IEEE TRANSACTIONS ON

KNOWLEDGE AND

DATA ENGINEERING

A publication of the IEEE Computer Society

NOVEMBER / DECEMBER 2001 VOLUME 13 NUMBER 6

ITKEEH

(ISSN 1041-4347)

REGULAR PAPERS
Data Mining
Mining Associations with the Collective Strength Approach

C.C. AQQATWAIANG PuS. Yliii-r1nsmsissarirenessasesmnonsssssssansnensissions ssasaise sssssssd sy ss3viessins o7385m8s o0 Hov s a0 s s o 0s 53300 TS £ S A

Data Modeling
Accurate Modeling of Region Data

G. Proietti @NG C. FAIOULSOSoiviiiiiieeieietit ettt ettt ettt e et e esseas et et s essaesb et etemn et es s s eaneees st esseaesaeae s e b s et et e st eseasasebseseasean b eresene st ensteres

Fuzzy Databases
Efficient Processing of Nested Fuzzy SQL Queries in a Fuzzy Database

Q. Yang, W. Zhang, C. Liu, J. Wu, C. Yu, H. Nakajima, and N.D. RISNEccceiirmiiiiiiiieirecir et

Imprecise Relational Databases
Aggregation of Imprecise and Uncertain Information in Databases

S. McClean, B. SCOtney, and M. SNAPCOIc.ciiuiiiieieeieiieeretree e ettt e b et se s esenne

Knowledge-Based Systems
Structured Development of Problem Solving Methods

B T T T] o] —

Multimedia Information Systems
Disk Scheduling in Video Editing Systems

W.G. Aref, |. Kamel, and S. GhanNdENGNZAAENcooueeeeeeee oottt et ea e ras ettt et eaes s e ebeteseae st et eseaesnan e

Virtual Images for Similarity Retrieval in Image Databases

G: Petragiia; M: Sebillo; M. TUuci; Qnd G, TOMOTA :.ccsuuususssssarssivisnsssssnsssassss mtsssssssssss bosanss amss a0 vonsis sevs s s smisses oV saEaass s SR s s

Nonmonotonic Reasoning
Nonmonotonic Reasoning as Prioritized Argumentation

JorH. YOU, XoWANG, NG LY. YUBN ottt ea et)

Query Processing
Rewriting Queries Using Views

B FIESCAAING 8. [BIEG0! ...visisrerssersnsionssmmmassassenssonsssssssmossnsssssrsnstssmsssnmsnasesymsscnsasesars sxensassssasess rsansnhosan i AT EhnnssSHiAT A5 N FEHRRS S ars SHAOT R SR TA T mm o sn oA

Robust Databases
Transaction Repair for Integrity Enforcement

L NEJOEMAD ,5itvennas eiismsansasmesnnmonsssssnsssnsasnsnssinnsasnsanisnsnrasnsesiaiannsnd E585anad ETE A /ST a5 E S ST ST e R e SO G TN T SO G T

Security and Privacy
Protecting Respondents’ Identities in Microdata Release

P, SAMIATALL....ocreemnenssanens sessamsesssssssasssnsmansnemsamssnssas onsssrssnssess e R s RO RS SRS AR RS AR RS S S SRR RS SR SRR SR R 2808 2R S8 50 80 $ A 2 RS S g o588 Spm A nnn s

863

874

884

902

913

933
951

968

980

996

1010

SHORT PAPERS
Data Structures and Algorithms
Time-Space Trade-Off Analysis of Morphic Trie Images

PP IAIK semsiemrmanss s yosyesss esessosssmmsssomss s onsss T4 s PO s S T T S RS T TS

Multimedia Information Processing

Spatio-Temporal Composition of Video Objects: Representation and Querying in Video Database Systems

N. Pissinou, I. Radev, K. Makki, and W.J. Campbell

1028

1033

Call for Papers for Special Issue on Online Analyszs and Querying of Continuous Data Streams ...
Cell fior Papiers for Tronsaerons on Sakils Sssssetiens oo

1041

1052
1053

Naphtali David Rishe 1

Florida International University

School of Computer Science

High Performance Database Research Center
University Park

Miami, FL 33199

IEEE

COMPUTER

SOCIETY

http://computer.org ®

tkde@computer.org

s

T T

‘884

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

Efficient Processing of Nested Fuzzy
SQL Queries in a Fuzzy Database

Qi Yang, Weining Zhang, Member, IEEE, Computer Society, Chengwen Liu, Member, IEEE,
Jing Wu, Clement Yu, Member, IEEE, Computer Society,
Hiroshi Nakajima, Member, IEEE, Computer Society, and Naphtali David Rishe

Abstract—In a fuzzy relational database where a relation is a fuzzy set of tuples and ill-known data are represented by possibility
distributions, nested fuzzy queries can be expressed in the Fuzzy SQL language, as defined in [25], [23]. Although it provides a very
convenient way for users to express complex queries, a nested fuzzy query may be very inefficient to process with the naive evaluation
method based on its semantics. In conventional databases, nested queries are unnested to improve the efficiency of their evaluation.
In this paper, we extend the unnesting techniques to process several types of nested fuzzy queries. An extended merge-join is used to
evaluate the unnested fuzzy queries. As shown by both theoretical analysis and experimental results, the unnesting techniques with
the extended merge-join significantly improve the performance of evaluating nested fuzzy queries.

Index Terms—Fuzzy database, fuzzy SQL, nested fuzzy query, query optimization, query transformation, possibility distribution,

performance evaluation,fuzzy equijoin.

1 INTRODUCTION

N order to extend the applicability of traditional data-

bases, some new techniques have been proposed to deal
with uncertain or imprecise information [7], [17], [41], [1],
[13], [12]. One interesting area of research is the fuzzy
database [28], [29], [30], [4], [20], [32], [43], which results
from combining the fuzzy set theory [39] with database
technology. Several approaches have been taken to define
fuzzy relational data models. In one approach [16], [3], a
relation is defined as a fuzzy set of crisp tuples. In such a
relation, the attribute values in tuples remain crisp, but each
tuple is assigned a membership degree, in the range of [0, 1],
to indicate the relevancy of the tuple with respect to the
relation. In another approach [28], [29], [30], [10], a relation
is defined as an ordinary set of fuzzy tuples. Here, a fuzzy
tuple may have uncertain or imprecise attribute values,
represented by possibility distributions, but, no member-

e Q. Yang is with the Department of Computer Science, University of
Wisconsin at Platteville, Platteville, WI 53818.

E-mail: Yangg@UWPLATT.EDU.

e W. Zhang is with the Department of Computer Science, University of
Texas at San Antonio, 6900 North Loop, 1604 West San Antonio, TX
78249-0667. E-mail: wzhang@cs.utsa.edus.

e C. Liu is with the School of Computer Science, Telecommunicaion, and
Information Science, DePaul University, Chicago, IL 60604.

E-mail: liu@cs.depaul .edu.

e . Wu and C. Yu are with the Department of Electrical Engineering and
Computer Science at the University of Illinois at Chicago, Chicago, IL
60607-7053. E-mail: yu@eecs.uic.edu.

e H. Nakajima is with the OMRON Corp., Verbal Interaction Technology
Lab., Information Technology Research Center, Shimokaiinji, Nagaokakyo-
City, Kyoto, 617-8510 Japan. E-mail: Hiroshi_Nakajima@omron.co.jp.

e N.D. Rishe is with the High Performance Database Research Center, School
of Computer Science, Florida International University, University Park,
Miami, FL 33199. E-mail: rishe@fiu.edu.

Manuscript received 28 Jan. 1997; revised 28 May 1998; accepted 25 May
2000; posted to Digital Library 12 June 2001.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 103679.

ship degree is associated with the tuples. In a third
approach [3], [23], [5], a relation is defined as a fuzzy set
of fuzzy tuples. Thus, each tuple has a membership degree
and fuzzy attribute values are represented by possibility
distributions. The last approach is more natural than the
previous two and is taken in this paper.

A fuzzy relational database system has been built by
Omron Corporation. This database system supports an
extended SQL query language, named Fuzzy SQL, as
defined in [25], [23]. More on the data model and Fuzzy
SQL language will be given in the next section. In this

fuzzy database, a query may be vague and the data may

be ill-known. Unlike standard SQL queries, for which an
answer is a relation where each tuple completely satisfies
the query condition, the answer to a Fuzzy SQL query is
a fuzzy relation where each tuple satisfies the query
condition to the extent as indicated by its membership
degree." The fact that the answer to a query is a fuzzy
relation may greatly affect the query processing in a
fuzzy relational database. A common strategy of query
optimization is to decompose a complex query, such as a
nested query, into subqueries and to store the answer to a
subquery in an intermediate relation for subsequent
evaluation. For intermediate fuzzy relations, the member-

ship degrees of tuples must be. maintained from one

processing stage to the next.

In standard SQL, nested query is an important mechan- 3
ism to ease the pain of expressing complex queries. |

However, a naive execution of a nested query may incur |
heavy performance penalty. A common technique to
evaluate a nested standard SQL query is to transform (or

unnest) the query into an equivalent flat query and then to | :

1. In the usual possibility framework, the answer to a fuzzy quety,

consists of two fuzzy relations, one containing tuples that possibly satisfy

the query and the other containing tuples that certainly satisfy the quer)’ :

1041-4347/01/$10.00 © 2001 IEEE

[B B S o N T a E ON

B A A O

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

885

. medium young about 35
0.5
0
20 25 30 35 40

Fig. 1. Membership functions of “medium young” and “about 35.”

evaluate the flat query. This unnesting technique has been
studied extensively in the context of conventional relational
database systems [18], [19], [15], [8], [22]. The key to the
success of unnesting is that the unnested queries are
evaluated using various join algorithms which are much
more efficient than the nested-loop algorithm used to
evaluate the nested queries.

In this paper, we investigate the problem of processing
nested Fuzzy SQL queries by means of unnesting. Nested
query is an important mechanism in Fuzzy SQL as well and
its efficient execution is a more important issue in Fuzzy
SQL than in standard SQL. Since ill-known data needs more
storage space than crisp data does, it takes more I/O time to
transfer ill-known data between main memory and second-
ary memory than does crisp data. Furthermore, since fuzzy
queries require non-Boolean degrees of satisfaction to be
computed, it takes more CPU time to evaluate a fuzzy
query condition than does a crisp query condition. Thus,
the study of unnesting techniques is both interesting and
crucial to the practical use of fuzzy database systems. In this
paper, we extend and augment unnesting techniques of
conventional relational databases to process nested queries
in fuzzy relational databases. As far as we are aware, this
issue has not been studied before.

In conventional relational databases, a join can be
processed using different methods, such as hash-join,
merge-join, and nested loop join [14]. The most efficient
join method, hash-join, is based on the fact that two tuples
join only if they have identical values on join attributes.
However, this join criteria is no longer sufficient in fuzzy
relational databases. For instance, given a join condition
M.AGE = F.AGE, a pair of tuples from relations M and F
may partially join even if one has AGE “young” and the
other has AGE” about 35.” Intuitively, it is possible in
reality for two persons whose ages are vaguely known as
Uyoung” and “about 35,” respectively, to actually have the
same age. Thus, in general hash-join is not applicable in
fuzzy relational databases. Although the nested loop join
Method is always applicable in a fuzzy database, the cost,
both /0 and CPU, will be rather high. In order to perform
efficient fuzzy joins, we extend the merge-join method. (A
Complete comparison of different fuzzy join methods is
beyond the scope of this paper.) We define a linear order on
the domain of a fuzzy attribute and show that under some
fasonable assumptions, the extended merge-join performs
Much more efficiently than the nested loop join method.

