. In
the event detection phase, a temporal multiple correspondence
analysis (TMCA) algorithm that adopts an indicator weighting
scheme is proposed to efficiently and effectively incorporate
the temporal semantic information for improving the detec-
tion results. Furthermore, another enhanced MCA (EN-MCA)
approach is presented to better capture the correspondence
between feature items and classes by thoroughly utilizing the
pair-wise principal components. Finally, a re-ranking proce-
dure is performed to retrieve the missed interesting event. Our
proposed semantic re-ranking framework is evaluated on a
large collection of soccer videos for interesting event detection.
The experimental results demonstrate the effectiveness of the
proposed framework.

Keywords-Big data; multimedia big data mining; event de-
tection; temporal MCA; re-ranking

I. INTRODUCTION

As we are stepping into the big data era, the volume
of multimedia data, especially videos, has been growing
enormously, from private digital video to broadcasting pro-
grams. How to efficiently and effectively process such great
amounts of video data to meet users’ interest in near real
time is a big challenge. Researchers in both academia
and industry have been seeking solutions to conquer this
challenge. Some initial attempts include the development
of Apache Mahout [1], a scalable machine learning and
data mining open source software based mainly on Hadoop.
However, the question still remains as to how to establish an
integrated and automatic framework to process and analyze
videos so that the users can efficiently search and browse
the interested content. Hence, interesting event detection
has attracted a lot of attention with the usage of high-level
indexing and selective video browsing [2].

Videos contain rich multi-modal information such as
visual, audio, and textual. Multi-modal approaches become
more and more popular since different modalities contribute
to interesting event detection from various aspects [3, 4, 5].
In [3], a multi-modal framework is utilized to leverage

the audio/visual/text features for the purpose of goal de-
tection. However, due to the limitation of text availability,
the framework does not always benefit from text semantic
information. In [4], visual clues are extracted for the usage
of shot segmentation, shot classification, and goal detection.
Then the audience’s cheering and the commentator’s excited
speech are extracted as the audio clues. At the end, both
visual and audio values are combined with the domain
knowledge of soccer videos to define goal event detection
rules.

In addition to the multi-modal features, temporal in-
formation is also a critical clue for analyzing potential
interesting events. For example, a typical goal shot in a
soccer game is usually followed by one or multiple close-up
shot, multi-player shot, and audience shot. However, there is
no strict order for these temporal patterns. In other words,
the temporal information has a loose structure. The well
representation and utilization of these temporal semantic
features will greatly facilitate the detection of interesting
events in sports videos. In this study, an indicator weighting
method is proposed to incorporate the extracted temporal
semantic features to improve the interesting event detection
performance.

In the multimedia information retrieval society, a re-
ranking process is usually deployed to improve the retrieval
results by utilizing auxiliary information, such as new fea-
tures or additional models. This idea also applies to the
interesting event detection task, as it is known that no one
single model always performs well for all types of data sets
or even a different set of features. This observation motivates
us to introduce a re-ranking framework for interesting event
detection, which takes advantages of different types of fea-
tures and multiple models to improve the detection results.
Specifically, the contributions of this work include:

1) A TMCA algorithm is proposed to incorporate the
well designed temporal semantic features by using an
indicator weighting scheme.

2) An EN-MCA method is presented to explore feature
item association in more details, thus capturing more
semantic information.

3) An integrated multimedia big data mining framework
is developed to effectively detect and retrieve interest-
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ing events from soccer videos.
The remainder of this paper is organized as follows.

Section II introduces the existing work. Section III discusses
the proposed semantic re-ranking framework in details, in-
cluding the pre-processing, indicator weight generation, en-
hanced MCA weight calculation, and the re-ranking process.
Finally, the experimental analysis is presented in section IV,
and section V concludes the paper.

