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ABSTRACT 
Exporting data in traditional databases as XML documents so that 
non-XML data can be accessed and exchanged seamlessly among 
applications has been studied in a number of projects. In this 
paper, we present an algorithm that automatically derives a 
Document Type Definition (DTD) from a Semantic Schema of 
the Semantic Binary Object-Oriented Data Model (Sem-ODM) 
based on the formal definitions of DTDs and Semantic Schemas. 
The structure and semantic information of a Semantic Schema is 
captured and expressed naturally in a DTD without applying any 
complicated operators or scanning the actual data stored in the 
database. Furthermore, the formalization of the two schemas 
connects the two data models and helps us better understand the 
capabilities brought about by publishing Sem-ODB data as XML.   

Categories and Subject Descriptors 
H.2.1 [Logical Design]: Data models, Schema and subschema; 
H.2.5 [Heterogeneous Databases]: Data translation 

General Terms 
Algorithms 

Keywords 
DTD, Semantic Schema, Formal Definition, Schema 
Transformation 

1. INTRODUCTION 
While XML (eXtensible Markup Language) [1] becomes the de 
facto standard for data representation and exchange on the World 
Wide Web (WWW), most of the data in the world still resides in 
traditional databases and legacy systems. These systems are 
backbones of lot of businesses, thus it is not realistic to give them 
up completely. Yet, it is feasible to provide XML interfaces to 
those systems. In this way, one can access non-XML applications 
using available XML tools. And non-XML data in the systems 
can   be  published  as  XML  so   that  different  applications  can   

exchange their data seamlessly with each other. In this paper, we 
study the conversion in this respect. In particular, we study the 
transformation of a Semantic Schema of the Semantic Binary 
Object-Oriented Data Model (Sem-ODM) [10] to a DTD 
(Document Type Definition) [1] in order to facilitate publishing 
data in Semantic Binary Object-Oriented Database System (Sem-
ODB) as XML.  

Sem-ODB was developed at the High-Performance Database 
Research Center (HPDRC) at Florida International University and 
is based on a conceptual data model, Sem-ODM. As a fully 
functional multi-user object-oriented DBMS, Sem-ODB has been 
successfully deployed for highly complex applications such as 
applications intended for storage and processing of large amounts 
of earth science observations and the Terrafly Geographic 
Information System (GIS) [11].  

In this paper, we present an algorithm that automatically derives a 
DTD from a Semantic Schema based on the formal definitions of 
DTDs and Semantic Schemas. Because Sem-ODM is a high-level 
and conceptual level data model, which supports inheritance, 
explicit relationships and 1:m attributes, and other features, it is 
simpler and easier converting a Semantic Schema to a DTD than 
converting a relational schema to a DTD. The structure and 
semantic information of a Semantic Schema is captured and 
expressed naturally in a DTD without applying any complicated 
operators or scanning the actual data stored in the database to 
come up with the nested structure in the resulting DTD as NeT 
did in [4, 5]. Furthermore, the formalization of the two schemas 
connects the two data models and helps us better understand the 
capabilities brought about by publishing Sem-ODB data as XML.   

The rest of the paper is organized as follows. We first present 
related work in Section 2. We then introduce the formal 
definitions of DTDs and Semantic Schemas in section 3. Section 
4 formally describes the mapping from a Semantic Schema to a 
DTD. Section 5 concludes this paper and points out the future 
work.  

