
I ."-Y l j

--/ r-;

@r

KI{OWIEDGE AI{I)
DATA ENGINEERII{G

A publication of the IEEE Computer Society

EEE TRANSACTIONS ON

NOVEMBER / DECEMBER 2OO1 VOLUME 13 NUMBER 6 ITKEEH (rssN 1041-4347)

R
Data Mining

Mining Associations with the Collective Strength Approach

Data Modeling
Accurate Modeling of Region Data

Fuzzy Databases
Efficient Processing of Nested Fuzzy SQL Queries in a Fuay Database

lmprecise Relational Databases
Aggregation of Imprecise and (Jncertain Information in Databases

S. McClean, B. Scotney, and M. Shapcott

Knowledge-Based Systems
Structured Development of Problem Solving Methods

Multimedia lnformation Systems
Disk Scheduling in Video Editing Systems

Virtual Images for Similarity Retrieval in Image Databases

Nonmonotonic Reasoning
Nonmonotonic Reasoning as Prioritized Argumenration

Query Processing
Rew'riting Queries Using View.s

Robust Databases
Transaction Repair for Integrity Enforcement

Security and Privacy
P rot e c t in g Re sp ondent s' I dent iti e.s i n M icrodata R e le as e

SHORT PAPERS
Data Structures and Algorithms

Time-Space Trade-Off Analysis of Morphic Trie Images

Multimedia lnlormation Processing
Spatio-Temporal Composition of Video Objects: Representation and Querying in Video Database Syslems

Callfor Papers for Special Issue on Online Analysis and Querying of Continuous Data Streams ... 1052

902

Naohtali David Rishe I

ptoriaa lnternational U niversi ry

School of ComPuter Science

High P"tfot *nce Database Research Center

UniversitY Park

Miami, FL 33199
CoupurER

SOCIETY

http://computer.org . tkde@computer.org

' * :':'--:::-: r:TE':?e!



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEEBING, VOL. 13, NO, 6, NOVEMBEF/DECEMBER 2OO1

Efficient Processing of Nested Fuzzy
SQL Queries in a Fuzzy Database

Qi Yang, Weining Zhang, Member, IEEE, Computer Society, Chengwen Liu, Member, IEEE,
Jing Wu, Clement Yu, Member, IEEE, Computer Society,

Hiroshi Nakajima, Member, IEEE, Computer Society, and Naphtali David Rishe

Abstract-ln a fuzzy relational database where a relation is atuzzy sel of tuples and ill-known data are represented by possibility

distributions, nested fuzzy queries can be expressed in lhe Fuzzy SQL language, as defined in [25], [23]. Although it provides a very

convenient way for users to express complex queries, a nested fuzzy query may be very inefficient to process with the naive evaluation

method based on its semantics. ln conventional databases, nested queries are unnested to improve the etficiency of their evaluation.

ln this paper, we extend the unnesting techniques to process several types of nested fuzzy queries. An extended merge-join is used to
evaluate the unnested fuzzy queries. As shown by both theoretical analysis and experimental results, the unnesting techniques with

the extended merge-join significantly improve the performance of evaluating nested fuzzy queries.

lndex Terms-Fuzzy database, luzzy SQL, nested luzzy query, query optimization, query transformation, possibility distribution,
performance evaluation.fuzzy equijoin.

+

1 lrurnooucnoN

Jrv order to extend the applicability of traditional data-
Ibases, some new techniques have been proposed io deal
with nncertain or imprecise information [7], 1171, 1411, U,],
t131, [121. One interesting area of research is the fuzzy
database 1281, 129), 1301, I4l, 1201, [32], [43], which results
from combining the fuzzy set theory [39] with database
technology. Several approaches have been taken to define
fuzzy relational data models. In one approach 1161, [3], a
relation is defined as a fuzzy set of crisp tuples. In such a

relation, the attribute values in tuples remain crisp, but each
tuple is assigned a membership degree, in the range of [0, i],
to indicate the relevancy of the tuple with respect to the
relation. In another approach 1281, 1291, [30], [10], a relation
is defined as an ordinary set of fuzzy tuples. Here, a fuzzy
tuple may have uncertain or imprecise attribute values,
represented by possibility distributions, but, no member-

c Q. Yang is with the Department of Computer Science, Unioersity of
Wisconsin at Plattnille, Plattnille, WI 53818.
E-mail : Y ang q@UW P LATT. EDU.

c W. Zhang is zuith the Department of Computer Science, Uniaersity of
Texas at San Antonio, 6900 North Loop, 1604 West San Antonio, TX
7 8249-0667. E-mail: wzhang@cs.utsa.edu.

o C. Liu is with the School of Computer Science, Telecommunicaion, and
Informatinn Science, DePaul Uniaersity, Chicago, lL 60604.
E -mail : Iitt@cs. dep aul. edu.

c l. Wu and C. Yu are zoith the Department of Electrical Engineering and
Cornputer Science at tfu Uniuersity of Illinois at Chicago, Chicago, lL
50507 -7053. E-mail: yu@eecs.uic.edtt.

o H. Nakajima is with the OMRON Corp., Vnbal lnteraction Technology
Ltb., Information Technology Research Center, Shimokniinji, Nagaokal<yo-
City, Kyoto, 617 -8510 lapan. E-mail: Hiroshi-N akajirna@omron.co.jp.

o N.D. Risfu is utith the High Puformance Dqtabase Research Center, School

of Computer Science, Floida Internationnl Uniz:ersity, Uniaersity Park,
Miami, FL 33199. E-rnil: ishe@fiu.edu.

MantLscript receiaed 28 lan. L997; rnised 28 May 1998; accepted 25 May
2000; posted to Digital Library 12 lune 2001-.

For information on obtaining reprints of this article, please send e-mail to:
tkd@computer.org, and reference IEEECS Log Number 1,03679.

ship degree is associated with the tuples. In a third
approach l3l, 1231, [5], a relation is defined as a fuzzy set

of fuzzy tuples. Thus, each tuple has a membership degree
and fuzzy attribute values are represented by possibility
distributions. The last approach is more natural than the
previous two and is taken in this paper.

A f.tzzy relational database system has been built by
Omron Corporation. This database system supports an

extended SQL query language, named Fuzzy SQL, as

defined in [25], [23]. More on the data model and Fuzzy
SQL language will be given in the next section. ln this
fuzzy database, a query may be vague and the data may
be ill-known. Unlike standard SQL queries, for which an

answer is a relation where each tuple completely satisfies
the query condition, the answer to a Fuzzy SQL query is

a fuzzy relation where each tuple satisfies the query
condition to the extent as indicated by its membership
degree.l The fact that the answer to a query ts a fuzzy
relation may greatly affect the query processing in a

fuzzy relattonal database. A comrnon strategy of query
optimization is to decompose a complex query, such as a

nested query, into subqueries and to store the answer to a

subquery in an intermediate relation for subsequent
evaluation. For intermediate fuzzy relations, the member-
ship degrees of tuples must be, maintained from one

processing stage to the next-
In standard SQL, nested query is an important mechan-.;

ism to ease the pain of expressing complex queries.
However, a naive execution of a nested query may incttr
heavy performance penalty. A common technique to

evaluate a nested standard SQL query is to transform (or

r:nnest) the query into an equivalent flat query and then t0

(

t
t
r
r

1. In the usual possibility framework, the answer to a fuzzy gte!,
consists of l.lro fuzzy relations, one containing tuples that possibly satis9
the query and the other containing tuples thai certainly satisfy the query'

c

c
n

n

1041-4347/01/$10.0o o 2001 IEEE



YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL OUEBIES IN A FUZZY DATABASE

Fig. 1. Membership functions of "medium young" and "about 35."

evaluate the flat query. This unnesting technique has been

studied extensively in the context of conventional relational
database systems [18], t191, [15], [8], [22]. The key to the

success of unnesting is that the unnested queries are

evaluated using various join algorithms which are much
more efficient than the nested-loop algorithm used to
evaluate the nested queries.

In this paper, we investigate the problem of processing
nested Fuzzy SQL queries by means of unnesting. Nested
query is an important mechanism inFuzzy SQL as well and
its efficient execution is a more important issue in Fuzzy
SQL than in standard SQL. Since ill-known data needs more
storage space than crisp data does, ii takes more I/O time to
transfer iii-known data between main memory and second-
ary memory than does crisp data. Furthermore, since fuzzy
queries require non-Boolean degrees of satisfaction to be

computed, it takes more CPU time to evaluate a htzzy
query condition than does a crisp query condition. Thus,
the study of unnesting techniques is both interesting and
crucial to the practical use of fuzzy database systems. in this
paper, we extend and augment unnesting techniques of
conventional relational databases to process nested queries
n fuazy relational databases. As far as we are aware, this
issue has not been studied before.

In conventional relational databases, a join can be
processed using different methods, such as hash-join,
merge-join, and nested loop join [14]. The most efficient
ioin method, hash-join, is based on the fact that two tuples

ioin only if they have identical values on join attributes.
However; this join criteria is no longer sufficient in fwzzy
relational databases. For instance, given a join condition
II .AG E : F .AG E, a pair of tuples from relations NI and F
may partially join even if one has AGE "yotng" and the
other has AGE" about 35." tntuitively, it is possible in
reality for two persons whose ages are vaguely known as
"young" and "about 35," respectively, to actually have the
same age. Thus, in general hash-join is not applicable in
iuzzy relational databases. Although the nested loop join
method is always applicabie in a fuzzy database, the cost,
ooth I/O and CPU, will be rather high. In order to perform
efficient fuzzy joins, we extend the merge-join method. (A
complete comparison of different fazzy jotn methods is
beyond the scope of this paper.) We define a linear order on
the domain of a fuz.z-v attribute and show that under some
reasonable .sr.rmptiorrr, the extended merge-join performs
huch more efficiently than the nested loop join method.

.We have implemented the extended merge-join meth-
od on our fuzzy database system. Experiments have been
conducted to ctmpare the performances of the extended
merge-join method with that of the nested loop join
rnethod. The experimental results show that the extended

E--

merge-join method outperforms, in both I/O and CPU,
the nested loop method by a wide margin. A further
optimization of the merge-join is presented in [42]. We

note that our discussion in this paper is based on a fuzzy
database system in which the satisfaction degree of query
conditions is measured exclusively by possibility, rather
than by both possibitity and necessity as in [28], [30]. As
discussed in Section 2, one of the reasons for not using
the double-measure system is that in this system,
algebraic operations can not be composed, therefore,
unnesting is not possible.

The rest of the paper is organized as follows: In Section 2,

we present some background of fuzzy databases. In
Section 3, we extend the merge-join method for fuzzy
equi-join and analyze the complexity of the response time-
hr Sections 4 to 7, we discuss techniques for unnesting
various types of 2-level nested Fuzzy SQL queries. In
Section 8, we discuss a subclass of K-level nested fuzzy
queries. We present experimental results in Section 9 and
conclude the paper in Section 10.

2 Fuzzv Dnraanses
2.1 Fuzzy Sets and the Theory of Possibilities
Fuzzy sets are defined on a non{tizzy uniaerse of discourse,

which is an ordinary set. A fuzzy (sub)set F of a universe of
discourse U is characterizedby a membership function pp$
which assigns to every element r € U, a membership degree

ptp(r) e [0, 1]. An element r € IJ ts said to be in a fuzzy set F
if and only if pt p(r) > 0 and to be a full member if and only
if pp(r): 1. Fig. 1 shows membership functions of fuzzy
sets "medium young/' and "about 35," defined on the
universe of age. The fuzzy set "medium young" contains as

a full member any age between 25 and 30, and as a partial
member, the ages 24 and 31 with membership degree 0.8,

23, and 32 with membership degree 0.6, etc. Any age less

than 20 or more than 35 is not a member of "medium
young" at all.

ln the possibility theory [40], the possible values of an
ill-known data is described (or restricted) by u fuzzy set-

For example, suppose the age of a person is not known
preciseiy but can be described as "medium young." Then,
the person's actual age is restricted to be one of the
members of "medium yowrg." Thus, the possibility for
the age to be 25 is 1, to be 24 is 0.8, etc. Thus, the
membership function of "medium young// defines a

possibility distribution of the person's age. For this
reason, a possibility distribution can be denoted by either
a ltzzy set or its membership function. In this Paper, we
consider only those possibility distributions that have
trapezoidal shapes because they are typical in practice.

