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Abstract— Real-time parking availability information is 
important in urban areas, and if available could reduce 
congestion, pollution, and gas consumption. In this paper, we 
present a software solution called PhonePark for detecting the 
availability of on-street parking spaces. The solution uses the 
GPS and/or accelerometer sensors in a traveler’s mobile phone 
to automatically detect when and where the traveler parked 
her car, and when she released a parking slot. PhonePark can 
also utilize the mobile phone’s Bluetooth sensor or piggyback 
on street parking payment transactions for parking activity 
detection. Thus, the solution considers only mobile phones and 
does not rely on any external sensors such as cameras, wireless 
sensors embedded in the pavements, or ultrasonic sensors on 
vehicles. Further contributions include an algorithm to 
compute the historical parking availability profile for an 
arbitrary street block and algorithms to estimate the parking 
availability in real-time for a given street block. The 
algorithms are evaluated using real-time and real world street 
parking data.∗ 

Keywords-transportation mode, bluetooth, activity 
recognition, GPS, Kalman Filter, mobile phones, parking 

I.  INTRODUCTION 
Finding on-street parking spaces in crowded urban areas 

is a painful challenge to drivers and costly to society. In one 
business district of Los Angeles, researchers found that 
vehicles searching for parking traveled a distance equivalent 
to 38 trips around world, produced 730 tons of carbon 
dioxide, and burned 47,000 gallons of gasoline [1] in one 
year. To deal with the parking problem, cities such as San 
Francisco have invested millions of dollars on smart parking 
infrastructures. These infrastructures detect the availability 
of parking spaces using fixed sensors installed in the asphalt. 
The SFPark project in San Francisco [2] has sensors 
covering 8,000 parking spaces which are about 25 percent of 
the available street parking spaces. The total cost of the 
project together with smart parking management is over 
USD $23M [1, 2]. Another project [1] uses ultrasonic 
sensors that are externally mounted on car side-doors to 
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detect parking spaces. The cost of the system for each car is 
approximately US $400, which includes an ultrasonic sensor, 
GPS, and a light weight PC with WIFI card. 

In this paper, we propose a solution, called PhonePark, 
which detects on-street parking availability using mobile 
phones carried by the drivers. The solution does not rely on 
any dedicated infrastructure or external sensors, and 
therefore is much more economical than existing solutions. 
For any driver carrying a mobile device with GPS and/or 
accelerometer, PhonePark can automatically determine when 
and where she parked her car. The proposed technology does 
not rely only on GPS/accelerometer for parking activity 
detection, instead Bluetooth enabled mobile devices can also 
be utilized. Parking activities can also be detected by taking 
advantage of pay-by-phone parking services. 

In the PhonePark solution, for parking detection using the 
GPS/accelerometer, we follow the general principle of 
sensor fusion and classification that is used for context 
detection or activity recognition. First, from training data, we 
build a transportation mode classification model in terms of 
mobility patterns [3]. Then, when parking is to be 
determined, sensor inputs are fed to the already trained 
classification model. Finally, certain transportation mode 
state transitions are detected. For example, for street parking, 
the following transportation mode transitions are expected to 
be observed: car  stationary  walking. Based on this 
transition pattern (i.e., car  stationary  walking), we 
may infer that the driver parked at the stationary point.  

For parking detection via Bluetooth, the pairing 
connection between the driver’s mobile phone and the car’s 
on-board Bluetooth is considered. This relies on the fact that 
nowadays more and more cars have in-vehicle Bluetooth 
functionalities. In this work, parking activities can also be 
detected by pay-by-phone piggyback. The motivation for this 
technology is that over 30 cities such as Washington DC, 
Philadelphia, and San Francisco are using pay-by-phone 
parking systems whereby drivers enter their street parking 
slot number, duration, in addition to other payment 
information [5]. By piggybacking on this payment 
technology, one can further determine when street parking 
slots are occupied and released.   

Now consider how PhonePark would use observations of 
mobile phones to estimate the number of available parking 
spaces in a street block. There are two challenges for this 
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problem. First, PhonePark may produce false observations of 
parking activities due to GPS errors, transportation mode 
detection errors, and Bluetooth pairing errors. Second, not all 
drivers are equipped with PhonePark and therefore the 
observations of PhonePark represent only a portion of the 
full picture. In other words, the penetration ratio of the 
PhonePark enabled mobile phones may be low, so an 
estimate is needed for the determining parking availability on 
a street block.  

In this paper, we introduce an algorithm to construct the 
historical availability profile (HAP) for a street block. This 
algorithm computes estimated values for the mean and the 
variance of parking availability for an arbitrary street block.  

