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Abstract—Learning from imbalanced data sets is a
hot and challenging research topic with many real
world applications. Many studies have been conducted
on integrating sampling-based techniques and ensem-
ble learning for imbalanced data sets. However, most
existing sampling methods suffer from the problems
of information loss, over-fitting, and additional bias.
Moreover, there is no single model that can be applied
to all scenarios. Therefore, a positive enhanced ensemble
learning (PEEL) framework is presented in this pa-
per for effective video event detection. The proposed
PEEL framework involves a novel sampling technique
combined with an ensemble learning mechanism built
upon the base learning algorithm (BLA). Exploratory
experiments have been conducted to evaluate the re-
lated parameters and performance comparisons. The
experimental results demonstrate the effectiveness of the
proposed PEEL framework for video event detection.

Keywords-Imbalanced data set; sampling; ensem-
ble learning; multiple correspondence analysis (MCA);
video event detection

I. INTRODUCTION

Learning from imbalanced data sets for binary

classification problems has been a hot and chal-

lenging topic in the research communities and has

many real-world applications such as fraud detection,

medical diagnosis, intrusion detection, face recogni-

tion, information retrieval, and video event detection

[1][2][3][4][5][6][7][8]. The class imbalance problem

has been amplified and aggravated as the world steps

into the big data era. The underlying nature of the

class imbalance issue is that the number of samples

(instances) in the majority (negative) class dramati-

cally exceeds that of the minority (positive) class of

interest, which undermines the classification process.

For example, the positive to negative ratio is about

1:100 and 5:1000 for fraud detection and video event

detection [2][8], respectively. Many attempts have

been made to address the class imbalance problems

in different occasions [9]. However, there is no single

method that triumphs in all scenarios. In this paper, the

focus is on addressing the class imbalance challenge

for video event detection.
A video event is defined as an activity of a par-

ticular user interest, for example, a goal event in a

soccer video. The rareness of a video event (positive

instance) makes the detection task extremely difficult

because of the aforementioned class imbalance issue

[10][11][12][13]. By further analyzing the problem,

it is found that most of the false alarms (or false

positives) are pretty close to the real events in a certain

sense (e.g., goal attempt and foul) which might also

attracts users’ interests. A good video event detec-

tion framework should retrieve as many true positive

instances as possible, although it might potentially

include more false positive instances. In other words,

the video event detection learner should enhance the

favor of the positive class. With this objective in

mind, a positive-enhanced ensemble learning (PEEL)

framework is presented for video event detection. The

proposed framework integrates the sampling-based

technique and the ensemble learning mechanism, and

is able to detect most of the real events at the expense

of including a small amount of related events. The

proposed framework outperforms most of the well-

known single models and ensemble classifiers under

the Receiver Operating Characteristic (ROC) or the

Area Under the Curve (AUC) criterion [14].

The paper is organized as follows. Section II pro-

vides an overview of the existing work for solving the

class imbalance issue. Section III discusses the details

of the proposed PEEL framework. Section IV presents

a thorough experimental analysis. Finally, section V

gives the conclusion.

II. RELATED WORK

A considerable amount of efforts have been done

in the research community on learning from the im-

balanced data sets, especially for binary classification

problems. He et al. [9] presented an overview of those

methods and generally grouped them into three cate-

gories, namely (1) sampling-based methods [15][16],

(2) cost-sensitive methods [17][18], and (3) kernel-

based and active learning methods [19][20]. Among

those approaches, the sampling-based methods and the

integration with ensemble learning ones have been

widely studied and have shown their success over

the years [21]. Therefore, they will be the focus

of this paper. Studies have demonstrated that a bal-

anced data set usually outperforms an imbalanced

one, which justifies the use of various sampling meth-

ods [22], such as random under-sampling and over-
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Figure 1: The proposed PEEL framework.

sampling [23][24], informed under-sampling [21][25],

synthetic over-sampling [16][26][27], and clustering-

based sampling [16][24][28]. The mechanics behind

under-sampling and over-sampling are the random

removal of the majority instances and the replication

of minority instances respectively [9]. Both ways

have their intrinsic problems such as the loss of

majority information and over-fitting [29]. The under-

sampling approaches alleviate those problems by us-

ing some statistical knowledge [21]. More recently,

the clustering-based sampling methods have been

proved effective by dealing with both within-class

and between-class imbalance issues. For example,

in [16], Barua et al. proposed the so-called Majority

Weighted Minority Oversampling TEchnique (MW-

MOTE), which generates the synthetic samples from

the weighted minority class using a clustering ap-

proach. Although the synthetic oversampling methods

provide a better balance in the distribution between

the majority and minority classes, they unavoidably

introduce error-prone instances [16].