II. RELATED WORK

Based on different types of features used for video event
detection, the related work can be classified into the fol-
lowing categories: (1) Audio-based methods [6, 7]: in some
early approaches, only audio features are analyzed for video
event detection. For example, in [6], Xu et al. developed
the mid-level audio keywords for event detection in soccer
videos. In [7], Rui et al. used audio features alone for
detecting hits and generating baseball highlights. (2) Visual-
based methods [8, 9]: visual information is one of the most
important clues for video content analysis and is usually the
first choice for event detection. In [8], a group of mid-level
visual features were proposed to present the characteristics
of a view, such as view label, motion descriptor and shot
descriptor. In another work [9], wang et al. developed a set
of descriptors based on low-level visual features for soccer
highlight extraction, namely field color descriptor, player
size descriptor, goal area descriptor, and midfield descriptor.
(3) Multi-modal fusion methods [10, 11, 12, 13, 14, 15]: as
mentioned before, it is a good strategy to integrate multi-
modal features for better performance. Most of the existing
frameworks fall into this category. Audio and visual data
are usually combined for event detection in multiple genres
of field sports including soccer, rugby, hockey, and Gaelic
football [10, 11, 12]. In [13], Xu et al. exploited web-casting
text crawled from famous sports websites to assist soccer
video event detection. There are also studies conducting
event detection by applying collaborative analyses of the
textual, visual, and audio modalities [14, 15].

Different levels of features (i.e., low-level, mid-level, and
high-level) created from multiple modalities are usually cou-
pled with various machine learning and data mining models
for event detection. Specifically, A two-layer hierarchical
SVM classifier was proposed to perform mid-level audio
classification in [11]. The fixed temporal structure of views
was used in exploring an SVM-based incremental method
to improve the extensibility of view classification and event
detection [8]. The temporal pattern of mid-level keyword
sequences was analyzed by the HMM classifer to detect
high-level semantics [12]. In [16], Assfalg et al. proposed
two approaches for soccer highlight detection based on
HMMs using only motion information or the combination
of player location information. Wang et al. [17] presented
a three-level framework that employs Conditional Random
Fields (CRFs) to fuse temporal multi-modal cues for event

detection. Chen et al. [18] extended the traditional asso-
ciation rule mining algorithm and presented a hierarchical
temporal association mining approach to adapt video event
analysis. In other studies, the subspace-based multimedia
data mining framework using decision trees was proposed
for rare event detection [19, 20].

Despite all these studies on video event detection, there
is limited work analyzing and utilizing temporal semantic
information. Some initial attempts were described in [21],
where a temporal pattern analysis step was conducted to sys-
tematically search for the optimal temporal patterns that are
significant for characterizing the events. In addition, there
is also lack of research on how to incorporate re-ranking or
post-processing technique(s) for interesting event detection,
which motivates us to develop the proposed framework.

III. SEMANTIC RE-RANKING FRAMEWORK

Depicted in Fig. 1 is the proposed framework composed
of 2 phases. In phase I, pre-processing is performed, which
includes three sub-routines, namely automatic shot boundary
detection, low-level multi-modal feature extraction, and pre-
filtering. The output of phase I is the remained candidate
instances which contain potential interesting events. In phase
II, the candidate set is passed through a classification model,
obtaining initial classification results, and then a set of
ranking models are applied to retrieve the basic ranking
scores. At the same time, the semantic features are extracted
for generating semantic scores using the proposed indicator
weighting algorithm, which will be combined with the basic
ranking score and utilized to determine the final interesting
events.

A. Pre-processing

In this work, a video shot is considered as the basic unit
for interesting event detection. Therefore, the first step of
pre-processing is shot boundary detection, which provides
the shot boundaries used for video feature extraction. In our
previous work [22], an effective and unsupervised multi-
filtering method was proposed, which includes three filters:
pixel-level filter, histogram filter and segmentation filter.
In this multi-filtering architecture, the histogram filter can
be incorporated into the traditional pixel-level comparison
to compensate each other and to reduce the number of
false positives. Furthermore, because object segmentation
and tracking techniques perform especially well on detecting
luminance changes and object motion, they are placed as the
last filter for determining the actual shot boundaries when
both pixel-level and histogram comparisons fail.