In addition to the HAP construction algorithm, we also 
introduce other algorithms that can estimate the real-time 
parking availability on a street block. These real-time 
estimation algorithms are called parking availability 
estimation (PAE) algorithms and they utilize different 
combinations of the historical parking availability and real-
time observations to estimate the current street parking 
availability.    

In summary, this paper makes the following scientific 
contributions: (1) Algorithms to detect the status of street 
parking slots. These include parking/deparking detection by 
transportation mode transitions,   Bluetooth pairing, and 
parking pay-by-phone piggyback, (2) An algorithm that can 
construct the historical availability profile (i.e., mean and 
variance of parking) for a given street block, (3) Algorithms 
for estimating in real-time the current parking availability on 
a street block, (4) Experimental evaluation of the algorithms 
using actual real-time street parking data from SFPark.org, 
and (5) Theoretical underpinnings of the proposed 
techniques. 

II. OVERVIEW OF PHONEPARK SYSTEM 
The PhonePark software system consists of two 

components, namely parking status detectors (PSDs) and the 
parking availability estimator (PAE) (see Figure 1). A PSD 
runs on a mobile device. It detects when and where a driver 
parks/unparks and whether she pays for parking. When the 
PSD recognizes a parking or deparking activity, it submits a 
report to the PAE component indicating that a parking space 
is occupied or released1. The PAE component aggregates the 
reports of individual PSDs to estimate the number of 
available parking slots in each street block. For estimation, 
PAE considers the facts that not all drivers are equipped with 
the PSD component (i.e., the market penetration ratio of 
PhonePark is not 100%) and the mobile device can have 
false positive and false negative possibilities for parking 
detection. Furthermore, to compensate for the inaccuracy of 
PSD observations, it combines PSD observations with 
historical parking statistics to get the final estimate. 
Historical parking statistics is obtained from the proposed 
HAP construction algorithm while PSD observations are 
obtained from the drivers with the PSD devices. 

                                                           
1  The submission of a parking/deparking activity can be 

anonymized and incentivized. In general, privacy and incentives 
are orthogonal issues that are not addressed in this paper. 

At a high level, the PSD works as follows. It employs a 
transportation mode detection method to track the 
transportation mode of its user. It watches the transitions of 
transportation mode via GPS and/or accelerometer and infers 
parking status from a sequence of transitions. For example, if 
the transition sequence car  stationary  walking is 
observed, then the PSD infers that the driver parked at the 
stationary point. Similarly, if the transition sequence walking 

 stationary  car is observed, then the PSD infers that the 
driver unparked at the stationary point. Additionally, apart 
from the transportation mode transition module for parking 
detection, the PSD also considers Bluetooth. Bluetooth is 
more common than both GPS and accelerometer sensors on 
mobile phones. Thus, further considering Bluetooth as an 
option to GPS/accelerometer improves the market 
penetration ratio of the proposed technology. Further, the 
PSD can also consider pay-by-phone piggyback for parking 
detection.  The use of these PSD’s is described in the next 
section. 

 

 
Figure 1.  Components of the PhonePark system 

An observation of the PSD may be incorrect due to many 
reasons. First of all, the classification of the transportation 
mode may be wrong due to sensor errors and ambiguity 
between different transportation modes. For example, the 
mobility pattern of walking is similar to that of driving in a 
heavy traffic situation. Second, even the transportation 
modes are correctly tracked, the inference from the transition 
sequence may be wrong. For example, the transition 
sequence car  stationary  walking may be the result of a 
passenger being dropped off (as opposed to a driver parking). 
Likewise, Bluetooth pairing or pay-by-phone piggyback can 
have errors.  

All the errors of PSD observations propagate to the PAE 
component when PAE aggregates these observations to 
estimate the number of available parking spaces. 
Furthermore, when PAE scales PSD observations to 
compensate for the market penetration ratio, there are 
sampling errors. PAE takes all these errors into account 
when combining the real-time observations with historical 
statistics. Recall, historic statistics are computed by the 
historical availability profile (HAP) algorithm.   

Apart from studying the effectiveness on real-time 
parking estimation of using the historical statistics and the 
scaled real-time observations solely, we also consider the 
combination of both the historic statistics and the real-time 
observation. The combination strategies are: (1) Using a 
fitted weight scheme and (2) Using an adaptive Kalman 
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Filter scheme. These four schemes are compared with the 
true real-time parking availability in the evaluation section.  

For the fitted weight scheme, based on the market 
penetration ratio of the PhonePark enabled mobile phones, 
false positive, and false negative probabilities of the 
PhonePark mobile devices most effective weight can be 
determined beforehand. Using this predetermine weight, we 
now have the most effective combination of historic statistics 
and real-time observations.  