We have implemented the extended merge-join meth-
od on our fuzzy database system. Experiments have been
onducted to compare the performances of the extended
Mergejoin method with that of the nested loop join
Method, The experimental results show that the extended

K

merge-join method outperforms, in both I/O and CPU,
the nested loop method by a wide margin. A further
optimization of the mergejoin is presented in [42]. We
note that our discussion in this paper is based on a fuzzy
database system in which the satisfaction degree of query
conditions is measured exclusively by possibility, rather
than by both possibility and necessity as in [28], [30]. As
discussed in Section 2, one of the reasons for not using
the double-measure system is that in this system,
algebraic operations can not be composed, therefore,
unnesting is not possible.

The rest of the paper is organized as follows: In Section 2,
we present some background of fuzzy databases. In
Section 3, we extend the merge-join method for fuzzy
equi-join and analyze the complexity of the response time.
In Sections 4 to 7, we discuss techniques for unnesting
various types of 2-level nested Fuzzy SQL queries. In
Section 8, we discuss a subclass of K-level nested fuzzy
queries. We present experimental results in Section 9 and
conclude the paper in Section 10.

2 Fuzzy DATABASES

2.1 Fuzzy Sets and the Theory of Possibilities

Fuzzy sets are defined on a nonfuzzy universe of discourse,
which is an ordinary set. A fuzzy (sub)set F of a universe of
discourse U is characterized by a membership function jix()
which assigns to every element x € U, a membership degree
pr(z) €10,1]. Anelement z € U is said to be in a fuzzy set I
if and only if r(z) > 0 and to be a full member if and only
if up(z) = 1. Fig. 1 shows membership functions of fuzzy
sets “medium young” and “about 35,” defined on the
universe of age. The fuzzy set “medium young” contains as
a full member any age between 25 and 30, and as a partial
member, the ages 24 and 31 with membership degree 0.8,
23, and 32 with membership degree 0.6, etc. Any age less
than 20 or more than 35 is not a member of “medium
young” at all.

In the possibility theory [40], the possible values of an
ill-known data is described (or restricted) by a fuzzy set.
For example, suppose the age of a person is not known
precisely but can be described as “medium young.” Then,
the person’s actual age is restricted to be one of the
members of “medium young.” Thus, the possibility for
the age to be 25 is 1, to be 24 is 0.8, etc. Thus, the
membership function of “medium young” defines a
possibility distribution of the person’s age. For this
reason, a possibility distribution can be denoted by either
a fuzzy set or its membership function. In this paper, we
consider only those possibility distributions that have
trapezoidal shapes because they are typical in practice.

886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

Note that triangular and rectangular shapes are special
cases of trapezoidal shapes.

2.2 A Fuzzy Relational Database

In this section, we present briefly the fuzzy relation and the
Fuzzy SQL language as described in [25], [23]. Interested
readers may refer to the reference for details.

In the rest of this paper, we denote relations *with
upper case letters such as R, S, and T, tuples with lower
case letters such as 7, s, and t, and the attribute A of the
relation R (respectively, tuple r) with R.A (respectively,
r.A). When it is appropriate, indexing may be used on
these letters.

Each attribute has a crisp set of crisp data values as its
domain. Each data value v of an attribute is associated
with a possibility distribution defined over the domain of
the attribute and has a membership function denoted by
. If the data value is crisp, its possibility distribution is
defined by

ifr=nw,
otherwise.

@) ={ 5

Let P(A) denote the set of all possibility distributions that
may be defined over the domain of an attribute 4. A fuzzy
relation R with a schema A;,...,A,, where A, is an
attribute, is defined as

R ="P(A;) x P(Ay) x --- x P(A,) x D,

where D is a system-supplied attribute for membership
degree with a domain [0,1] and x denotes the cross
product. A tuple 7 is said to be in relation R if and only if
its membership degree pg(r) (which is also denoted as r.D)
is greater than 0. In general, a tuple’s membership degree
indicates to what extent the tuple belongs to the concept
represented by the relation. More specifically, for a query,
the membership degree of a tuple in the answer indicates to
what extent the tuple satisfies the query condition.

Like standard SQL, queries in Fuzzy SQL are specified in
SELECT statement of the following form:

SELECT Attributes
FROM Relations
WHERE Selection condition

For this paper, the selection condition is assumed to be a
conjunction of predicates of the form X 6 Y, where X is an
attribute, Y is an attribute or a value, and 6 is an comparison
operator. An optional WITH clause of the form WITH
D >z, where D is the membership degree attribute of the
answer relation and z is a threshold value in [0,1], can be
used to indicate that, among all tuples resulting from
evaluating the query, only those satisfying the query
condition with a degree no less than z should be included
in the answer. If a query does not have a WITH clause,
WITH D > 0 is assumed. The GROUPBY and HAVING
clauses are also optional and are similar to their counterpart
in standard SQL. Aggregate functions such as MAX, MIN,
etc., quantifiers such as SOME, ALL, etc., and other key
words such as DISTINCT are also defined.

As an example, suppose we have two fuzzy relations M
and F in a dating service database that contain information

about male and female clients, respectively. The following
query finds all pairs of male and female persons who are
about the same age, and the male person has a more than
“medium high” income. }

Query 1
SELECT F.NAME, M.NAME
FROM F M
WHERE F.AGE = M.AGE AND
M.INCOME> “medium high”

Notice that, since both AGE and INCOME may have fuzzy
values, all comparisons are fuzzy. »

The semantics of a Fuzzy SQL query is defined based on
satisfaction degrees of query conditions. Consider a pre- |
dicate X § Y in a WHERE clause. The satisfaction degree,
denoted by d(X 0Y), is evaluated for values of X and Y, |
Let the value of X be U and that of Y be V. Then,

d(X 0Y) = mazzy(min(py (), v (), ke(z,y))),

where z and y are crisp values in the common domain over -
which U and V are defined. Notice that, in this definition,
the comparison 6 may be nonbinary, i.e., defined by -
similarity relations, and the values U/ and V' may be fuzzy |
or crisp. If U is crisp, V' is fuzzy, and 0 is binary equality (=),
d(X =Y)=py(U). If both U and V are fuzzy with |
trapezoidal membership functions and binary equality is °
considered, then d(X =Y) is the height of the highest
intersection point of the two possibility distributions.
For example, in Query 1, if a tuple ¢ in F has an age 24, ;
and a tuple s in M has an age “medium young” with a |
membership function as defined in Fig. 1, then,]

(F AGE = M. 4GE) = Hmedium young() =0.38.

If t.AGE is "about 35, d(F.AGE = M.AGE)=0.5, as |
shown in Fig. 1. :
For a conjunction of independent simple predicates, say -}
p=p1 AND p; AND --- AND py, the degree of satisfaction
of p is given by d(p) = min,<i<x(d(p;)). If not all predicates
are independent, the conjunction can be partitioned into
conjuncts so that the predicates in the same conjunct are .
dependent, but those in different conjuncts are indepen- :
dent. Then, the method can be applied to the conjuncts. For |
simplicity, we assume that the predicates are independent. |
The semantics of a query uses the membership degree to
indicate an overall possibility for the underlying data that
generate an answer to satisfy the query conditions. The :
overall possibility is obtained based on fuzzy logic con- |
nectivities. Consider Query 1. For each pair of male person s
and female person r, the satisfaction degree of the query :
condition is obtained based on the fuzzy AND of following :
conditions: s is in M, r is in F, r.AGE = s.AGE, aﬂd

s INCOME > "medium high.” Therefore,
d:,‘s =min(up(r), py(s), d(r. AGE = s.AGE),
d(s. INCOME > "medium high")).

Ifd, > 0,7.NAME and s.N AME form a tuple in the answef §
with d ; as the membership degree. Several identical pairs 3
of names may occur during the query evaluation, but with.
different membership degrees. Since each pair of names

L T T e T N 0 e s T T S S G R S U

[R R B = s g =]

~ g o

N

RO SOCT RO

]

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

catisfies the query, only one pair needs to be in the answer.
Based on fuzzy OR, the highest membership degree of the
identical name pairs will be chosen for the answer. Thus, in
the end, if 2, y is a pair of names in the answer, its satisfaction
degree is given by d(z,y) = max, yanE=rs varE=y(d, ,)- It is
straightforward to generalize the semantics of Query 1 to
that of general Fuzzy SQL queries including nested queries.

Discussion. Several methods that measure the degree of
satisfaction have been proposed. The method in [28], [30]
measures both possibility and necessity, which, for a
predicate "X 0 I, are defined by

Poss(X 0 F) = maz,,(min(ux(x), pr(y), po(z,y)))
Nece(X 0 F) =1— Poss(X -0 F),

where z and y are taken from the domain over which X and
F are defined and jig = 1 — pg. Intuitively, the possibility
measures the “best possibility” for the comparison to be
successful and the necessity measures the “impossibility”
for the opposite comparison to be successful. With convex
and normal possibility distributions, such as those with
trapezoidal shapes, necessity is always no greater than
possibility. Although the use of both possibility and
necessity leads to an explicit expression of the uncertainty
of the satisfaction degree, it also causes several problems.
As pointed out in [27], the main problem of the double-
measure system is that a simple query will lead to two
answer relations, one containing tuples possibly satisfying
the query condition and the other containing tuples
necessarily satisfying the query condition. As a result, the
underlying algebraic operations, that is, selection, projec-
tion, join, etc., cannot be composed. This means that all
queries must be evaluated by computing the cross product
of all relations involved, followed by a selection, and then a
projection. Such an evaluation is obviously inefficient.
Furthermore, nested query is not supported in this
framework. Another problem is that the double negation
nature of the necessity is not intuitive to many people.

A different method, proposed in [38], defines the
membership degree of a tuple in a fuzzy relation as a
possibility distribution rather than a crisp value. Although
the resulting algebraic operations can be composed, this
method applies only to discrete possibility distributions,
and, even in that case, the membership degrees may contain
2 large number of elements, thus reducing the efficiency of
the system.

The method used in this paper is commonly used by
other researchers [29], [41], [5], [23]. By using only the
Possibility measure, it is guaranteed that algebraic opera-
tions can be composed and nested query becomes practical.
The price to pay for this simplification is that the
“impossibility” for a possible answer to a query to be also
a possible answer to the negation of the query is not
explicitly measured and, therefore, one must assume that
€very possible answer to a query is also a completely
Possible answer to the negation of the query. This price may
be worthwhile to pay in order to gain the convenience of
haVing nested query capability and the ability of efficient
query processing for two reasons. First, in practice, users
are usually more concerned with finding possible answers
to a query than knowing how impossible it is that these
Mswers are also possible answers to the negation of the
Query. Second, if it is necessary, one can always issue the

e

887

negation of a query and get a more direct and easy to
understand measure than that given by necessity.

2.3 Evaluation of Nested Fuzzy Queries

The nested query in Fuzzy SQL provides a convenient way
for a user to express a complex query. For example, the
following nested query finds the name of medium young
female persons who has a middle age male person’s
income.

Query 2
SELECT F.NAME
FROM F
WHERE F.AGE = “medium young” AND
F.INCOME IN
(SELECT M.INCOME
FROM M

WHERE M.AGE = “middle age”)

Among the two nested query blocks, the outer block
involves only the relation F' and the inner block involves
only the relation M. A naive execution of this query is a
nested loop in which the inner relation M is scanned once
for every tuple of the outer relation F. If the number of
tuples in M is large, the processing cost, especially the
I/O cost, can be very high.

Since the inner block does not involve data of the outer
relation, the evaluation may be speeded up by using an
intermediate relation containing all tuples of the inner
relation that satisfy the predicate M.AGE = "middle age”
with a degree higher than 0. If this intermediate relation is
significantly smaller than A/, it can be scanned much faster
than A7. To speed up the evaluation further, one must avoid
scanning the entire intermediate relation for every tuple of
the outer relation. In conventional databases, this is
achieved by unnesting Query 2 to obtain the following
equivalent flat query:

Query 3
SELECT F.NAME
FROM F M
WHERE F.AGE = “medium young” AND

M.AGE = “middle age” AND
F.INCOME = M.INCOME

In this query, the predicate F.INCOME = M.INCOME is
a join condition. Since unnested queries frequently involve
joins, their evaluations in a conventional relational database
can be very efficient by following an optimal join strategy
formulated by a good query optimizer. In a fuzzy relational
database, the equivalence between two fuzzy queries is
more complex than in a conventional database since it
requires that not only the answers contain the same set of
tuples but also the corresponding tuples have the same
membership degree.

