
T
he proliferation of Internet-con-

nected mobile devices such as

mobile phones and tablet com-

puters has made it common prac-

tice for people to upload all kinds of multimedia

data to social sites such as Flickr, YouTube, and

Facebook. By 2014, the rate of data sharing via

mobile devices will be 14 times greater than in

2008.1 The multimedia research community has

addressed this challenge by developing systems

that allow the semantic retrieval of multimedia

data. Nevertheless, research on this problem

remains active given the semantic gap between

the low-level representation of multimedia data

and their high-level semantic meaning.

A typical concept retrieval framework is built

on the tasks of feature extraction, model train-

ing, classification, and ranking. Although

much research has been done on each of these

tasks,2,3 significant challenges still remain such

as the effective analysis and utilization of multi-

source, high-dimensional features. To effec-

tively retrieve meaningful semantics from

rapidly growing multimedia data, it is essential

to capture the correlations among features to

enhance the effectiveness of model training

and classification tasks.

To tackle this problem, researchers usually

perform either a linear combination of the orig-

inal features from different modalities or use

statistical techniques such as principle compo-

nent analysis (PCA) and independent compo-

nent analysis (ICA) to transform the original

features into another space and select the most

“important” features. However, these statistical

methods try to make each feature independent

in the transformed space, and as a result, some

information is lost during model training on

the transformed feature set. Overall, these

methods do not thoroughly explore the correla-

tion between features with different types and

may not fully utilize the complementary infor-

mation from various features. For instance, the

tag “tree” implies the color “green” for the

semantic concept “forest,” which is considered

a hidden correlation between features.

In addition to the feature-analysis problem,

another issue is the integration of multiple

models in the semantic space by fusing the deci-

sions (scores) from different models. The chal-

lenges lie in how to select the training models

for different feature types and how to evaluate

the confidence of the decision from different

models and take that into account when per-

forming final fusion. (See the “Related Work in

Multimedia Semantic Retrieval Systems” side-

bar for more details on previous research.)

Given these problems and challenges, we pro-

pose a correlation-based feature-analysis method

to explore hidden coherent feature groups

(HCFGs) and present a novel, multimodel fusion

scheme. Specifically, we analyze the correlation

between each feature pair and use the affinity

propagation algorithm to separate the original

feature set into different feature groups (HCFGs),

maximizing the intragroup correlation and min-

imizing intergroup correlation. Subsequently,

one model is trained for each of the HCFGs, and

the HCFGs with best performance in the train-

ing phase are chosen for the final score fusion.

This article presents a mobile system that utilizes

the proposed framework as its retrieval engine

and features a user feedback mechanism for

improving retrieval performance.

Proposed Framework
Figure 1 depicts the proposed multimedia

semantic retrieval mobile system. The systemIE
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design follows a model-view-controller (MVC)

pattern. The model part (labeled A) implements

the main logic of the system; it is a retrieval

model built from the fusion of multiple classifi-

cation models, which are based on hidden fea-

ture groups. The retrieval model consists of

training and testing phases. During the training

phase, the metamodel is trained based on train-

ing data with ground-truth information, and

unknown multimedia data are classified using

the learned model during the testing phase. All

the processed data and the trained models are

stored in the production database. The multime-

dia retrieval controller part (labeled C) translates

user input into operations on the model and

controls the data transfer between the front-end

user interface and the back-end server through a

RESTAPI. Finally, the view part (labeled B) gener-

ates and presents output to the users.