For the Kalman Filter scheme, the combination is 
essentially a weighted average between the parking 
availability detected by PSDs and the historical statistics as 
obtained from HAP where the weights are proportional to the 
accuracies of the two availability sources. The variances 
represent the two accuracies. In this paper we use a Kalman 
filter, called adaptive, limited memory filter (ALMF) [6], to 
estimate the accuracy of the parking availability detected by 
PSDs. ALMF estimates the accuracy based on the gap 
between the historical statistics and the recent PSD 
observations. It uses this gap to capture the collective effect 
of all kinds of errors in the PhonePark system. Despite its 
simplicity, ALMF has been shown effective in situations 
where error statistics are unknown a priori, changing over 
time, or hard to analyze (see e.g., [6, 7]). Since errors are 
handled by PAE, the process of the PSD is deterministic.  

The Kalman Filter based weighting between PSD-
detected parking availability and historical statistics captures 
the following intuitions: (i) PSD-detected parking 
availability is more useful when the market penetration ratio 
is high and when parking availability is unpredictable from 
historical statistics; and (ii) historical statistics are more 
useful when PhonePark is inaccurate. 

III. PARKING STATUS DETECTOR 
We propose three methods for a PSD to detect parking 

status: 
1. Connection to in-vehicle Bluetooth. This method 

utilizes the Bluetooth connection between the driver’s 
mobile phone and the car to detect parking/deparking 
activities. Nowadays more and more cars have in-vehicle 
Bluetooth capability, which allows the owner of a car to 
register her mobile phone to the in-vehicle Bluetooth system. 
Once the mobile phone is registered, whenever the owner is 
inside the car and the engine is started, the mobile phone is 
automatically connected to the in-vehicle Bluetooth system. 
On the other hand, when the engine is stopped or the owner 
goes away from the car for a short distance (∼10 meters), the 
Bluetooth connection between the mobile phone and the car 
is broken. Thus, if the Bluetooth connection between the 
driver’s phone and the car is broken, then it can be inferred 
that the driver parks the car. If the Bluetooth connection is 
established, then it can be inferred that the driver deparks. 
This concept is illustrated by Figure 2. The Bluetooth ID of 
the car can be used by the PSD to distinguish between the 
Bluetooth connection with car and that with other devices 
such as a Bluetooth headset.  

2. Transportation mode monitoring. This method 
employs a transportation mode detection algorithm to track 
the transportation mode of the driver. It monitors the 

transitions of transportation mode and infers parking status 
from a sequence of transitions. For example, if the transition 
sequence driving  stationary  walking is observed, then 
the PSD infers that the driver parked at the stationary point. 
Similarly, if the transition sequence walking  stationary  
driving is observed, then the PSD infers that the driver 
deparked at the stationary point. This concept is illustrated 
by Figure 3. In our prior work we explored this method (see 
[8]). The reliability of this method is enhanced by detecting 
the activity of going to a nearby pay-box (as in Chicago 
Parking see [18]), paying, and returning to the car to place 
the ticket on the dashboard (see our prior work in this 
direction in [8]). Using only transportation mode transitions, 
we achieved over 85% accuracy for parking/deparking 
detection on the PSD. Combining this with Bluetooth and 
pay-by-phone piggyback can improve the accuracy further.    

 

  
Figure 2.  Parking detection based on Bluetooth connection between 

mobile phone and car 

 
Figure 3.  Parking detection based on transportation mode transitions 

 

 
Figure 4.  Parking detection using pay-by-phone piggyback 

3. Pay-by-phone Piggyback. This method takes the 
advantage of the pay-by-phone parking payment service. 
This service allows a driver to pay for parking by entering to 
her mobile phone the parking slot number (posted on parking 
meters) and parking duration [4]. The information is then 
submitted from the mobile phone to a payment service 
system. The pay-by-phone may help parking detection in the 
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following way. With the mobile phone user’s agreement, the 
PSD (which resides on the same phone as the pay-by-phone 
application) monitors the user’s usage of pay-by-phone 
service. When the user submits the payment, the PSD infers 
that the user has parked (see Figure 4). The PSD may 
possibly overhear the parking duration input and thus predict 
the time of deparking. The pay-by-phone service has been 
available in over 30 cities in US including San Francisco, 
Chicago, Washington DC, etc. (see [4]). 

IV. CONSTRUCTING HISTORICAL PROFILES 
The historical profile of a street block contains the mean 

and variance of the block’s parking availability as a function 
of time. In this section, we discuss how to construct a 
historical profile from historical PSD observations.  