3 PROCESSING OF Fuzzy EQui-JOIN

As mentioned in Section 1, the most efficient join method in
conventional databases, hash-join, is not applicable in a fuzzy
database. In this section, we extend the merge-join in the
context of fuzzy databases. For convenience, we assume that
relations R and S are joined based on the join condition
R.X =S5X and R is the outer relation in the merge-join

888

algorithm. We first define a partial order on the set of R-tuples
(or S-tuples). Since data values have trapezoidal membership
functions, each data value v represents an interval [b(v), e(v)],
in which g, is greater than 0. For a crisp value v, we let
b(v) = e(v) = v. For example, the crisp value 28 represents
[28,28] and the fuzzy value “medium young” represents
[20, 35]. Now, the data values can be ordered according to
their intervals.

Definiton 3.1.

1. For two values vy and vy, vy < v2 if b(v1) < b(vy) or
b(vy) = b(v2) and e(v1) < e(va); v1 < va if v1 < Vg OF
vV = V.
2. For two tuples ry and ry, 1y < 1o wrt an attribute X if
X <71 X;r Xrpwrt X if ri. X <rp. X,
Example 3.1. Let r;, 72, and 73 be tuples of R, and sy, s9,and s3
be tuples of S. Assume thatr.X, r2. X, and 73.X represent,
respectively, [30, 35], [20, 28], and [20, 35]; and s1.X, $:.X,
and s3.X represent, respectively, [32,34], [20,25] and
(30, 40]. By Definition 3.1, [20, 28] < [20, 35] < [30, 35], thus,
re. X < 7r3.X < r1.X. Similarly, s;.X < 53.X < 51.X.

Notice that, for any two values a and b, d(a =b) =0 if
their intervals do not intersect. As a result, only those
tuples r and s whose r.X and s.X have intersecting
intervals need to be considered for the equal-join. For the
merge-jdin, both R and S are first sorted on X based on
~ . Then, for each tuple r in R, the S-tuples are scanned
in the sorted order. The scan should terminate as soon as
all S-tuples that have intervals intersecting that of r.X
have been examined. For Example 3.1, 7, joins with s,.
But, since the interval [30,40] of s3.X falls completely to
the right of the interval [20,28] of r.X, rp will not join
with any S-tuple succeeding s», therefore, the scan of S
for r; should stop at s3. The sequence of S-tuples that
have to be examined for an R-tuple is defined as follows:

Definition 3.2.

1. For a tuple v in R, sml(r) is the smallest value v
(according to the order <) that appears in S.X and
intersects r.X and lrg(r) is the largest value v that
appears in S.X and intersects r.X.

The range of a tuple r of R is a subset of S defined by
Rng(r) ={s:s€S and sml(r) < sX =<lrg(r)}
and Rng(r) =0 if r.X does not intersect v for any
value vin S.X.

[39]

After both R and S are sorted, the join phase is carried
out as follows: The tuples of R are loaded into the main
memory one page at a time in the sorted order. For the
ith R-tuple, r;, the S-tuples in Rng(r;) are identified
during a scan of S. The scan starts at the place where the
first S-tuple in the range of the previous R tuple
(Rng(ri1)) was found, and proceeds towards the end of
S. The first and the last S-tuple of Rng(r;) can be
identified because every S-tuple s appearing before
Rng(r;) satisfies e(s.X) < b(ri.X) and every S-tuple s
appearing after Rng(r:) satisfies b(s.X) > e(r;. X). The
pages of S are loaded into the main memory one by

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 20,

T

one in the sorted order. If a page of S contains only thege
tuples that appear before Rng(r;), it will not be scanneq
again in the rest of the process because any S-tuple whicp,
precedes Rng(r;) will also precede every Rng(ry) for
k > i. If a page of S contains some tuples in Rng(r;), thep
the join is performed and the page stays in the maip
memory since some tuples in the page may join with the
next R-tuple ;1 (either in the current or the next page of
R). If a page contains one tuple that follows the tuples in
Rng(r;), the join between r; and S is completed when thig
tuple is encountered. The join between the next R-tuple,
ris1, and S will then start by scanning the pages of §
already in the main memory. The process is repeated for
all tuples of R.
We now analyze the complexity of the merge join
method. Since we are more interested in joins on fuzzy
data, we assume that the join attributes are nonkey. In the
following, let ny and by be the number of tuples and the
number of pages, respectively, of a relation 7'. Let M be the
number of pages of the main memory buffer.
For the join phase, if the buffer is large enough to hold
one page of R and all pages of the largest Rng(r), only one
scan of both R and S is needed, therefore, the I/O cost is
O(bg + bs). During the join phase, each R-tuple is scanned
exactly once. For each tuple r € R, all S-tuples in Rng(r)
need to be examined. If an S-tuple appears in Rng(r) for
more than one R-tuple, it will be scanned once for each of
those R-tuples. We assume that the number of tuples in
Rng(r) is proportional to the number of S-tuples joining
with 7 and that each R-tuple joins with a constant number of
S-tuples. Under these assumptions, the CPU time for the
join phase is of order O(ng + ns).
Sorting a relation based on the order < is similar to
sorting a relation based on the standard < linear order, but
two comparisons may be needed to compare two tuples:
The left end points are compared first if they are the same,
then the right end points are compared. When the ordering
between the two tuples is decided, the sorting algorithm
proceeds as it does for sorting ordinary relations. Thus, the
CPU time for sorting a relation 7'is still O(ng log nr). If br is
much larger than M, the I/O cost for sorting is br logy; br- In
practice, however, M is usually smaller than but sl
comparable with bz, thus a relation can be sorted in a linear
I/0 time (two passes) [37], [9]. ‘
Put it together and notice that the number of pages ofa
relation can be assumed to be proportional to the number of
tuples of the relation, the response time of the extended
merge-join method is of order O(nglogng + ng log ns)-
For the naive nested loop method, each tuple of R nee§5
to be compared with each tuple of S and the CPU time wil
be of order O(ng x ngs). When bg < bs, we can allocate on
page in the main memory to relation S and the remaining
pages to relation R so that the I/O time for the join will bedt
order O(bg +(A%1—) x bg). Thus, the response time of t¢
nested loop method is of order O(ng x ns). We will use the¥
notations when discussing the response time in lat .

sections.

A

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE 889

Notice that, unlike the merge-join in a conventional
database, Rng(r;) may not be compact in the sense that
some tuples in Rng(r;) may not actually join with r;. For
example, if 7. X has an interval [30,40] and s.X has an
interval [10, 35], then any S-tuple s’ with an interval of s’.X
in between of 10 and 30 will be in Rng(r) yet not join with 7.
If such dangling tuples exist in Rng(r), the performance of
the extended merge-join will not be as efficient as the
merge-join in a conventional database. However, in many
applications, data values may be fuzzy but not excessively
so, thus they have small intervals. In this case, the number

-of dangling tuples in Rng(r) will be very small. Another

limitation of the extended merge-join is that the possibility
distributions must be continuous. An efficient join algo-
rithm for both continuous and discrete possibility distribu-
tions is yet to be discovered.

Fuzzy joins are similar to the band join in conventional
databases [9] and the valid-time natural join in temporal
databases [36]. In a band join, each value of the joining
attribute is a crisp value and represents an interval.
However, all intervals for different values are of the same
length. In a valid-time natural joins, a time interval can be of
arbitrary length. Fuzzy joins are more general than the two
kinds of joins since the interval associated with a fuzzy
value varies from one fuzzy value to another and a fuzzy
join predicate yields a value between 0 and 1. In both [9]
and [36], partitioned joins based on sampling are suggested.
More research is needed to decide the optimal join method
(and the way to conduct sampling in fuzzy databases). An
unnested query can be evaluated by any of the methods,
including the naive nested loop method, but a nested query
can be evaluated only by the nested loop method.

4 SimpLE NESTED QUERIES

In this section, we consider two simple types of nested
queries, namely the type N and type J, named after their
counterpart in standard SQL [18]. These queries contain
neither set exclusion operators nor aggregate functions. The
difference between them is that the inner block of a type]
query has a join predicate referencing the outer relation and
that of a type N query does not. In the rest of the paper, we
use p; to denote the conjunction of predicates involving
only the outer relation, and p, those involving only the
inner relation.
The following Query N is a type N query.

Query N
SELECT R.X
FROM R
WHERE p; AND R.Y is in
(SELECT S.Z
FROM S
WHERE p;)

The execution semantics of Query N is as follows: Each
S-tuple s satisfies p, with a degree d; = min(us(s), d(p2(s))).
If d; >0, s.Z belongs to a temporary relation T' with the

membership degree dj. If several tuples in 7" have the same
value, only the one with the highest membership degree will
stay and others are removed. Thus, for each tuple z in 7', the
membership degree is

/LT(Z) = mazs,ZE:(ds) = mv(lIs.ZEz(nU"n(ﬂS(S)% d(pz (S))))

Then, each R-tuple r satisfies the selection condition with a
degree

d. = min(ugr(r),d(pi(r)),d(r.Y isin T')),
where d(r.Y is in T) is, based on [25], given by

d(rYisinT)=
maz.er(min(ur(z),d(r.Y = z))), T #0;
0, otherwise.

Intuitively, d(r.Y isin T) is the possibility for r.Y to be
equal to any value in set 7" If d. > 0, ».X belongs to the
answer with the membership degree d,. The duplicate
tuples in the answer are also removed by keeping the one
with the highest membership degree. Thus, each tuple z of
the answer to Query N has a membership degree

pun(z) = max (min(pr(r), d(pi(r)), max (man(pr(z),
d(rY = z)))).
Example 4.1 A type N query is Query 2 given in Section 2.

Suppose the relations are as follows and the membership
functions of AGE and INCOMZE are as given in Fig. 2:

F

ID | NAME AGE INCOME D

101 Ann about 35 about 60K 1

102 Ann medium young | medium high | 1

103 | Betty middle age high 1

104 | Cathy about 50 low 1
M
ID | NAME AGE INCOME D
201 | Allen 24 about 25K 1
202 | Allen about 50 about 40K 1
203 Bill middle age high 1
204 | Carl about 29 | medium low | 1

The temporary relation 7', the set 7, of all tuples with
dr > 0, and the final answer relation are given below.

15
T Answer
NAME | D
INCOME D NAME | D
Ann 0.3
about 40K | 0.4 Ann 0.7
Shh Ann 0.7 B 75
igh 1 ety .
— Betty | 0.7

The following unnested Query N’ for Query N is identical
to that given in [18].

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

890
medium young middle age about 50
8 \\
7\ /oy k
0.5 ¢ about 35,
about 29 /
s - / 08 1% AGE
2429 35 50
low medium low about 40K medium high high
I /\
05 /. Y about 0K, 0
~ G /
/about 25K ! 103 INCOME

Fig. 2. Data used in Example 4.1.

Query N’
SELECT RX
FROM R, S
WHERE p; AND RY =5.Z AND p,

The execution semantics of Query N’ is as follows: Each
pair of tuples r in R and s in S satisfy the selection condition

with a degree

dy o = min(ugr(r), ps(s), d(pi(r)), d(p

If d,>0, ».X is in the answer. After eliminating
duplicates, each value z in the answer will have the

2(8)),d(r.Y = s.2)).

degree pn/(z) = max, y=rmax.s(d,).
Theorem 4.1. Query N’ is equivalent to Query N.

Proof. We show that, for each z in the domain of R.X,
pun(z) = py(x), thus the answers to Query N and
Query N’ are identical fuzzy relations.