The proposed system builds the retrieval

model following a five-step process:

1. feature extraction,

2. preprocessing,

3. correlation-based feature analysis and

clustering,

4. model training, and

5. model fusion.
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Figure 1. Multimedia semantic retrieval mobile system based on hidden coherent feature groups (HCFGs). Parts A, B, and C

correspond to the main system logic, system output, and multimedia retrieval controller, respectively.
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In the first two steps, the system extracts

visual features from the training data and per-

forms preprocessing to normalize the features

and remove those with relatively low var-

iance. Second, in the correlation-based feature

analysis and clustering step, the system com-

putes a feature similarity matrix based on cor-

relation coefficients for all pairs of retained

features and applies the Affinity Propagation

(AP) algorithm to cluster the feature set to

obtain multiple HCFGs that exhibit low inter-

group correlation and high intragroup correla-

tion. Subsequently, the model-training step

builds a classification model for each discov-

ered feature group. Finally, the model fusion

step combines the individual models using

the proposed multimodel fusion strategy.

Such a partition of the feature set into HCFGs

aims at “untapping” hidden feature groups

that will enhance the fused model’s predictive

power.

When a query is issued, the system performs

feature extraction and preprocessing and

groups the features into the same HCFGs identi-

fied in the training phase. The HCFGs are then

fed to the trained models obtained during the

model-training step. The generated testing

scores are fused and ranked afterward. The

ranked results are shown in the mobile applica-

tion. In addition, the system contains a user-

feedback component that incorporates user

interactions in the retrieval process to refine the

retrieval results.

Visual Feature Extraction

The feature set utilized in the proposed system

consists of histogram of oriented gradientsIE
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Related Work in Multimedia Semantic Retrieval Systems
The related work in multimedia semantic retrieval systems

can be generally categorized based on the following two

perspectives: the back-end algorithm and system perform-

ance. For the first category, Michael Lew and his colleagues

provided a thorough overview of the state of the art in mul-

timedia semantic retrieval and identify several prevalent

research topics that have potential for improving multime-

dia retrieval by bridging the well-known semantic gap.1

These topics include human-centered computing, learning

and semantics, new features and similarity measures, new

media, browsing and summarization, indexing, and evalua-

tion and benchmarking. In this article, we mainly focus on

extracting the semantics from multimedia data by explor-

ing the correlations in feature space and present a multimo-

del fusion scheme for effective retrieval. There are two

subtopics involved in our work: feature space analysis and

multimodel fusion.

To effectively retrieve semantic concepts from multime-

dia data, much research has been done to project the origi-

nal feature space to a low-dimensional space using linear or

nonlinear mapping methods2 and further derive the Eucli-

dean distance for each instance pair to represent the pair-

wise similarity. For example, Jing Huang and his colleagues

proposed an image retrieval system using only the Eucli-

dean distance of image color features to calculate the rank-

ing score for each image per specific concept.3 In another

work,4 Paris Smaragdis and Michael Casey proposed

employing the subspace projection on all the features by

using PCA and ICA to determine the maximally independ-

ent subspaces. Other works use statistical techniques to

capture multimedia correlation at the feature level. Ara

Nefian and his colleagues adopted an early fusion approach

to combine audio and visual features for speech recognition

by using the coupled hidden Markov model (CHMM) and

dynamic Bayesian networks.5 Recently, canonical correla-

tion analysis (CCA), another powerful statistical technique,

has found its application in linear mapping that maximizes

the cross-correlation between two feature sets.6 However,

besides the correlation among multimedia data instances,

the complementary and mutual information among fea-

tures from multiple modalities should also be extensively

exploited to determine how to integrate them to improve

the performance and avoid possible information loss during

the transformation between different feature spaces.

Other than correlation captured at the feature level, the

correlation among different models and model confidence

toward extracting semantic concepts should also be

learned. In one work,7 separate generative probabilistic

models were learned for different classifiers. The scores

were combined afterward to yield a final detection score.

Chao Chen and his colleagues proposed a fusion strategy

to combine ranking scores from both tag- and content-

based models that considers the adjustment, reliability, and

correlation of ranking scores from different models.8 To lev-

erage the correlation from the feature and model levels,

Azzedine Bendjebbour and his colleagues performed fusion

at both levels.9 At the feature level, the mass of a given pixel

based on two sensors is computed and fused, while at the

decision level, the HMM outputs are combined. In another

work,10 CCA is used to fuse audio-visual features with joint

subspace learning at different granularity, and the final

decision is made based on the Bayesian decision fusion of
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(HOG), color and edge directivity descriptor

(CEDD), and other low-level visual features.