2. Related Work 
Publishing data in traditional databases into XML has been 
studied in various projects.  Most DBMS commercial products, 
such as MS SQL Server 2000, IBM DB2, among others, provide 
support for publishing relational data as XML. However, they all 
either generate a simple flat mapping where the resulting XML 
doesn’t have reasonable nested structure or require users 
explicitly specify the mapping via a means such as an annotated 
language or macro file. For instance, DB2 databases can export 
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their data as XML via IBM Net.Data Macro, which is basically a 
macro file with programmer-specified SQL query and output 
XML structure. SQL Server [12] provides XML virtual views 
over relational tables via an annotated XDR (XML-Data 
Reduced) schema language, in which annotations are used to 
specify the mapping between relational tables/columns and XML 
elements/attributes. Our approach is automatic and doesn’t require 
users to specify the mapping scheme, and it takes into account the 
hierarchical structure of DTD when mapping Sem-ODM schemas. 
Lee et al. [4, 5] devised two algorithms, NeT and CoT to map 
relational schemas to DTDs. To avoid a flat DTD, Net uses the 
nest operator and can only deal with one table. Cot, on the other 
hand, is able to convert multiple interconnected relational tables 
into DTDs based on inclusion dependencies obtained from the 
underlying relational databases. Like Cot, we rely on inclusion 
dependencies to generate the hierarchical structure of XML. 
However, since inclusion dependencies are explicitly expressed as 
relations between categories in the Sem-ODM, our conversion 
can be performed in a much simpler way than theirs. 
Additionally, NeT is only applicable in a single table case and is 
costly since it requires to scan the entire data to determine 
whether or not a column in a table should be nested and have 
multiple occurrence * or +.  Though CoT deals with a complete 
relational schema case, to generate a nested structure for columns 
that are not involved in inclusion dependencies, NeT has to be 
performed first.  Our algorithm can handle both single categories 
as well as a database schema, which involves the interleaving of 
multiple categories (similar to tables in the relational model). This 
is enabled by Sem-ODM’s support for 1:m attributes. These 
attributes can be naturally translated into sub-elements with * or + 
occurrence.  

Several XML schema languages, such as DTD and XML Schema 
[3] among others, have been proposed to describe the structure 
and semantics of XML documents. [8] formally described several 
XML schema languages (DTD, XML Schema, RELAX [9], and 
others) based on regular tree languages. It represented a DTD as a 
local regular tree grammar, whereas [14] represented a DTD as an 
extended context free grammar and [2] presented a DTD in terms 
of Description Logic. Lee et al. [4] formalized relational schemas 
and DTDs, and presented a nesting-based translation algorithm to 
transform a relational schema into a DTD. In [6], Mani et al. 
formally defined XGrammar, which combines the features of 
several XML schema languages, and studied its data modeling 
capability and performed the transformation between XGrammar 
and an extended ER model. Our definition is similar to the one in 
[4] and has been influenced by the formalism presented in [6]. 
However, [6] formalized not just one particular XML schema 
language, but rather a core set of features for several XML 
schema languages; our work is more specific. Moreover, we are 
concerned with transformation from a Sem-ODM Semantic 
Schema to a DTD, not from a relational schema to a DTD. 

Another closely related research direction is storing XML data in 
traditional databases, which involves the opposite direction of the 
conversion. We have finished the research on DTD to Semantic 
Schema mapping. Our study shows that storing XML in Sem-
ODB is feasible and efficient in terms of shorter and fewer join 
queries in translating XML Query into Semantic queries 
compared to traditional approaches. Since it is outside the scope 
of this paper, we do not discuss further.  

3. Formal Definitions of DTDs and Semantic 
Schemas  
3.1 Definition of DTDs 
Since the appearance of DTDs, many XML schema languages 
such as XML Schema, and RELAX, among others, have been 
proposed to describe the structure and semantic constraints of 
XML documents. Our focus here is on DTDs due to their 
simplicity and wide acceptance. Our study has been influenced by 
the research in [6, 2, 4]. For simplicity, we do not consider 
ENTITY, ENTITIES, NMTOKEN, and NMTOKENS attribute 
types in this paper.  

Before proceeding with the definition of DTDs, we first present 
some notation assumptions.  Assume Â is a finite set of attribute 
names, Ê is a finite set of element names, τ) is a finite set of 
attribute types permitted in a DTD and τ) ::= {CDATA,ENUM, 

ID, IDREF, IDREFS}, d
)

is a set of default types that are allowed 

in a DTD attribute and d
)

::={IMPLIED, REQUIRED, FIXED} or 
є which represents the case where no default type is specified, and 
that û is a set of default values of attributes where û ::= {u | u is a 
string or an integer allowed in a DTD, or є }. Note that u =є 
represents no default value is provided. 