According to the execution semantics,

d(p1(r)),

N (z) =max Inasx(mm(,ug(r), 1s(s),

r.X=zx
d(pa(s)), d(rY = 5.2)))

and
pv (@) = max (min(pg(r), d(pi(r), max(min(ur (),

d(r.Y = 2)))))

= max(maTx(mm(uR(I) d(pr(r)), min(pr(2),

r.X=z z€

d(r.Y = 2)))))

= max (max(min(ug(r), d(pi(r)), pr(),

d(rY = z2))))
= max (max(min(ug(r), d(p1(r)), max(dy),
d(r.Y = z))))

= max (max(max(min(ur(r), d(pi(r)), ds,

d(r.Y = 2)))))
= rrr%{a*i(nzla\(mzix(mm(mg(r), d(p1(r)), us(s),

d(pa(s)),d(rY = 2)))))

= maxmagc(mm(m{(r),d(p

r.X=zr se

1(r)), ns(s), d(p2(s)),
drY = 5.2))).

In the last step, max, y=,mMaX.crmax, z—.(min(x)) is
replaced by max, y=,max.s(min(x)). A pair of tuples r

and s will not be covered by the former, but will be by
the latter if 7.X = z and s.Z is not in 7. However, by the
execution semantics, if s.Z is not in 7, we have
d(p2(s)) =0, which in turn implies min(x) =0 since
d(p2(s)) is inside the expression (x). Therefore, each pair
of r and s that is covered only by the latter expression
yields a value of zero. We can replace the former
expression by the latter one because (min(x)) always
gives nonnegative values and the maximum value is
chosen from all values produced by (min(x)). For
instance, if T'= (), that is, d(ps(s)) =0 for all tuples s,
then py(x) = py(z) = 0 for any z, although the former
pn(x) = pn(x) for any
value z. o

covers no pairs of tuples. Thus,

Query N’ can be evaluated using the merge-join as
discussed in Section 3. After sorting R on R.Y and Son S.Z,

a tuple 7 is joined with all S-tuples in Rng(r). The value r.X

is inserted into the answer with degree mazcpgn(r)(d,),
which is the same as mazes(d,) since d(r.Y = 5.Z) and,
hence, d. is 0 for any s not in Rng(r). The degree py(z) is
obtained by keeping the tuple with the highest membership
degree when eliminating duplicate tuples. To reduce the

cost, only those tuples in R (respectively, .5) that satisfy p; -
(respectively, ps) positively should be sorted. Let ng and ng
be the reduced sizes of R and S, respectively. The response

time of the modified merge-join for Query N is of the order
O(ngrlogng + nglogng), while the response time of the

nested loop method on Query N is of the order O(ng x ng).
Now, consider the following type | nested query.

Query |
SELECT R.X
FROM R
WHERE p; AND R.Y is in
(SELECT S.Z
FROM S

WHERE p, AND S.V = R.U)

it oy 3843 57

The execution semantics of Query J is as follows: For each

tuple r of R, the inner block produces a temporary relation,

T(r). For each tuple s of S, 5.Z belongs to T(r) with the

membership degree

dr(s) = min(ps(s), d(ps(s)), d(s.V = 7.U).

YANG ET,

After ¢]
degree |
with the

and r. X
duplicat
pa(z) =

The f

identica]

Query

By the e
the degr

o (a

Theoren

Proof. V
R.X.

If, for
p(x
each
T(r)
Ce
since
is emr

that
there

i

il

For !

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE 891

After eliminating duplicates, each tuple z in T'(r) has the
degree pir(y(z) = max; z=.(d,(s)). Then, r satisfies the query
with the degree

d, = min(ug(r),d(pi(r)),d(r.Y isin T(r))),

and 7.X belongs to the answer if d, > 0. After eliminating
duplicates, each tuple z in the answer has the degree
g (z) = max, x=(d,).

The following unnested Query J' for Query] is also
identical to that in [18]:

Query J'
SELECT R.X
FROM R, S
WHERE p; AND p, AND RY = S.Z
"AND RU = S.V

By the execution semantics, each tuple z in the answer has
the degree
wy (@) =maxmax(min(ur(r), us(s), d(pr(r)), dlpa(s)),
d(rY = s.2),d(r.U =s.V))).

Theorem 4.2. Query | is equivalent to Query J.
Proof. We show that puj(z) = py(x) for every value z of
R.X. Notice that j;(z) = max, y=,(d,) and

Ly () = mas (d).
iy (x) = maxmax(d,)

X=z s
If, for each r in R, we let d, = maxes(d;), we will have
py () = max, x=,(d.) and it suffices to prove d, = d, for
each 7 in R. There are two cases, depending on whether
T'(r) is empty or not. :

Case 1: T(r) is empty. We immediately have d, =0
since d(r.Y is in T'(r)) = 0. Now, consider d. Since T(r)
is empty, we must have, for every s in S,

d-(s) = min(ps(s),d(p2(s)),d(s.V =r.U)) =0,
that is, either d(ps(s)) =0, or d(s.V =r.U)=0 and,
therefore,
d, =max(min(yun(r), 1s(s), dps (1), d(p(9))
d(rY = s.2),d(r.U =s.V))) = 0.
Case 2: T'(r) is not empty. For Query J,
d, = min(ugr(r),d(pi(r)),d(r.Y is in T(r)))
= min(ur(r), d(p:(r)), gﬁﬁ(mi”(wm(l), d(rY = 2))))

— max (min(pr(r), d(p: (1), iz (2), d(r.Y = 2)))

zeT(r)
= (i ((r) d(ps 1)), (i (5). Y = 2))

= ggg})g}g(mm(uﬂ(r)ﬁ d(p1(r)),

min(us(s), d(pa(s)), d(s.V = r.0)), d(rY = 2)))
s max max(min(un(r), d(p () s (s), d(pa(s))

2€T(r)s.2=

d(s.V =r.U),d(r.Y = z2))).

I

For Query J',

d, , = min(ur(r), ps(s), d(py(r)), d(p2(s)),
d(r.Y = s.2),d(r.U = s.V))
. = max(min(ug(r), n(5), A0 (1)) d(pa(5)),
d(rY = s.2),d(r.U = s.V))).

Let * denote

min(pg(r), ps(s), d(pi(r), d(p2(s)),
d(rY =s.2),d(r.U = s.V)).

Then, d;. = max;cs(*) and d, = max cp)max, z=:(*).
The expression for d, covers all tuples of S, but that
for d. may not. A tuple s is not covered by the expression
for d, if s.Z is not in T(r), which implies d,(s) = 0 since
s.Z is retrieved into T'(r) only if d.(s) > 0. Because
d,(5) = min(us(s),d(p2(s)),d(s.V =r.U)) =0, we have
either d(p2(s)) =0 or d(s.V =r.U)=0. In either case,
the value of # is zero. Since all values appearing in * are
nonnegative and the maximum value is computed from
these * values, we have d, = d,. O

Query]’ can be evaluated using the extended merge-
join in the same way as Query N’ can. The only
differences are that the sorting can be based on either
(Y,Z) or (U,V) and that two join predicates must be
evaluated when computing the value of d. . Conse-
quently, the response time of the extended merge-join for
Query J' is of order O(nglogng + nglogns), while that of
the nested loop method is of order O(ng x ng).

5 THE SET EXcLusION OPERATOR

Kim [18] used an antijoin predicate to unnest a type N or
type J query when the set inclusion operator is i1 is replaced
by the set exclusion operator is not in. Kim pointed out that
unnesting such a nested query requires careful considera-
tion. We only discuss the following Query JX, which is of
type J with the set exclusion operator. (The discussion for a
type N query with the set exclusion operator is similar and

simpler.)
Query JX

SELECT R.X

FROM - R

WHERE R.Y is not in
(SELECT S.Z
FROM 5
WHERE SV=RU)

For the sake of simplicity of presentation, we have left out
predicates p; and po. But, the result holds if either or both of
them exists.

The execution semantics of Query JX is as follows: For
each tuple 7 of R, a temporary relation T'(r) is generated
from the inner block. Each value zin S.Z is in T'(r) with the
degree

#’T(rj(z) = lnaXS.ZS;(dr(S))
= max, z= (min(us(s), d(r:U = s.V))).

A value z in R.X will be in the answer with the degree

892
pax(z) = max(d;)
= .rr}(alx('m'in(ug(r),d(r.Y s not in T(r)))),
where d(r.Y is not in T(r)) =1 —d(r.Y is in T(r)). As an
example, the following query is type JX and finds the name
of employees of the Sales department who do not have an
income of any employee of the Research department with

his/her age.

Query 4
SELECT R.NAME
FROM EMP_SALES R
WHERE R.INCOME is not in

(SELECT S.INCOME
FROM EMP_RESEARCHS
WHERE S.AGE = R.AGE)

To unnest Query JX, we have to define a temporary
relation that uses both the WITH and the GROUPBY
clauses, and explicitly refers to the membership degrees
of R, S, and the answer relations. Let R.K be a key of R.
Query JX can be unnested to the following Query JX":

JXT(K, X) = (SELECT R.K, R.X, MIN(D)

FROM R, S
WHERE R.D AND —(5.D AND
RY =5.Z AND R.U = S.V)
WITH D>0
GROUPBY R.K)
Query JX’
SELECT X
FROM JXT

Notice that the query to obtain JXT is flat and Query JX" is

only used to get rid of attribute K. The direct use of
membership degree attributes R.D and S.D are unconven-
tional. Since each predicate is evaluated to a satisfaction
degree, and the membership degree can also be a satisfac-
tion degree (of a complex query condition), a membership
degree attribute can be used by itself as a predicate. The
satisfaction degree of R.D is then defined to be the
membership degree of the R-tuple being referred to.

The execution semantics of Query JX’ is as follows: For
each R-tuple 7 and every S-tuple s, the degree for (r, s) to
satisfy the WHERE clause of the JXT query is given by:

d, , =man(pr(r), 1 — min(ps(s),
d(r.U =s.V),d(rY = s.2))),

where 1 — d(p) is the satisfaction degree of —p. Because of
the WITH clause, all (r,s) pairs are kept around even if
d.,=0. The (r,s) pairs for the same r form a group
according to the GROUPBY clause and the minimum
degree of each group is given by d, =minss(d,),
according to the MIN(D) in the SELECT clause. If
d. >0, r.X is included in relation JXT with that degree.
Query JX' retrieves distinct values of attribute JXT.X.
After eliminating duplicates, a value z in the answer has
the degree pyx (z) = max, x=.(d.).

Theorem 5.1. Query JX' is equivalent to Query JX.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

Proof. We prove that px(z) = px (x) for each value z in

the domain of R.X. It suffices to prove d, = d,. for every r
of R, since

pyx(z) = max(d,)
rX=z

and
prx () = rmxaé‘;(d;)'
Case 1: T(r) is empty. For Query JX,
d(r.Y isnotin T(r)) =1
and
d, = min(ug(r),d(r.Y is not in T(r))) = pr(r).
For Query JX’, that T'(r) is empty implies d(s.V = r.U) = 0
for all tuples s of S. Thus,
dy s =min(ug(r), 1 — min(us(s),
d(rY =s.2),d(r.U = s.V))) = pr(r),
Case 2: T(r) is not empty. For Query JX,
dr = min(pgr(r),1 —d(r.Y is in T(r)))

=min(pr(r),1 — mTa(X)(mm(uT(,)(z), d(r.Y = 2)))
zZE : o

= min(up(r), H%Pi(n)(l — man(pry (2), d(r.Y = 2))))
FAS [o)

= min (min(pug(r), 1 — min(max(d.(s)), d(r.Y = z))))

2€T(r) s.Z=z

= min (min(pp(r), min(1 — min(d,(s),d(r.Y = 2)))))
2€T(r) s.Z2=z

= min min(min(pr(r), 1 — min(min(us(s),
2€T(r)s.Z2=z

d(s.V =r.0)),d(r.Y = 2)))))

= min min (min(pug(r), 1 — min(us(s),
2€T(r)s.Z=z

d(s.V =r.)),d(r.Y = 2)))).
For Query JX,
d, =min(d,) = min(min(ur(r), 1 = min(ps(s),
d(s.V =r.U),d(rY = z)))).
Let
* = min(up(r),1 —min(us(s),d(s.V =r.U),d(r.Y = 2))),

then d, = min,s(*) and d, = minepyming z=.(*). The
expression for d;. covers all tuples of S and the expression
for d. may not. A tuple s of S will not be covered by the
expression for d. only if d(s.V =r.U) =0, thus it will
cause * to yield pg(r), which is the largest possible value *
can ever yield. Therefore, d, = d, for any tuple r of R. O

Although Query JX’ and Query | are quite different,
Query JX’ can be evaluated in a way similar to that Query J’
can. We can use either RU =SV or RY =S5.7 in the
merge-join. For any pair of r and s, d., ; < pug(r). If s is not in
Rng(r), then d(rU=5V)=0 or d(r.Y =s.2)=0 and
d:«,s = N‘R(T)' That iS, d; = ‘minseS(d;‘s) = nL'insERgn(r)(d/r_s)- So
we join a tuple r with all S-tuples in Rng(r) while they are in

—

YAN

the
Thi
for
tha

[18
the
age
nor

Fu
anu
fur
giv
fuz
ap.
sar
ne:

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE

the main memory, compute d, and retrieve 7.X when d,. > 0.
Thus, the response time of the extended merge-join method
for Query JX' is again of order O(nylogng + nslogns), and
that for the nested loop method is of order O(ng X ng).