30



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 6, NOVEMBEF/DECEMBEH 2OO1

Note that triangular and rectangular shapes are special
cases of trapezoidal shapes.

2.2 A Fuzzy Relational Database
In this section, we present briefly the fuzzy relation and the
Fuzzy SQL language as described in [25], [23]. Interested
readers maf refer to the reference for details.

In the rest of this paper, we denote relations'with
upper case letters such as R, S, and T, tuples with lower
case letters such as r, s, and l, and the attribute A of the
relation R (respectively, tuple r) with fi..A (respectively,
r.,4). When it is appropriate, indexing may be used on
these letters.
' Each attribute has a crisp set of crisp data values as its
domain. Each data value o of an attribute is associated
with a possibility distribution defined over the domain of
the attribute and has a membership function denoted by
p,. If the data value is crisp, its possibility distribution is
defined by

,.(,) : {;; :lil",,Jo.

Let P(A) denote the set of all possibility distributions that
may be defined over the domain of an attribute A. A fuzzy
relation R with a schema Ar,. . . ,An, where Ai is an
attribute, is defined as

R,:P(At) xP(A2) x ... x P(A") x D,

where D is a system-supplied attribute for membership
degree with a domain [0, 1] and x denotes the cross
product. A tuple r is said to be in relation rR if and only i-f

its membership degree p6(r) (which is also denoted as r.D)
is greater than 0. In general, a tuple's membership degree
indicates to what extent the tuple belongs to the concept
represented by the relation. More specifically, for a query,
the membership degree of a tuple in the answer indicates to
what extent the tuple satisfies the query condition.

Like standard SQL, queries inFuzzy SQL are specified in
SELECT statement of the following form:

SELECT Attributes
FROM Relations
WHERE Selectioncondition

For this paper, the selection condition is assumed to be a

conjunction of predicates of the form X e Y, where X is an
attribute, Y is an attribute or a value, and d is an comparison
operator. An optional WTIH clause of the form WITH
D 2 r, where D is the membership degree attribute of the
answer relation and r is a threshold value in 10, 1], can be
used to indicate that, among all tuples resulting from
evaluating the query, only those satisfing the query
condition with a degree no less than z should be included
in the €ulswer. If a query does not have a WITH clause,
WTIH D > 0 is assumed. The GROUPBY and HAVING
clauses are also optional and are similar to their counterpart
in standard SQL. Aggregate functions such as MAX, MIN,
etc., quantiJiers such as SOME, ALL, etc., and other key
words such as DISTINCT are also defined.

As an example, suppose we have two fuzzy relations &/
and F' in a dating service database that contain information

about male and female clients, respectively. The following
query finds all pairs of male and female persons who are

about the same age, and the male person has a more than
"medium high" income.

Query 1

SELECT F.NAME, M.NAME
FROM F,M
WHERE F.AGE = M.AGE AND

M.IN COME> " medium high"

Notice that, since both AGE and INCOME rnay have fuzzy
values, all comparisons are fuzzy.

The semantics of a Fuzzy SQL query is defined based on
satisfaction degrees of query conditions. Consider a pre-
dicate X 0Y n a WHERE clause. The satisfaction degree,
denoted by d(X 0 Y), is evaluated for values of X and Y.
Let the value of X be U and that of Y be I/. Then,

d(X 0 Y) : mar,.o(min(pu(x), pv(d, tte(r,a))),

where r and g are crisp values in the common domain over
which U and V are defined. Notice that, in this definition,
the comparison d may be nonbinary, i.e., defined by
similarity relations, and the values U and V may be fuzzy
or crisp. If U is crisp, V is fuzzy, and d is binary equality (=),
d(X:Y):ttv(U). If both U and V are fuzzy with
trapezoidal membership functions and binary equality is
considered, then d(X: Y) is the height of the highest
intersection point of the two possibility distributions.

For example, in Query 1, if a tuple I in F has an age 24,
and a tuple s tn fuI has an age "medium young" with a

membership function as defined in Fig. 1, then,

d(F.AGE : Ivt.AG E) : Fmed.iun u^,n(24) : 9.3.

If t.AGE is "about 35," d(F.AGE:M.AGE) :0.5, as

shown in Fig. 1.

For a conjunction of independent simple predicates, say
p : p1 AND p2 AND . . . AND pp, the degree of satisfaction
of p is given by d(p) : minr<i<k(d(p;)). If not all predicates
are independent, the conjunction can be partitioned into
conjuncts so that the predicates in the same conjunct are

dependent, but those in diJferent conjuncts are indepen-
dent. Then, the method can be applied to the conjuncts. For

simplicity, we assurne thai the predicates are independent.
The semantics of a query uses the membership degree to

indicate an overall possibility for the underlying data that
generate an answer to satisfy the query conditions. The

overall possibility is obtained based on fuzzy loglc con'
nectivities. Consider Query L. For each pair of male person s

and female person r, the satisfaction degree of the querf
condition is obtained based on the fuzzy AND of following
conditions: s is in NI, r is tn F, r.AGE: s.AGE, and

s.INCOME ) "medium high." Therefore,

d',," : *'in( [t r (r), p, u (s), d,(r. AG E : s. AG E),

d(s.INCOluIE > "medium high")).

If 4' > 0, r.N AM E and s.,n/A-4,IE form a tuple in the answer
with df,, as the membership degree. Several identical palrs

of names may occur during the query evaluation, but

;

i

I

l
I

(

I

a

t
I
t
t
C

(

I
I
f
r

n

F
tl
n
a
a
tl

o
p
ti
T

a
e:

e
p
b
h
g
al
t(
al
qrdifferent membership degrees. Since each pair of



yANc ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SOL OUERTES lN A FUZZY DATABASE

sadsfies the query, only one pair needs to be in the answer.

Based on fuzzy OR, the highest membership degree of the

identical name pairs will be chosen for the answer. Thus, in
the end, If r, y is a pair of names in the answer, its satisfaction

degree is given by d(r,y) : o&Xr.N.4,41E=r,s.rvAn14:e(d/r,s). It is
sfraightforward to generalize the semantics of Query 1 to
that of generalFuzzy SQL queries inciuding nested queries.

Discussion. Several methods that measure the degree of
sadsfaction have been proposed. The method in [28], [301

measures both possibility and necessity, which, for a

predicate "X e F', are definedby

Poss(X 0 F) : mar,.r(rn'in(px(r), pr(a), pe(",y)))
Nece(X 0 F) :1 - Poss(X -0 F),

where z and.ry are taken from the domain over which X and
F are defined and p-e : L - l.ra. Inh-ritively, the possibility
measures the "best possibiliry" for the comparison to be
successful and the necessity measures the "impossibility"
for the opposite comparison to be successful. With convex
and normal possibility distributions, such as those with
trapezoidal shapes, necessity is always no greater than
possibility. Although the use of both possibility and
necessity leads to an explicit expression of the uncertainty
of tl-re satisfaction degree, it also causes several problems.
As pointed out in 127), the main problem of the double-
measure system is that a simple query will lead to two
answer relations, one containing fuples possibly satis$'ing
ihe query condition and the other containing tuples
necessarily satisfying the query condition. As a result, the
underlying algebraic operations, that is, selection, projec-
tion, join, etc., cannot be composed. This means that all
queries must be evaluated by computing the cross product
of ail relations involved, followed by a selection, and then a
projection. Such an evaluation is obviously inefficient.
Furthermore, nested query is not supported in this
framework. Another problem is that the double negation
nature of the necessity is not intuitive to many people.

A different method, proposed in [38], defines the
membership degree of a tuple rn a fuzzy relation as a
possibility distribution rather than a crisp value. Although
the resulting algebraic operations can be composed, this
method applies only to discrete possibility distributions,
and, even in that case, the membership degrees may contain
a large number of elements, thus reducing the efficiency of
the system.

The method used in this paper is commonly used by
other researchers [29], t411, [5], [23]. By using only the
possibility measure, it is guaranteed that algebraic opera-
hons can be composed and nested query becomes practical.
Ihe price to pay for this simplification is that the
"impossibiliry" for a possible answer to a query to be also
a possible answer to the negation of the query is not
explicitly measured and, therefore, one must assume that
every possible answer to a query is also a completely
possible answer to the negation of the query. This price may

P" *otrll*hile to pay in"order to gain the convenience of
naving nested query capability and the ability of efficient
query processing for two reasons. First, in practice, users
are usually more concerned with finding possible answers
to a query than knowing how impossible it is that these
answers are also possible answers to the negation of the
query. Second, if it is necessary, one can always issue the

L

negation of a query and get a more direct and easy to
understand measure than that given by necessity.

2.3 Evaluation of Nested Fuzry Queries
The nested query in Fuzzy SQL provides a convenient way
for a user to express a complex query. For example, the
following nested query finds the name of medium young
female persons who has a middle age male person's
income.

Query 2

SELECT F.NAME
FROM F
WHERE F.AGE = "medium young" AND

F.INCOME IN
( SELECT M.INCOME
FROM M
WHERE M.AGE = "middle age" )

Among the two nested query blocks, the outer block
involves only the relation ,F and the inner block involves
only the relation r'1,1. A naive execution of this query is a
nested loop in which the inner relation M is scanned once
for every tuple of the outer relation F. If the number of
tuples in i,/ is large, the processing cost, especially the
I/O cost, can be very high.

Since the inner block does not involve data of the outer
relation, the evaluation may be speeded up by using an
intermediate relation containing all tuples of the inner
relation that satisfy the predicate |ILAGE: "rniddle age"
with a degree higher than 0. If this intermediate relation is
significantly smaller than ,4,1, it can be scanned much faster
than ,4/. To speed up the evaluation further, one must avoid
scanning the entire intermediate relation for every tuple of
the outer relation. In conventional databases, this is
achieved by ururesting Query 2 to obtain the following
equivalent flai query:

Query 3
SELECT F.NAME
FROM F,M
WHERE F.AGE = "medium young" AND

M.AGE = "middle age" AND
F.INCOME = M.INCOME

In this query/ the predicate F.INCOXIE: II.INCOA,tE is
a join condition. Since unnested queries frequently involve
joins, their evaluations in a conventional relational database
can be very efficient by following an optimal join strategy
formulated by a good query optimizer, In a fuzzy relafional
database, the equivalence between two fuzzy queries is
more complex than in a conventional database since it
requires that not only the answers contain the same set of
tuples but also the corresponding tuples have the same
membership degree.

3 Pnocessrr'rc oF Fuzzy Eout-Jotr
As mentioned in Section 1, the most ef{icient join method in
conventional databases, hash-join, is not applicable inafuzzy
database. In this section, we extend the merge-join in the
context of fuzzy databases. For convenience, we assume that
relations R and S are joined based on the join condition
R..X:.9.X and R is the outer relation in the merge-join



IEEE TRANSACTTONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 6, NOVEMBEFI/DECEMBER 2001

algorithm. We first define a Partial ords on the set of R-tuples
(or S-tuples). Since data values have trapezoidal membership
firnctions, each data value t) rePresents an interval [b(o), e(T.')],

in which p., is greater than 0. For a crisp value t', we let
b(u) : s111): u. For example, the crisp value 28 represents

[28,28] and the fuzzy value "medium young" represents

[20,35]. Now, the data values can be ordered according to
their intervals.

Definiton 3.1.

2.

l. For two aalues u1 and u2, u1 I u2 if b(ut) < b(u2) or
b(u1) : b(u2) and e(ur) < e(u2); u < u2 if q '<' u2 0r

uI = U2.

For ttuo tuples 11 and 12, 11 4 12 wrt an attribute X if
r1.X 1 r2.X; 11 1 12 wrt X if r1.X a r2.X.

Example 3.-!-.Letr.1,r2,and 13 be tuples of R, and s1, s2, and s3

be tuples of ,9. Assume that 11.X, r 2. X, and ry. X rePresent,

respectively, [30, 35], 120,28), and [20,35]; and s1.X, s2.X,

and s3.X represent, respectively, 132,34], [20,25] and

[30, 40]. By Definition 3.7, 120,281 < [20, 35] < [30, 35], thus,
rz.X 1ry.X '.r1.X. Similarly, s2.X { ss.X 3 sr.X.