(Definition 1) A Document Type Definition (DTD) is formally 
denoted by a 4-tuple G = (E, A, S, P), where: 

− E is a finite set of element names, representing elements, E⊆  
Ê; 

− A is a finite set of attributes. Each item of A is of the form X(a: 
τ: d: v), where X∈ E, a ∈ Â, τ ∈τ) , d ∈ d

)
, v ∈ û, representing 

a is an attribute of element X with τ as the attribute type, d as 
the default type, and v as the default value of a; 

− S is a finite set of start symbols, i.e., a set of root elements; 
− P is a set of element definition rules in the form of X →  r, 

where X, Y∈ E and r is the content model of X and can be 
generalized in the following abstract syntax: 

r::= є | Y  | PCDATA |  ( r )  |  r|r  |  r,r  |  r? |  r*  | r+ 
In the above definition, є represents the empty string (i.e. EMPTY 
content), PCDATA represents content that consists of any string, 
‘,’ represents concatenation (Sequence content), ‘|’ represents 
Choice content, ‘?’ represents zero or one occurrence of r, ‘*’ 
represents zero or more occurrences of r, and ‘+’ represents one 
or more occurrences of r. Another content model, ‘ANY’, is not 
specified in the above syntax. Elements of ANY content can 
contain any information, tagged or untagged, i.e., it can be 
denoted as X*, where X∈ E and X can be of any content defined 
above.  

For example, the DTD in Figure 1 which is extracted from [13] 
and slightly modified can be represented formally as G1 = (E, A, 
S, P), where: 

− E={publication, book, article, title, author, contactauthor, 
name, first, last, address} 

− A={contactauthor(authorID:IDREF:IMPLIED:є), 
author(id:ID:REQUIRED: є)} 

− S = {publication} 
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− P= {publication→ (book*, article*), book→  (title,author), 
title→PCDATA, author→  (name, address),           name→  
(first?, last), first→PCDATA, last→PCDATA, 
address→ANY, article→ (title, author*, contactauthor), 
contactauthor→  (є) } 

 

 

 

 

 

 

 

 

 

Figure 1. DTD Running Example 

3.2 Definition of Semantic Schemas 
The Sem-ODM (Semantic Binary Object-Oriented Data Model) is 
a high-level data model. As a conceptual level data model, it can 
mirror the real world enterprise scenarios naturally as the ER 
(Entity Relationship) model does. It supports 1:m attributes, 
which makes natural nesting an attribute as the sub-element with 
* or + occurrence of its parent element. In addition, it has some 
advantages of the Object-Oriented data model, such as 
inheritance, oids, and explicit relationships among objects, etc.  

 

 

book_author  
( total) 

contact_author 

author_name 
(total) 

article_author  
(m:m) 

the_contactauthor 
(total) 

AUTHOR 
address:  String 

(total) 
id:  String (total) 

NAME 
first:String 

 last:String (total) 

ARTICLE 

CONTACTAUTHOR

PUBLICATION 
title: String(total) 

BOOK 

 
Figure 2. Semantic Schema Example Representing 

Publication 
 

The basic constructs in the Sem-ODM are Categories and 
Relations, which are like Entities and Relationships in ER model, 
respectively. There are two kinds of categories in the Sem-ODM, 
Concrete Categories and Abstract Categories. Concrete 

Categories are atomic data types such as String, Number, and 
Boolean, among others. Abstract Categories are categories 
composed of abstract objects, such as person and book. The 
relations in a Semantic Schema are binary. Each of them is 
created from an abstract category, which is called the Domain of 
the relation, to another category, which is called the Range of the 
relation. Relations from an abstract category to a concrete 
category are called attributes in the ER model (we also call them 
attributes in a Semantic Schema). Relations from an abstract 
category to an abstract category are just like associations in an 
Object-Oriented model. Graphically, in the Sem-ODM, categories 
are represented by rectangles.  Solid arrows, starting from the 
domain categories and ending at the range categories, are used to 
represent non-attribute relations. Inheritance is represented by 
dashed arrows from sub-categories to super-categories. Attributes 
are represented inside category rectangles with a colon (:) 
delimiting the attribute’s name and type. Cardinality and other 
constraints (such as totality1) of a relation are placed alongside its 
type in parentheses. Figure 2 shows an example Semantic Schema 
for publications. For example, publication is a super-category, 
which has two sub-categories: book and article. publication has a 
total attribute called title with a range of Concrete Category 
String. The category book has a relation called book_author 
pointing to the category author. Note that in a Semantic Schema, 
relations without specifying cardinalities have m:1 cardinality by 
default. 