A. Historical Availability Profile 
Periodically a street block S experiences a status such 

that all the parking slots in S are available. For example, 
there may be a limitation that parking is prohibited from 8am 
to 9am of each day, or there is street cleaning every Tuesday 
from 1pm to 3pm during which parking is prohibited. When 
parking is prohibited, all parking slots are available. The 
time period during which parking is permitted is referred to 
as a permitted period. For example, if parking is prohibited 
from 8am to 9am of each day, the permitted period is from 
9am of a day to 8am of the next day.  

Time is discrete and proceeds by an atomic unit (e.g., 
second). Define the parking availability of S to be the 
number of available parking slots in S. We assume that the 
time unit is small (e.g., second) such that the parking 
availability can only change at the beginning or end of a time 
unit but not during it. A historical availability profile (HAP) 
for S includes the average and variance of parking 
availability of S at each time point of the permitted period.  

We distinguish between two types of PSD observation 
errors. One is called false negative which occurs when a 
parking or deparking activity is not detected by a PSD the 
owner of which performs the activity. Another type is called 
false positive which occurs when a PSD detects an activity 
that does not actually happen. The probability that a false 
negative error occurs is called the false negative probability 
and denoted by fn. fn is a fixed parameter. The probability 
that a false positive error occurs is called the false positive 
probability and denoted by fp. fp may vary depending on 
how the observation is generated. fp is attached to the PSD 
report.     

B. HAP Construction Algorithm 
Denote by N the total number of parking slots on the 

street block S. Denote by b the penetration ratio of 
PhonePark. The HAP construction algorithm starts with the 
beginning of a permitted period. At this time point the 
parking availability is equal to N. Then when a parking 
report is received, the parking availability is decreased by 

)1(
1

fnb
fp

−⋅
− . This is called scaled decrease. The intuition 

behind scaled decrease is as follows. Out of all vehicles that 

park, only fraction b of them are equipped with PhonePark 
and out of these PhonePark equipped vehicles only fraction 
(1−fn) detect the parking activity and send parking reports. 
Thus, each received parking report represents 

)1(
1

fnb −⋅
actual parking activities. On the other hand, due to false 
positive errors, only fraction fp−1 of received parking 
reports represent actual parking activities. Similarly, when a 
deparking report is received, the parking availability is 
increased by 

)1(
1

fnb
fp

−⋅
− . This is called scaled increase. In 

this way we obtain an estimated function that describes how 
the parking availability changes over time for the considered 
permitted period. We repeat this procedure for a number of 
permitted periods and average among all the obtained 
functions. Specifically, denote by )(ˆ tai

 the parking 
availability estimated by scaled decrease or increase at time t 
for the i-th permitted period. Denote by )(ˆ tq  the estimated 
average and by )(ˆ tQ  the estimated variance of )(ˆ tai

, 
respectively. 

m
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where m is the number of permitted periods for which 
parking availability is collected. The HAP algorithm stops 
when a certain level of confidence for the accuracy of )(ˆ tq  
is reached, e.g., the difference between )(ˆ tq and the true 
average parking availability at the time t is smaller than 2 
with 95% confidence. In the rest of this section we discuss 
how the confidence is computed.  

1) Computation of Confidence 
Let {PP1, PP2,…, PPm} be a sequence of permitted 

periods for a block S for which parking availability has been 
collected. We make the following denotations: 

)(tai
: the true parking availability at the time t of the PPi. 

)(tPi
: the true number of parking activities starting from 

the beginning of PPi until time t of PPi. 
)(tDi

: the true number of deparking activities starting 
from the beginning of PPi until time t of PPi. 

Clearly, )()()( tDtPNta iii +−= . 
)(tpi : the number of parking activities detected by 

PhonePark starting from the beginning of PPi until time t of 
PPi. 

)(tdi : the number of deparking activities detected by 
PhonePark starting from the beginning of PPi until time t of 
PPi. 

Throughout the analysis we make the following three 
reasonable assumptions: 
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1. PhonePark-equipped vehicles are uniformly distributed 
among all vehicles, thus a parking (or deparking) activity 
is performed by a PhonePark-equipped vehicle with 
probability b.  

2. Parking activities, if detected, are detected independently 
of each other. In other words, given any two parking 
activities A and B such that each is performed by a 
PhonePark-equipped vehicle, whether A is detected or 
not is independent of whether B is detected or not. 

3. )(),...,(),( 21 tatata m are independently and identically 
distributed. Particularly, they have a common mean 
which is denoted by q(t). 
Furthermore, we consider the situation in which only the 

Bluetooth connectivity method is used for parking 
availability. In this situation, false positive errors are 
negligible. Thus, we assume that fp=0. Now we show that 

)(ˆ tai
is an unbiased estimate of )(tai

. We treat )(ˆ tai
as a 

random variable here since it depends on the parking and 
deparking detections which involve random errors. 