To overcome the limitation of the sampling-based

methods, the integration of ensemble learning mech-

anism (such as bagging [30] and boosting [31]) is

introduced. For example, Chawla et al. [32] integrated

SMOTE [26] with Adaboost [31] for boosting the

performance of the minority class. In [33], Guo et al.

combined the synthetic data generation technique [34]

and the Adaboost algorithm [31] to improve the

overall accuracy. Although the “sampling-ensemble”

methods have been proved to be efficient and effective,

there is no single approach that can be applied to all

scenarios.

III. ENSEMBLE LEARNING FRAMEWORK

As illustrated in Figure 1, the proposed PEEL

framework contains three phases, i.e., pre-processing,

training, and testing. In phase I, the input raw videos

are pre-processed to generate a pre-filtered candidate

instance set with the extracted features. In phase II,

the proposed PEEL framework is applied to obtain an

ensemble of the base learners. Finally, in phase III,

the ensemble learner is applied to classify the target

video event. The details of each of the three phases

are discussed in the following subsections.

A. Pre-processing

The pre-processing phase of the proposed frame-

work consists of three main steps: shot boundary

detection, low-level feature extraction, and instance

pre-filtering. Usually, a video shot is treated as the

basic unit for video event detection. Therefore, the

first step of pre-processing is shot boundary detection,

which provides the shot boundaries for video fea-

ture extraction. In this paper, the unsupervised multi-

filtering method proposed in [35] is adopted for ef-

fective shot boundary detection. Due to the prevalence
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Algorithm 1 Positive Enhanced Ensemble Learning Algorithm

Input: Training set Tr, BLA, positive ratio r, voting confidence v ∈ [0,1].
Output: Ensemble learner C(x).

1: procedure PEEL(Tr) � training phase

2: M←∅;
3: separate Tr into positive set P and negative set Q;
4: NP← |P| ; NQ← |Q|; � obtain the sizes (numbers of instances) of P and Q respectively

5: nq← NP ∗ r; � determine split size based on the given positive ratio

6: K← NQ / nq; � calculate the number of split for Q
7: evenly split Q into K subsets, denoted as S = {S j | j = 1, · · · ,K};
8: for all j = 1, · · · ,K do
9: if r >= 1 then

10: D j← S j ∪P; � perform merge

11: else if r < 1 then � i.i.d. sample with replacement

12: D j← randomly sample nq instances from P and merge with S j;
13: end if
14: train model Mj based on D j using BLA; M←Mj;
15: end for
16: return the hypothesis:

17: C(x) =
{

1 if ∑K
j=1 Mj(x)> K ∗ v, Mj(x) ∈ {0,1};

0 othersise
18: end procedure

and effectiveness of multi-modal features for video

content analysis, a set of visual and audio features

are extracted for each video shot, which cover both

low-level characteristics (such as pixel change) and

mid-level semantics (such as grass ratio and audience

volume) [36]. After feature extraction, the video data

set is ready for event detection. However, the data set

is highly imbalanced with a large number of irrelevant

instances. As reported in [8], the interesting events

(such as goal, goal attempt, and foul) only count less

than 1% in the whole data set, not to mention only

the goal event. As the first attempt to relieve the class

imbalance issue to some extent, a pre-filtering step

is performed to remove as many irrelevant instances

as possible. For more details about the pre-processing

process, please refer to [8].

B. Positive Enhanced Ensemble Learning

As aforementioned, most of the existing sam-

pling algorithms (e.g., random under/over-sampling

and synthetic sampling) suffer from the problems of

information loss, over-fitting, and the introduction of

bias. To overcome these limitations, we propose a

novel sampling method which makes the full usage

of all the positive and negative instances in the

training set and builds an ensemble learner based on

the base learning algorithm (BLA, as presented in

section III-C). As shown in Algorithm 1, the proposed

PEEL framework first separates the given training set

Tr into the positive set P and negative set Q. Then

Q is evenly split into K subsets (S j, j = 1, · · · ,K)

based on the given positive ratio r (lines 4 to 7),

which represents the percentage of positive instances

used in each batch (D j, j = 1, · · · ,K) for the base

model training (lines 8 to 15). When r >= 1 (case

1), all positive instances will be used for training

in each batch with the number of negative instances

increased as r goes up; otherwise, when r < 1 (case

2), the positive instances will be randomly sampled

with replacement (assuming independent identical dis-

tribution, i.i.d.) based on the calculated nq (line 5).