6 NESTED QUERIES WITH AGGREGATE

In this section, we consider the unnesting of a type JA query
[18] in which the inner block has a join predicate referencing
the outer relation and the SELECT clause contains an
aggregate function which produces a nonnull value from a
nonempty fuzzy set of (maybe fuzzy) values.

Different semantics of aggregate functions in fuzzy
databases have been proposed in the past [31], [32], [11],
[25] and a standard semantics is yet to come. To give the
reader a concrete semantics, we briefly present the aggregate
functions in Fuzzy SQL as described in [23]. Fuzzy SQL has
aggregate functions COUNT, AVG, SUM, MIN, and MAX.
COUNT returns the number of values in a fuzzy set. AVG
and SUM are defined based on fuzzy arithmetic operations.
With a trapezoidal (or triangular) membership function, a
fuzzy value induces two intervals (conventionally termed
a-cut). One interval contains all values in the domain whose
membership degree is 1 (i.e., 1-cut), and the other interval
contains all values whose membership degree is greater than
0 (i.e., O-cut). Fuzzy arithmetic operations take two values
and determine the two intervals of the resulting value. For
example, let ¢ and y be two values with 0O-cuts [z, 4] and
[y1,v4], and 1-cuts [zo,z3] and [ys,ys), respectively. z +y
produces a value z with O-cut [z; + y1, 24 + y4] and 1-cut
[z5 + y2, T3 + y3]. Other arithmetic operations are defined
similarly. AVG is defined by fuzzy addition and division,
and SUM is defined by fuzzy addition. MIN and MAX are
defined by using a defuzzification method which allows
fuzzy values to be sorted based on the center of their 1-cuts.
For empty fuzzy set of values, AVG, SUM, MIN, and MAX
produces NULL value.

Despite the special semantics of aggregate functions in
Fuzzy SQL, the technique given in this section is general
and can be applied to other systems as long as the aggregate
functions produce deterministically a nonnull value from a
given nonempty fuzzy set and a NULL value for empty
fuzzy sets. The key idea is to show that the same function is
applied in both the nested and the unnested queries to the
same set of values. The following Query JA is a type JA
nested query.:

Query JA
SELECT R.X
FROM R
WHERE p1 AND R.Yop,
(SELECT AGG(S.Z)
FROM S
WHERE p, AND
S.Vop, RU)

Both op; and op, are comparison operators in {<,>, <, >
;=} and AGG is one of the aggregate functions MAX,

| —

893

MIN, AVG, SUM, and COUNT. Notice that if no join
predicate exists in the inner block, the inner block produces
the same single value for every tuple of R and no unnesting
is needed.

The execution semantics of Query JA is as follows: For
each tuple 7 of R, a temporary relation T'(r) is generated
from the inner block where

T(r) ={z:3s € Ssuch that s.Z = 2,
d(p2(s)) > 0,and d(s.V opy 7.U) > 0}.

A value z in S.Z is in T(r) with the degree
pr(ry (2) = max(min(ps(s), d(pa(s)), d(s.V opz 1.U)))-

Then, the aggregate function AGG is applied on T'(r).Z to
obtain a value A(r) with a degree D(A(r)). We assume that
D(A(r)) is a function of T'(r). For Fuzzy SQL, D(A(r)) = L.
But it can also be defined as the average membership
degree, or weighted average membership degree of 7'(r).
The tuple r satisfies the query condition with the degree

dy = min(pr(r),d(pi(r)), D(A(r)), d(r-Y opy A(r))).

If d. > 0, 7.X is in the answer. After eliminating duplicates,
each value z of R.X in the answer has the degree
wya(r) = max, y=.(d,). Notice that, if T(r) =0, and the
function is COUNT, then A(r) = 0 and

d; = min(ug(r), d(p1(r)), D(A(r)), d(r.Y opy 0));

however, if the function is not COUNT, A(r) = null and
d, = 0. ’

As an example, the following type JA query finds the
names of cities in region A, each of which has an average
household-income greater than the maximum average
household-income of cities in region B with similar

population.

Query 5
SELECT RNAME
FROM CITIES_REGION_ AR
WHERE R.AVE_HOME_INCOME>

(SELECT MAX(S.AVE_HOME_
INCOME)

FROM CITIES_REGION_B S

WHERE S.POPULATION

= R.POPULATION)

We unnest Query JA using two temporary relations, T}
and T, defined as follows:

T(U) = (SELECT RU
FROM R
WHERE py)
Ty(U, A) = (SELECT Ti.U, AGG(S.2)
FROM T3, S
WHERE P2
A% op? T1.U
GROUPBY T.U)

Intuitively, 7} is the set of all values of R.U that can ever be
used to evaluate the inner block of Query JA and 75 is the

894 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

set of all aggregated values that can ever be obtained in the
inner block, with each value accompanied by the corre-
sponding value of R.U that produces it. 7} is obtained from
the R-tuples that satisty p; by projecting on R.U with
duplicates removed and all membership degrees set to 1. 75
is obtained by joining 7; with S-tuples that satisfy p; on the
join condition S.Vopy T1.U, grouping the result based on
T1.U, and then, applying AGG to each group. For each
value v in 77.U, the group is

T'(u) ={z: 3s € S such that 5.Z = z,d(pa(5)) > 0
and d(s.V opy u) > 0};

and a value z of S.Z is in T'(u) with the degree

pr(w)(2) = max(min(ps(s), d(pa(s)), d(s.V opz).
If T'(u)#0, a result, A’'(u), with degree D(A'(u)) is
computed from 7'(u) by AGG, and a tuple (u, A'(u)) is
inserted into 75 with degree D(A'(u)). If T'(u) =0, Ty
contains no tuple for u. Notice that, by their definitions, for
every R-tuple r, T(r) and 7"(r.U) are identical and, for every
zin 8.2, pr)(2) = pr o) (2)-

Query JA can then be unnested to either one of the
following two flat queries, namely, Query JA’, if AGG is not
COUNT, or Query COUNT, if otherwise.

Query JA’
SELECT R.X
FROM R, T
WHERE p1 ANDR.U =T,.U

ANDRY op1 15 A

For each R-tuple r and each tuple ¢t = (u, A'(u)) in Ty, r and ¢
will satisfy the query condition with the degree

dy., = min(ug(r),d(p:(r)),d(r.U = u),
D(A'(u)),d(r.Y opy A'(u))).

Notice that d(r.U = u) is binary, and there can be at most
one tuple in 75 for which d(r.U = u) = 1, thus, r will satisfy
the query condition with the degree d, = maxer,(d.,). If
d, >0, r.X belongs to the answer with degree d’. After
eliminating duplicates, a value z is in the answer with
degree pja(x) = max, y=,(d.).

Query COUNT’

SELECT RX
FROM R, T
WHERE p; ANDRU+ = To.U

[RY opy T5.A : RY op; 0]

The WHERE clause is a conjunction of the predicate p; and a
left outer join predicate (denoted by + =) followed by an
IF-THEN-ELSE structure enclosed in a pair of square
brackets. The left outer join operator [21], [7], [33] is used
to preserve the tuples of the left relation R since only R.X is
projected. As in [22], the [F-THEN-ELSE structure has two
components separated by a colon and the WHERE clause is
evaluated as follows: If a tuple r of R joins with a tuple
t = (u, A'(u)) of Ty, that is, .U =u, the degree for r to

satisfy the outer join predicate is the degree by which r
satisfies the first component in the square brackets, thus, r
satisfies the query condition with the degree

d, = min(ug(r), D(A'(v)),d(py(r)), d(r.Y op; A'(u))).
Otherwise, the degree for r to satisfy the outer join predicate

will be the degree by which r satisfies the second
component in the square brackets, that is,

d, = min(ug(r),d(p:(r)), d(r.Y op: 0)).

After eliminating duplicates, a value z is in the answer with

the degree pcopnr (z) = max, x=,(d.).

Theorem 6.1. Query COUNT’ (Query JA’) is equivalent to
Query JA if AGG is (not) COUNT.

Proof. We shall prove that d. = d. for each tuple r of R,
which implies piy4(x) = py4(x) for each x in the domain
of R.X. Recall that T(r) and T'(r.U) are identical for
every r in R.

We first consider the situation where AGG is not
COUNT. 1f T(r) is empty, A(r) =null and d, = 0.
Since T'(r.U) and T(r) are identical, relation 73 in the
unnested query has no tuple (r.U, A’(r.U)). As a result,
d(r.U=u)=0 for every tuple (u,A'(u)) in 7T, and
d.=0. If T(r) is not empty, we have

A(r)y= A'(r.U), D(A(r)) = D(A'(r.U))
since the same aggregate function AGG is applied to
the identical sets 7'(r) and T'(r.U). Since there is
exactly one tuple, namely (r.U, A'(r.U)), in T, such that
d(r.U=rU)=1, we have d, =d..

Now, assume that AGG is COUNT. If T(r) is empty,
we have A(r) = 0 and

d. = min(ugr(r),d(pi(r)),d(r.Y op; 0)).
Since T"(r.U) is also empty, T does not have the tuple

(r.U, A'(r.U)). Thus, in Query COUNT, tuple 7 does not
join with any tuple of 75, and

d, = min(ug(r), d(pi(r)),d(r.Y op 0)).

The rest of the proof is similar to that for the case
where AGG is not COUNT. O

Although the unnested Query JA consists of three
queries instead of one, by pipelining the result of one
query to another, the three flat queries can be evaluated in
parallel in the main memory. The evaluation is similar to
that of the merge-join. First, the set of R-tuples satisfying p,
is sorted on R.U and the set of S-tuples satisfying p, is
sorted on S.V. To simplify the discussion, assume that op is
the equality. Let 7, be the first tuple in the sorted R. Then,
uy =r.U is the smallest R.U value (according to <) and
becomes the first tuple in 7. As soon as u; is obtained, it is
pipelined to Query T, and joins with Rng(r1) to generate
T'(w). If T'(w1) # 0, the aggregate function is applied to
obtain A’(u1) and D(A’(u;)). Once the two values are

- b e

obtained, they are immediately pipelined to Query JA” or i

YAN

The
deg
aca
oute
be 1
AG
prox
and
ope
exte
the

valu
assu
of t
proc
Que
O(n
eval
is 0

In

JAL
blo«
out
SO
sitr
an

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE 895

Query COUNT’, depending on the aggregate function.
Then, for all R-tuples r with r.U = v, including r;, the
degree d. is computed and the value r.X is projected
accordingly. If 7'(u1) =0 and AGG is COUNT, the left
* outer join in Query COUNT’ is evaluated, and r.X may still
be retrieved for a tuple r with r.U = u;. If T'(w;) =0 and
AGG is not COUNT, the processing for u; ends. This
process is then repeated for the next tuple in the sorted R
and so on until all R-tuples are processed. Since the
operations are pipelined, this process is essentially the
extended merge-join. Assume that the time complexity of
the AGG function is O(m), where m is the number of
values in the group to which AGG is applied. Since, by
assumption, each tuple of R joins with a constant number
of tuples of S, the time spend on the AGG function in the
process is in the order of O(n;) and the response time for
Query JA’” (Query COUNT’) is still in the order of
O(nglogng + nglogng). Since Query JA can only be
evaluated using the nested loop method, its response time
is of order O(ng X ng).