Notice that, for any fwo values o and b, d(a: b) :0 if
their intervals do not intersect. As a resuit, only those

tuples r and s whose r.X and s.X have intersecting

intervals need to be considered for the equal-join. For the

merge-join, both ,R and ,S are first sorted on X based on

< . Then, for each tuple r in R, the S-tuples are scanned

in the sorted order. The scan should terminate as soon as

all S-tuples that have intervals intersecting that of r.X
have been examined. For Example 3.1, 12 joins with s2.

But, since the interval [30,40] of s3.X falls completely to

the right of the interval [20,28) of r2.X, rz will not join
with any S-tuple succeeding s2, therefore, the scan of ,9

for 11 should stop at s3. The sequence of S-tuples that
have to be examined for an R-tuple is defined as follows:

Definition 3.2.

I. For a ttLple r in R, sml(r) is the smallest anlue u
(according to the order <) that appenrs in S.X and

intersects r.X and lrg(r) is the largest oalue u that
appearc in S.X and intersects r.X.

2. The range of a tuple r of R is a subset of S defined Lry

Rng(r): {s : s € S nnd sml(r) -( s.X < lrg(r)}
and Rng(r):A if r.X does not intersect u for any

aalue u in S.X.

After both R and ,S are sorted, the join phase is carried

out as follows: The tuples of ,R are loaded into the main
memory one page at a time in the sorted order. For the

ith R-tuple, ri, the S-tuples rn Rng(r1) are identified
during a scan of S. The scan starts at the place where the

first S-tuple in the range of the previous R tuple
(Rng(r6)) was found, and proceeds towards the end of

S. The first and the last S-tuple of Rng(ri) can be

identified because every S-tuple s appearing before

Rnst) satisfies e(s.X) < b(ri.X) and every S-tuple s

appearing after Rng(r;) satisfies b(s.X) > e(r;.X)' The

pages of S are loaded into the main memory one by

one in the sorted order. If a page of S contains only those

tuples that appear before Rng(r), it will not be scanned

again in the rest of the process because any S-tuple whictl
precedes Rng(r1) will also precede every Rn9(r6) fs.
k > i. lf a page of S contains some tuples in -Rng(r;), t\sn
the join is performed and the page stays in the main
memory since some fuples in the page may join with the

next R-tuple r;11 (either in the current or the next page of
R). If a page contains one tuple that follows the tuples i1
Rng(r), the join between 11 and S is completed when this

tuple is encountered. The join between the next R-tuple,

r;a1, and S will then start by scanning the pages of g
already in the main memory. The process is repeated for
all tuples of R.

We now arralyze the complexity of the merge joir
method. Since we are more interested in joins on fuzzy
data, we assume that the join attributes are nonkey. In the

following, let n1 and b7 be the number of tuples and the

number of pages, respectively, of a relation T. Let .4,1 be the

number of pages of the main memory buffer.
For the join phase, if the buffer is large enough to hold

one page of R and all pages of the largest Rng(r), only one

scan of both R and S is needed, therefore, the I,/O cost is

O(bn+ bs). During the join phase, each R-tuple is scanned

exactly once. For each tuple r e R, a17 S-tuples n Rng(r)

need to be examined. If an S-tuple appears in ,Rng(r) for

more than one R-tuple, it will be scanned once for each of

those R-tuples. We assume that the number of tuples in

Rng(r) is proportional to the number of S-tuples joining

with r and that each R-tuple joins with a constant number of

S-tuples. Under these assumptions, the CPU time for the

join phase is of order O(nn + ns).

Sorting a relation based on the order < is similar to

sorting a relation based on the standard < linear order, but

two comparisons may be needed to comPare two tuples:

The left end points are compared first if they are the same,

then the right end points are comPared. \Alhen the ordering

between the two tuples is decided, the sorting algorithm

proceeds as it does for sorting ordinary relations. Thus, the

CPU time for sorting a relation ? is still O(n7logn7)-lf bTis

much larger *tan NI ,the I/O cost for sorting is b7 log1,1 &a' In

practice, however, 1VI is usually smaller than but still

comparable with ba, thus a relation can be sorted in a lineat

I/O time (two passes) 1371, t9l.
Put it together and notice that the number of pages of a

relation can be assumed to be proportional to the number ol

tuples of the relation, th" response time of the extended

merge-join method is of order O(nplognp * ns log n5)'

For the naive nested loop method, each tuple of rR needs

to be compared with each tuple of S and the CPU time ilill

be of order O(np x ns). When ba < bs, we can allocate

page in the main memory to relation S and the remarnn

puger t" relation R so that the I/O time for the join will be

orJer O(a6 + d5 x bs)- Thus, the response fi*u ol

nested loop method is of order O (n p x n5) - We will use

notations when discussing the resPonse time in

sections.



YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

Notice that, unlike the merge-join in a conventional

database, Rng(ri) may not be compact in the sense that

some tuples in Rng(r1) may not actually join with r,. For

example, if r.X has an interval [30,40] and s.X has an

interval [10,35j, then any S-tuple s/ with an interval of s' .X
in between of 10 and 30 will be in Rng(r) yet not join with r.
If such dangling tuples exist in Rng(r), the performance of
the extended merge-join wili not be as efficient as the

merge-join in a conventional database. However, in many
applications, data values may be fuzzybul not excessively

so, thus they have small intervals. In this case, the number
of dangling tuples in Rng(r) will be very small. Another
limitation of the extended merge-join is that the possibility
distributions must be continuous. An efficient join algo-
rithm for both continuous and discrete possibility distribu-
tions is yet to be discovered.

Fuzzy joins are similar to the band join in conventional
databases [9] and the valid-time natural join in temporal
databases [36]. In a band join, each value of the joining
attribute is a crisp value and represents an interval.
However, all intervals for different values are of the same
length. In a valid-time natural joins, a time interval can be of
lrbitrary length. Fuzzy joins are more general than the two
kinds of joins since the interval associated with a fuzzy
value varies from one fuzzy value to another and a fuzzy
join predicate yields a value between 0 and 1. In both [9]
and [36], partitioned joins based on sampling are suggested.
More research is needed to decide the optimal join method
(and the way to conduct sampling in fuzzy databases). An
unnested query can be evaluated by any of the methods,
including the naive nested loop method, but a nested query
can be evaluated only by the nested loop method.

4 Sruple Nesreo Quenres

In this section, we consider two simple types of nested
queries, nameiy the type N and We I, named after their
counterpart in standard SQL [18]. These queries contain
neither set exclusion operators nor aggregate functions. The
difference between them is that the inner block of a type ]
query has a join predicate referencing the outer relation and
that of a lype N query does not. In the rest of the paper, we
use p1 to denote the conjunction of predicates involving
only the outer relation, and p2 those involving only the
inner relation.

The following Query N is a type N query.

Query N
SELECT
FROM
WHERE

R.X
R
p1 AND R.Y is in
( SELECT S.Z

FROM S

WHERE pz )
The execution semantics of Query N is as follows: Each
S-tuple s satisfies p2 with a degree d" - mi.n(p.s(s), d(pr(s))).
If d" > 0, s.Z belongs to a temporary relation ? with the

membership degree d". If several tuples in ? have the same
value, only the one with the highest membership degree will
stay and others are removed. Thus, for each tuple z in ?, the
membership degree is

p.r (z) : mar 
". 

7 = "(d.") 
: mar s. z: z(n"in(pr s $),d(pz (") ) ) ).

Then, each R-tuple r satisfies the selection condition with a

degree

d,: min(p'n(r),d(v(r)).d(r.Y is in r))'
where d(r.Y is inT) is, based on [25], given by

d(r.Y is i.nT):

!.mar,r71minlpr \z),d(r.Y : ;))),

[0,

:r*a;
otherrvlse.

Intuitively, d(r.Y i.sinT) is the possibility for r.Y to be
equal to any value in set 7. lI d, ) 0, r.X belongs to the
answer with the membership degree d,- The duplicate
fuples in the answer are also removed by keeping the one
with the highest membership degree. Thus, each tuple z of
the answer to Query N.has a membership degree

p N (n) : \94,(rni n ( u a (r), d (p 1 (r) ), m:q, (mi n ( p.7 ( z),

d(r.Y : z)))).

Example 4.1 A tlpe N query is Query 2 given in Section 2.

Suppose the relations are as follows and the membership
functions of AGE and INCOME are as given in Fig. 2:

F

ID NAME AGE INCOME D

101

102

103

104

Ann

Ann

Betty

Cathy

about 35

ntedium. young

niddle age

about 50

abant 60K

mediurn high

high

Iatl

ID NAME AGE INCOME D

201

202

203

204

Allen

Allen

Biil

Carl

24

abou,t 50

mirldle o,ge

about 29

about 25K

abrvut 40K

hish

medium loru

The temporary relation 7, the seI T2 of all tuples with
de > 0, and the final answer relation are given below.

Tz

NAME D

Ann

Ann

Betty

0.3

0.7

0.7

The following unnested
to that given in [18].

Query N' for Query N is identical



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.13, NO.6, NOVEMBER/DECEMBER 2OO1 YANG ET i

After eli

degree p

with the

and r.X
duplicat,

tLt6):
The f

identical

eueq

By the e
the degr

Irt,(t

Theoren

Proof. I
R.X.

I{, fot
pt,(r
each

T(r)
C;

since
is err

d

that
there

Ci

dr:n
:n

For I

Fig. 2. Data used in Example 4.1.

Query N'
SELECT
FROM
WHERE

R.X
R,S
p1 AND R.Y = S.Z AND p2

The execution semantics of Query N' is as follows: Each
pair of tuples r in -R and s in S satisfy the selection condition
with a degree

d,.,: min(ptn(r), t s(s), d(p\(r)),d(p2(s)),d(r.Y : s.Z)).

If d, 
" 

> 0, r.X is in the answer. After eliminating
duplicates, each value r in the answer will have the
degree pu, (r) : maxr.x=rmax".s(df.").

Theorem 4.1. QtLery N' is eqtiztaleht to Query N.

Proof. We show that, for each z in the domain
prv(r) : pN,@), thus the answers to Query
Query N' are identical fuzzy relations.

According to the execution semantics,

p", (") :llg m.r.x(mzn (pp ("), ps ("), d(pt (r)),

r1(p2$)), d(r.Y : s. Z)))

and

t"u(") : m;y:*(rnin(un(r), d(p1(r))' mryQnin(pr (z),

d(r.Y : z)))))
: 

.Tg 
(T.T ( min( p s(r), d(p1 (r)), rnin(pr Q),

t(r.Y : z))))1

:,Tg (?.T ( mi,n (p, p(r), d(s(r)), p7 Q'),

d(r.Y : z))))
: 

,T1:(T.T(min(pp(r), d(p' (")), max(d"),

d(r.Y : z))))
:,T,5(T.F( mur'(mi,n(p p(r), d(p1 (r) ), d,,

d(rY: z)))))
:'15(TS,( max(minAt' a(r), d(p1 (r) ), p5 (s),

d(p2(s)), d(r.Y : z)))))
: 

""1.g1";;3<(- 
in( p n(r), d(p1 (r) ), p5 ( s), d(p2 (s) ),

d(r.Y : s.Z))).

