
XQuery Translation to Sem-SQL*

Li Yang
Department of Computer Science
State University of West Georgia

Carrollton, GA 30118, U.S.A.

Naphtali Rishe
High Performance Database Research Center

School of Computer Science
Florida International University

Miami, FL 33199, U.S.A.

Abstract XML query translation is an inevitable step involved in using non-XML databases storing XML data. In
this paper, we address the XQuery to Sem-SQL translation issue, part of the XML storage and retrieval using the
Semantic Binary Object-Oriented Database System (Sem-ODB) project, by providing a high-level description of the
translation scheme between XQuery and Sem-SQL. Our translation scheme utilizes the navigation-oriented
paradigm of Sem-SQL in translating XQuery path expressions to avoid excessive joins. Our approach can deal with
all recursive path expressions without requiring the underlying database system to support recursive queries. We
also extend the sorted outer union approach with consideration on user-defined orderings.

Keywords: XQuery, Sem-SQL, XML query translation, sorted outer union approach

1.0 Introduction

In recent years, as its popularity growing rapidly, the Extensive Markup Language (XML) has been
widely adopted in applications like E-commerce, and B2B processes. As the amount of XML data grows,
so does the need for storing and retrieving it efficiently. Different approaches have been proposed to store
and query XML documents [5, 11, 4, 3, 14, 15, 12]. Among them, a great deal of effort has been put on
using relational databases as XML repositories because of its mature technology. However, because of the
mismatch between the two-dimensional table-column-based relational data model and the graph-based
XML data model, fragmentation is inevitable when mapping an XML schema into a relational one [11].
Consequently, path expressions, one of the basic expressions in any XML query language, can only be
translated as joins in SQL.

To avoid the above problems and efficiently store and retrieve XML, we are building a system using the
Semantic Binary Object-Oriented Database System (Sem-ODB) [13]. Sem-ODB is based on a conceptual
data model, the Semantic Binary Object-Oriented Data Model (Sem-ODM [8]). Sem-ODM has the
features of Object-Oriented data models, such as inheritance, surrogates (object ids), explicit description
of relationships and a high-level data model. The Sem-ODB has been successfully deployed for highly
complex applications such as applications intended for storage and processing of a large number of earth
science observations and the Terrafly Geographic Information System (GIS) [7]. The query language that
is supported by the Sem-ODB is the Semantic SQL (Sem-SQL) [9]. It is compatible with the traditional
SQL92 with some enhanced semantic interpretation to reduce the complexity in designing a query. To
store an XML document, the system first maps an XML DTD (Document Type Definition) into a
Sem-ODM semantic schema, and loads the XML data into the Sem-ODB created according to the
mapping, and then an XQuery query is translated into a Sem-SQL query and posed against the Sem-ODB
database, and finally the results will be tagged and returned as XML data. In this paper, we will only
focus on the XQuery to Sem-SQL query translation part. Interested readers are referred to [13] for more
details.

* This research was supported in part by NSF grants EIA-0320956, EIA-0220562, and HRD-0317692.

In this paper, we address the XQuery to Sem-SQL translation issue by providing a high-level description
of the translation scheme between XQuery and Sem-SQL. Our translation scheme utilizes the
navigation-oriented paradigm of Sem-SQL in translating XQuery path expressions. Thus, it avoids the
common problem of the join number being equal to the length of a path expression when translating an
XML query into a SQL query in relational approaches [11]. Our approach can deal with all recursive path
expressions without requiring the underlying database system (Sem-ODB in our case) to support
recursive queries. We also extend the sorted outer union approach [10] with consideration on user-defined
orderings.

The rest of the paper is organized as follows. Section 2 presents related work. A brief overview of the
Sem-ODM, Sem-SQL, DTD and XQuery is given in section 3. Section 4 describes the translation scheme
from XQuery to Sem-SQL. Conclusion and future work are presented in section 5.