Multi-modal features have been proved to be effective for
video content analysis. In [23], a total of 17 features were
extracted for each shot, including 12 audio features and 5
visual features. The audio features can be classified into
three groups: volume-based, energy-based, and spectrum-
flux-based features. As for the visual features, they could
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Figure 1: Semantic re-ranking framework.

be further categorized into two groups: pixel-level and mid-
level features. The mid-level features consist of grass ratio,
back var, and next grass. The grass ratio feature denotes
the average percent of grass areas in a video shot, which is
a very critical feature for identifying goal shots since most
of them are of global or mid-view where the green field
occupies large areas of a screen. The back var feature is
generated by the segmentation filter. A low back var value
means a relatively smooth background, such as the play field
in soccer games. Finally, the next grass feature represents
the average percent of grass areas for the successive shot
of the one being processed. It is worth noting that the
mid-level features imply certain semantics. For example,
most interesting events are followed by one or two close-up
view shots, which are often of low grass ratio. Therefore,
next grass should be a low value.

Once the video features and audio features have been
properly extracted, the data mining techniques can be ap-
plied to retrieve the interesting events. However, the data
amount is typically huge and the ratio of the interesting
event to non-interesting events is less than 1:100 in our
study. As the first attempt to solve the class-imbalance issue,
the same major observation rules in [23] are carried out to
effectively pre-filter the data and enhance the precision of

(a) Interesting event (b) Successive shot 1 (c) Successive shot 2

(d) Successive shot 3 (e) Successive shot 4 (f) Successive shot 5

Figure 2: Examples of semantics.

mining interesting events.

B. Interesting Event Detection

As mentioned before, the semantic information could be
useful for identifying interesting events. The problem is
how to appropriately represent the semantics and effectively
utilize it. In the proposed framework, the semantics are
represented by binary features and used as additional in-
formation for improving the basic detection results.

Without loss of generality, the interesting event in soccer
games is used as an example. Fig. 2 shows the key frames
of an interesting event (goal shot) and the following five
consecutive shots. As can be seen from the figure, a typical
interesting event is usually followed by one (or more) close-
up shot (usually the shooter), multi-player shot, and audience
shot, which can be characterized as a temporal pattern. In
addition, the goal shot should have a high grass ratio and
high volume because of the excitement from both audience
and commentator. Therefore, a set of binary semantic fea-
tures are defined in Table I, where each feature is denoted
as Fj , j = 1, . . . , J , and J is the total number of features.
The next problem is how to evaluate the significance of each
semantic feature and calculate the total impact for assisting
video event detection.

Table I: Semantic features

Feature Id Semantics Example

F1 Football field

F2 Close-up shot

F3 Multi-player shot

F4 Audience shot

F5
Excitement from audience

and commentator
N/A
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Figure 3: Indicator weight generation

1) TMCA: MCA (Multiple Correspondence Analysis) has
been successfully applied to various multimedia analysis
tasks such as feature selection [24], discretization [25], data
pruning [26], classification [27] and video semantic con-
cept detection [20]. MCA analyzes the correlation between
feature value pairs (also called feature items in this paper)
and evaluates the contribution of each feature (attribute) in a
finer granularity, hence assisting the targeted analysis task.
Generally speaking, MCA is performed on the attribute level
and correspondence analysis is carried out to project the
original feature items to a new space for better representa-
tion. However, there is inevitable information loss during
the projection and each new component in the projected
space does not hold specific physical meaning. MCA has
demonstrated its efficiency and effectiveness over numerical
features, where each feature item after routine discretization
does not carry semantic in the first place. However, in our
scenario, each semantic feature attribute is already a bit
vector (with the nominal value 0 or 1), which carries specific
semantics. It is desirable to retain the original semantic
information as much as possible while exploring the feature
item level associations. To solve this problem, a TMCA
(Temporal MCA) algorithm is proposed to analyze feature
item correspondence and seamlessly integrate temporal in-
formation for semantic ranking.