In the last step, maxr.-x=rmax"E7n1&x,.7;;(rnin(*)) is

replaced by maxr.x=rnax"s5(rnin(*)). A pair of tuples r

and s will not be covered by the former, but will be by
the latter if r.X : r and s.Z is not in T. However, by the
execution semantics, if s.Z is not in 7, we have
d(p:(s)):0, which in turn implies min(*):0 since
d(pz!)) is inside the expression (*). Therefore, each pair
of r and s that is covered only by the latter expression
yields a value of zero. We can replace the former
expression by the latter one because (min('r)) always
gives nonnegative values and the maximum value is

chosen from all values produced by (min(*)). For
instance, if T:0, that is, d(pr(s)) :0 for all tuples s,

then p1,.(r) : p,N,(r):0 for any r, although the former
covers no pairs of tuples. Thus, p,y(r) : p.N'(r) for any
value .n. tr

Query N' can be evaluated using the merge-join as

discussed in Section 3. After sorting R on R.Y and S on S.Z,

a tuple r is joined with all S-tuples tn Rng(r). The value r.X
is inserted into the answer with degree mar"6p*6y(d!,'),
which is the same as nzar"as(d1,,") since d(r.Y : s.Z) and,

hence, di., is 0 for any s not in Rng(r). The degree prr,.,(z) is

obtained by keeping the tuple with the highest membership

degree when eliminating duplicate tuples. To reduce the
cost, only those tuples in -R (respectively, S) that satisfy p1

(respectively, p2) positively should be sorted. Let rz6 and n5

be the reduced sizes of R and S; respectively. The response

time of the modified merge-join for Query N' is of the order
O(nplognp+nslogns), while the response time of the

nested loop method on Query N is of the order O(np x ns).
Now, consider the following type I nested query.

euery I
SELECT R.X
FROM R

WHERE p1 AND R.Y is in
( SELECT S.Z
FROM S

WHERE p2 AND S.V = R.U )

The execution semantics of Query ] is as follows: For each
tupie r of ,8, the inner block produces a temporary relatiory
T(r). For each tuple s of S, s.Z belongs to T(r) with the
membership degree

d"(s) : min(ps(s),d(p2(s)), d(s.V : r.L\).

of
N

R.X,
and

zt

z



rL_

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SOL QUERIES lN A FUZZY DATABASE

After eliminating duplicates, each tuple z in 
"(r) 

has the

degree prriQ) : nnaxs.z:z(d"(s)). Then, r satisfies the query

with the degree

d, : min(Fn(r), d(p1(r)), d(r.)' is in T(r)))'

and r.X belongs to the answer if d, > 0. After eliminating

duplicates, each tuple r in the answer has the degree

pt@): max.-x=,(d,).
The following unnested Query ]' for Query J is also

identical to that in [18]:

Query J'
SELECT R,X
FROM R, S

WHERE p1 AND p2 AND R.Y = S.Z

AND R.U = S.V

By the execution semantics, each tuple z in the answer has

the degree

t, t, @) : *'ma,5 (min ( prp ("), ps ( 

" 
), d(p t (r)), d(pz G)),

d(r.Y : s.Z), d(r.U :, Y)))

Theorem 4.2. Query l' is eqtLioalertt to Query l.
Proof. We show that pt@): pt'@) for every value r of

R.X. Notice that p7(z) : maxr,r:c(d,) and

!, r, @) :,91:T.-.i ( di.," )

If, for each r in R, we let df : max"65(df."), we will have
pJ,@): max,-1:a(di) and it suffices to prove d! : d, for
each r in R. There are two cases, depending on whether
7(r) is empty or not.

Case 1: 7(r) is empty. We immediately have d,: Q

since d(r.Y is in T(r)) - 0. Now, consider di. Since T(r)
is empty, we must have, for every s in S,

d, (s) : rninQ,t s (s), d(pr(t)), d(s.v : r-u) ) : g,

that is, either d(p2(s)) : 0, or d(s.V : r.U): 0 and,

therefore,

rl, :yg;(min(r' r0), p s $), d(pv Q)), d(p, (r) ),

d(r.Y : s.Z), d(r.U - s.V))) : o.

Case 2: 7(r) is not empty. For Query j,

d,: min(p"p(r),d(p1(r)),d(r.Y is in 
"(r))): min(tt n 0), d(p, (r) \, y7;,@tn( u r o t 

( :), d(r.Y :, ) ) )

: mjr.I (?r tn ( pp(r) , d(p1(r')) , Ur61Q) , d(r .Y : z)))
z€T(r)

: 
-m;5(min( 

rta?),d(m(r))' --?*(d'(s)),d(r'Y : z)))

: max m_ax(min(pn(r). d(pt(r)\.
.€1\r)5.2=z

min(pr6$),d(p2(")), d(s.V : r.U)),d(r.Y : z)))

: r max max lmin(ptp(r), d(n(r)), p,s(.s). d(pz(s)).
=€T(r1s Z=z'

d(s.V : r.U).d(r.\': z)))

For Query J',

d1,., : min ( p,n (r), ps ( s), d(pr (r)), d(p2 (s)),

d(r.Y : s.Z),d(r.U: s.Y))

dl : max(min(ptp(r),p5(s), d(p1 (r)), d(p,(r)),
-seJ

d(r.Y : s.Z),d(r.U: $.Y))).

Let * denote

min(p, p(r).p5 (s), d(p1 (r) ), d(p., (") ),

d(r.Y : s.Z), d(r.U : s Y))

Then, df - maxses(*) and d,: m€rx,671.1inax".2:"(*).
The expression for df covers all tuples of .9, but that

for d" may not. A tuple s is not covered by the expression
for d, if s.Z is not in 

"(r), 
which implies d,(s) :0 since

s.Z is retrieved into T(r) only if d"(t) > 0. Because
d.(s) : min(ps$),d(p2(")),d(s.v : r.u)):0, we have
either d(p2(s)) :0 or d(s.V:r.U):0. In either case,
the value of * is zero. Since all values appearing in * are
nonnegative and the maximum value is computed from
these x values, we have d,: d,. n

Query |' can be evaluated using the extended merge-
join in the same way as Query N' can. The only
differences are that the sorting can be based on either
(Y, Z) or (U, V) and that two join predicates must be

evaluated when computing the value of df.". Conse-

quently, the response time of the extended merge-join for

Query |' is of order O(nalogzra * nslogns), while that of
the nested loop method is of order O(np x ns).

5 Tne Ser Exclustot't Openaron
Kim [18] used an antijoitr predicate to unnest a type N or

type J query when the set inclusion operator ls in is replaced

by the set exclusion operator is not itr. Kim pointed out that
unnesting such a nested query requires careful considera-

tion. We only discuss the following Q"ery fX, which is of
type J with the set exclusion operator. (The discussion for a

type N query with the set exclusion oPerator is similar and

simpler.)

Query JX
SELECT R.X
FROM R

WHERE R.Y is not in
( SELECT S.Z

FROM S

WHERE S.V = R.U )

For the sake of simplicify of presentalion, we have left out
predicates p1 and p2. Brt, the result holds if either or both of
them exists.

The execution semantics of Query jX is as follows: For

each tuple r of R, a temporary relation 7(r) is generated

from the inner block. Each value z in S.Z is in T(r) with the

degree

PrglQ) : max 
" 

z=. (d.(s))

: .,'ax 
" 
z:,(min(p5(s), d(r'.U : s Y)))

A value r in i?.X will be in the answer with the degree



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 13, NO. 6, NOVEMBEFYDECEMBER 2OO1
YAN

PJX(I): rnax(d")
r -\=J

: max(n"tin(pp(r),d(r.Y is not i,n T(r)))),

where d(r .Y is not in T lr)) : I - d.(r .Y is in T (r)) . As an
example, the following query is fpe JX and finds the name
of employees of the Sales department who do not have an
income of any employee of the Research department with
his/her age.

Query 4
R.NAME
EMP-SALES R

R./NCOME is not in
( SELECT S.INCOME
FROM EMP-RESEARCHS
WHERE S.AGE = R.AGE )

To unnest Query JX, we have to define a temporary
relation that uses both the WITH and the GROUPBY
clauses, and explicitly refers to the membership degrees
of R, S, and the answer relations. Let R.K be a key of .R.

Query lX can be unnested to the following Query ]X':

IXT(K, X) = ( SELECT R.K R.& MrN(D)
FROM R. S

WHERE R.D AND -(S.D AND
R.Y =5.7 AND R.U = S.n

Query ]X'

WITH D> O

cRouPBY R.K)

SELECT X
FROM IXT

Notice that the query to obtain JXT is flat and Query ]X' is
only used to get rid of attribute K. The direct use of
membership degree attributes R.D and ,9.D are unconven-
tional. Since each predicate is evaluated to a satisfaction
degree, and the membership degree can aiso be a satisfac-
tion degree (of a complex query condition), a membership
degree attribute can be used by itself as a predicate. The
satisfaction degree of R.D is then defined to be the
membership degree of the R-tuple being referred to.

The execution semantics of Query JX' is as follows: For
each R-tuple r and every S-tuple s, the degree for (r, s) to
satisfy the \,\IFIERE clause of the JXT query is given by:

d',., :min(Ita("), 1 - min(pts(s),

d(r.U : s.V), d(r.l' : t.Z))),

where t - d(p) is the satisfaction degree 6f -p. Because of
the WITH clause, all (r, s) pairs are kept around even if
d',., : o' The (r, s) pairs for the same r form a group
according to the GROUPBY clause and the minimum
degree of each group is given by il,: min"as(d1,,"),

according to the 1,11,^{(r) in the SELECT clause. If
d', ) 0, r.X is included in relation |XT with that degree.

Query JX' retrieves distinct values of attribute JXT.X.
After eliminating duplicates, a value r in the answer has
the degree ptx,(*) : ma'*. x='(d'.).

Theorem 5.-1.. Query lX' is equiaalent to Qttery lX.

Proof. We prove that prx(r): Ittx,(r) for each value r in
the domain of R.X.lt suffices to prove d, : d', for every r
of R, since

prx(r): 
""lq1(d,)

and

t"tx,@): Frg(4)

Case 1: T(r) is gmpty. For Query JX,

d(r.Y is not i'n T(r)) : 1

and

d, : rnin(ttnQ),rt(r.Y is not 'in T(r))) : 1tp(r).

For Query ]X' , thatT(r) is empty implies d(s.V : r.U) : 0

for all tuples s of ^9. Thus,

c1,., -mi,n(p, p(r), 1 - min(p,s (s),

d(r.Y : s.Z), d(r.U : 
".Y))) 

: pa(r),

Case 2: 
"(r) 

is not empty. For Query JX,

11,: v1ir7,tr("),1 - d(r.Y is in l:(r)))
: min(p. n(r), t - l1lp,;(nzin( p76Q), d(r.Y : z)))

: min(pn(r),,t#t,(t - min(p.761(z),d(r.Y : .z))))

: minr(mi.n(pa(r),1 - min(max(d,(s)),d(r.Y : z))))

: 
Piftr@t'"1r'o('),Y\(r - mi'n(d,(s),d(r'Y : z)))))

: 
IlF, "?'+f 

tni'n ( p' p(r)' t - n ti'n (mi'n( ps (' )'

d(s.V : r.U)),d(r.Y: ,))))
: 

;ry!fr\ni:j*in(P' 6Q), 1 - mi'n(1t' 5 $)'

d(s.V : r.U)), d(r.Y : r)))
For Query JX',

dl :t*T(ai. 
") 

: min(min(ttn(t)' 1 - min(ps(s),

d(s.V : r.U), d(r.Y : z)))).

Let

*: min(pn(r),1- min(p,s(s),d(s.V : r.U),d(r.Y : z))),

then di : minr6s(+) and $ : min,6a1";min"7="(*). The
expression for df covers all tuples of S and the expression
for d, may not. A tuple s of ,9 will not be covered by the
expression for d. only it d(s.V :r.U):0, thus it will
cause * to yield pa(r), which is the largest possible value x

can ever yield. Theref ore, d, : d, for any tuple r of .R. tr

Aithough Query JX' and Query J' are quite different,
Query JX' can be evaluated in a way similar to that Query I'
can. We can use either i?.[/: S.I/ or R.Y : S.Z tn hhe

merge-join. For any pair of r and s, d',., I 1.r,p(r).If s is not in
Rng(r), then d(r.t/: s.V) :0 or d(r.Y : s.Z) -- 0 and
d',," : Srp(r). That is, d', : rnin"es(d',.") : min".p*61(d|."). So

we join a tuple r with all S-tuples n Rng(r) while they are in

the

Thr

for
tha

SELECT
FROM
WHERE

6

Inl
[18
the

ag€

noI

'

dat

[2s
rea

furl

ag[

CC

an(

Wi
fuz
a-c

me

cor

0(
an(

EX€

lu,
pr(

t,
sin
an(

dei
fuz
For

Pr(

Fu.

ani

ftu
gi\
fui
aP

sar

ne:

Bo

,



YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

the main memory, compute df , and retrieve r.Xwhen 4 > 0.