We now formally define the Sem-ODM model. Before we start, 
we assume that aC

)
 is a finite set of abstract category names, 

cC
)

is a finite set of concrete category names, R
)

, is a finite set of 

relation names, and V
)

is a finite set of strings representing the 

values of cardinality and totality, and V
)

::= {m_1, m_m, 
1_m,1_1, total, not_total}.  

 

(Definition 2) A Sem-ODM Semantic Schema can be formally 
denoted as a 4-tuple H =(Ca, W, Cc, R) where: 

− Ca is a finite set of abstract category names, Ca ⊆ aC
)

; 
− W is a finite set of inheritance relationships and each item in W 

has the form of (O, S1, S2...Sn), where O, Si ∈ Ca, and O is the 
super-category of Si, (i=1..n); 

− Cc is a finite set of concrete category names, Cc ⊆ cC
)

; 
− R is a finite set of relations in the form of r(c: t :: d →  f), 

where r ∈ R
)

, c, t ∈ V
)

, d∈Ca , f ∈Ca∪Cc and c denotes the 
cardinality of r , t the totality, d the domain, and f the range; 

 
For example, the Publication Semantic Schema in Figure 2 can be 
formalized as H1 = (Ca, W, Cc, R), where: 

− Ca={PUBLICATION, BOOK, CONTACTAUTHOR, ARTICLE, 
AUTHOR, NAME} 

− W ={(PUBLICATION, BOOK, ARTICLE)} 
− Cc ={String} 
                                                                 
1 A relation R whose domain is C is total if at all times, for every object x 

in category C, there exists an object y such that xRy.  

<!DOCTYPE  publication  [ 
<!ELEMENT publication (book*, article*)> 
<!ELEMENT book (title, author)> 
<!ELEMENT title  (#PCDATA)> 
<!ELEMENT author (name, address)> 
<!ATTLIST author   id ID #REQUIRED> 
<!ELEMENT name (first?, last)> 
<!ELEMENT first (#PCDATA)> 
<!ELEMENT last  (#PCDATA)> 
<!ELEMENT addressANY> 
 <!ELEMENT article (title, author*, contactauthor)> 
<!ELEMENT contactauthor EMPTY> 
<!ATTLIST contactauthor authorID IDREF   #IMPLIED>

] > 
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− R ={title(m_1:total::PUBLICATION→ String),    
adress(m_1:total::AUTHOR→ String),  

     id(m_1: total::AUTHOR→ String),  
     first(m_1:not_total::NAME→ String),  

     last (m_1:total::NAME→ String), 

book_author(m_1:total::BOOK→AUTHOR), 
article_author(m_m:not_total::ARTICLE→AUTHOR),  

the_contactauthor(m_1:total::ARTICLE→  CONTACTAUTHOR ), 
author_name(m_1:total::AUTHOR→NAME), 
contact_author(m_1:not_total: CONTACTAUTHOR → AUTHOR)} 

4. TRANSFORMATION FROM A 
SEMANTIC SCHEMA TO A DTD  
Converting a Semantic Schema to a DTD is straightforward, 
compared to converting a relational schema to a DTD. There are 
two basic constructs in DTDs, elements and attributes. The 
relationships among elements can be represented by either parent-
child element relationships or ID and IDREF/IDREFS attribute 
pairs. We present the mapping rules and algorithm below. 
Intuitively, we can map categories to elements, and relations to 
parent-child element relationships or ID and IDREF/IDREFs 
pairs. Sometimes both mapping alternatives are correct, while one 
might be better and more semantically meaningful than the other 
in other situations. Attributes can be mapped to either elements or 
attributes according to the circumstances. However, there are still 
some subtle points which need special attention in the 
transformation process, for example, how to deal with inheritance, 
etc.  
The detailed mapping rules from a Semantic Schema H =(Ca, W, 
Cc, R) to a DTD G = (E, A, S, P) are described as follows.  

1) Category mapping: 
Map each abstract category C∈Ca to an element Ec, i.e., 
E=E∪ { Ec }. For example, Categories BOOK and ARTICLE 
in Figure 2 are mapped as elements BOOK and ARTICLE, 
respectively. 