Let I1 ∈ RN×4 be an indicator matrix for a particular
semantic feature (F1) as shown in Fig. 3, where each column
represents a feature item (F1,1 or F1,2) or a class label (C1

or C2), and each line is an instance (or some analysis unit
such as a video shot in this paper), with a total number of
N shots. The semantic meaning embedded in the indicator
matrix is as follows. For example, the values for F1,1 and
C1 for shot 1 are 1, which means shot 1 shows a football

field and it is an interesting event. On the contrary, shot
2 has F1,2 and C2 with the value 1, which means it does
not show a football field and it is not an interesting event.
Without loss of generality, we use 1-D subscripts to represent
a feature attribute (e.g., F1) and 2-D subscripts to represent
a feature item (e.g., F1,1) throughout the paper. To calculate
the correlation between a feature item (Fj,k, k = 1, . . . ,K)
and a class label (Cl, l = 1, . . . , L), an indicator weighting
method is illustrated in Eq. 1, where K is the total number of
feature items for attribute F1, L is the number of classes, and
λ ∈ [0, 1] is a tuning parameter to accommodate the effect
of the number of features. This indicator weight calculation
approach takes advantages of both the traditional cosine
similarity and Tanimoto coefficient [28].

IW l
j,k =

~Fj,k · ~Cl∥∥∥~Fj,k

∥∥∥
2
·
∥∥∥~Cl

∥∥∥
2
−λ· ~Fj,k · ~Cl

(1)

=

∑N
i=1(f ij,k ·cil)√∑N

i=1(f ij,k)2 ·
√∑N

i=1(cil)
2−λ·

∑N
i=1(f ij,k ·cil)

Algorithm 1 Indicator Weight for Ranking
Input: Training data set Tr, testing data set Te
Output: Ranking score for Te based on indicator weights

1: procedure GENIW(Tr) . Training
2: for each Fj (j = 1, · · · , J) do
3: Construct indicator matrix Ij;
4: for each Fj,k (k = 1, · · · ,K) do
5: for each Cl (l = 1, · · · , L) do
6: calculate IW l

j,k using Eq. 1;

7: end for
8: end for
9: end for

10: return IW . IW is a 3-D matrix.
11: end procedure

12: procedure CALCSCORE(Tr, Te) . Testing
13: IW ← GENIW(Tr);
14: for each Xi in Te (i = 1, · · · , N) do
15: for each Fj (j = 1, · · · , J) do
16: Look up iwj from IW;
17: Si ← Si + (1− iwj)

2;
18: end for
19: Si ← Si/J;
20: Add Si to RS1;
21: end for
22: return RS1 . Ranking score for Te
23: end procedure

The above indicate weight generation procedure is con-
sidered as a training process (as described in Algorithm 1
lines 1 to 11). Intuitively, to calculate the overall effect
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Figure 4: Feature item and class projection

of all the feature items for a specific instance towards
a particular class, a summarization over all the feature
attributes is required. The summarized value is known as
an instance score. Eq. 2 shows the weighting scheme based
on the trained indicator matrix IW , where the final score is
normalized by the total number of attributes. Algorithm 1
lines 12 to 23 describe the procedure for calculating the
scores, known as the testing process. For ease of illustration,
the number of testing instances is also denoted as N .