Thus, the response time of the extended merge-join method

f61 Query ]X' is again of order O(nplogna * rzs log n5), and

that for the nested loop method is of order O(np x ns).

6 NESTED QueRIes WITH AGGREGATE

Lr this section, we consider the urmesting of a type jA query

[18] in which the inner block has a join predicate referencing

the outer relation and the SELECT clause contains an

aggregate function which produces a nonnull value from a
nonempty fuzzy set of (maybe fuzzy) values.

Different semantics of aggregate functions in fuzzy
databases have been proposed in the past [31], [32], [11],

[25] and a standard semantics is yet to come. To give the

reader a concrete semantics, we briefly present the aggregate

functions inFuzzy SQL as described in [23]. Fuzzy SQL has

aggregate functions COUNT, AVG, SUM, MIN, and MAX.
COUNT returns the number of values it a fuzzy set. AVC
and SUM are defined based on fuzzy arithmetic operations.

With a trapezoidal (or triangular) membership function, a

fuzzy value induces lwo interva-ls (conventionaily termed

a-cut). One interval contains all values in the domain whose

membership degree is 1. (i.e., 1-cut), and the other interval
contains all values whose membership degree is greater than

0 (i.e., O-cut). Fuzzy arithmetic operations take two values
and determine the two intervals of the resulting value. For

example, let z and y be two values with 0-cuts [r1 , ra] and

[at,t1d, and 1-cuts l"r, rs] and [y2, ur], respectiv ely. r * y

produces a value z with O-cut [r1 *At,r+ *Eq] and 1-cut

lrz + A",rs * Az1. Other arithmetic operations are defined
similarly. AVG is defined by fuzzy addition and division,
and SUM is defined by htzzy addition. MIN and MAX are

defined by using a defuzzificaLion method which allows
fuzzy values to be sorted based on the center of their L-cuts.

For empty luzzy set of values, AVG, SUM, MIN, and MAX
produces NULL value.

Despite the special semantics of aggregate functions in
Fuzzy SQL, the tectmique given in this section is general
and can be applied to other systems as long as the aggregate
functions produce deterministically a nonnull value from a
given nonempty fuzzy set and a NULL value for emPty
fuzzy sets. The key idea is to show that the same function is

applied in both the nested and the unnested queries to the
same set of values. The following Query jA is a type IA
nested query.:

Query ]A
SELECT R.X
FROM R

WHERE p1 AND R.Yopt
( SELECT AGG(S.Z)
FROM S

WHERE pz AND
S.V opz R.U )

Both op1 and op2 are comparison operators in {<, ). (, }
,:) and AGG is one of the aggregate functions MAX,

trIIN, AVG, SUL'[, and COUNT. Notice that if no join
predicate exists in the inner block, the inner block Produces
the same single value for every fuple of R and no unnesting
is needed.

The execution semantics of Query JA is as follows: For

each tuple r of R, a temporary relation 
"(r) 

is generated

from the inner block where

T(r):{z: fs € S such that s.Z = z,

d(pr(")) ) 0,and d(s.V op2 r.t/) > 0).

A value z tn S.Z is in 7(r) with the degree

Fr 61 Q) : \a!<(min(1t' 5 (s), d(p2(s)), d(s.v op2 r -u))).

Then, the aggregate function AGG is applied onT(r).2 to

obtain a value A(r) with a degree D(A(r)). We assume that
n@(r)) is a fr-rnction oIT(r).ForFuzzy SQL, D(A(r)): t.
But it can also be defined as the average membership
degree, or weighted average membership degree of T(r).
The tuple r satisfies the query condition with the degree

d, : min(pt,p(r),d(e1(r)), D(A(r)),d(r.Y op1 A(r)))-

lf d, > 0, r.X is in the answer. After eliminating duplicates,
each value r of R.X in the answer has the degree
prA(r):max".r:'(d'). Notice that, if T(r):0, and the
frrnction is COUNT, then ,4(r) : 0 and

d, : min(LLnQ), d(p:(r)), D(A(r)), d(r.Y op1 0));

however, i-f the function is not COUNT, A(r):null and
d, :0.

As an example, the following type JA query finds the

names of cities in region A, each of which has an average

household-income greater than the maximum average
household-income of cities in region B with similar
population.

Query 5

SELECT R.NAME
FROM CITIES_REGION- AR
WHERE R.AVE-HOME-INCOME>

(SELECT MAX(S.AVE-HOME-
INCOME)

FROM CITIES-REGION_B S

WHERE S,POPULATION

= R.POPULATION )

We unnest Query |A using two temporary relations, T1

and Tz, defined as follows:

Tr(U) = (SELECT R.LI
FROM R

WHERE pt)
T2(U,A) = (SELECT Tr.U, AGG(S.Z)

FROM TT, S

\ArHERE p2

S.V op2 T1.U
GROUPBY 71.U )

Intuitively, ?r is the set of all values ol R.U that can ever be

used to evaluate the inner block of Query ]A and 72 is the



IEEE TFIANSACTIONS ON KNOWLEDGE AND DATA ENGINEEBING, VOL. 13, NO. 6, NOVEMBEFYDECEMBER 2OO1

set of all aggregated values that can ever be obtained in the
inner block, with each value accompanied by the corre-
sponding value of R.U that produces it. 7r is obtained from
the R-tuples that satisfy p1 by projecting on -R.U with
duplicates renioved and all membership degrees set to 1. 72

is obtained by joining fi with S-hrples that satisfy p2 on the
join condition S.Vop2 71.U, groupine the result based on
71.U, and then, applying AGG to each group. For each
value u in 4.U, the group is

T'(u) :{z: ls € ,9 such that s.Z : z,d(p2(s)) > 0

and d(s,V op2 u) > 0):

and a value z of S.Z is in ?'(u) with the degree

Fr 61Q) : max(min(s $), d(p2(s)), d(s.V op2 u))).

If T'(u) lA, u result, A'(u), wiih clegree D(A'(u)) is
computed frorn T'(u) by AGG, and a tuple (u,A'(u)) is
inserted into Tz with degree D(A'(u)). If T'(u):A, Tz
contains no hrple for z. Notice that, by their definitions, for
every R-tuple r,T(r) andT'(r.U) are identical and, for every
z in S.Z, prvyQ): Fr,6.qQ).

Query jA can then be unnested to either one of the
following two flat queries, namely, Query JA', if AGG is not
COUI,{T, or Query COUNT', if otherwise.

Query IA'
SELECT R.X
FROM R,TZ
WHERE p1 ANDR.I/ =T1.U

ANDR.Y op1T2.A

For each R-tuple r and each tuple I : Qr, A'(u)) rnT2, r and t
will satisfy the query condition with the degree

d,., : min(pt p(r) , d(p1 (r)), d(r.U : u) .

D(A' Qt)), d(r.Y op1 A' (zt))).

Notice that d(r.U: a) is binary, and there can be at most
one tuple in T: for which d(r.U : u) : l, thus, r will satisfy
the qtrery condition with the degree d',:max167r(d!,t). If
d', ) 0, r.X belongs to the answer with degree d,. After
eliminating duplicates, a value r is in the answer with
degree p.r A' @) : trru*..r=, (d',).

Query COUNT'
SELECT R.X
FROM R,TZ
WHERE p1 ANDR.t/* =T2.Ll

lR.Y op1T2.A : RY op10l

The WHERE clause is a conjunction of the predicate p1 and a

left outer join predicate (denoted by * : ) followed by an
IF-THEN-ELSE structure enclosed in a pair of square
brackets. The left outer join operator l2ll, l7l, [33] is used
to preserve the tuples of the left relation R since only E.X is
projected. As in [22], the IF-THEN-ELSE structure has two
components separated by a colon and the WHERE clause is
evaluated as follows: If a tuple r of R joins with a tuple
t : (u,A'(u)) of 72, that is, r.U : u, the degree for r to

satisfy the outer join predicate is the degree by which r
satisfies the first component in the square brackets, thus, r
satisfies the query condition with the degree

dl, : min(p. p(r), D ( A' (u)), d(pt (")), d(r.Y op1 A' (") )).

Otherwise, the degree for r to satisfy the outer join predicate
will be the degree by which r satisfies the second
component in the square brackets, that is,

dl, : rnin(p n(r), d(p1(r)), d(r.Y op1 0)).

After eliminating duplicates, a value z is in the answer with
the degree pcouxr,(r) : max,;;:,(d,).
Theorem 6.-t. Query COUNT' (Query IA') is equiaalent to

Qttery lA if AGG is (not) COUNT.

Proof. We shall prove that d, : d, for each tuple r of R,
which implies pto(") : ttt.q,(x) for each e in the domain
of R.X. Recall that 7(r) and T'(r.U) are identical for
every r in R.

We first consider the situation where AGG is not
COUNT. lf T(r) is empty, A(r) :null and d,:0.
Since T'(r.U) and ?(r) are idenbical, relation T2 in the
unnested query has no tuple (r.U,A'(r.U)). As a result,
d(r.U=u) :0 for every tuple (u,A'(u)) in T2 and
l', -- 0. lf T(r) is not empty, we have

A(r) : A'(r.U), D(A(r)) : D(A'(r.U))

since the same aggregate function AGG is applied to
the identical sets 7(r) and T'(r.U\ Since there is
exactly one tuple, namely (r.U, A'(r.U)), in T2 such that
d(r.U : r.U) :1, we have d, : d,.

Now, assume that AGG is COUNT.If T(r) is empty,
we have A(r) : g 3t"r4

d,: min(p,a(r), d(p1(r)), d(r.Y op10)).

Since T'(r.U) is also empty, ?2 does not have the tuple
(r.U. A'(r.tJ)). Thus, in Query COUNT', tuple r does not
join with any tuple of Tl2, and

d', : min(pa(r), r)(p1(r)), d(r.Y op1 0)).

The rest of the proof is similar to that for the case
where AGG is not CO|INT. D

Although the unnested Query ]A consists of three
queries instead of one, by pipelining the result of one
query to another, the three flat queries can be evaluated in
parallel in the main memory. The evaluation is similar to
that of the merge-join. First, the set of R-hrples satisfying p1

is sorted on R.U and the set of S-tuples satisfying p2 is
sorted on ,9.7. To simpli$r the discussion, assume that op2 is
the equality. Let 11 be the first tuple in the sorted /i. Then,
ur:1'1.L1 is the smallest R.U value (according to < ) and
becomes the first tuple in fi. As soon as LL1 is obtained, it is
pipelined to Query Z2 and joins with Rrtg(r1) to generate
T'(ur). If T'(u1) I A, the aggregate function is applied to
obtain ,,1'(u1) and D(A'(u1)). Once the two values are
obtained, they are immediately pipelined to Query ]A' or

YAN

Qu,
The

d"g
acci

outr

ber
AGr

Pro(
and

oPel

exte

the

valu

ASSU

ofh
Pro(
Que
o(n
eval

iso

7

In

IAI
blo,

out
SO

sirr
an

AI

PI
ge

ge

e'v

th
w
re

1"1..

q'
w



YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL OUERIES IN A FUZZY DATABASE

Query COUNT', depending on the aggregate function.
Then, for all R-tuples r with r.LI : u.1, including 11, the

degree df is computed and the value r.X is projected

accordingly. If T'(u1):0 and AGG is COUI'{|, the left
outer join in Query COLINT'is evaluated, and r.X may still
be retrieved for a tuple r with r.LI:u.1. lf T'(u1):0 and

AGG is not COUNT, the processing for u1 ends. This

process is then repeated for the next tuple in the sorted R
and so on until all R-tuples are processed. Since the

operations are pipelined, this process is essentially the

extended merge-join. Assume that the time complexity of
the AGG function is Olm), where m is the number of
values in the group to which AGG is applied. Since, by
assumption, each tuple of R joins with a constant number
of tuples of S, the time spend on the ,AGG function in the

process is in the order of O(rz1) and the response time for

Query iA' (Query COUNT') is still in the order of
o(nplognp*n5iogn5). Since Query IA can only be

evaluated using the nested loop method, its response tirne

is of order O(np x n5).