7 NESTED QUERIES WITH QUANTIFIER ALL

In this section, we consider the unnesting of a type
JALL query, which has the quantifier ALL in the outer
block and a join predicate in the inner block referencing the
outer relation. Nested queries with quantifier EX/ST or
SOME can be unnested similarly. The basic method is
similar to that in [15], namely, to replace the quantifier with

an appropriate aggregate function.
The following Query JALL is a type JALL nested query:

Query JALL
SELECT RX
FROM R
WHERE RY < ALL
(SELECT = 8.2
FROM S
WHERE S.V =R.U)

Although, for simplification, we have chosen not to include
predicates p; and p, and to use < instead of the more
general op, the results of this section hold for the more
general cases.

The execution semantics of Query JALL is as follows: For
every tuple r of R, a temporary relation 7'(r) is produced in
the inner block. For each tuple s of .S, s.Z belongs to T'(r)
with the degree d,(s) =min(us(s),d(r.U=s.V)). After
removing the duplicates, a value z in 7'(r) has the degree
by (2) = mazs z=-(d,(s)). The degree for r to satisfy the
query condition is d, = min(ug(r),d(r.Y < ALL T(r))),
where, for a value v and a set F, d(v < ALL F) is given by

d(v < ALL F) =
1 — maxzep(min(pr(z), 1 — pe(v,z)), F #0;
1, otherwise.

If d->0, X is in the answer with degree d.. After

removing duplicates, each value z in the answer has the

degree jarL(x) = max, x=;(d,).
Query JALL can be unnested to the following Query

JALL” which uses a temporary relation 7;:

TV(K,X,D)= (SELECT R.K, R.X, MIN(D)

FROM R,S
WHERE R.DAND - (5.0 AND

R.U =S5V AND —(R.Y> S.7))
WITH D>0

GROUPBY RK)

Query JALL’
SELECT T1.X
FROM T

The execution semantics of JALL’ is the following. For
each 7 in R and each s in S, the degree for r and s to satisfy
the selection condition for T} is

d, o =min(ug(r),1 — min(ps(s),
d(r.U=3sV),1—=d(rY < s.2))).
As indicated by the WITH clause, a pair of tuples (r,s) is
kept around as long as d, > 0. Then, because of the
GROUPBY clause and the MIN(D) aggregate function, the
minimum d, ; among tuple pairs (r,s) that have the same
R-tuple is obtained by d; = minsg(d,). If d. >0, a tuple
(r.K,r.X) is included in T; with d,. as the membership
degree. Query JALL’ then retrieves distinct values in 77.X
by eliminating redundant values and, for each value z in
the answer, the membership degree of z is given by
prarp (z) = max, y=,(d.).
Theorem 7.1. Query JALL' is equivalent to Query JALL.
Proof. We shall prove that pjapr(z) = psarr(z) for each
value z of R.X. It suffices to show that d. = d, for each
tuple r of R. Notice that the following proof does not
depend on that the predicate involving ALL is < . There

are two cases.

Case 1: T'(r) is empty. In this case, for every s in S,
d.(s) =0, that is, d(r.U = s.V) = 0. This implies that

d, = min(ug(r),d(r.Y < ALL T(r))) = pr(7)

since d(r.Y < ALL () = 1. For the unnested query, since
d(r.U=sV)=0, d. = pug(r), for every s in S. Thus,
d, = minges(pgr(r)) = pr(r).

Case 2: T(r) is not empty. For the nested query, by

substituting () (2) into d(r.Y < ALL T(r)), and d(r.Y <
ALL T(r)) into d,, we have:

896 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

d, = min(ug(r),d(r.Y < ALL T(r)))
= min(ur(r),1 — znga(f)(min(um;(zx 1-d(rY <z))))
= min(ur(r),1 — ZréxTa(;:)(min(glza;g(min(;zg(s),
d(s.V =r.0))),1 -d(rY < z))))

=min(pugr(r), min (maz(maz(l — ps(s),

2€T(r),s.Z2=2
1—d(s.V=7r.0),d(rY <=z)))))
= min(ugr(r), Teiép(maar(l — us(s),1 =d(s.V =r0U),

d(r.Y < z))))
= meig(min(uR(r),ma:L'(l —us(s),1 —d(s.V =r.0),

d(rY < z2))))
= meigl(m'in(pg(r), 1 —min(ps(s),d(s.V =r.U),

1-d(rY < 2))))

4
=d.
O

By pipelining the evaluation of 77 with that of Query JALL'
in a similar way as described in Section 6, Query JALL’ can
also be evaluated in time O(nglogng +nglogng). Since
Query JALL can be evaluated only by the nested loop
method, its response time is O(ng X ng).

8 GENERAL NESTED Fuzzy QUERIES

For conventional databases, the issue of unnesting general
nested queries has been studied in [18], [8], [15], [22]. A
complete discussion of unnesting general nested fuzzy
queries is beyond the scope of the paper. In this section, we
consider a subclass of nested fuzzy queries known as the
chain queries or linear queries [22]. The following query is a
chain query of three blocks.

Query 6
SELECT R;.X,
FROM Ry
WHERE p(R) AND R,.Y; in
(SELECT R».X,
FROM R,
WHERE ps(Ry;) AND Ry.Us = R,.Uy
AND Ry.X5 in
(SELECT R3.X;
FROM Rj
WHERE p3(Rs)

AND R5.V3 = R,.V;
AND R5.W3 = Ry. W5))

In general, a chain query Qx has K > 2 subquery blocks,
one block per nesting level. The blocks are numbered
sequentially from the outermost to the innermost, starting
with 1. The relation in block i is denoted by R;. The query
contains no set-exclusive predicate, aggregate function, or
quantifier. However, a block may have a correlation
predicate referencing a relation in any of its outer blocks.
A correlation predicate in block i referencing relation R; is

denoted by p; ;(R;, R;)- If a block does not have a correlation
predicate referencing a particular outer block, we simply
add the predicate TRUE in its place, which will always be
completely satisfied. Thus, in general, block k£ has the
following typical structure:

SELECT Ry. Xy

FROM Ry

WHERE pi(Rx) AND Iy <ick1 (i (Ri, Ri)) AND
Rkyvk in = (SELECT Rk+1.Xk+1 -)

where II;<;<x(p;) denotes the conjunction of predicates p;
AND p; AND --- AND pg.
Query Qx can be unnested to the following query Q.

Query Q%
SELECT R;.Xi
FROM Ris Rosus s BE

WHERE II<i<x (pi(R:))
AND HzgigA‘ngjgi—l (p'i‘j(Riv Rj))
AND HlE?ISK*l (Rzy’z = Ri+14)(i+l)

Theorem 8.1. Query Q' is equivalent to Query Q.

Proof. We shall prove the theorem by induction. For
K =2,Q,is Query J (or Query N if py1(Rz, Ry) is TRUE)
and @) is Query J' (or Query N’). By Theorem 4.2 (or
Theorem 4.1), Q) is eciuivalent to Q.

Now, let K >3, and assume that Query Q% _; is
equivalent to Query Qx_1. We shall prove that Q} is
equivalent to Q.

Query Qx can be written in the following form, where
Qx-1(R2, Rg) denotes the (K — 1) inner blocks of Qg:

Query Qk
SELECT R..X;
FROM Ry 4 ‘
WHERE pi(R;) ANDR,.Y; in Qg_1(Rs, Rx)

For each tuple r of Ry, Qx—1(Rs, Rg) is to be evaluated.
When evaluating Qx_1(Rz, Rx) with respect to r, each

appearance of R, is replaced by r; and each predicate |

pia(Ri,m1), 2 <i < K, can be considered as a predicate
involving only R; but with a constant r;. Therefore,
Qx-1(R2, Rk) is a chain query of K —1 blocks with a
parameter R;. By induction hypothesis, Qx_1(Rz, Rx) is
equivalent to the following query:

Quefy QII\Ll (R‘Zx Rlx')
SELECT Ry.X,
FROM Ry, Rs,...,Rg
WHERE Tloyer (pi(Ri)) AND
Mocicxicjcio1(pij(Ri, R)))
AND Icicx1(R:.Y; = Rig1. Xi11)

and the original query Qx is equivalent to

Query Qi
SELECT R;.X;
FROM R,
WHERE p((R;) AND R;.Y; in Q% _,(Rs, Rk)

In Query Qj, for each tuple r; of R;, the inner

query Q%_,(R2, Rg) is evaluated with respect to 7

and a temporary relation 7"(ry) is produced. For

YAN(

f

d]

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE 897

each combination of 7, € R;, 2 <1< K, the degree
for r;, 2 <1< K, to satisfy the selection condition of

Qx_1 18

L i g Y o P 2 - ;
d;, (2, ...,r) = min lgégl(m(u),d(pz(m)),

dipii(rivrs)); dlrYe = Pan-Xaad)-

The value 75.X, is in T'(ry), if d} (ra,...,7x) > 0. After
eliminating duplicates, each value z of Ry.X» in T' (1)
will have with the degree

piri((2) = max (di1 (ray ..., 7K))-

9. Xo=2
Therefore, r; satisfies Query Q}(with the degree
& = min(ug, (r1), d(p1(r1)),d(r1.Y1 in T (1))
= min(pg, (1), d(p (1)), "gl?(ﬂf)(mm(ﬂrl <n)(2),
d(ri.Y1 = 2))))
= min(ug, (1), d(p1(r1)),

max (min(max (di (r9,...,7K)),d(r1.Y1 = 2))))
2€TY(ry) T Xo=z" 1
= max (min(ug, (r1),d(p:1(r1)),
2T (r1)
mm(rm@;(dil (rg,...,1x)),d(r.Y1 = 2))))

= max (ms N1y in)., d
S oy (i i L) it

d(r.Y7 = 19.X3), pr (13), d(pi(r3)), d(pij(ris 75)),
d(r:.Y; = riy1- X))

The value r.X; is in the answer if d >0. After
eliminating duplicates, each value z of R;.X; is in the
answer with the degree (i1 (z) = max,, x,= (dy,)-

In Query @Y, for each combination of tuples r; € R;,
1 <i< K, the degree for them to satisfy the query
condition is

,TK) = min_ min (g, (r1), d(p1(r1)),

2<i<K 155<i-1

d(r1.Y1 = r2.X2), g, (ri), d(pi(7i)),

d(pij(ri,r)), d(ri.Y; = riy1-Xi1))-
The r1.X; belongs to the answer if d'(r1, 72, . .., 7x) > 0.