Si =

∑J
j=1(1− iwj)

2

J
(2)

2) EN-MCA: As discussed earlier, the traditional MCA
algorithm analyzes feature item correlations by projecting
them into another space by keeping the first two principal
components (PCs) in the transformed space. However, the
projection process will unavoidably lose certain information.
Moreover, it is not guaranteed that the first two PCs are
the best representatives. For example, Fig. 4 illustrates the
feature item vector Fj,k

′ (different from Fj,k since it is in
the projected space) and the class vector Cj,l in a different
projection space. Fig. 4 (a) shows the two vectors in the 3-D
space projected by the first three PCs, i.e., PC1, PC2 and
PC3. As can be seen from the figure, Fj,k

′ and Cj,l are
pretty close in the space expanded by PC1 and PC2 (Fig. 4
(b)), while they are relatively distant from each other (with a
larger angle) in the space composed of PC1 and PC3 (Fig. 4
(c)). However, the projection in (b) does not necessarily
perform better than (c). By taking into consideration of all
potential valuable PCs, we propose an enhanced MCA (EN-
MCA) algorithm by fully utilizing all critical PCs.

The EN-MCA algorithm is described in Algorithm 2.
Specifically, the training data set Tr is first discretized into
nominal values using the well known Minimum Description

Algorithm 2 EN-MCA
Input: Training data set Tr
Output: EN-MCA weight matrix

1: procedure GENMW(Tr)
2: Discretize Tr into nominal
intervals;

3: for each Fj (j = 1, · · · , J) do
4: Construct indicator matrix Ij;
5: Calculate burt matrix Bj;
6: {Zj , Vj , Ej} ←MCA(Bj);
7: Determine the number of PCs, Qj;
8: count← 1;
9: for m← 1, . . . , Qj − 1 do

10: for n← m+ 1, . . . , Qj do
11: V P ← [ ];
12: Calculate Fj

′ and Cj;
13: for each Fj,k

′ (k = 1, · · · ,K) do
14: for each Cj,l (l = 1, · · · , L) do
15: calculate W l

j,k(count);

16: end for
17: end for
18: V P [count]← Vj [m] ∗ Vj [n];
19: count← count+ 1;
20: end for
21: end for
22: for q ← 1, . . . , count do
23: wq ← V P [q]/sum(V P );
24: for each Fj,k

′ (k = 1, · · · ,K) do
25: for each Cj,l (l = 1, · · · , L) do
26: MW l

j,k ←MW l
j,k +W l

j,k(q) ∗ wq;

27: end for
28: end for
29: end for
30: end for
31: return MW . MW is a 3-D matrix.
32: end procedure

Length (MDL) algorithm [29]. Then, for each feature at-
tribute, an indicator matrix (Ij , similar to Fig. 3) is built,
followed by the generation of burt matrix Bj . Subsequently,
the traditional MCA is performed, obtaining three matrices,
i.e., Zj , Vj , and Ej , where Zj is the centralized and
normalized burt matrix, Vj is sorted eigen vectors, and
Ej is the corresponding eigen values. The number of PCs
to be retained is determined by the accumulated variance
calculated from Vj [30]. For each pair of PCs, the projected
vectors Fj

′ and Cj are generated based on Zj and Vj . Then
the MCA weight is calculated for each feature item Fj,k

′

and class label Cj,l as shown in Algorithm 1 lines 13 to 17.
For details about how to perform the conventional MCA and
calculate the weight, please refer to [31]. At the same time,
the significance of each PCs pair is evaluated in Algorithm 2
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line 18. Finally, the final MCA weight for each pair of
Fj,k

′ and Cj,l is calculated using the linear combination
of each W l

j,k based on the normalized weight factor wq .
This is the training stage for the EN-MCA algorithm. For
calculating the testing score for Te, a similar procedure as
in Algorithm 1 (lines 12 to 23) is followed. A valuable
conclusion drawn from the study and analysis of the EN-
MCA algorithm is that it is more effective for a larger
number of feature items. In other words, the feature attribute
with more discretized intervals will benefit more from the
EN-MCA algorithm.