7 Nrsreo Quentes wlrH QUANTTFTER ALL

In this section, we consider the unnesting of a type

JALL query, which has the quantifier ALL in the outer
block and a join predicate in the inner block referencing the
outer relation. Nested queries with quantifier EXIST or
SOME can be unnested similariy. The basic method is

similar to that in [15], namely, to replace the quantifier with
an appropriate aggregate function.

The foilowing Query |ALL is a type JALL nested query:

Query ]ALL
SELECT
FROM
WHERE

R-X
R

R.Y < ALL
(SELECT = S.Z
FROM S

WHERE S.Y = R.U)

Although, for simplification, we have chosen not to include
predicates p1 and p2 and to use < instead of the more
general op, the results of this section hold for the more
general cases.

The execution semantics of Query JALL is as follows: For
every tuple r of R, a temporary relation Z(r) is produced in
the inner block. For each tuple s of S, s.Zbelongs to ?(r)
with the degree d,(") : min(sts$),d(r.U :s.|/)). After
removing the duplicates, a value z tn T(r) has the degree
prctQ) :'mo'rs.z:,(d"(s)). The degree for r to satisfy the
query condition is d,:min(p,a(r),d(r.Y <ALL f("))),
where, for a value r-' and a set F, d(u < ALL ,F) is given by

d(u < ALL F):
f 1-rnax.66'(min(p,p(r),1 -pq(u,r)), f l0;
I r, otherwise.

If d, > 0, r.X is in the answer with degree d,. After

removing duplicates, each value r in the answer has the

degree pJ ALL(r.) : maxr.x:r (d").

Query }ALL can be unnested to the following Query

]ALL' which uses a temporary relation fi:
T:K,X,D)= (SELECT R.K R.& MIN(D)

FROM R,S

WHERE R.DAND - (S.D AND
R.U = S.y AND -(R.Y> S.Z))

WITH D> O

GROUPBY R.K)

Query JALL'
SELECT TT.X
FROM :T1

The execution semantics of }ALL' is the following. For

each r in -R and each s in S, the degree for r and s to satisfy

the selection condition for fi is

d',, : min(t, a(r), I - min( 1t s(s),

d(r.U : s.V), 1 - d(r.Y < s.Z))).

As indicated by the WITH clause, a pair of tuples (r, s) is

kept around as long as 4," > 0. Then, because of the

GROUPBY clause and the MN(D) aggregate function, the

minimum df,, among tuple pairs (r, s) that have the same

r?-tuple is obtained by 4: mins€s(dl.s). If ll,> 0, a tuple

(r.K,r.X') is included in 4 with df as the membership

degree. Query JALL' then retrieves distinct values in 71.X

by eliminating redundant values and, for each value r in

the answer, the membership degree of c is given by

It t eu, (x) : -a-*' x:' (dl.)-

Theorem 7.1. Query IALL' is equiaalatt to Query IALL.

Proof. We shall prove thal p"1apy,(r) : pteLr@) for each

value r of R.X.II suffices to show that d!,: d' for each

tuple r of R. Notice that the following proof does not

depend on that the predicate involving ALL is < . There

are two cases.

Case 1: 
"(r) 

is empty. In this case, for every s in S,

d,(s):0, that is, d(r.U : s.V): 0. This implies that

d,: min(pn(r),d(r.Y < ALLT(r))): p6(r)

since d(r.}' < ALL 0) : 1. For the unnested query, since

d(r.U:s.V):0, d,,":p,p(r), fot every s in S. Thus,

dl : rnin"es( pn(r)) - pn(r).

Case 2: ?(r) is not empty. For the nested query,by
substituting Fr61Q)tntod(r.Y < ALL ?(r)),and d(r.Y <
ALL f (r)) into d,, we have:



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 13, NO. 6, NOVEMBER/DECEMBER 2OO1

d, : min([t'a(r),d(r-Y < ALL T(r)))

: min(pt p(r), 1 - 4;r,; (m in( p,71,a( z), I - d(r.Y < t))))

: min(p.a(r), t - g;l,; (m in(max(m in( p,s $),

d(s.V : r.U))),r - d(r.Y < z))))

: rnin(p.R?). _min- lrnar(mar(1 - ps(s),' :cT(r),s.Z=z

L - d(s.V : r.U),d(r.Y < z)))))

: mi,n(p.a(r), min(mor(1 - ,r,rs(r), | - d(s.V - r.U),

d(r.Y < z))))

: min(min(p.p(r),mar(l - ps(s),I - d(s.V : r.U),
seJ

d(r.Y < z))))

: mjn(mi.n(p'a("), r - min(pts$), d(s.V : r.U),

1- d(r.Y < z))))

- d'r.

D

By pipelining the evaluation of fi with that of Query IALL'
in a similar way as described in Section 6, Query ]ALL' can
also be evaluated in lime O(nplognp+nslogns). Since

Query JALL can be evaluated only by the nested loop
method, its response time is O(np x ry).

8 Genenal Nesreo Fuzzv Quentes

For conventional databases, the issue of unnesting general
nested queries has been studied in [18], t8l, 1151, 1221. A
complete discussion of unnesting general nested fuzzy
queries is beyond the scope of the paper. h:r this section, we
consider a subclass of nested fuzzy queries known as the
chain queries or linear queries [22]. The following query is a
chain query of three blocks-

Query 6

SELECT .RT.XT

FROM RI
WHERE pr(/ir) AND Rr.Yi in

( SELECT -R2.X2

FROM RZ

WHERE pz(Rz) ANDR2.U2 : Rt.Ut
AND R2.X2 in

( SELECT RT.XS

FROM R3

WHERE pe(fis)
AND R3.% : Rt-V
ANDR3.ty3 : Rz.Wz) )

L:r general, a chain query Q71 has K > 2 subquery blocks,
one block per nesting level. The blocks are numbered
sequentially from the outermost to the innermost, starting
with 1. The relation in block i is denoted by &. The query
contains no set-exclusive predicate, aggregate function, or
quantifier. However, a block may have a correlation
predicate referencing a relation in any of its outer blocks.
A correlation predicate in block i referencing relation ,R, is

denoted by p;,(Ro, R).7f a block does not have a correlation
predicate referencing a particular outer block, we simply
add the predicate TRUE in its place, which will always be

completely satisfied. Thus, in general, block k has the

following typical sfructure:

SELECT Rt.Xt
FROM Rt
WHERE pr(Rr) AND flla;qet(put(Rt,&)) AND

R6Y" in= ( SELECT Rr*r.X*t ... )

where t\so<x(pt) denotes the conjunction of predicates pl
ANDp2 AND... ANDp6.

Query Qx can be unnested to the following query Q'o.

Qu"ry Q'x
SELECT Rt.Xr
FROM Rt, R2,. . ., Rx
WHERE |It<t<x(pi(&))

AND flz<;<r<fIt <i <r t (p.,.i (Rr, R i))
AND II1<1qli -t(&.Y : &+r.X'+r)

Theorem 8.7. Query Q'6 is equiaalent to Query Qa.

Proof. We shall prove the theorem by induction. For
K : 2, Q2 is Query J (or Query N if p2,1 (R2 , R1) is T RU E)
and Q', is Query j' (or Query N'). By Theorem 4.2 (or
Theorem 4.1), Q, is equivalent to Q2.

Now, let K > 3, and assume that Query Q'x-, is
equivalent to Query Qx-t. We shall prove that Q'o is
equivalent to Qx.

Query Q6 canbe written in the following form, where
Qx r(Rz,R6) denotes the (K - 1) inner blocks of Qa:

Query Qr
SELECT RT.XT

FROM Rr

WF{ERE pr(ftr) AND.Rl.yl in Q6a(R2,Ra)
For each tuple 11 of R1, Q6a(Rz, Rr) is to be evaluated.
\zVhen evaluating Qr-r(Rz,fir<) with respect to 11, each

appearance of Rr is replaced by 11 and each predicate
p,t(R,,rt), 2 < i < K, can be considered as a predicate
involving only & but with a constant ri. Therefore,

Qrt(Rz,Rr) is a chain query of K- 1 blocks with a

parameter fir. By induction hlpothesis, Qxt(Rz,R6) is
equivalent to the following query:

Query Q'6a(R2, R6)
SELECT R2.X2
FROM Rz,Rs,...,Rr
WHERE ilz<t<x(pi(&)) AND

flz<;<rlIi <r< r_, (p,.i (&, Ri))
AND ll21;a6 1&.Y : &+t.X*t)

and the original query Q71 is equivalent to

Qu"ty 8f
SELECT RI.XT
FROM E1

WHERE pr(Rr) AND R1.Y1 n Q'6_lR2,Rs)
In Query Qk, fot each tuple 11 of R1, the inner
qoery Q'*-r(Rz, Rr) is evaluated with respect to rr
and a temporary relation 71(r1) is produced. For

YANC

e

ft
(,

l
e

v

1

d:



--

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SOL OUERIES IN A FUZZY DATABASE

each combination of r" Q &,, 2 < i < K, the degree

for 16,2<i< K, to satisfy the selection condition of

Q'x-, is

dl,(rt, .. . , "rr) 
:r&L ,$][,(ra (",),d@u(r,)),

d(pu,, (, t, r )), d(r i.Y, : r,+t.&+r ) ).

The value r2.X2 is in T1(r1), rf d|,(r2,...,rN) > 0. After

eliminating duplicates, each value z of R2.X2 in ?1(r1)

will have with the degree

trr, ?)(z) :,Ya1="@|,(r", . . .,, r)).

Therefore, 11 satisfies Query Q]. with the degree

df, , : *in(p a, Q 1), d'(p1 (r ))' d(r 7 -Y1 in T1 (r1 ) ) )

: mi,n ( 1-t 11, (r ), r\(p 1 ( r 1) ), 
.411,, 

( m i n ( p,7, 1,,1 Q),

d(rr.Yt: z))))
: min(pp,(r1), d(p1 (r1)),

"fi?ff ,r(^i' 
(,llf! 

"( 

dl, (' z,'''' r x ))' d("'Y :z) 
) ) )

: 
"#ff,r(*n'(Pn' 

(r1 ;' d(n('t))'

,no"(,y;5="@t;,(rr, . .. , rr<)), d(r1.Y1: ,)))
: 

.$3d ) 

( 
.ff=.( rg-l'lr'#3, 0' n' (" )' d(p' ("))'

d,(r 1.Yv : r z. X z), p rL (r i), d(p r (, r)), d(p i o (r i, r )),
d(ri.\: rr+r.&+r))).

The value r1.X1 is in the answer if dl,> 0. After
eliminating duplicates, each value r of Rt.Xt is in the

answer with the degree pq'o(r): max,,.x,:'(dl,).
kr Query Q'6, for each cornbination of Luples ri e R.,

L < i < K, the degree for them to satisfy the query
condition is

d.'(r1,12, . . . ,rx):rgiL r$]pr(ln, (" t), d(pt(rr)),

d(rt.Y : rz.xz), Pn(re),d(nti)),
d(pr,i (n, r )), d(r i.Y, : r.+r.X;+i ) ).

The 11.X1 belongs tothe answer # dt (r1,12,. -., rn) ) 0'

After eliminating duplicates, each value r of Rr'Xr in the

answer has the degree

uo'*@) :,I;g,@ ('1 t 12, "',' x))'

Thtts, 1,tq'^(r) : max".1':'(x) and

Fqrn(r): maxrr.x1 = r(rnax"u7r1"ry(max"r.x, : t(*))),

where * denotes the common expression of the two
degrees. The expression of pa'n@) covers all K-tuple

combinations ri € R;, I < I < K, in which r1.X1 : v'
But, some of these combinations may not be covered by
pan@) If r2.X2 is not in Tt("t). However, for such a

combination, dl,(rr,. . . ,rr): 0, hence, the common

expression * yields 0 as well. Since * always evaluates

to a nonnegative value, we have ps'o@): pla'^@). !

TABLE 1

Response Time in Seconds of the Nested Loop
and Merge-Join Methods

Relation Size IMB 2MB 4MB 8MB I6MB 32MB

Nested Loop
Merge-join
Speedup

)ul
40

12.5

1965

84
23.4

I tJ4
223
34.8

30879
852
36.2

I 897 1l )3

To evaluate Query Q'6, an optimal join order may be

determined by using, say, a dlmamic programming [351

method, to minimize the sizes of the intermediate relations.