The essential idea behind the HOG descrip-

tors is that local object appearance and shape

within an image can be characterized by the

distribution of local intensity gradients or

edge directions, even without precise knowl-

edge of the corresponding gradient or edge

positions. The HOG descriptor maintains a

few key advantages over other descriptor

methods. It captures the local edge or gradient

structure that is invariant to a low degree of

geometric and photometric transformations

in the local area.

CEDD is a popular low-level feature descrip-

tor that incorporates both color and texture

features in a histogram. The size of a CEDD

is limited to 54 bytes per image, making

this descriptor suitable for large image

databases. The CEDD histogram consists of

6� 24 ¼ 144 regions, where the six regions are

determined by the texture component and the

24 regions are originated from the color

component.

The extracted low-level features include 48-

dimension features for a color histogram in the

HSV space, 120-dimension local features for

color moment in the YCbCr space, and 260-

dimension features for texture wavelet.

Feature Correlation Analysis (FCA)

The proposed FCA method explores the interre-

lationships among the features to establish the

basis for identifying HCFGs.

Let X ¼ fxigNi¼1 be a given dataset, where

xi 2 RL represents each instance in the dataset

and N and L are the number of instances and the
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multiple HMM-based classifiers. Although researchers have

made many attempts to utilize two kinds of correlation

among multimedia data, the performance is far from

satisfactory.

For the second category (the system performance point

of view), most of the mobile multimedia retrieval systems

mainly focus on improving performance in terms of trans-

mission time. Researchers proposed first compressing

low-level feature descriptors using techniques such as com-

pressed histogram of gradients (CHoG) and progressively

transmitting compressed data to avoid network transmis-

sion latency.11 Another way to expedite multimedia

retrieval process is to unify the approach of retrieving and

processing various multimedia data. A multimedia query

language called the MPEG Query Format (MPQF) saves

complex interpretation among all kinds of description

formats by generally expressing multimedia requests.12

Different from the earlier-mentioned research work, our

proposed framework performs off-line training on the

server side and uploads them periodically with the corre-

sponding concept relationship. Thus, users can retrieve a

set of well-trained models in real time without end-to-end

network latency.

References

1. M.S. Lew et al., “Content-Based Multimedia Information

Retrieval: State of the Art and Challenges,” ACM Trans. Multi-

media Computing, Communications, and Applications, vol. 2,

no. 1, 2006, pp. 1–19.

2. J. Yu and Q. Tian, “Learning Image Manifolds by Semantic

Subspace Projection,” Proc. 14th Ann. ACM Int’l Conf. Multime-

dia, ACM, 2006, pp. 297–306.

3. J. Huang et al., “Image Indexing Using Color Correlograms,”

Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition,

IEEE CS, 1997, pp. 762–768.

4. P. Smaragdis and M. Casey, “Audio/Visual Independent

Components,” Proc. 4th Int’l Symp. Independent Component

Analysis and Blind Source Separation (ICA), 2003, pp. 709–714;

www.kecl.ntt.co.jp/icl/signal/ica2003/.

5. A.V. Nefian et al., “Dynamic Bayesian Networks for Audio-

Visual Speech Recognition,” EURASIP J. Advances in Signal Proc-

essing, vol. 1900, no. 11, 2002, pp. 1274–1288.

6. D. Liu et al., “IR and Visible-Light Face Recognition Using Can-

onical Correlation Analysis,” J. Computational Information Sys-

tems, vol. 5, no. 1, 2009, pp. 291–297.

7. T. Westerveld et al., “A Probabilistic Multimedia Retrieval

Model and its Evaluation,” EURASIP J. Applied Signal Processing,

vol. 2003, 2003, pp. 186–198.