3) Re-Ranking: In this paper, the binary classification
problem is taken as an example to illustrate the proposed
re-ranking procedure. As shown in Algorithm 3, the input
of the re-ranking algorithm is the initial classification results,
denoted as CM , which contains the classified positive and
negative instances represented as G1 and G2 respectively.
Another input is the ranking score from different ranking
models, e.g., RS1 is the ranking score obtained from the
indicating weight ranking procedure. Finally, we have the
significance factor for each ranking model. The re-ranking
procedure starts by normalizing the ranking score for each
model (Algorithm 3 line 5) based on training data using Z-
score normalization method. Then the normalized ranking
scores are linearly combined by using the corresponding
significance factor ρt, generating the final ranking score Φ.
Finally, the refined positive instances G1

′ is generated by
excluding the instances below a preset threshold θ1 in G1

(Algorithm 3 line 10), and including the instances above θ2
in G2 (Algorithm 3 line 16), vise versa for G2

′.

IV. EXPERIMENTAL RESULTS

The proposed framework was rigorously tested upon a
large experimental data set, which contains 23 soccer videos
collected from the FIFA World Cup of 2010 and 2014. The
total number of frames is about 2.8 millions and the total
duration of the videos is over 31 hours. Among the total 20k
video shots, only 91 of them contain the interesting events,
which contributes only 0.5% to the total number of shots.
A summary of the data set is shown in Table II. Within
the scope of this study, the interesting events in any soccer
game include both goal shot and goal attempt, since it is
not uncommon that the users are sometimes interested in a
certain goal attempt event.

The experimental settings are as follows. The decision
tree classifier in Weka [32] is used to generate the basic
classification results (CM ). Then the proposed indicator
weighting scheme is applied to generate the semantic score
(RS1). Another two sets of ranking scores, RS2 and RS3,
are produced by the proposed EN-MCA algorithm and the
LibSVM model [33] using the multi-modal features [23].
Intuitively, the more ranking models used, the better the
performance. However, the computational complexity is

Algorithm 3 Re-Ranking
Input: Classification results CM = {G1, G2}, ranking
score for different models {RSt | t = 1, . . . , T}, signifi-
cance factor for each model {ρt |

∑T
t=1 ρt = 1}

Output: Refined classification results based on re-ranking
CM ′

1: procedure RERANKING(CM, RS, ρ)
2: Φ← [ ];
3: CM ′ ← CM;
4: for each RSt do
5: Perform normalization;
6: Φ← Φ +RSt ∗ ρt;
7: end for
8: for each Xi in G1 (i = 1, · · · , size(G1)) do
9: if Φ(Xi) < θ1 then

10: G1
′ ← G1

′ −Xi;
11: G2

′ ← G2
′ +Xi;

12: end if
13: end for
14: for each Xi in G2 (i = 1, · · · , size(G2)) do
15: if Φ(Xi) > θ2 then
16: G1

′ ← G1
′ +Xi;

17: G2
′ ← G2

′ −Xi;
18: end if
19: end for
20: return CM ′

21: end procedure

higher. Therefore, there is a trade-off between performance
and complexity. If another feature set with a larger number
of features is used, the Hidden Coherent Feature Groups
(HCFGs) [34] analysis method could be used to select the
exemplar features and greatly reduce the overall complexity.
All the ranking models are considered equally important in
our experimental analysis, i.e., ρt = 1/T with T = 3. A
more advanced approach is to determine the factor based on
training performance [34]. θ1 and θ2 are set to be empirical
values, i.e., 0 and 2 in the experiments. A more flexible
solution is to determine them based on training statistics.

Those semantic features shown in Table I could be ex-
tracted with different manners. For example, F1 could be
analyzed by the dominant color in a video frame (i.e., the
grass ratio should be over a certain threshold); F2 to F4

can be determined by the number of faces (either frontal or
profile, which is used in the experiments) [35] in a frame
or by an object and crowd detection [10, 36]. Lastly, F5 is
decided by the volume value in the audio modality. Based
on our experimental observation, these features are relatively
easy to extract and reasonable in the sense of conveying
preliminary semantics. In addition, more semantic features
could be added to boost the performance.

To better evaluate our proposed framework, three-fold
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cross-validation is used. That is, two thirds of the data set
are randomly selected for training and the rest one third
is for testing. The precision (Pre), recall (Rec), and F1 are
calculated as the performance measurements.