2) Attribute mapping: 
For each relation r∈R, where r(c: t ::d →  f) , c, t ∈ V, d ∈ 
Ca, f ∈ Cc  (i.e. r is an attribute of d) 
a) If c = 1_1 or m_1 

i) If f = Enumerate 
Then r is mapped to an attribute ar of ENUM type of 
Ed, where Ed is the element corresponding to category 
d, i.e. Ed (ar: ENUM: d: v), and the default type d is 
determined as follows: 

• If t = total, then d = REQUIRED 
• else, d = є 

Additionally, the default value v is determined by the 
default value of the relation r. 

ii) Otherwise (r is not of ENUM type) 
Then r is mapped to an attribute ar of CDATA type of 
Ed, where Ed is the element corresponding to category 
d, i.e. Ed (ar: CDATA: d: v), and default type d and 
default value of the attribute are determined in same 
procedure as the above. 

For example, Category PUBLICATION in Figure 2 
has a total attribute called title which is of String type. 
It will be mapped as a REQUIRED attribute of the 
element PUBLICATION, i.e., we will have 
PUBLICATION (title: CDATA: REQUIRED: є). 

b) If c = 1_m or m_m 
Then r is mapped to a sub-element Er of Ed, where Ed is the 
element corresponding to the category d, Ed→ (…Er…) 
and Er→PCDATA. The cardinality of Er in Ed is 
determined as follows: 

i) If t =not_total, then Ed→  (… Er*…) 

ii) If t =total, then Ed→ (… Er+…)  

In the above mapping algorithm, a 1:m or m:m attribute is 
mapped as an element instead of an attribute. This is 
because in DTDs no attribute type except the IDREFS type 
can express the 1-to-m multiplicity. Since in some 
situations the IDREFS type is not appropriate for this 
transformation, a general solution is to map 1:m or m:m 
attributes to sub-elements of their domain elements, as 
shown above. 
Note that because Sem-ODM supports 1:m attributes, we 
don’t have to go through the nesting process that was 
proposed in the NeT algorithm [5], where scanning the 
entire table has to be done in order to find out the multi-
valued attributes. A 1:m attribute is naturally converted to a 
sub-element of a parent element corresponding to the 
category that this attribute belongs to.  

3) Relation Mapping: 
For each relation r∈R, where r(c: t:: d →  f) , c, t ∈ V, d∈Ca, 
f ∈Ca (i.e. r is a relation between two abstract category d and f) 
Then r is mapped to the sub-element relationship between Ed 
and Ef, and Ed→ (.....Ef….), where Ed and Ef are elements 
corresponding to the abstract category d and f. The cardinality 
of Ef  in Ed is determined as follows: 

i) If c = m_1 or 1_1, and t = not_total,  
 then Ed→ (… Ef?…) 

ii) If c = m_1 or 1_1, and t = total, then Ed→ (… Ef…) 

iii) If c = m_m or 1_m, and t = not_total,  
 then Ed→ (… Ef*…) 

iv) If c = m_m or 1_m, and t = total,  
 then Ed→ (… Ef+…) 

 
In the above transformation, we put the range element directly 
as a sub-element of the domain element, for instance, the 
relation book_author with domain BOOK and range AUTHOR 
is mapped as the sub-element relationship between BOOK and 
AUTHOR as in BOOK→  (AUTHOR). This is because a 
relation in a Semantic Schema actually indicates the 
relationship between the domain category and range category. 
In a DTD, such a relationship is embodied by the sub-element 
relationship between the parent element (corresponding to the 
domain) and child element (corresponding to the range). 
Hence, it is not necessary to keep the relation name in the 
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DTD. However, in some situations, it may be desirable to keep 
the relation name to indicate the semantics of the sub-
elements. For instance, suppose there are two relation r1 and r2 
from category d to category f. We would have the following 
mapping result if we followed the above mapping scheme: 
Ed→ (f c,f c’),where c  and c’ represent the mapped cardinality 
for r1 and r2, respectively, and are determined according to the 
above description. It’s not clear to users what these two fs 
represent. A better solution is to transform such relations into 
Ed→ (r1

c,r2
c’), r1→Ef and  r2→Ef . Therefore, to make the 

mapping semantically easier to understand, we let the designer 
to tune the DTD at the end of the transformation. In this way, 
they can introduce appropriate intermediate elements which 
can correctly represent the semantics of the sub-element 
relationship. 
Note that we mentioned at the beginning of the section that the 
relations in Sem-ODM can also be mapped to ID and 
IDREF/IDREFS pairs in DTD. Though it is possible, we feel 
that it reduces the level of nesting in the resulting DTD. Thus, 
we adopt the sub-element approach and leave it to the users to 
decide whether or not to tune the mapping at the end.  