2.0 Related Work

The issue of XML query translation to SQL has been addressed in several research projects recently.
Yoshikawa et al. [15] propose an approach called XRel for storage and retrieval of XML documents using
relational databases. Their work only focuses on path expressions, which are a subset of XQuery and
relatively easier to translate than some complex XQuery expressions such as FLWOR. Our work
distinguishes from theirs by offering a more complete picture on the correspondence between XQuery and
Sem-SQL. Furthermore, because path expressions do not contain any ordering expressions, their approach
always generates the data in document order. We consider queries with document order as well as
user-defined order. Similar to XRel, another work done by Tatarinov et al. [14] offers algorithms for
translating XPath path expressions into SQL queries. Their work focuses on evaluating the performance
of different order encoding methods. They also consider translating insert/delete queries into SQL,
however, since these update-related features are not specified in the current version of XQuery
specifications, we do not consider them in this paper.

Manolescu et al [6] address the XML query translation to SQL issue in a data integration context. They
provide an analysis of XML query languages and describe the translation of different features to SQL.
Our work has been influenced by theirs. However, our work is focused on translating XQuery to
Sem-SQL, while theirs is on Quilt to SQL. The differences between XQuery and Quilt, and Sem-SQL and
SQL, result in different query translation schemes. For instance, id-based queries can be translated into
Sem-SQL since surrogates are supported in Sem-SQL, while it is not possible in SQL. Besides the major
XQuery expressions, we also describe in our work how to deal with FLWOR expressions (i.e., FLWR
with an order by clause), which is introduced in the latest W3C XQuery specifications.

3.0 Overview of Sem-ODM, Sem-SQL, DTD and XQuery

Sem-ODM: The Sem-ODM, a conceptual, high level data model, is the underlying data model of
Sem-ODB. Two constructs, category and relation, are used to describe a Sem-ODM. Categories are like
Entities in the Entity Relationship (ER) model, except that the Attributes in the ER model are represented
as relations in Sem-ODM. A Category can either be a Concrete Category or an Abstract Category.
Concrete Categories are categories like String, Number, and Boolean, etc. Abstract Categories are
categories composed of abstract objects, such as books. There can be binary relations from an abstract
category, which is called the Domain of the relation, to another category, which is called the Range of the
relation, in a Semantic Schema.

Sem-SQL: The Semantic SQL (Sem-SQL) was adopted from traditional SQL92. Compared to the
traditional SQL, the Sem-SQL incorporates some advanced concepts, such as the navigation operator and
inverse relation operator, which significantly reduce the length of a complex query and provide an easier
query facility. In the Sem-SQL, double underscores represent the navigation operator. It provides a way
to query relationships directly, and allows navigation from one category A to categories that are reachable
from A in a semantic schema via the relations along the way. In this way, some queries involving different
categories do not have to be joined, thus reducing the overhead of join operations. Sem-SQL’s
navigation-oriented query paradigm is one of the most salient features that distinguish it from the
traditional SQL. The inverse relation operator is represented as one underscore in the Sem-SQL. It makes
it possible to traverse from the range of a relation R to the domain of R in a query. It also helps one to
navigate in a schema graph without worrying about join operations.

DTD: Document Type Definition (DTD) [1], a schema language that can be used to specify the basic
building blocks as well as the structure and semantic constraints of XML documents. Figure 1 (a) shows a
DTD example that is extracted from [11] and slightly modified and used as the DTD running example
throughout this paper ; (b) shows a tree representation of an example XML document conforming to (a).
The shaded nodes represent text nodes, while the black node is the document node, and triangles represent
attributes.

id=“a2” authorID= “a2”
id=“a1”

last

name

“Database
Systems”

title

article

author

addr

first

author

name addr

first last

contactauthor

“8900 SW
338 AVE”

“Jane”

“Wise”

“Phil”

“Smith”

“7800 SW 38
AVE”

publication

Figure 1 (a) DTD Example (b) Example XML Document Tree

XQuery: The XQuery [2] is the W3C XML query language proposal. It is a functional language, in
which expressions are the building blocks of a query and they can be nested with full generality as in
OQL. Literals, variables and function calls are primitives of the language, and they can be used to
construct other more complex expressions such as path expressions, element constructors, FLWOR
expressions, conditional expressions, and others, which are the principal expressions of XQuery.