Table III and IV show the interesting event detection
results before and after applying the proposed re-ranking
framework. Specifically, Table III presents the base classi-
fication results from the decision tree, and Table IV is the
outcome of the re-ranking process. As can be seen from
the table, the proposed framework improved the detection
results by reducing the numbers of FN (missed interesting
events) and FP (mis-identified interesting events) to 5 and
7, respectively. The overall precision, recall, and F1 are all
increased by 2% to 4%. Considering the rareness of the
interesting events and the skewed nature of the data set, the
improvement is promising. Based on our observation, most
of the mis-identified interesting events are foul or those shots
being close to the real event, which have similar patterns
with the real event and are difficult to be identified. On the
other hand, a number of interesting events are resulted from
corner kick and penalty kick, which have irregular charac-
teristics compared with the normal goal shots and are easily
identified as non-interesting event. From the experimental
results, it can be concluded that the incorporation of tem-
poral semantic information by using the indicator weighting
method together with the EN-MCA ranking mechanism have
improved the interesting event detection results. Finally, it is
worth noting that although our indicator weighting algorithm
is designed for nominal features, it also applies to numerical
features when they are properly discretized.

Table II: Data set summary.

No. Files Total
Frame

Total
Time

Total
Shots

No.
Events

23 2,084,102 31 h 20 m 20,082 91

Table III: Performance evaluation before re-ranking.

Fold
Number

No.
Events TP FN FP Pre Rec F1

Fold 1 31 30 1 2 93.7% 96.8% 95.2%
Fold 2 31 26 5 3 89.7% 83.9% 86.7%
Fold 3 29 27 2 4 87.1% 93.1% 90.0%

Summary 91 83 8 9 90.2% 91.2% 90.7%

Table IV: Performance evaluation after re-ranking.

Fold
Number

No.
Events TP FN FP Pre Rec F1

Fold 1 31 31 0 3 91.2% 100% 95.4%
Fold 2 31 28 3 1 96.6% 90.3% 93.3%
Fold 3 29 27 2 3 90.0% 93.1% 91.5%

Summary 91 86 5 7 92.5% 94.5% 93.5%

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a two-phase multimedia big data
mining framework for interesting event detection in soccer
videos. In the pre-processing phase, the multi-filtering con-
tent analysis techniques are used for shot boundary detection
and the multi-modal features are extracted. A candidate set
is produced by the pre-filtering process based on domain
knowledge analysis. In the event detection phase, TMCA
algorithm is used to generate semantic re-ranking score
by incorporating temporal and semantic features using the
indicator weighting strategy. Moreover, the EN-MCA algo-
rithm is applied to better capture feature item association for
final decision-making. The whole interesting event detection
framework is successfully evaluated on a soccer game data
set. The experimental results are satisfactory considering the
rareness of the interesting event. It is worth mentioning that
our proposed framework could be easily adapted to other
video types. There are several future study directions. First,
both indicator weight and MCA weight try to capture the
correlation between feature items and class labels, but from
different levels. While the indicator weight keeps all the
original information and carry more semantics, the MCA
weight provides more detailed analysis within each feature
item. It is promising to effectively integrate these two types
of weights for various semantic analysis tasks. Second, since
the processing of each feature attribute is independent, it is
feasible and desirable to parallel the calculation by introduc-
ing the MapReduce framework on the Hadoop platform for
distributed computing. It will greatly accommodate the big
data requirement, considering the ever-increasing amount of
multimedia data. Finally, the temporal information is loosely
incorporated into our framework, and therefore, it is another
potential direction for better utilizing the embedded temporal
characteristics. Finally, more data sets should be used and
more detailed evaluation should be carried out to further
demonstrate the effectiveness and efficiency of our proposed
algorithms and framework. In addition, more work has to be
done to relieve the effect of domain knowledge and provide
a more universal framework for the general use purpose.
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