After eliminating duplicates, each value = of R;.X; in the
answer has the degree

d'(ry,ra, ...

pg, (r) = max (d(r,r, .-, TK)).

ri.Xi=z
Thus, pe (z) = max,, x,=(*) and
lLQ}((l‘) = MaXy; Xy = :E(maXzeTl(m(masz-Xz = z(%))),

where # denotes the common expression of the two
degrees. The expression of pg () covers all K-tuple
combinations r; € R;, 1 <I <K, in which r.X; ==
But, some of these combinations may not be covered by
poy () if 79.X5 is not in T%(r1). However, for such a
combination, dj (r2,...,7x) =0, hence, the common
expression * yields 0 as well. Since * always evaluates
to a nonnegative value, we have ng (z) = pg. (z). O

TABLE 1
Response Time in Seconds of the Nested Loop
and Merge-Join Methods

| Relation Size | IMB | 2MB | 4MB | 8MB | 16MB | 32MB
Nested Loop | 501 | 1965 | 7754 | 30879 —
Merge-join 40 84 223 852 1897 | 3733
Speedup 125 | 234 | 348 36.2 — —

To evaluate Query @', an optimal join order may be
determined by using, say, a dynamic programming [35]
method, to minimize the sizes of the intermediate relations.
If, as assumed, each tuple of a relation joins with a constant
number of tuples of another relation, the size of an
intermediate relation will be proportional to a joining
relation, and the response time of Q; using the extended
merge-join method will be of order O(X1<i<knilogn;),
where n; is the number of tuples of relation R;. The
response time of Q using the nested loop method could be
of order O(I1y<;<gm;)-

9 EXPERIMENTAL RESULTS

We conducted experiments to study the performance of the
unnesting techniques. In this section, the type J queries are
used to illustrate the experimental results.

The experiments are conducted on a SUN SPARC/IPC
workstation, which has an 8-Megabyte main memory and is
dedicated to the experiments. Both the nested loop and the
merge-join methods are implemented using the Omron
fuzzy database library [25]. A 2-Megabyte buffer is available
to both methods. For the nested loop method, one buffer
page (8 k-bytes) is allocated to the inner relation and the rest
to the outer relation in order to minimize 1/O cost [14]. For
the merge-join, the sorting is done by Opt-Tech Sort [26], a
commercial external sorting software that uses a user-
specified amount of memory. Tuples of the relations are
randomly generated and a tuple of one relation joins, on the
average, C tuples of the other relation. Both the I/O and the
CPU costs are measured. The experimental results confirm
that the extended merge-join outperforms the nested loop
method by an order of magnitude.

Four experiments are discussed below. In the first
experiment, both R and S relations contain 7 tuples of
128 bytes, where n ranges from 8,000 to 256,000 resulting in
relations of a size from 1 to 32 MB. Each tuple of R joins, on
the average, with seven tuples of S. Table 1 shows the
response times of the two methods in seconds and indicates
that the speedup of the extended merge-join with respect to
the nested loop method is from 12 to more than 36 as the
size of the relations increases. For a relation size no less than
16MB, the nested loop method takes too long to terminate.

For the second experiment, the size of the outer relation
is fixed at 4AMB and that of the inner relation is ranging from
2 to 16 MB. The tuple size and the value C are the same as
those in the first experiment. The result, shown in Table 2
indicates that the response time of the nested loop method
increases linearly with the size of the inner relation. This is
consistent with our analytical results. For the merge-join,
the numbers do not closely match the analytical results,

898 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

TABLE 2
Response Time in Seconds: Changing
the Size of Inner Relation

[Inner Relation Size | 2MB [4MB [8MB [16MB
Nested Loop 3912 | 7790 | 15489 | 31049
Merge-join 156 | 205 476 2152
Speedup 25.1 38 325 14.4

namely O(n logn). In order to understand the behavior of
the algorithm, we collected more detailed information
about the algorithm, as shown in Table 3, where the first
row represents the CPU time spent on sorting, merging, and
joining as a percentage of response time and the second row
represents the percentage of response time spent on sorting
(including CPU time and IO time). The results show that, as
the size of the inner table increases, the join becomes more
10 intensive and the majority of the time is spent on sorting.
The jump of the response time near the columns of SMB and
16MB we believe is caused by the memory management of
the operating system. The speedup increases as the relation
size increase until the size reaches 4MB and then, decreases
afterward. This change is expected. Since one relation has a
fixed size, the complexity of the nested loop becomes O(n),
while that of merge-join remains O(nlogn). As a result, the
improvement decreases as the size of the inner relation
increases. *

The third experiment was designed to test the impact
of IO activities. The number of tuples of the relations is
fixed to 8,000, but the tuple size is ranging from 128 bytes
to 2,048 bytes. A tuple in R joins, on the average, with
one tuple in S. The results, shown in Table 4, indicate
that the merge-join is superior to the nested loop. Since
the number of tuples is fixed, the CPU time spent on
comparisons and fuzzy computation remains unchanged
for both algorithms (15 seconds for the merge-join and
483 seconds for the nested loop). As the tuple size
increases, the number of 10s also increases. As a result,
the percentage of CPU time drops for both algorithms.
We should also point out that the total CPU time also
increases since, as the tuple size increases, more CPU time
is needed for handling 10s.

The last experiment was designed to study the impact of
the number of joining tuples on the performance. Both
relations have a fixed size of 8MB (64,000 tuples). The
average number C' of tuples that a tuple will join ranges
from 1 to 128. The results are show in Fig. 3. As C increases,
the number of IOs remains more or less the same, but the
CPU time increases due to the increase in the number of
calls to the fuzzy library functions and the number of
comparisons for merge and join.

TABLE 3
Time Break Down for Merge-Join Method

Tnner Relation Size | 2MB [4MB [8MB | 16MB
CPU time (%) 76 | 63 | 51 24
_Sorting Time (%) 387 | 52.5 | 619 84.1

TABLE 4
Response Time in Seconds: Changing Tuple Size
Tuple Size 128 | 256 | 512 | 1024 | 2048
Nested Loop | 485 | 514 | 584 | 729 | 1077
merge—join 20 | 37 | 94 | 487 | 896

It should be pointed out that, in these experiments, both
the intervals associated with the join attribute values and
the average numbers of joining tuples are kept small. This is
typical for fuzzy database applications in which data may
be imprecise but not very vague. On the other hand, in
temporal database applications, the intervals associated
with the tuples can be much larger. This could have an
adverse effect on the merge-join method.

10 SUMMARY

In this paper, we present techniques to unnest various types
of 2-level, and a subclass of K-level nested Fuzzy SQL
queries for efficient evaluation. An extended merge-join is
used to evaluate the unnested queries, and its performance
is compared with that of the nested loop method which the
nested queries must be evaluated with. Both analytical and
experimental results regarding the performance of the two
methods are presented in the paper. The techniques are
likely to be applicable in database systems that allow vague
queries on uncertain and imprecise data. To the best of our
knowledge, the issues of unnesting fuzzy queries have not
been studied before.

We will continue investigating techniques for optimal
processing of fuzzy queries and study the application of
those techniques to other types of databases with
imprecise information. One such application is the picture
retrieval [2].

APPENDIX
INTERPRETATION OF A Fuzzy QUERY

In this Appendix, we provide a clarification of the meaning
of a Fuzzy SQL query.

A fuzzy relation, as defined in Section 2 of the paper, is a
fuzzy set of tuples. That is, each tuple of a fuzzy relation is a
member of the fuzzy set with a degree of belonging to the
set. Based on the interpretation of possibility, we can think
of a fuzzy relation as a representation of a fuzzy concept (or
a fuzzy condition) and each tuple in the fuzzy relation as an
object that possibly belongs to the concept (or satisfies the
condition). Here, the membership degree of a tuple is
interpreted as the possibility for the tuple to be a part of the
concept (or to satisfy the condition). Thus, as stated in this
paper, the answer to a Fuzzy SQL query is a fuzzy relation
where each tuple satisfies the query condition to the extent
as indicated by its membership degree (see Section 1) and,
for the answer relation of a query, the membership degree
of a tuple is interpreted as the degree for the tuple to satisfy
the query condition (see Section 2).

For example, consider query Q: “select A from T where
X,” where A is a list of attributes, 7" is a set of fuzzy
relations, and X is a query condition. The result is a fuzzy

001

rth
nd
51
ay
in
ed
an

ies
JL

is

ce ,

he
1d
VO
re
ue
ur
ot

al
of
th
re

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE 899

Response Time (in sec)

Number of 10s (thousands)

| | I I I I
3500 | —| 140
3000 |— Number of 10s = —| 120
CPU Time - - -~
-~
2500 _ Response time « « + + & P ~| 100
-~
-
2000 -7 80
-~
-~
-
1500|_ P —| 60
-~
-~
-
1000 j -~ —{ 40
n ’
ot -
-
500 = 20
L
0 L 1 | I | 1 |
20 40 60 80 100 120

Join Number C

Fig. 3. Response time and number of 10s for merge-join.

relation R’ such that each tuple ' in R’ indicates a set of
tuples in relations in T that collectively and possibly
satisfies the condition X. In other words, the only thing in
common among the tuples in the answer relation is that
each one of them is a possible answer to the query (up to the
membership degrees). Notice that this type of interpretation
is a straightforward generalization of that of an ordinary,
crisp query, for which each tuple in the result is a sure
answer.

Consider another example. Let R and S be the following
relations:

Y ' Z
[—1/3/1 +.8/y2 | 21

Consider the query: “select R.X from R, S where
RY =8Y."

First of all, the possibility distribution 1/y; + .8/y» under
attribute Y in relation S indicates an uncertain value of Y
(which is possibly y; with possibility 1 or y, with possibility
0.8). It indicates that we do not know the precise value of Y,
but it is possibly y; or ys, therefore, both y; and y, are
possible values of Y. With this uncertainty, we are unable to
determine which tuple in R will actually join with the tuple
in S. However, we are able to determine that either tuple in
R has a possibility of joining with the tuple in S, thus, both
of them are possible answers.

Thus, the semantics of the query: “select R.X from R, S
where R.Y = 5.Y, should be to find all R.X such that there
exists some tuple in S'and R.Y = S.Y is satisfied (in a fuzzy
sense) by these tuples of R and S. The answer obtained
using the method presented in this paper is based on this

interpretation. Thus, for this example, both z; and z, are
possible answers, with a possibility 1 and 0.8, respectively.

It may be tempting to determine for the query which
tuple of S will actually join with tuples of R. One way to do
so may be the following: When joining R with S, each tuple
in S is replaced by one of its possible values in its possibility
distribution. This replacement is repeated for every
combination of possible values for the tuples in S for the
join operation. In the previous example, we can assign 1/y;
to S.Y in one join and assign 0.8/y, to S.Y in a second join.
One join is performed for each combination of value
assignments. Each of these joins results in a possible answer
relation. Thus, the answer to the previous query would be
two relations: One contains z; with a membership degree 1
and the other contains z; with a membership degree 0.8.
However, this method not only still gives a fuzzy answer
(now one has to determine which answer relation should be
the “true” answer), but also it does so very inefficiently, as
illustrated in the following example:

Suppose the two relations are as follows:

R

XY S

1 | % Y z
z2 | Y2 1/y1+ 8/y2 | =1
T3 | ys 9ys +.T/ys | 2
Ty | Y

Consider the query “select R.X from R, S, where

RY=8Y"

Using the method just outlined, the answer should be
one of the four fuzzy sets {1/z,,0.9/z3}, {1/21,0.7/z4},
{0.8/25,0.9/x3}, and {0.8/z5,0.7/24}. Thus, the answer

900

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.6, NOVEMBER/DECEMBER 2001

becomes a fuzzy set of fuzzy sets (second order). There are
several reasons why this is not a good approach.

1.

The enumeration of all those (fuzzy) sets of answers
does not provide much more information to the user
as it is still uncertain which one of these sets is the
sure answer.

The exponential nature exhibited in this example
will only get worse when the values of Y are given
by possibility density functions in both relations
(say, on the real numbers) for, in that case, there will
be an infinite number of fuzzy sets in the answer
(notice that not only each x-value in a set has a
membership degree, but also the set itself has a
membership degree). Therefore, it is not practical to
compute and present such an answer to the user.
Since, under this interpretation, each algebraic
operation, such as selection and join, will result in
multiple relations, the algebraic operations can not
be composed, as discussed earlier in the paper.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees
for their valuable comments and constructive suggestions
on the presentation and technical accuracy of the paper.
This research was supported in part by the US National
Science Foundation (NSF) under IRI-9509253, Omron
Corporation, Omron Management Center of America,
and the Natural Science and Engineering Research
Council (NSERC) of Canada. An earlier version of this
paper was presented at the IEEE International Conference

on Data Engineering, 1995.