4) Inheritance mapping 
For each u = (O, S1, S2, ….Sn) ∈ W in H, where O, Si ∈ Ca, 
(i=1..n), and O is the super-category of Si, create an attribute id 
of ID type with #REQUIRED default type in EO and an 
attribute id of IDREF type with #REQUIRED default type in 
each siE , where EO is the element corresponding to super-

category O and siE is the element corresponding to Si (i=1..n). 
For example, PUBLICATION is the super-category of BOOK 
and ARTICLE in Figure 2, we map this inheritance relationship 
to  

 PUBLICATION→ (є), 
PUBLICATION(id:ID:REQUIRED:є), 
BOOK(id:IDREF:REQUIRED:є) 
ARTICLE(id:IDREF:REQUIRED: є). 

 The reasoning behind using an ID and IDREF pairs instead of 
a sub-element relationship is ID and IDREF pairs have the 
semantic of “is-a” while sub-element relationships have the 
“has” semantic. While it is obvious, inheritance between sub-
categories and super-categories exhibits an “is-a” relationship. 

5) Determine the root element set S 
Since any element in the DTD can become a root element, we 
set S = E.  

The mapping algorithm from a Sem-ODM Semantic Schema       
H = (Ca, W, Cc, R) to a DTD G = (E, A, S, P) is described as 
follows: 

1. For each unmapped abstract category C∈Ca, create an 
element C in E, then 

• Check if it has super-category, if it does, follow the 
above rule 4) 

• For each attribute att ∈ R , follow the above rule 2) 
for Attribute Mapping 

• For each relation rel ∈ R, follow the above rule 3) for 
Relation Mapping using the depth-first search to map 
all the categories that are reachable from C 

• Mark this category as mapped  

2. Repeat the above step 1 until all the categories are marked 
3. Set S=E 

 
At the end of the mapping process, users can tune the resulting 
DTD into one that better expresses the semantics by, for example, 
using a relation name representing the parent-child relationship as 
explained in the rule 3 above or changing the sub-element 
relationship mapping to IDREF reference mapping. For instance, 
in Figure 2 the relation contact_author between category 
CONTACTAUTHOR and AUTHOR is mapped to the sub-element 
relationship between CONTACTAUTHOR and AUTHOR as in 
CONTACTAUTHOR→ (AUTHOR?) since contact_author is 
m:1, not_total. An alternative way to express this relationship is 
to create an attribute id of ID type with #REQUIRED default type 
in AUTHOR (omitted in our example, since there is already such 
an attribute) and then create an attribute ref_author of IDREF 
type with #IMPLIED default type in CONTACTAUTHOR, i.e.,  

AUTHOR(id: ID: REQUIRED: є ) 
CONTACTAUTHOR(ref_author: IDREF: IMPLIED: є ) 

In case contact_author is 1:m or m:m (no matter what totality it 
has), an IDREFS, instead of IDREF, attribute is created in 
CONTACTAUTHOR. If contact_author is total (no matter what 
cardinality it has), then the attribute ref_author of IDREF type (if 
with m:1 or 1:1 cardinality) or IDREFS type (if with m:m or 1:m 
cardinality) has #REQUIRED default type in 
CONTACTAUTHOR. 
For example, the DTD corresponding to the Publication Schema 
in Figure 2 is G2 = (E, A, S, P), where: 

− E= {PUBLICATION, BOOK, ARTICLE, AUTHOR, 
CONTACTAUTHOR,  NAME } 

− A= {PUBLICATION(title: CDATA: REQUIRED: є), 
PUBLICATION(id: ID: REQUIRED: є ),  
BOOK(id: IDREF: REQUIRED: є ),  
ARTICLE(id:IDREF:REQUIRED:є), 
AUTHOR(address:CDATA:REQUIRED:є),    
AUTHOR(id: ID: REQUIRED: є ),  
NAME(first: CDATA: є: є ),  
NAME(last: CDATA: REQUIRED: є )} 