If, as assumed, each tuple of a relation joins with a constant

number of tuples of another relation, the size of an

intermediate relation will be proportional to a joining
relation, and the response time of Qi using the extended

merge-join method will be of order O(E1<i,<6n,7ogn1),

where n, is the number of tuples of relation E;. The

response time of Q7s using the nested loop method could be

of order O(l\<6ayn').

9 ExpERlururAL RESULTS

We conducted experiments to study the performance of the

unnesting techniques. Lr this section, the type I queries are

used to illustrate the experimental results-
The experiments are conducted on a SllN SPARC/IPC

workstation, which has an 8-Megabyte main memory and is

dedicated to the experiments. Both the nested loop and the

merge-join methods are implemented using the Omron
fuzzy database library t251. A 2-Megabyte buffer is ivailable
to both methods. For the nested loop method, one buffer
page (8 k-bytes) is allocated to the inner relation and the rest

to the outer relation in order to minimize I/O cost [14]' For

the merge-join, the sorting is done by Opt-Tech Sort [26], a

commercial extemal sorting software that uses a user-

specified amount of memory. Tuples of the relations are

randomly generated and a tuple of one relation ioins, on the

average, C tuples of the other relation. Both the I/O and the

CPU costs are measured. The experimental resu-lts confirm
that the extended merge-join ouperforms the nested loop

method by an order of magnitude.
Four experiments are discussed below' In the first

experirnent, both 'R and S relations contain n' tuples of

l2bbytes, where r?. ranges from 8,000 to 256,000 resulting in

relations of a size from 1 to 32 MB. Each tuple of R joins, on

the average, with seven tuples of S. Table 1 shows the

response times of the two methods in seconds and indicates

that the speedup of the extended merge-join with respect to

the nested loop method is from L2 to more than 36 as the

size of the relations increases- For a relation size no less than

16MB, the nested loop method takes too long to terminate'

For the second experiment, the size of the outer relation

is fixed at 4MB and that of the inner relation is ranging from

2 to 76 MB. The tuple size and the value C are the same as

those in the fust experiment. The result, shown in Table 2

indicates that the .uipottt" time of the nested loop method

increases li.nearly with the slze of the inner relation' This is

consistent with our analytical results' For the merge-join'

the numbers do not closely match the analytical results,



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 6, NOVEMBEFYDECEMBER 2OO1

TABLE 2
Response Time in Seconds: Changing

the Size of lnner Relation

Inner Relation Size 2MB 4MB 8MB I6MB
Nested Loop
Merge-join
Speedup

156

25.1

39
205

7 790

38

416
32.s

48915 31049
2152
1,1.4

namely O(nlog n). In order to understand the behavior of
the algoriihm, we collected more detailed information
about the algorithm, as shown in Table 3, where the first
row represents the CPU time spent on sorting, merging, and
joining as a percentage of response time and the second row
represents the percentage of response time spent on sorting
(including CPU time and IO time). The results show that, as

the size of the irrrer table increases, the join becomes more
IO intensive and the majority of the time is spent on sorting.
The jump of the response time near the columns of SMB and
L6MB we believe is caused by the memory management of
the operating system. The speedup increases as the relation
size increase until the size reaches 4MB and then, decreases
afterward. This change is expected. Since one relation has a

fixed size, the complexity of the nested loop becomes O(n),
while that of merge-join remains O(nIogn). As a result, the
improvement decreases as the size of the inner relation
increases. '

The third experiment was designed to test the impact
of IO activities. The number of tuples of the relations is
fixed to 8,000, btit the tuple size is ranging from 128 bytes
to 2,048 bytes. A tuple in R joins, on the average, with
one tuple in S. The results, shown in Table 4, indicate
that the merge-join is superior to the nested loop. Since
the number of tuples is fixed, the CPU time spent on
comparisons and fvzzy computation remains unchanged
for both algorithms (15 seconds for the merge-join and
483 seconds for the nested loop). As the tuple size
increases, the number of IOs also increases. As a result,
the percentage of CPU time drops for both algorithms.
We should also point out that the total CPU time also
increases since, as the tuple size increases, more CPU time
is needed for handling IOs.

The last experiment was designed to study the impact of
the number of joining fuples on the performance. Both
relations have a fixed size of 8MB (64,000 tuples). The
average number C of tuples that a tuple will join ranges
from 1 to 128. The results are show in Fig. 3. As C increases,
the number of IOs remains more or less the same, but the
CPU time increases due to the increase in the number of
calls to the fuzzy library functions and the number of
comparisons for merge and join.

TABLE 3
Time Break Down for Merge-Join Method

TABLE 4
Response Time in Seconds: Changing Tuple Size

Tuple Size r28 256 512 1024 20,18

Nested Loop
merge-join

485
20

514
37

584
94

'729

187

t017
896

It should be pointed out that, in these experiments, both
the intervals associated with the join attribute values and
the average numbers of joining tuples are kept small. This is
typical for tuzzy database applications in which data may
be imprecise but not very vague. On the other hand, in
temporal database applications, the intervals associated
with the tuples can be much larger. This could have an
adverse effect on the merge-join method.

10 SuuurnY
In this paper, we present techniques to unnest various types
of 2-level, and a subclass of K-level nested Fuzzy SQL
queries for efficient evaluation. An extended merge-join is

used to evaluate the unnested queries, and its performance
is compared with that of the nested loop method which the
nested queries must be evaluated with. Both analytical and
experimental results regarding the performance of the two
methods are presented in the paper. The techniques are
likely to be applicable in database systems that allow vague
queries on uncertain and imprecise data. To the best of our
knowledge, the issues of unnesting fuzzy queries have not
been studied before.

We will continue investigating techniques for optimal
processing of fuzzy queries and study the application of
those techniques to other types of databases with
imprecise information. One such application is the picture
retrieval [2].

AppeHorx

lrutenpnetaloN oF A FuzzY Queny
In this Appendix, we provide a clarification of the meaning
of a Fuzzy SQL query.

A fuzzy relation, as defined in Section 2 of the paper, is a

fuzzy set of tuples. That is, each tuple of a fuzzy relation is a

member of the fuzzy set with a degree of belonging to the

set. Based on the interpretation of possibility, we can think
of afuzzy relation as a representation of afuzzy concept (or

a fuzzy condition) and each tuple in the fuzzy relation as an

object that possibly belongs to the concept (or satisfies the

condition). Here, the membership degree of a hrple is

interpreted as the possibility for the tuple to be a part of the
concept (or to satisfy the condition). Thus, as stated in this
paper, the answer to a Fuzzy SQL query ts a fuzzy relation
where each tuple satisfies the query condition to the extent
as indicated by its membership degree (see Section 1) and,
for the answer relation of a query, the membership degree
of a tuple is interpreted as the degree for the tuple to satisf/
the query condition (see Section 2).

For example, consider query Q: "select A from ? where
X," where A is a list of attributes, ? is a set of fuzzy
relations, and X is a query condition. The result is a fuzzf

Inner Relation Size 2MB 4MB 8MB 16MB
CPU time (%)
Sorting Time (7c)

76
38.7

63

52.s

5l
6t.9

24

84.1



res

)L
is

ce
he
rd
\ro

re
ue

ur
ot

al
of
ih
re

rg

a

a

te

Lk

)I
n
re

is

Le

is

n
rt

t,

e

v

e

Y

Y

YANG ET AL.: EFFICIENT PROCESSING oF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

Response Time (in sec)

2-500

2000

1s00

500

60

Join Number C

Fig. 3. Response time and number of lOs for merge-join.

relation R such that each fuple r' in R/ indicates a set of
tuples in relations in T that collectively and possibly
satisfies the condition X. In other words, the only thing in
corrunon among the tuples in the answer relation is that
each one of them is a possible answer to the query (up to the
membership degrees). Notice that this type of interpretation
is a straightforward generalization of that of an ordinary,
crisp query, for which each tuple in the result is a sure
answer.

Consider another example. Let ,? and S be the following
relations:

Number of IOs (thousands)

120

interpretation. Thus, for this example, both 11 and 12 are
possible answers, with a possibility 1 and 0.8, respectively.

It may be tempting to determine for the query which
tuple of S will actually join with tuples of fi. One way to do
so may be the following: \A/hen joining E with S, each tuple
in S is replaced by one of its possible values in its possibility
distribution. This replacement is repe'ated for every
combination of possible values for the tuples in S for the
join operation. In the previous example, we can assign 1/y1
to S.Y in one join and assign 0.81y2 to ^9.y in a second join.
One join is performed for each combination of value
assignments. Each of these joins results in a possible Ernswer
relation. Thus, the answer to the previous query would be
two relations: One contains z1 with a membership degree 1

and the other contajns rz with a membership degree 0.8.
However, this method not only still gives a fuzzy answer
(now one has to determine which answer relation should be
the "true" answer), but also it does so very inefficiently, as

illustrated in the following example:
Suppose the two relations are as follows:

R

X Y

LL

I2

r3

I4

Ut

Ut

Az

At

Consider the query "select R.X frorn -R, S, where
R.Y :5.Y."

Using the method just outlined, the answer should be
one of the four fuzzy sets {1.1q,0.914}, {l l*t,0.7 lra},
{O.8l12,0.9lrsl, and {0.8/12 ,0.7lra}. Thus, the answer

3500

3000

140

t20

80

60

rth
nd
;is
ay
in

ed
an

80

s

) Z

Ilyt + .8lyz ZI

Consider the query: "select R.X from R, S where
R.Y :5.Y."

First of all, the possibility distribution Lly, +.8/g2 under
attribute Y in relation S indicates an uncertain value of Y
(which is possibly y1 with possibility 1 or 92 with possibility
0.8). It indicates that we do not know the precise value of Y,
but it is possibly At or az, therefore, both gr1 and y2 are
possible values of Y. With this r-rncertainty, we are unable to
determine which tuple in R will actually join with the tuple
in ^9. However, we are able to determine that either tuple in
-R has a possibility of joining with the tuple in S, thus, both
of them are possible answers.

Thus, the semantics of the query: "select R.X from -R, S
where R.Y : S.Y, should be to find all E.X such that there
exists some tupie in S and R.Y : S.Y is satisfied (rn a fuzzy
sense) by these tuples of ,R and 5. The answer obtained
using the method presented in this paper is based on this

tB--l
l'l"l
I;T;I
Ll"l

llw+.8lyz I zt

.9/as+.7 lat I zz

Number of IOs 

-CPU Time

Response time " "

tr

ttl

s

Y L



900

becomes a fuzzy set of fuzzy sets (second order). There are

several reasons why this is not a good approach.

l. The enumeration of all those (fuzzy) sets of answers
does not provide much more information to the user
as it is still uncertain which one of these sets is the
sure answer.

2. The exponential nature exhibited in this example
will only get worse when the values of Y are given
by possibility density functions in both relations
(say, on the real numbers) for, in that case, there will
be an infinite number of fuzzy sets in the answer
(notice that not only each x-value in a set has a
membership degree, but also the set itself has a
membership degree). Therefore, it is not practical to
compute and present such an answer to the user.

3. Since, under this interpretation, each algebraic
operation, such as selection and join, will result in
multiple relations, the algebraic operations can not
be composed, as discussed earlier in the paper.

AcxHowIeDGMENTS

The authors would like to thank the anonymous referees

for their valuable comments and constructive suggestions
on the presentation and technical accuracy of the paper.
This research was supported in part by the US National
Science Foundation (NSF) under IRI-9509253, Omron
Corporation, Omron Management Center of America,
and the Natural Science and Engineering Research

Council (NSERC) of Canada. An earlier version of this
paper was presented at the IEEE Leternational Conference
on Data Engineering, 1995.