REFERENCES

(1]

[
8]

0
[10]

11

S. Abiteboul, P. Kanellaki \
Representation and Querying N |
Theoretical Computer Science, vol i\
A. Aslandogan, C. Thier, C. Y

Implementation and Evaluatior A
based REtrieval of Pictures),” I O
J.E. Baldwin, “A Fuzzy Relatio - 0 W
Systems,” Proc. 13th IEEE Int'l S Aol 5

423, 1983.

P. Bosc, M. Galibourg, and C

SQL: Extensions and Implem

Systems, 1988.

P. Boscand and O. Pivert, “

Flexible Querying in Databa

and Soft Computing, R.R. Yage

pp- 368-395, New York: Van

P. Bosc and O. Pivert, “SQL{: ;

Fuzzy Querying,” IEEE Trans.

1995.

E.F. Codd, “Extending the Da

More Meaning,” ACM Trans. putuouse oyorcine, — -

U. Dayal, “Of Nests and Trees: A Unified Approach to Processing
Queries that Contain Nested Queries, Aggregates, and
Quantifiers,” Proc. Very Large Databases, 1987.

D. DeWitt, J. Naughton, and D.A. Schneider, “An Evaluation of
Non-Equijoin Algorithms,” Proc. Very Large Databases, 1991.

D. Dubois and H. Prade, Possibility Theory: An Approach to
Computerized Processing of Uncertainty. chap. 6, New York: Plenum
Press, 1988.

D. Dubois and H. Prade, “Measuring Properties of Fuzzy Sets: A
General Techniques and Its Use in Fuzzy Query Evaluation,”
Fuzzy Sets and Systems, vol. 38, pp. 137-152, 1990.

~—

)
i e

(12]

(13]

[14]
[15]
[16]
(17
[1g]
(19]

[20]

(28]

Mo1

137

(38]

139]

[40]

D. Dubois and H. Prade, “Fuzzy Sets—A Survey of Eng.

Applications,” Computer and Chemical Eng., vol. 17, pp. 373-380,

1993.

P.F. Fisher, “First Experiments in Viewshed Uncertainty—

Simulating Fuzzy Viewsheds,” Photogrammetric Eng. and

Remote Sensing, vol. 58, no. 3, pp. 345-352, Mar. 1992.

G. Graefe, “Query Evaluation Techniques for Large Databases,”

Computer Surveys, June 1993

R.A. Ganski and HK.T. Wong, “Optimization of Nested SQL

Queries Revisited,” Proc. ACM SIGMOD, 1987.

R.L. Haar, “A Fuzzy Relational Data Base System,” Technical

Report, TR-587 Computer Center, Univ. Maryland, Sept. 1977.

T. Imielinski and W. Lipski Jr., “Incomplete Information in

Relational Databases,”]. ACM, vol. 31, 1984.

W. Kim, “On Optimizing an SQL-like Nested Query,” ACM Trans.

Data Systems, Sept. 1982.

GM. Lohman et al, “Optimization of Nested Queries in a

Distributed Relational Database,” Proc. Very Large Databases, 1984.

D. Li and D. Liu, A Fuzzy Prolog Database System, Taunton,

England: Research Studies Press, 1990.

M. Lacroix and A. Pirotte, “Generalized Joins,” SIGMOD Record,

vol. 8, no. 3, Sept. 1976.

M. Muralikrishna, “Improved Unnesting Algorithms for Join

Aggregate SQL Queries,” Proc. Very Large Databases, 1992.

H. Nakajima, T. Sogoh, and M. Arao, “Development of an

Efficient Fuzzy SQL for Large Scale Fuzzy Relational Database,”

Proc. Fifth Int'l Fuzzy Systems Assoc. World Congress '93, 1993.

E. Omiecinski and E.T. Lin, “The Adaptive-Hash Join Algorithms

for a Hypercube Multicomputer,” IEEE Trans. Parallel and

Distributed Systems, 1992.

Fuzzy LUNA — Fuzzy Database System Library User’'s Manual, and

Fuzzy LUNA Fuzzy Database System Library Reference Manual,

OMRON Corp. 1992.

Opt-Tech Data Processing, Inc., Opt-Tech Sort User’s Manual,

Version 1.7, 1992.

F. Petry, Fuzzy Databases: Principles and Applications, Kluwer

Academic, 1996.

H. Prade and C. Testemale, “Generalizing Database Relational

Algebra for the Treatment of Incomplete or Uncertain Information

and Vague Queries,” Information Sciences, vol. 34, pp. 115-143,

1984.

H. Prade and C. Testemale, “Fuzzy Relational Databases:
ssues and Reduction Using Similarity Mea-
nformation Science, vol. 38, no. 20, pp. 118-126,

estemale, “Representation of Soft Constraints
te Values by Means of Possibility Distribution
alysis of Fuzzy Information, Vol. II: Artificial
ision Systems,].C. Bezdek, ed. pp. 213-229, Boca
ress, 1987.

or and L. Bic, “Extending Fuzzy Relational
by Aggregates,” Proc. North Am. Fuzzy Informa-
, pp- 201-205, June 1988.

er and L. Bic, “Aggregates in Possibilistic
15th Int’l Conf. Very Large Data Bases, pp. 287-

D. Reiner, “Extending the Algebraic Framework
ing To Handle Outer-Joins,” Proc. Very Large

Melton, “An Extended Version of the Fuzzy
se Model,” Information Science, 1990.
,and C. Yu, “Query Optimization in Distributed
Jatabase Systems,” Computer J., pp- 98-107, 1992.
rass, and C. Jensen, “Efficient Evaluation of the
ral Join,” Proc. 10th Int’l Conf. Data Eng., Feb.
B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren, and B.
Vaughan, “FastSort: A Distributed Single-Input Single-Output
External Sort,” Proc. SIGMOD 1990.
M. Umano and S. Fukami, “Fuzzy Relational Algebra for
Possibility-Distribution-Fuzzy-Relational Model of Fuzzy Data,”
J. Intelligent Information Systems, no. 3, pp. 7-27, 1994.
L.A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-
353,.1965.
L.A. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibility,”
Fuzzy Sets and Systems, vol. 1, no. 1, pp- 3-28, 1978.

[
f
t

YANG ET AL.: EFFICIENT PROCESSING OF NESTED FUZZY SQL QUERIES IN A FUZZY DATABASE 901

[41] M. Zemankova and A. Kandel, “Implementing Imprecision in
Information Systems,” Infonmtzon Science, 1985.

[421 W. Zhang and K. Wang, “An Efficient Evaluation of A Fuzzy
Equi-Join Using Fuzzy Equality Indicators,” IEEE Trans. Knowl-
edge and Data Eng., vol. 12, no. 2, pp. 225-237, Mar/ Apr. 2000.

[43] W. Zhang, C. Yu, G. Wang, T. Pham, and H. Nakajima, “A
Relational Model for Imprecise Queries,” Proc. Int'l Symp.
Methodologies in Intelligent Systems, 1993.

Qi Yang received the BS degree in mathematics
in 1982 from Sichuan University, China, and the
MS and PhD degrees in computer science in
1989 and 1994, respectively, from the University
of lllinois at Chicago. Currently, he is teaching at
the University of Wisconsin at Platteville.

Weining Zhang received the BEng degree in
computer science and engineering from the
Electronic Science and Technology University
of China, People’s Republic of China, in 1982,
the MS and PhD degrees in computer science
from the University of lllinois at Chicago, in 1985
and 1988, respectively. He is currently an
associate professor in the Department of Com-
puter Science, University of Texas at San
Antonio. His research interests are in fuzzy
databases heterogeneous distributed databases, Web databases and
data mining. He is a member of the IEEE Computer Society.

Chengwen Liu received the BS degree in
electronics from Shandong University, China,
in 1983; the MS degree in electrical and
computer engineering from the lllinois Institute
of Technology in 1986; and the PhD degree in
computer science from the University of lllinois
at Chicago in 1991. He is an associate professor
in the School of Computer Science, Telecom-
munications, and Information Systems at De-
Paul University, Chicago. His research interests
are in d:stnbuted database systems, fuzzy databases and data mining.
Dr. Liu is a member of the ACM and has served as a member of the
Publications Board of the IEEE Computer Society. He is a member of
the IEEE.

Jing Wu biography and photo not available.

Clement Yu obtained the BS degree in applied mathematics from
Columbia University in 1970 and the PhD degree in computer science
from Cornell University in 1973. He is a professor in the Department of
Computer Science at the University of lllinois at Chicago. His areas of
interest include search engires and multimedia retrieval. He has
publications in various journals such as IEEE Transactions on Knowl-
edge adn Data Engineering, ACM Transactions on Database Systems
and JACM and in various conferences such as VLDB, ACM SIGMOD
and ACM SIGIR. He previously served as chairman of ACM SIGIR and
as a member of the advisory committee to the US National Science
Foundation. He is a member of the editorial board of the /EEE
Transactions on Knowledge adn Data Engineering, International Journal
of Software Engineering, and Knowledge Engineering and Distributed
and Parallel Databases. He was cochair of the US National Science
Foundation Information and Data Management Program Workshop for
principal investigators for the year 2000 and is the cochair of the
International Conference on Information Society in the 21st Century:
Emerging Technologies and New Challenges to be held in Japan. He is
a member of the IEEE Computer Society. ’

Hiroshi Nakajima received the BS degree in
system engineering from Kobe University, Ja-
pan, in 1985. Since 1985, he has been with the
Research and Development Division of OMRON
Corporation, Kyoto, Japan, and has been work-
ing in the field of intelligent systems using
artificial intelligence and cognitive science. He
is currently a project leader in the Verbal
Interaction Technology Laboratory of the Infor-
mation Technology Research Center, Omron
Corporation. His current research interests are human-machine inter-
action, intelligent agents, pet robots, and artificial mind models. He is a
member of the IEEE Computer Society, IPS (Information Processing
Society of Japan), and SOFT (Japan Society for Fuzzy Theory and
Systems).

Naphtali David Rishe completed the PhD
degree at Tel Aviv University in 1984. He worked
as an assistant professor at the University of
California, Santa Barbara (1984-1987), was an
associate professor (1987-1992) and is currently
a professor (1992-) at Florida International
University (FIU). His expertise is in database
management and methodology for the design of
database applications. His work on the Semantic
Binary Database Model was published as a book
by Prentlce Hall in 1988. His Semantic Modeling theory was published
as a book by McGraw-Hill in 1992. His current research focuses on
efficiency and flexibility of database systems (particularly of object-
oriented, semantic, decision-support, and spatial/geographic DBMS),
distributed DBMS, high-performance systems, database design tools,
and Internet access to databases. He is the editor of four books and
author of two patents, 24 papers in journals (including /EEE Transac-
tions on Knowledge and Data Engineering, Data and Knowledge
Engineering, Information Systems, Fundamenta Informaticae), seven
chapters in books and serials (including three in Springer Verlag's
Lecture Notes in Computer Science), three encyclopaedia articles, more
than 80 papers published in proceedings (including ACM SIGMOD,
VLDB, PDIS, IEEE DE, ACM SIGIR, SEKE, ARITH, FODO). Dr. Rishe
has been awarded millions of dollars in research grants by government
and industry. His research is currently sponsored by the US National
Aeronautical Space Administration, (NASA) ($5.5M) the US National
Science Foundation, (NSF) ($4M) BMDO, ARO, DoD, Dol, and other
agencies. He also has extensive experience in database applications
and database systems in industry. This includes eight years of
employment as head of software and database projects (1976-1984)
and later consulting for companies such as Hewlett-Packard and the
telecommunications industry. He is the founder and director of the High
Performance Database Research Center at FIU, which now employs
110 researchers, including 20 PhDs. Dr. Rishe chaired the program and
steering committees of the PARBASE conference and is on the steering
committee of the PDIS conference series.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