8. C. Chen et al., “Web Media Semantic Concept Retrieval via

Tag Removal and Model Fusion,” ACM Trans. Intelligent Sys-

tems and Technology, vol. 4, no. 4, article no. 61.

9. A. Bendjebbour et al., “Multisensor Image Segmentation

Using Dempster-Shafer Fusion in Markov Fields Context,” IEEE

Trans. Geoscience and Remote Sensing, vol. 39, no. 8, 2001,

pp. 1789–1798.

10. M.E. Sargin et al., “Audiovisual Synchronization and Fusion

Using Canonical Correlation Analysis,” IEEE Trans. Multimedia,

vol. 9, no. 7, 2007, pp. 1396–1403.

11. V.R. Chandrasekhar et al., “Low Latency Image Retrieval with

Progressive Transmission of Chog Descriptors,” Proc. ACM

Multimedia Workshop on Mobile Cloud Media Computing, ACM,

2010, pp. 41–46.

12. M. Doller et al., “The MPEG Query Format: Unifying Access to

Multimedia Retrieval Systems,” IEEE MultiMedia, vol. 15, no. 4,

2008, pp. 82–95.

39



dimension of the feature set f i
n oL

i¼1
, respectively.

Then, the feature matrix F of X is represented as

f 1
1 f 2

1 � � � f L
1

f 1
2 f 2

2 � � � f L
2

..

. ..
. . .

. ..
.

f 1
N f 2

N � � � f L
N

2
6664

3
7775

where the ith column represents f i and rows are

instances in X. Let f j; f k
� �

, 1 � j; k � L, be a fea-

ture pair. Then the correlation coefficient

between them can be calculated as follows:

Cf j;f k ¼
PN

i¼1 ðf
j
i � f jÞðf k

i � f kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðf

j
i � f jÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðf k

i � f kÞ2
q (1)

where f j and f k are the mean values of f j and f k,

respectively.

This correlation coefficients analysis method

is based on the calculation of the Pearson prod-

uct-moment correlation coefficient, which

assumes normally distributed data and the linear

relationship between feature variables. However,

this is not always the case. To account for situa-

tions where the feature variables follow a nonlin-

ear relationship, we propose another correlation

estimation method based on the Spearman’s

rank correlation coefficients, which use the

ranks of the observations instead of their values:

Cpj;pk ¼
PN

i¼1 ðp
j
i�pjÞðpk

i �pkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðp

j
i�pjÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðpk

i �pkÞ2
q (2)

where p is the rank representation of the fea-

ture vector f. (The rank representation means

the rank of a variable in a feature vector with a

specific order—for example, by value.)

Finally, the feature correlation matrix C is

constructed as

Cv1;v1 Cv1;v2 � � � Cv1;vL

Cv2;v1 Cv2;v2 � � � Cv2;vL

..

. ..
. . .

. ..
.

CvL;v1 CvL;v2 � � � CvL;vL

2
6664

3
7775

where v could be the feature vector f or its rank

vector p. Each element in the matrix presents

the correlation coefficient between each feature

pair, creating a symmetric matrix—that is, Cvj;vk

equals Cvk;vj .

All the correlation coefficients are calculated

based only on the positive instances, thus iden-

tifying relationships between the features in a

supervised manner (that is, per concept). In

addition, the inclusion of the negative instan-

ces may hinder the discovery of correlations

between feature pairs. An added benefit is the

improved computational efficiency of the sys-

tem, which is an important requirement in

mobile systems.

Feature Grouping via Affinity Propagation

Because of its simplicity, general applicability,

and performance, the AP algorithm has found

application in science and engineering fields,4

which inspired us to adapt it to our framework

for feature clustering. Specifically, we choose to

use AP algorithm for the following reasons:

� AP generates clusters with much lower error

than other clustering methods, such as k-

means and mixtures of Gaussian.

� AP is deterministic—that is, its clustering

results do not depend on initialization,

unlike most clustering methods such as

k-means.