Rerenrrucrs
t1l S. Abiteboul, P. Kanellaki

Representation and QueryinS
TheoreticaL Computer Science, vol

t2l A. Aslandogan, C. Thier, C. )
Implementation and Evaluatior
based REtrieval of Pictures)," I

l3l J.F. Baldwin, "A Fuzzy Relatio
Systems," Proc.13th LEEE lnt'l S

423,7983.
I4l P. Bosc, M. Galibourg, and C

SQL: Fxtensions and Implem
Systems, L988.

t5l P. Boscand and O. Pivert, "
Flexible Querying in Databa
and Soft Compting, R.R. Yag<

pp.368-395, New York: Van
t6l P. Bosc and O. Pivert, "SQLf: r

Fuzzy Querying," IEEE Trans.
7995.

l7l E.F. Codd, "Extending the Da
More Meaning," ACM Trans. uLtuturLr.

t8l U. Dayal, "Of Nests and Trees: A Unified Approach to Processing
Queries that Contain Nested Queries, Aggregates, and
Quantifiers," Proc. Very Large Databases, 1987.

t91 D. DeWitt, J. Naughton, and D.A. 9:hneider, "An Evaluation of
Non-Equijoin Algorithms," Proc. Very large Dntabases, 1991.

[0] D. Dubois and H. Prade, Possibility Theory: An Approach to
Computuized Processing of Uncertainty. chap. 6, New York: Plenum
Press, 1988.

[1] D. Dubois and H. Prade, "Measuring Properties of Fuzzy Sets: A
Ceneral Techniques and Its Use in Fuzzy Query Evaluation,"
Fuzzy Sets and Systems, vol. 38, pp. 137-152,7990.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 6, NOVEMEEFI/DECEMBER 2OO1

lt2l

u3l

D. Dubois and H. Prade, "Fuzzy Sets-A Survey of Eng.
Applicatioru," Computu and Ch.emical Eng., vol.77, pp.373-380,
t993.
P.F. Fisher, "First Experiments in Viewshed Uncertainty-
Simulating Fuzzy Viewsheds," Photogrammetric Eng.
Remote Sotsins, vol. 58. no. 3. oo. 345-352, Mar. 7992.Remote Sotsing, vol. 58, no. 3, pp

[I4] G. Graefe, "Query E";1"";;; i".{iiq.i"J ;Large Databases,"
Computer Suraeys, June 1993

[15] R.A. Ganski and H.K.T. Wong, "Optimization of Nested SQL

Queries Revisited," Proc. ACM SIGMOD,1987-

[16] R.L. Haar, "A Fuzzy Relational Data Base System," Technical
Report, TR-587,Computer Center, Univ. Maryland,, Sept. 1977.

[17] T. Imielinski and W. Lipski Jr., "lncomplete Information in
Relational Databases," ]. ACM, vol. 31, 1984.

U8l W. Kim, "On Optimizing an SQL{ike Nested Query," ACM Trans.
Data Systems, Sept. 1982.

[i9] G.M, Lohman et al., "Optimization of Nested Queries in a
Distributed Relational Database," Proc. Very Large Dntabases,1984.

[20] D. Li and D. Liu, A Fttzzy Prolog Database System, Taunton,
England: Research Studies Press, 1990.

[21] M. Lacroix and A. Pirotte, "Generalized Joins," SICMOD Record,
vol. 8, no. 3,9ept.1976.

[22] M. Muralikrishna, "Improved Ururesting Algorithrru; for Join
Aggregate SQL Queries," Proc. Very htrge Datnbases,7992.
H. Nakajima, T. Sogoh, and M. Arao, "Development of an
Efficient Fuzzy SQL for Large Scale Fuzzy Relational Database,"
Proc. Fifth lnt'l Fuzzy Systems Assoc. World Congress '93, 7993.
E. Omiecinski and E-T. Lin, "The Adaptive-Hash Join Algorithrns
for a Hypercube Multicomputer," IEEE Trans. Parallel and
Distributed Systems, 1992.

l25l Fuzzy LUNA - Fuzzy Database System Library User's Mnnual, and
Fuzzy LUNA Euzzy Database System Library Reference Manunl,
OMRON Corp.7992.

[26] Opt-Tech Data Processing, Inc., Opt-Tech Sort User's Manual,
Version 7.7,7992.

[2] F. Petry, Fuzzy Databases: Principles and Applications, Kluwer
Academic, 1995.

[28] H. Prade and C. Testemale, "Generalizing Database Relational
Aigebra for the Treatment of Incomplete or Uncertain Information
and Vague Queries," lnformation Sciences, vol. 34, pp. 115-143,
198,1.

ttql H. Prade and C. Testemale, "Fuzzy Relational Databases:
rsues and Reduction Using Similarity Mea-
nformation Science, vol.38, no. 20, pp. 718-726,

estemale, "Representation of Soft Constraints
ie Values by Means of Possibility Distribution
alysis of Fuzzy Information, Vol. II: Artit'icial
ision Systems, J.C. Bezdek, ed. pp.213-229,Boca
ress, 1987.
:r and L. Bic, "Extending Frzzy Relational
by Aggregates," Proc. North Am. Fuzzy lnforma-
, pp. 207-205, June 1988.
.er and L. Bic, "Aggregates in Possibilistic
15th lnt'l Conf. Very lttrge Data Bases, pp. 287-

D. Reiner, "Extending the Algebraic Framework
ing To Handle Outer-]oins," Proc. Very lnrge

Melton, "An Extended Version of the Fuzzy
se Model," hrformation Science, 1990.
, and C. Yu, "Query Optimization in Distributed
)atabase Systems," Computer 1., pp. 9B-I07, 7992.
rass, and C. Jensen, "Efficient Evaluation of the
ral Join," Proc. 10th Int'l Conf. Data Eng., Feb.

B. Salzberg, A. Tsukerman, J. Cray, M. Stewart, S. Uren, and B.
Vaughan,_ "FastSort: A Distributed Single-Input Single-Oueut
External Sort," Proc. SIGMOD 7990.
M. Umano and S. Fukami, "Ftzzy Relational Algebra for
Possibility-Distribution-Fuzzy-Relational Model of Fuizy Data,"
I. lntelligent Information Systems, no. 3, pp. 7-27,1994.
L A. Zaleh, "Fuzzy Sets," lnformation and Control, vol. 8, pp. 33g,
353,1965.
L.A. Zadeh, "F-uzzy Sets as a Basis for a Theory of possibility,,,
Fuzzy Sets and Systems, vol. 1, no. I, pp. 3-28, l9i\.

l23l

l24l

v

I
v9

'I v I /
U ,l \

. 
', i 

.,,,

[37]

[38]

t3el

[40]

F.nc. and

I
t
t



-
YANG ET AL,: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

l4t] M. Zemankova and A. Kandel, "lmplementing lmprecision in
lnformation Systems," Infomntion Science, 7985.

I42l W. Zhalg and K. Wang, "An Efficient Evaluation of A Fuzzy
Equi-Join Using Fuzzy Equality lndicators," IEEE Trans. Knoul-
edge and Data Eng., vol. 12, no. 2, pp. 225-237, Mar/Apr. 2000.

t43l W. Zhang, C. Yu, C. \{ang, T. Pham, and H. Nakajima, "A
Relational Model for Imprecise Queries," Proc. Int'l Symp.
Methodologies in bilelligent Systtms, 7993.

Clement Yu obtained the BS degree in applied mathematics from
Columbia University in 1970 and the PhD degree in computer science
from Cornell University in 1973. He is a professor in the Department of
Computer Science at the University of lllinois at Chicago. His areas of
interest include search engines and multimedia retrieval. He has
publications in various journals such as IEEE Transactions on Knowl-
edge adn Data Engineering, ACM Transactions on Database Systerns
and JACM and in various conferences such as VLDB, ACM SIGMOD
and ACM SlGlR. He previously served as chairman of ACM SIGIR and
as a member of the advisory committee to the US National Science
Foundation. He is a member of the editorial board of the /EEE
Transactions on Knowledge adn Data Engineering, lnternational Journal
of Software Eigineering, and Knowledge Engineering and Distributed
and Parallel Databases- He was cochair of the US National Science
Foundation lnformation and Data Management Program Workshop for
principal investigators for the year 2000 and is the cochair o{ the
lnternational Conference on Information Society in the 21st Century:
Emerging Technologies and New Challenges to be held in Japan. He is
a member of the IEEE Computer Society.

Hiroshi Nakajima received the BS degree in
system engineering from Kobe University, Ja-
pan, in 1985. Since 1985, he has been with the
Research and Development Division of OMRON
Corporation, Kyoto, Japan, and has been work-
ing in the lield of intelligent systems using
artificial intelligence and cognitive science. He
is currently a project leader in the Verbal
lnteraction Technology Laboratory of the Infor
mation Technology Research Center, Omron

Corporation. His current research interests are human-machine inter-
action, intelligent agents, pet robots, and artificial mind models. He is a
member of the IEEE Computer Society, IPS (lnlormation Processing
Society ol Japan), and SOFT (Japan Society tor Fuzzy Theory and
Systems).

Naphtali David Rishe completed the PhD
degree at Tel Aviv University in 1984. He worked
as an assistant professor at the Universiiy of
California, Santa Barbara (1984-1987), was an
associate professor (1 987-1 992) and is currently
a professor (1992-) at Florida lnternational
University (FlU). His expertise is in database
management and methodology for the design of
database applications. His work on the Semantic
Binary Database Modelwas published as a book

by Prentice Hall in 1988. His Semantic Modeling theory was published
as a book by McGraw-Hill in 1992. His current research focuses on
efficiency and flexibility of database systems (particularly of object-
oriented, semantic, decision-support, and spatial/geographic DBMS),
distributed DBMS, high-performance systems, database design tools,
and lnternet access to databases. He is the editor of four books and
author o{ two patents, 24 papers in journals (including IEEE Transac-
tions on Knowledge and Data Engineering, Data and Knowledge
Engineering, lnformation Systems, Fundamenta Informaticae), seven
chapters in books and serials (including three in Springer Verlag's
Lecture Notes in Computer Science), three encyclopaedia articles, more
than 80 papers published in proceedings (including ACM SIGMOD'
VLDB, PDIS, IEEE DE, ACM SIGIR, SEKE, ARITH, FODO). DT. RiShE

has been awarded millions of dollars in research grants by government
and industry. His research is currently sponsored by the US National
Aeronautical Space Administration, (NASA) ($S.Stttl the US National
Science Foundation, (NSF) ($4M) BMDO, ARO, DoD, Dol, and other
agencies. He also has extensive experience in database applications
and database systems in industry. This includes eight years ol
employment as head of software and database projects (1976-1984)
and later consulting for companies such as Hewlett-Packard and the
telecommunications industry- He is the founder and director of the High
Performance Database Research Center at FlU, whlch now employs
110 researchers, including 20 PhDs. Dr. Rishe chaired the prograrn and
steering committees ol the PARBASE conference and is on the steering
committee o{ the PDIS conference series.

> For more information on this or any computing topic, please visit
our Di gital Library at http://computer.org/publications/dlib.

901

Qi Yang received the BS degree in mathematics
in 1982 from Sichuan University, China, and the
MS and PhD degrees in computer science in
1989 and 1 994, respectively, f rom the University
of lllinois at Chicago. Currently, he is teaching at
the University of Wisconsin at Platteville.

Weining Zhang received the BEng degree in
computer science and engineering from the
Electronic Science and Technoloqy University
of China, People's Republic of China, in 1982,
the MS and PhD degrees in computer science
from the University of lllinois at Chicago, in l9B5
and '1988, respectively. He is currently an
associate professor in the Department of Com-
puter Science, University o{ Texas at San
Antonio. His research interests are in tuzzy

databases, heterogeneous distribuied databases, Web databases and
data mining. He is a member oi the IEEE Computer Society.

Chengwen Liu received the BS degree in
electronics from Shandong University, China,
in 1983; the MS degree in electrical and
computer engineering from the lllinois lnstitute
of Technology in 1986; and the PhD degree in
computer science from the University of lllinois
at Chicago in 1991 . He is an associate professor
in the School of Computer Science, Telecom-
munications, and lnformation Systems at De-
Paul University, Chicago. His research interests

are in distributed database systems, fuzzy databases and data mining.
Dr. Liu is a member of the ACM and has served as a member of the
Publications Board of the IEEE Computer Society. He is a member ol
the IEEE.

Jing Wu biography and photo not available.