Therefore, the numbers of positive and negative in-

stances are identical for each batch in this case. In

either cases, all of the negative instances in Tr will

participate in the training process. When the value of

r is relatively small (<= 1), the positive class will

dominate the characteristic of each batch data set due

to the superior inter-class coherency compared with

the negative class, hence the name PEEL. After each

base model (Mj, j = 1, · · · ,K) is properly trained,

the final ensemble learner (hypothesis) is built based

on the equation in line 17. As can be inferred from

Algorithm 1, there are two critical parameters in this

algorithm, i.e., the positive ratio r and the voting

confidence v. While r decides the dominant level of

the positive class in each base model, v reflects the

confidence level for each model. The higher the value,

the larger the number of positive outcomes is required

from the base models for classifying an instance x as

positive for C(x). The selection and evaluation of r
and v will be presented in the experimental section.
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C. Base Learning Algorithm

The BLA is constructed based on a set of weak

learners (L = {Lh | h = 1, · · · ,H}) as shown in

Algorithm 2. The output of each weak learner is

linearly combined using the given weight vector w =
{wh | h = 1, · · · ,H}, where each element represents

the confidence for the corresponding weak learner.

The combined results will be used to determine the

final outcome of the base learner B(x) as depicted

in the equation in line 6. Theoretically, a “stronger”

classifier should be assigned a larger weight. If all

the weak learners are with equal weights, then the

base learner reduces to a majority voting algorithm.

The combination of BLA and PEEL framework has an

“ensemble of ensemble” flavor. Considering the small

sample size of each training batch, the computation

overhead of the overall PEEL framework is negligible,

compared with the performance gain. The construction

of BLA will be analyzed in section IV-B.

Algorithm 2 Base Learning Algorithm

Input: Training set Tr′, weak learners L = {Lh | h =
1, · · · ,H}, weight vector w = {wh | h = 1, · · · ,H}, s.t.

∑H
h=1 wh = 1.

Output: Base learner B(x).
1: procedure BLA(Tr′)
2: for all h = 1, · · · ,H do
3: train model Lh on Tr′;
4: end for
5: return the hypothesis:

6: B(x) =
{

1 if ∑H
h=1 Lh(x)∗wh > 1/2;

0 othersise
7: end procedure

IV. EXPERIMENTAL ANALYSIS

The proposed framework was extensively tested

upon a large data set, which contains 58 soccer videos

collected from the FIFA World Cup of 2003, 2010,

and 2014. The total number of frames is over 4.7

millions and the total duration of the videos is about

52 hours. Among the total 32k video shots, only 105

of them contain the goal event, which contributes less

than 0.5% to the total number of shots. A summary

of the data set is shown in Table I.

Table I: Data set summary.

No.
Files

No.
Frames

Total
Time

No.
Shots

No.
Goal

Events

58 4,731,807
51

hours
48 min.

32,463 105

A. Evaluation Criteria

The receiver operating characteristic (ROC) curve

is chosen as the evaluation method (under stratified

cross-validation scheme) over the precision recall (PR)

curve since we care more about the true positive rate

(recall) than the precision [14]. In other words, a low

precision is more tolerable than a low recall. This is

because some false positives are also of user interests,

especially in the video event detection scenario as

mentioned before. Therefore, when determining the

threshold for classification, we tend to retrieve a

high true positive rate (or low false negative rate)

and reduce the impact of negative data on the total

classification costs. Table II shows the definition of

the confusion matrix (CM) and Equation 1 presents

the basic metrics for the analysis.