� AP can automatically determine the num-

ber of clusters.

Considering each feature as a data point, the

input for AP is the similarity matrix S, with

each element computed as

s vj; vk
� �

¼ Cvj;vk ð3Þ

The AP algorithm propagates affinities by

passing two types of messages between two

data points (for example, features vj and vk)5 as

follows:

� The responsibility r vj; vk
� �

is sent from vj to

vk; representing how well vj serves as the

exemplar of vk considering other potential

exemplars for vj.

� The availability a vj; vk
� �

is sent from vk to vj,

reflecting how appropriate vj chooses vk as its

exemplar considering other potential fea-

tures that may choose vk as their exemplar.

The responsibility and availability are up-

dated iteratively using the following equations:

rðvj; vkÞ  sðvj; vkÞ �max
l:l6¼k
ðaðvl; vjÞ þ sðvj; vlÞÞ

(4)
aðvk; vjÞ  min

0; rðvk; vkÞ þ
X

l:l62fk;jg
maxf0; rðvl; vkÞg

0
@

1
A ð5Þ

The self-availability is updated as

aðvk; vkÞ  
X
l:l6¼k

maxf0; rðvl; vkÞg ð6Þ

This message reflects an accumulated confi-

dence that feature vk is an exemplar, based onIE
E
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Figure 2. Feature grouping results for four disaster semantic concepts. (a) Road debris, (b) earthquake, (c) flood, and (d) volcano.

the positive responsibilities sent to the candi-

date exemplar k from other features.

Finally, the exemplar for feature vj is chosen

as follows:

e�j  arg max
vk

ðrðvj; vkÞ þ aðvk; vjÞÞ ð7Þ

Figure 2 illustrates the feature grouping

results for four disaster topics (with a preference

value set to 30 times the minimum similarity

and using the visual features described earlier),

where the x and y axes represent the first and

second component of the features in the
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projected subspace using PCA. Each colored

point in the plots represents one feature. All the

feature points belonging to the same group are

of the same color, and there is a line between

the exemplar feature point and each member

of the feature group. This figure demonstrates

that the proposed features grouping method is

capable of capturing the underlying correlation

among all the features and separates them into

different feature groups. Each feature group

potentially implies distinct contexts relating

the disaster topic.

Model Fusion

Figure 3 depicts the multimodel fusion proce-

dure. First, the feature correlation analysis and

affinity propagation (FCA-AP) algorithm is

applied to the original feature set, obtaining

M HCFGs. Then each HCFG is modeled by a

series of classifiers, named A through N, gener-

ating a score array, denoted as Score tð Þmg
h i

,

where t represents each concept and g and m

denote the HCFG group ID and the model used

for training, respectively. The score array is

sorted against the training performance eval-

uated using MAP measurement. Only the top

Q scores are kept for the final fusion. This pro-

cedure ensures the best HCFGs are selected

for the fusion to optimize the final retrieval

performance.

The selected scores from multiple models are

combined using the refined formula from ear-

lier work,10 expressed as

Score xð Þ ¼
XQ

q¼1

cq � bq

cq þ bq

� Scoreq xð Þ
aq

� �
ð8Þ

The parameters are explained as follows:

� aq denotes the refined scale factor for bal-

ancing the ranking score from the qth

model. It is calculated as the absolute mean

score for all the training instances for that

model. We refine this parameter by taking

the absolute value to accommodate nega-

tive scores.

� bq expresses the relationship between the

testing score for the qth model and the tar-

get concept, which is measured based on

the correlation value between the testing

score interval and the related concept.6

� cq represents the reliability of model q based

on training performance. Specifically, it is

calculated as the average precision of the

qth model evaluated on the instances in the

training set.