Lemma 1: The conditional expectation of )(ˆ tai given ai(t) 

is equal to )(tai , i.e., )())(|)(ˆ( tatataE iii = . 
Proof: Observe that since each parking activity is 

detected by PhonePark with probability b⋅(1−fn) and parking 
activities are detected independently of each other, pi(t) 
follows a Binomial distribution with n=Pi(t) and p=b⋅(1−fn). 
That is, 

pi(t)|Pi(t)∼Binomial(Pi(t), b⋅(1−fn))  (4.3) 
Similarly, 

di(t)|Di(t)∼Binomial(Di(t), b⋅(1−fn))  (4.4) 
When fp=0, according to the HAP algorithm, it follows 

that 

)1(
1))(|)((

)1(
1))(|)(()(|)(ˆ

fnb
tDtd

fnb
tPtpNtata

ii

iiii

−⋅
⋅

+
−⋅

⋅−=
  (4.5) 

Thus, 
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−⋅
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According to Eq. 4.3 and Eq. 4.4, it follows that 
)1()())(|)(( fnbtPtPtpE iii −⋅⋅=  (4.7) 
)1()())(|)(( fnbtDtDtdE iii −⋅⋅=  (4.8) 

Thus, 
)()()())(|)(ˆ( tatDtPNtataE iiiii =+−=  (4.9) 

Q.E.D. 
Lemma 2. )())(ˆ( tqtaE i =  for i=1,2,…, m. 
Proof:  
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Q.E.D. 
Now we study the relationship between )(ˆ tq  computed by 

Equation 4.1 and the true mean q(t). Since )(),...,(),( 21 tatata m

are independently and identically distributed,  
)(ˆ),...,(ˆ),(ˆ 21 tatata m are also independently and identically 

distributed. Recall that  

m

ta
tq

m

i
i�

== 1

)(ˆ
)(ˆ   (4.11) 

According to the central limit theorem, )(ˆ tq
approximately follows a normal distribution with mean equal 

to ))(ˆ( taE i
 and variance equal to 

m
tai ))(ˆvar( . According to 

Lemma 2, )())(ˆ( tqtaE i = . ))(ˆvar( tai is set to be )(ˆ tQ  
computed by Equation 4.2. 

Now we can talk about confidence towards estimating 
q(t). That is, given an error tolerance δ, with what probability 
the difference between )(ˆ tq  and q(t) is smaller than  δ. Let 

))(ˆvar( ta
m

i

⋅= δλ . According to the property of normal 

distribution,  
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Equation 4.12 quantifies the following intuitions: i) the 
more samples are collected (i.e., the bigger m), the higher 
confidence; ii) the lower requirement on reliability (i.e., the 
bigger δ, the higher the confidence; iii) the higher fluctuation 
of the estimated availability (i.e., the bigger  )(ˆ tQ ), the lower 
the confidence.  

Example: Suppose that the standard deviation of 
)00:8(ˆ amai
is 10 (i.e., the average fluctuation of estimated 

availability at the 8:00am is 10). Now if we want the error of 
the estimated mean )(ˆ tq  and the true mean q(t) to be smaller 
than 2 with 90% confidence, then we need to collect 68 
permitted periods. This amounts to about two months if each 
day is a permitted period. 

V. PARKING AVAILABILITY ESTIMATION ALGORITHMS 
In this section we present four algorithms for estimating 

parking availability in real-time. Denote by x(t) a random 
variable representing the true parking availability in S at time 
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t of a permitted period. Denote by )(ˆ tx the parking 
availability estimated for time t of the same permitted period. 

Historical Statistics (HS). In HS, the real-time parking 
availability at time t of a permitted period is taken to be the 
estimated historical mean q(t), i.e.,  

)(ˆ)(ˆ tqtx =  
Scaled PhonePark (SPP). In SPP, PSD-observed parking 

availability is scaled to the entire set of parking spaces in a 
street block based on the penetration ratio and detection 
accuracy. Specifically, in SPP, the estimation of parking 
availability is initialized to be N at the beginning of a 
permitted period. Then when a parking report is received, the 
parking availability is decreased by 

)1(
1

fnb
fp

−⋅
−  and set to 0 if 

it becomes negative after the decrease; when a deparking 
report is received, the parking availability is increased by 

)1(
1

fnb
fp

−⋅
−  and set to N if it exceeds N.  