4.0 XQuery to Sem-SQL Translation

Before translating an XQuery query into a SQL query, we first simplify the XQuery query using some of
the normalization rules proposed in [6] to reduce its complexity and to ease the Sem-SQL translation
process. Due to the space constraint, we do not describe the rules here. For more details, please refer to
[6, 13]. The result of the simplification process is a simplified XQuery query. For instance, a complex
FLWOR expression where FLWOR expressions nested in the For-clause of another FLWOR expression
can be shortened to one single FLWOR expression.

To translate the simplified XQuery, we consider the translation schemes on the principal expressions of
XQuery, including path expressions, FLWOR expressions, functions, and comparison expressions. In the
following sections, we only illustrate the translation schemes on path expressions and FLWOR
expressions.

4.1 Path Expression Translation Scheme

Path expressions such as /a//b are the fundamental building blocks of an XQuery query with which
traversal over the tree structure of XML documents is made possible. To better explain the translation
scheme, we assume a and b are XML elements instead of step expressions. A path expression may
consist of relative path delimiters ‘//’ or wildcards such as ‘*’ or recursive queries, in which case,
recursive views have to be supported by the underlying database to translate such an expression into a
SQL query. Unfortunately, SQL92 doesn’t support such views, neither does Sem-SQL. In our work, we
adopt the idea of [15] to build a Path Table PT to alleviate the difficulty. Each row in PT represents a
distinct path from the root node to the current node. Each path is denoted as a concatenation of the nodes
in the path from the root to the node currently being parsed. The delimiter ‘/’ is used to separate nodes
from each other. Attribute nodes are prefixed with ‘@’ symbol (e.g.
/publication/article, /publication/article/author/@id). This path table can be created during the XML
document parsing process. Because the number of paths in an XML document is considerably less than
the size of the actual XML document, this path table can be made as an in-memory table to reduce the
expensive and time-consuming I/O operations if otherwise placed on a secondary storage. Because of the
fact that PT is generated from an XML tree, where all the possible paths are present, even if there is a
recursive query, such as //monograph[title= “test”]//editor which returns all the editors that are
reachable from the monograph titled “test”, we can find all the matched paths in PT. Thus we can
generate one SQL statement for each case and outer union all the cases together to form a single SQL.

In our work, we take into consideration each of the basic components, such as /E, //E, E1//E2, E/@att, E/..,
of a path expression, where E, E1 and E2 represent XML elements, and att represents attributes of
elements. The following sections show a general translation scheme for the most basic path expression /E.
The translation of the other components is built on /E. Note that the scheme we present here is used for
the reconstruction mode where the information of all the descendents of a node is also returned. The
translation scheme for an evaluation mode in which only the information of the current nodes is requested
is much simpler.

To translate /E in the reconstruction mode:
1) Find the root R of the document, check if R=E, if no, return error, otherwise,
2) Search PT for all the paths pi (i =1..n) which start with /R;
3) Keep an integer attNum whose initial value is 0 to track the number of null that will be put in the

select-clause of the Sem-SQL statement to substitute for the inapplicable attributes;
4) For each matched path pi, search the KnowledgeBase (KB) (a Sem-ODB database where the mapping

of an XML schema to a Sem-ODM semantic schema is stored) to create a navigation path that
corresponds to pi. Suppose the navigation path created for the ith matched path is CR__C1__…__Ci,
and check whether there are paths with the same prefix but ends with @att which indicates these are
attributes. Suppose there are k attributes in pi, and then we create a Sem-SQL query as the following:

select i as label, C
R
__C

1
__ …__C

i
as id

, C

R
__C

1
__ …__C

i
 __order as order,

 attNum k

null, null, …null, C
R
__C

1
__ …__C

i
__att

1
, C

R
__C

1
__ …__C

i
 __att

2
,…, C

R
__C

1
__ …__C

i
__att

k

from C
R

Note that the first column label in the above statement represents different paths. It can be used by the
system to tag the result. It starts with 0, representing the top-most level element. CR represents the
category corresponding to the root R; CR__C1__ …__Ci corresponds to the element appeared as pi;
The third column order denotes the document order of element pi.