User Feedback Mechanism

One important component of our proposed sys-

tem is the user feedback system based on the

Markov model mediator (MMM).7 The objec-

tive is to improve the multimedia semantic

retrieval performance by incorporating user

interaction. The MMM mechanism is used to

model the searching and retrieval process for

content-based image retrieval. One distinctive

characteristic of the MMM model is that it car-

ries out the searching and similarity computing

process dynamically, taking into consideration

not only the image content features but also

other properties of multimedia data instances

such as their access frequencies and access

patterns.

MMM is a probability-based mechanism

that adopts the Markov model framework and

the mediator concept. The MMM mechanism

models a multimedia database by a five-tuple

k ¼ S; F; A; B; pð Þ, where S is a set of instances

called states; F is a set of distinct features of the

instances; A denotes the state transition proba-

bility distribution, where each entry (i, j) indi-

cates the relationship between instances i and

j captured through the offline training pro-

cedure; B is the feature matrix of all instan-

ces; and p is the initial state probability

distribution.IE
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Figure 3. Multimodel fusion procedure. This procedure ensures the best

HCFGs are selected for the fusion to optimize the final retrieval performance.
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The training of MMM involves the construc-

tion of the two statistical matrices: A and p.

A sequence of user feedback characterizing

access patterns and access frequencies is used to

train the model parameters. Specifically, the

training of the two parameters are described as

follows.

The training of matrix A is based on the

intuition that the more frequently two images

are accessed together, the more closely related

they are. To capture the relative affinity meas-

urements among all the instances, a matrix AF

is constructed with each element afi;j represent-

ing the relative affinity relationship between

two instances i and j as

afi;j ¼
XD

d¼1

Pi;d�Pj;d � ACd (9)

where Pi;d denotes the feedback pattern of

instance i in time period d and ACd represents

the access frequency in that time period.

For matrix p, the preference of the initial

states for user feedback can be obtained from

the training dataset. For any instance i, the ini-

tial state probability is defined as the fraction of

the number of occurrences of instance i with

respect to the total number of occurrences for

all the images in the image database from the

training dataset.

Experimental Analysis
To evaluate our proposed framework, we used a

disaster dataset that contains more than 10,000

images with the associated tags and descrip-

tions covering 11 disaster topics. The images,

which were crawled from Flickr, include both

natural disasters such as earthquakes and floods

and manmade disasters like road debris and oil

spills. Table 1 shows the composition of the

dataset.

To thoroughly evaluate the effectiveness of

the proposed framework, we conducted a series

of experiments. First, we analyzed the signifi-

cance of the feature grouping approach by dis-

cussing the number of feature groups. Second,

the multimodel fusing scheme was evaluated

using the disaster image dataset under three-

fold cross validation. Finally, we compared the

overall performance of our fusion framework

with the other modeling methods.

The evaluation criterion is the well-known

mean average precision (MAP), which is widely

used in the information retrieval community.

The MAP is calculated as

MAP Tð Þ ¼ 1

Tj j
XTj j

i¼1

1

ni

Xni

j¼1

Precision Rij

� �
(10)

where jTj is the total number of queried con-

cepts and Rij is the top j ranked results for

concept i.

Evaluation on the Disaster Image Dataset

The AP algorithm has a heuristic parameter P,

or preference, that indicates the preference that

an instance is chosen as an exemplar. Previous

work showed that the number of groups

monotonically increases with P polynomially.4

The value of P is empirically set to –10 in the

following experiments. Figure 4 shows the

number of groups for each concept in each of

the three folds, which range from four to nine.

Our experimental analysis shows the ad-

vantages of our proposed feature grouping

method—that is, the decomposition of features
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Table 1. Disaster image dataset.

ID Disaster topic No. of images

1 Avalanche 624

2 Drought 599

3 Earthquake 884

4 Flood 1,009

5 Ice storm 1,078

6 Mudflow 266

7 Oil spill 1,847

8 Volcano 800

9 Tornado 266

10 Gas explosion 1,019

11 Road debris 2,009

Total 10,401
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Figure 4. Number of groups for each concept. The fusion scheme is evaluated

using three-fold cross validation, and the number of groups per fold ranges

from four to nine.
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enables parallel processing, which is an impor-

tant characteristic for mobile applications. In

addition, the feature grouping method keeps all

the original information, thus avoiding poten-

tial information loss by using the previously

discussed subspace analysis methods.