Weighted Average (WA). This algorithm computes a 
weighted average between the historical mean and the scaled 
PSD-observed parking availability. Specifically, let )(ˆ ta be 
the parking availability estimated by SPP. Then 

)(ˆ)1()(ˆ)(ˆ tawtqwtx HSHS −+=  (5.1) 
The weight wHS is determined by experiments as will be 

discussed in section VI.C.  
Kalman Filter (KF). We make the following two 

hypotheses: 
Hypothesis 1. The true parking availability is equal to the 

historical mean plus a Gaussian noise with mean zero and 
variance equal to the historical variance, i.e., 

)()()( twtqtx +=  (5.2) 
where w(t) is a random variable normally distributed 

with mean zero and variance Q(t). w(t) is called the state 
noise. 

 
Hypothesis 2. The scaled PSD-observed parking 

availability (i.e., the availability estimated by SPP) is equal 
to the true parking availability plus a Gaussian noise, i.e.,  

)()()(ˆ tvtxta +=  (5.3) 
where v(t) is a random variable normally distributed with 

mean zero and variance R(t); R(t) are to be estimated. The 
mean of v(t) is zero because the expectation of )(ˆ ta  is equal 
to x(t) according to Lemma 1. v(t) is called the observation 
noise.  

Using Kalman filter, and replacing q(t) by )(ˆ tq , x(t) is 
estimated as follows: 

observed residual: )(ˆ)(ˆ)( tqtaty −=
  (5.4) 

Kalman gain: )()(
)()(

tRtQ
tQtK

+
=

  (5.5) 
state estimate: )()()(ˆ)(ˆ tytKtqtx ⋅+=   (5.6) 

 
Incorporating (5.4) and (5.5), Eq. (5.6) can be rewritten 

as 

)(ˆ
)()(

)()(ˆ
)()(

)()(ˆ ta
tRtQ

tQtq
tRtQ

tRtx ⋅
+

+⋅
+

=
  

(5.7) 

From Eq. 5.7 it can be seen that the estimated parking 
availability is a weighted average between the PSD-observed 
parking availability (i.e., )(ˆ ta ) and the historical mean (i.e., 

)(ˆ tq ). The weights are inversely proportional to the expected 
errors. Specifically, Eq. 5.7 has the following properties: 

1. The bigger the historical variance (i.e., Q(t)), the 
heavier is a(t) weighted towards the final estimate. This 
property quantifies the intuition that PhonePark is more 
useful when the true availability fluctuates in a wide range 
from the historical mean. In this case the parking availability 
is highly unpredictable and thus real-time observations are 
more important.  

2. The bigger the value of R(t), the heavier )(ˆ tq  is 
weighted. This property quantifies the intuition that the 
historical statistics are more useful when real-time 
observations are inaccurate. 

The observation noise parameter R(t) is estimated by the 
method introduced in [6] called ALMF (adaptive, limited 
memory filter).  

VI. EVALUATION BY SIMULATIONS 

A. Simulation Method 
Our simulations used real world parking availability data 

retrieved from SFPark.org. SFPark.org provides APIs for 
access to real-time parking availability for street blocks in 
the city of San Francisco. Using these APIs we built a 
program that retrieves parking availability of street blocks 
every second. The simulations use SFPark data collected in a 
four month period from April 10 to August 11, 2012.  

The experiments were conducted on two street blocks in 
San Francisco, namely 300-398 Polk Street and 2050-2098 
Chestnut Street (see Figure 5). The Polk block has 12 
parking slots in total and 4.6 available slots on average. The 
Chestnut block has 4 parking slots in total and 1.5 available 
slots on average.  

 
Figure 5.  Street blocks considered for evaluation 

For a considered street block, we derive a sequence of 
PSD reports from its SFPark data, using the following 
procedure. We sequentially visit each change of parking 
availability recorded in the SFPark data. Let tlast be the time 
of the last visited change and tcur be the time of the currently 
visited change. If the change indicates that some parking 
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slots have been released since tlast, then each of these parking 
slots is released by a PhonePark driver with probability b. 
Furthermore, a release executed by a PhonePark driver is 
detected by PhonePark with probability 1−fn. Thus, each 
release since tlast is detected by PhonePark with probability 
b⋅(1−fn). Thus, for each release since tlast, a deparking report 
is generated with probability b⋅(1−fn), at time tcur. Let r be 
the number of generated reports for the currently visited 
change. In addition, we generate a random number of extra 
deparking reports which simulate false positive errors. The 
random number follows a negative Binomial distribution 
NB(r, fp)2. The justification is that, by its definition, NB(r, fp) 
represents the number of false positive reports that are 
supposed to be generated until r correct reports are generated, 
given that the probability for a report to be false positive is fp. 
A similar procedure follows for the case that the change at 
tcur indicates that some parking slots have been occupied 
since tlast. Now we are ready to evaluate various parking 
availability estimation algorithms. We use 10-fold cross 
validation. For this we split the SFPark data of a street block 
into pieces such that each piece covers exactly one permitted 
period. These pieces are then used for sampling of cross 
validation. All the system parameters and their values are 
shown in Table I. 