5) Increment attNum by k (i.e. attNum = attNum + k)
6) Before generating the final Sem-SQL statement, append null to the select-clause of each individual

statement to ensure that there are 3+attNum items projected;
7) Outer-union all the Sem-SQL statements created above and append Order by 3 so that the result is in

document order. The final Sem-SQL query is shown in Figure 2 (suppose there are m attributes in
total in the final statement, and the root element and last element do not contain attributes).

Figure 2: Sem-SQL Translation for /E in the reconstruction mode

Note that in the above translation, we fill each individual Sem-SQL statement with nulls at the position of
unmatched columns. In this way, several SQL statements with different column types can be unioned
together as one statement, which is the ultimate goal of the outer union approach.

4.2 FLWOR Expression Translation Scheme

Figure 3 shows an informal representation of the FLWOR expression. Note that $x1, $x2, $a1, and $a2 are
variables, and Exp1, Exp2, l1, l2, o1, o2, and gi (i=1..n) represent expressions. Except gi, which appears to
construct the result documents and denotes the ith expression appearing in the return clause, the rest of the
notation is self-explanatory.

Figure 3: Informal Representation of a FLWOR Expression

The translation scheme of an FLWOR expression is summarized as follows.
1) Expand gi with its descendant information. We need to insert all the descendant information into

appropriate positions in a template which contains the return clause of the FLWOR, so that we know
what expressions are needed to be evaluated in the return clause. For instance, return /author should
be translated into return <author id = $u> <name> <first>$f</first> <last> $l
</last></name><addr>$addr</addr></author>. In this way, we might get more expressions than
those present in the original FLWOR expression. Suppose we will have m expressions in the form of
hi (i =1..m) after inserting the descendants of gi (i = 1..n), where m ≥ n.

2) Search the KB for the starting categories S1, S2 based on Exp1 and Exp2.

for $x1 in Exp1,
$x2 in Exp2

let $a1 := ….

$a2: = ….

where l1 and l2

order by o1, o2

return
 g1

…………
 gn

select 0 as label, C
R
as id

, C

R
__order as order, null, ….., null

from C
R

union all m
……………
union all
select i as label,C

R
__C

1
__ …__C

i
as id

, C

R
__C

1
__ …__C

i
 __order as order,

 null,…null, C
R
__C

1
__ …__C

i
__att

1
, C

R
__C

1
__ …__C

i
__att

2
,…, C

R
__C

1
__ …__C

i
 __att

k
,

null, ….. ,null

from C
R

………… m
union all
select n as label,C

R
__C

1
__ …__C

n
as id , C

R
__C

1
__…__C

n
 __order as order,

null,…., null
from C

R
 m

order by 3

3) Look up the Path Table PT to find all the paths that are necessary for evaluating o1 , o2 , l1 , l2 and hi (i
=1..m).

4) Check the KB to generate the navigation paths for all the above XQuery paths. Suppose they are
o1_path, o2_path, l1_path, l2_path, hi_path (i=1..m).

5) Create the following Sem-SQL statement shown in Figure 4 for the FLWOR expression:

Figure 4: Sem-SQL Translation for a Simple FLWOR Expression: the result is ordered by the ordering
specifications o1and o2 in the order by clause and document order of hi

Basically in this case one Sem-SQL statement is created for each hi_path identified by a different label
value and the final statement is produced by unioning all the Sem-SQL statements together. In case that
any of o1, o2, and hi corresponds to more than one navigation path, we create a statement for each different
case with the same label if the difference comes from hi and then use the union all operator. hi__order
represents the document order of each expression in the return clause. By projecting on and selecting
o1_path, o2_path, and hi_path, we achieve both user-defined and document ordering.

5.0 Conclusion and Future Work

The XML query translation is an inevitable step involved in using non-XML databases storing XML data.
In this paper, we present the translation schemes for converting major XQuery expressions into Sem-SQL
queries. The advanced features of Sem-SQL enable a seamless and natural translation from XQuery to
Sem-SQL. For instance, the navigational query paradigm of the Sem-SQL makes it possible to traverse
the categories in a Sem-SQL query the same way as it traverses nodes in an XQuery path expression, thus
it reduces the number of joins operators. In addition, we propose a solution to dealing with recursive
queries by utilizing a path table to accommodate the limitation of Sem-SQL with recursive queries. We
extend the sorted outer union approach with consideration on user-defined orderings.