Table II: Confusion Matrix

CM
Predicted

positive

Predicted

negative

Actual positive TP FN
Actual negative FP TN

True Positive Rate (TPR) =
T P

T P+FN
(1)

False Positive Rate (FPR) =
FP

FP+T N
(2)

False Negative Rate (FNR) =
FN

FN +T P
(3)

B. Selection of Weak Learners for BLA

The multiple correspondence analysis (MCA) ap-

proach [37][38] has found its success in various

video analysis tasks, especially the interesting event

detection problem [8][39]. In this paper, it is combined

with the traditional decision tree (DT) algorithm [40]

for constructing the BLA, since DT is usually used

as a weak learner in the ensemble learning mecha-

nism and it has been proved effective for goal event

detection [36][41]. In our experiment, MCA and DT

are assigned with equal weights. MCA is a continu-

ous classifier which outputs probability-like ranking

scores for the testing instances. Thus, the selection

of a proper threshold for binary classification greatly

affects the performance of MCA. To evaluate the

impact of the threshold for MCA, the ROC curve

is plotted in Figure 2 using a subset of the training

data set. As can be seen from the figure, the MCA

algorithm has a satisfactory performance for video

event detection with an AUC value of 0.918. The AUC

of the Conv Hull (shorted for convex hull) illustrates

the theoretical maximum performance of the target

algorithm for the corresponding evaluation data set.

For the comparison purpose, the performance of the

DT algorithm (as a discrete classifier with the binary
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Figure 2: MCA ROC curve.

output) on the same testing set is also depicted in

the figure (as a red circle), where the green dotted

line represents a random (by chance) classifier. As

can be inferred from the figure, the MCA has over

10% gain of TPR over the DT in the ideal situation.

The optimal threshold is obtained by minimizing the

average expected cost of classification at point (y,z)
in the ROC space as follows.

Cost(y,z) = (1− p)∗α ∗ y+ p∗β ∗ (1− z) (4)

where α and β are the penalties of a false positive

and a false negative respectively, and p is the positive

portion calculated as

p =
NP

NP +NQ
(5)

where NP and NQ are the numbers of positives and

negatives in the training as illustrated in Algorithm 1.

In our scenario, α and β are assigned with the values

of 0.2 and 0.8 respectively in order to emphasize the

importance of TPR.

C. Analysis of Positive Ratio

To evaluate the performance and impact of the

positive ratio r, the ROC curve over r is plotted with

a fixed value of v (=0.5) as shown in Figure 3. There

are two main observations and conclusions from the

figure. First, the PEEL framework outperforms the

individual weak learner (i.e., DT) in the sense of TPR

by about 10% while maintaining comparable FPR.

Second, the performance of PEEL boosted rapidly

with relatively low FPR. Based on our experimental

analysis, the PEEL framework achieves the best per-

formance when the value of r is around 1.0, which

means the positives and negatives are comparable. In

other words, the training set is relatively balanced for

each batch.

Figure 3: ROC curve on positive ratio (r).

Figure 4: ROC curve on voting confidence (v).

D. Analysis of Voting Confidence

The ROC curve over the voting confidence v for

the proposed PEEL framework is shown in Figure 4

with r = 0.8. As can be seen from the figure, Figure 4

is similar to Figure 3. The AUC (=0.937) is slightly

better than in Figure 3 (with AUC=0.934), which

means v has a relatively higher impact than ron the

performance of PEEL. It is also observed that FPR

degrades relatively faster with varying v values than

r values. Based on the experimental results, the best

performance is achieved when v is about 0.5, which is

equivalent to majority voting among the base learners

(Mj).

E. Comparison with Other Methods

Finally, the proposed PEEL framework is compared

with various traditional single models (e.g., KNN,

SVM, Naive Bayes, and DT) and other ensemble

learners (e.g., Adboost, Bagging, and RandomForest).
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Figure 5: Comparison on various methods.

All the comparison methods (treated as discrete classi-

fiers) are based on the implementation of WEKA [42]

with the default parameter settings. As can be seen

from Figure 5, our PEEL framework outperforms

all the other methods with over 90% of TPR and

comparable FPR. To be specific, it achieves about 10%

TPR gain over the DT and Bagging algorithms; 20%

TPR gain over the SVM, NaiveBayes, RandomForest,

and Adaboost algorithms; and finally almost 40% TPR

gain over the KNN algorithm.

V. CONCLUSION

In this paper, an effective ensemble learning al-

gorithm called PEEL is proposed for video event

detection. The PEEL framework contains a novel

sampling method which makes the full use of all

negative instances while enhancing the impact of the

positive class for base learner training in the ensemble

mechanism. The experimental analysis demonstrates

the effectiveness of the proposed PEEL framework. In

the future, more data sets and additional measurements

should be applied to further evaluate the framework.

Moreover, the within-class distribution should also be

explored to develop better sampling mechanisms. In

addition, it has great significance to study the opti-

mization strategies for critical parameter estimation.

Finally, it becomes gradually important to introduce

big data analytics and technologies to accommodate

ever-growing data sets.
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