For the evaluation of the HAP algorithm the performance 
measure is the root mean square error (RMSE) between the 
estimated mean computed by HAP and the true mean. For 
the evaluation of the PAE algorithms, we consider two 
performance measures: 

1. The RMSE between the estimated average availability 
and the true average availability; 

2. The boolean availability accuracy which is defined as 
follows. We say that a PAE algorithm is boolean correct at 
time t if (i) the algorithm indicates that there is at least one 
slot available and there indeed is, or (ii) the algorithm 
indicates that there is not any slot available and there indeed 
is not. The boolean availability accuracy is defined to be the 
percentage of the number of time units at which a PAE 
algorithm is boolean correct. 

TABLE I.  SYSTEM PARAMETERS AND THEIR VALUES. 

Parameter Symbol Value 
Penetration ratio b 1%, 50% 

False negative  probability fn 0, 0.05, 0.1, 0.15, 0.2, 0.25 
False positive probability fp 0, 0.05, 0.1, 0.15, 0.2, 0.25 

Length of collection period  4 months 
Length of permitted period  1 day 

Length of time unit  minute 

B. Evaluation of HAP 
In this subsection, we evaluate the performance of HAP 

on computing historic parking availability profiles for a 
street block. Each experiment is conducted as follows. For 
each permitted period, both the historic mean and HAP’s 
estimation is recorded. For each time unit within the 
permitted period, the mean of both HAP’s estimation and the 
historic mean are computed across the permitted periods. 

                                                           
2 In simulations fp is fixed for each experiment. 

The RMSE is then computed across all the time units. Each 
experiment is repeated several times and the average RMSE 
taken. 

Figures 6-9 show the RMSE of HAP From Figure 6 it 
can be seen that for the Polk block, the RMSE of HAP is 
below 2.3 when the penetration ratio is 1%. On the other 
hand, the average true availability is 4.6. A higher 
penetration ratio or a longer collection of historical 
observations can increase accuracy. For example, Figure 7 
shows that when the penetration ratio increases to 50%, the 
RMSE of HAP is below 0.72, which is 16% of the average 
true availability of the Polk block. For the Chestnut block, 
the RMSE is below 0.57 when the penetration ratio is 1% 
and below 0.47 when the penetration ratio is 50%, while the 
average true availability is 1.5 (see Figures 8 and 9). Also, 
observe that as the false positive or false negative probability 
increases, the algorithm generally becomes less effective. 

 

 
Figure 6.  RMSE of HAP, b=1%, Polk St. 

 
Figure 7.  RMSE of HAP, b=50%, Polk St. 

 
Figure 8.  RMSE of HAP, b=1%, Chestnut St. 
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Figure 9.  RMSE of HAP, b=50%, Chestnut St. 

C. Tuning-up Weighted-Average (WA) 
We conduct experiments to determine the optimal weight 

wHS for the WA method. We vary wHS between 0 and 1 with 
a step size of 0.1. Figure 10 shows that different weights 
produce . HAP’s estimation of )(tq is done using the same 
penetration ratio as in computing )(ˆ ta  for all the 
configurations in Figure 10.  For example, if 5% penetration 
ratio is considered for estimating )(tq  by HAP, then 5% is 
also utilized for )(ˆ ta estimation. 

From Figure 10, it can be seen that the optimal weight, 
i.e., the weight that leads to minimum RMSE, depends on 
parameters including the penetration ratio b, the false 
positive probability fp, the false negative probability fn. For 
example, the optimal weight is 0 when b=1%, fn=fp=0.1 for 
the Chestnut block whereas it is 0.6 when b=50%, 
fn=fn=0.25. Figure 10 demonstrates that the optimal weight 
for the WA method can be calibrated.   

 
Figure 10.  Determining weight (wHS) for WA 

D. Comparison of HS, SPP, WA, and KF 
In this section, we present evaluation results for the four 

algorithms for estimating street parking availability in real 
time. The four parking availability estimation algorithms are 
(1) Scaled PhonePark (SPP), (2) weighted average (WA), 
historical statistics (HS), and (4) Kalman Filter (KF). For the 
WA approach, the optimal weight is determined as discussed 
in section VI.C.  