− S ={PUBLICATION, BOOK, ARTICLE, AUTHOR, 
CONTACTAUTHOR,  NAME } 

− P ={PUBLICATION →  ( є),    BOOK→AUTHOR),  
  ARTICLE→  ( AUTHOR*, CONTACTAUTHOR), 

  AUTHOR→  (NAME),     NAME→  (є) 

  CONTACTAUTHOR →   (AUTHOR?) } 

Figure 3 shows the typical DTD representation of the above 
formal DTD representation. 
Note that Data in traditional databases is often regarded as un-
ordered. This characteristic also holds in the Sem-ODM. 
However, this is not the case for the XML data model. For 
instance, in the DTD example in Figure 1, there is an order 
between title and author: the title must appear before author in a 
book. This ordering concept is expressed by the concatenation 
operator (,) between title and author in the content model of 
element book. Such an order is sometimes called the Element 
Order [7]. When translating a Semantic Schema into a DTD, an 
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implicit ordering is created according to the order of processing. 
For example, in our example, category ARTICLE and its two 
relations article_author and the_contactauthor are translated into 
ARTICLE→  (AUTHOR*, CONTACTAUTHOR), where 
AUTHOR is listed as the first element of ARTICLE. It’s also 
possible that CONTACTAUTHOR is listed first depending on 
which relation gets translated first. Again, the designer can tune 
the ordering as it fits best. 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Generated DTD 

The mapping algorithm we present here has several properties. 
First, it’s lossless in the sense that all the structure (such as 
categories and attributes) and semantic information (such as 
relationships between categories) are kept in the resulting DTD. 
Second, the resulting DTD has desirable nested structure. We can 
prove the correctness of the algorithm. But due to space 
constraints, it is not provided here. The complexity of the 
algorithm is Θ(N+M) where N is the total number of categories 
(vertices) and M is the total number of relations including 
attributes (edges) in the Semantic Schema.  

5. CONCLUSION AND FUTURE WORK 
In this paper, we formally described DTDs and Sem-ODM 
Semantic Schemas in order to facilitate the explanation of schema 
transformation between the two data models. A Sem-ODM 
Semantic Schema can be converted into a DTD by mapping 
categories to elements, attributes to attributes or elements, and 
relations to parent-child element relationships. The differences, 
similarities, and possible connection of the two data models are 
expressed via the formal representation of the two schemas.  
We are working on extending this work to Semantic Schemas to 
XML Schemas mapping and the implementation. Compared to 
XML Schema, DTD has some limitations, such as very limited 
data types, untyped IDREF(S), among others. Some data type 
information in the Semantic Schema is lost during the Semantic 
Schema to DTD transformation process because DTD is geared 
toward the support of String data. Some features of the Sem-ODM 
cannot be exploited when mapping Semantic Schemas to DTDs. 
For example, the Sem-ODB supports user-defined Integer, Real, 
Enumerate, and String categories while providing a way to 
specify the data format for each type. Users can specify the 
minimum and maximum number of an Integer Category, or use 
regular expressions to denote the format of a String category. 
Similar features are supported in XML Schema. We expect to be 

able to utilize these rich semantic features of the Sem-ODM in 
publishing Sem-ODB data as XML.  
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<!ELEMENT publication EMPTY> 
<!ATTLIST publication   id ID #REQUIRED> 
<!ATTLIST publication   title CDATA #REQUIRED> 
<!ELEMENT book (author)> 
<!ATTLIST  book  id IDREF #REQUIRED> 
<!ELEMENT article (author*, contactauthor)> 
<!ATTLIST article   id ID #REQUIRED> 
<!ELEMENT contactauthor (author?)> 
<!ELEMENT author (name)> 
<!ATTLIST author   id ID #REQUIRED> 
<!ATTLIST author   address CDATA #REQUIRED> 
<!ELEMENT name EMPTY> 
<!ATTLIST  name  first CDATA> 
<!ATTLIST  name  larst CDATA #REQUIRED> 
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