Figure 5 shows the MAP values when select-

ing different numbers of models for multimo-

del fusion. The MAP values increase as more

groups (models) are selected for final fusion,

which is intuitive because we add more valua-

ble information for the final decision. In addi-

tion, the performance stabilizes when the

number of models reaches certain point—in

this case, the top six groups—which indicates

that we capture the most important informa-

tion for the final decision with a subset of the

original features. This also means that our

framework can automatically filter out the

irrelevant information that is not useful for the

final decision making.

We further compared the final fusion results

with the average performance for all the groups

using the LibSVM8 and multiple correspond-

ence analysis (MCA) modeling methods,6 as

Figure 6 shows. The results demonstrate that

the fused scheme outperforms single models by

taking advantages of both models. It is worth

noting that our framework can adapt to multi-

ple training models and can optimize the over-

all performance by fusing the most promising

HCFGs from different models.

Multimedia Retrieval via Mobile Devices

Based on our proposed framework, we de-

veloped an iPad application that follows a

three-tiered architecture (see Figure 7). The pro-

duction database is implemented as a Post-

greSQL database that stores all the processing

results of the backend system. Accessing the

database and performing complicated data

queries is done through the REST API, imple-

mented as a Java Tomcat servlet (using the Rest-

let framework). On top of these two layers, the

client is implemented in iOS, specifically for

Apple’s iPad devices.

Figure 8 shows two search results with the

developed application tested on the disaster

image dataset. The application lets a user search

for multimedia content based on one or more

keywords. Upon submission of the search terms

in the mobile application, these terms are sent

to our backend server, which dynamically gen-

erates a query to search our database for images

that match the given keywords. RelevantIE
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Figure 5. Mean average precision (MAP) values for different number of hidden coherent feature groups (HCFGs). Results show the

performance stabilizes when the number of models reaches the top six groups.
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Figure 6. Mean average precision (MAP) values for different modeling

methods and the proposed fusion scheme. The fused scheme outperforms

single models by taking advantages of both the LibSVM8 and multiple

correspondence analysis (MCA) modeling methods.6
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information about each image is then sent to

the mobile application. This information

includes the keywords (concept names and

their synonyms) associated with the image, its

subject, its location, its description, and a URL

for retrieving the image for display. The mobile

application is designed with a built-in image

cache. If the system receives a request to display

an image multiple times, the cache is checked

first, before a call is made to retrieve the image

from the servers. This reduces overhead when

retrieving and displaying images.

In addition to simply searching based on

keywords, the system also lets the user specify a

date range for the search. This enables the user

to search for images that are relevant to a spe-

cific disaster event. Once the user has submitted

a search, the mobile application groups all the

images based on location and displays them on

the map to the left. Selecting one of the push

pins on the map filters the list of images, show-

ing only the images at the specific location.

Moreover, users can provide feedback on the

retrieval results with the following three

options: “thumbs up,” meaning the system

made a correct match but some images are

more relevant than others; “thumbs down,”

meaning the system made a correct match but

some images are less relevant than others; and

“flag,” meaning the image is completely inap-

propriate and should be hidden from all future

image lists. This user feedback is collected and

processed by the MMM component to further

refine the retrieval results.

Conclusion
This article only focuses on visual features and

presents a novel correlation-based feature anal-

ysis method to derive HCFGs for multimedia

semantic retrieval on mobile devices. In the

future, we will incorporate textual information

and further improve the retrieval performance

by fusing information from multiple modal-

ities. In addition, we will also conduct more

experimental analyses on video retrieval using

the improved framework. From application per-

spective, our proposed framework will be inte-

grated into a disaster management system and

play an important role in enhancing the situa-

tion report and benefitting the decision-making

process. MM
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