However, it is worth pointing out that the expressive power of XQuery as a query language for XML data
from both databases and documents prevents a complete and one to one conversion to Sem-SQL as well
as to SQL. Some features of XQuery such as some XML specific built-in functions cannot be
implemented directly via SQL/Sem-SQL due to unmatched semantics, while other features such as mixed
queries on meta-data and data cannot be translated due to incomparable expressive power. To fully and
efficiently support those features, extensions to Sem-SQL/SQL both syntactically and semantically have
to be considered.

6.0 References

select 0, o
1
_path

 ,
 o

2
_path, h

1
_order, h

1
_path, null, …,null

from S1, S2
where Predicate(l

1
_path) AND Predicate(l

2
_path) m+1

union all
select 1, o

1
_path

 ,
 o

2
_path, h

2
_order, null,h

2
_path, …,null

from S1, S2
where Predicate(l

1
_path) AND Predicate(l

2
_path) m+1

union all
…………………
union all
 select m-1, o

1
_path

 ,
 o

2
_path, h

m
_order,null, null, …,h

m
_path

 from S1, S2
 where Predicate(l

1
_path) AND Predicate(l

2
_path) m+1

order by 2,3,4

[1] J. Bosak, et. al. W3C XML Specification DTD.
http://www.w3.org/XML/1998/06/xmlspec-report.html .

[2] S. Boag, D. Chamberlin, et al (Eds.). XQuery 1.0: An XML Query Language. W3C Working Draft,
15 November 2002, http://www.w3.org/TR/xquery/ .

[3] D. Florescu, and D. Kossmann. A Performance Evaluation of Alternative Mapping Schemes for
Storing XML Data in a Relational Database. Technical Report 3684, INRIA, 1999.

[4] G. Kappel, E. Kapsammer, S. Rausch-Schott, and W. Retschitzegger. X-Ray -Towards Integrating
XML and Relational Database Systems. In Proceedings of ER’00, Salt Lake City, Utah, 2000.

[5] C. C. Kanne, and G. Moerkotte. Efficient Storage of XML Data, In ICDE’00, California, 2000.

[6] I. Manolescu, D. Florescu, and D. Kossmann. Pushing XML queries inside relational databases.
Tech. Report No. 4112, INRIA, January 2001.

[7] N. Rishe. TERRAFLY: A High-Performance Web-based Digital Library System for Spatial Data
Access. In Proceedings of ICDE’01, Heidelberg, Germany, 2001.

[8] N. Rishe. Database Design: The Semantic Modeling Approach. McGraw-Hill, 1992.
[9] N. Rishe. Semantic SQL. Internal Document, High-Performance Database Research Center, School

of Computer Science, Florida International University, 1998.

[10] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, et al. Efficiently Publishing Relational
Data as XML Documents. In Proceedings of VLDB’00, Cairo, Egypt, 2000.

[11] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, et al. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In Proceedings of VLDB’99, Edinburgh, 1999.

[12] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The Design and Performance Evaluation of Alternative
XML Storage Strategies. In ACM SIGMOD Record, 31(1):5-10, 2002.

[13] L. Yang, XML Storage and Retrieval Using the Semantic Binary Object-Oriented Database System
(Sem-ODB), PhD Dissertation, Florida International University, 2003.

[14] I. Tatarinov, S. Viglas, K. S. Beyer, et al. Storing and Querying Ordered XML Using a Relational
Database System. In Proceedings of SIGMOD’02, pp 204-215, Madison, Wisconsin, USA, 2002.

[15] M. Yoshikawa, T. Amagasa, et al. XRel: A Path-Based Approach to Storage and Retreval of XML
Documents Using Relational Databases. In ACM Transactions on Internet Technology, 1(1):
110-141, 2001.

http://www.w3.org/TR/xquery/
http://www.w3.org/XML/1998/06/xmlspec-report.html