 

  
Figure 11.  RMSE of PAE algorithms, b=1%, Polk St. 

  
Figure 12.  RMSE of PAE algorithms, b=50%, Polk St. 

  
Figure 13.  RMSE of PAE algorithms, b=1%, Chestnut St. 

 
Figure 14.  RMSE of PAE algorithms, b=50%, Chestnut St. 

Comparison on RMSE. Figures 11-14 show the RMSE 
performance of the PAE algorithms for different penetration 
ratios and different street blocks. From the figures it can be 
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seen that in most cases KF has the lowest RMSE among all 
the algorithms. Furthermore, for all PAE algorithms, the 
RMSE decreases as the penetration ratio increases. 
Particularly, when the penetration ratio is 1%, the RMSE of 
KF for Polk St. is about 2 (see Figure 11), which is 40% of 
the average parking availability of the street block. When the 
penetration ratio increases to 50%, the RMSE of KF reduces 
to about 0.6 (see Figure 12), which is 13% of the average 
parking availability. For the Chestnut St., the RMSE of KF is 
30% of the average parking availability when the penetration 
ratio is 1% (see Figure 13).  

In most cases, WA is second to KF in terms of the RMSE 
performance. This indicates that dynamic weighting between 
PSD-observed parking availability and the historical mean, 
as done in KF, works better than static weighting as done in 
WA. In addition, the accuracy of WA is higher than that of 
SPP and HS. This shows the benefit tuning up wHS for WA. 

 

  
Figure 15.  Boolean availability accuracy, b=1%, Polk St. 

  
Figure 16.  Boolean availability accuracy, b=1%, Chestnut St. 

Comparison on boolean availability accuracy. Figures 
14-16 show the boolean availability accuracy of the 
algorithms. From the figures it can be seen that WA has the 
highest accuracy among all the algorithms. For the Polk St., 
the accuracy of WA reaches 90% even when the penetration 
ratio is only 1% (see Figure 15). For the Chestnut St., the 
accuracy of WA reaches 70-75% when the penetration ratio 
is 1% (see Figure 16). For both blocks, HS is second to WA. 
Notice that even though KF is better than WA on RMSE, it 
is not effective as WA on boolean availability accuracy. 

VII. RELATED WORK 
A number of approaches have been considered for 

monitoring parking spaces. Some approaches monitor 
parking spaces by color histogram classification and car 
feature point detection from still images captured by 
externally mounted cameras [9, 10]. Our solution only needs 
sensors on a mobile phone and not external cameras. There 
exist other systems that allow travelers to access parking 
information and make prior reservations for parking in areas 
such as airports and rail stations [12, 13]. PhonePark is 
different and focuses on street parking.   

The GPS sensor has been used in the past for parking 
guidance. For example, GPS guided parking is used in [14]. 
PhonePark solves a different problem, namely automatically 
detecting parking and deparking activities. The available 
parking spaces detected by PhonePark may serve as an input 
to the parking guidance system.   

The availability of the vacant parking spaces can be 
calculated by external sensors such as those installed in the 
parking areas, which count the number of cars which enter 
and exit from the parking space [2]. For example, in San 
Francisco, several parking projects have been initiated [2, 
15] that utilize externally implanted sensors. However, this 
strategy is expensive to deploy and maintain. For example, in 
one project that covers 8000 parking spaces the cost was 
over USD $23 million  [1, 2]. The proposed work in this 
paper is not dependent on external sensors. 

Ultrasonic sensors at the top of each parking space or on 
vehicle side-doors [1] can be used to sense the availability or 
unavailability of each parking space. Our solution uses only 
sensors available on mobile phone to infer when and where a 
traveler had parked their car. Sensors implanted under road 
surfaces or attached to the car side-doors are expensive to 
deploy and maintain (e.g., [2] cost USD $500 per system for 
each parking space, and [1] cost USD $400 per system for 
each car). These sensors may underperform in extreme 
weather. For example, in heavy snow these sensors may be 
covered. Using mobile phones is cheaper, more convenient, 
and more flexible.  

The works [11, 16, 17] are based on parking but the focus 
is on how to choose parking slots ideally in competitive 
parking settings. Thus, in these other works routing to the 
most optimal parking slot is the focus. This paper is different 
and focuses on estimating the current street parking 
availability on a street block in real time.  

The work in [19, 22] analyze the capacity of an 
opportunistic system to assist the search for parking space. 
Vehicles searching for parking space are equipped with 
sensors that allow them to sense the location and status of 
parking spots as they drive across the city. This information 
is subsequently shared upon encounters with other vehicles 
or submitted to a central server. The proposed work in this 
paper is different and focuses on detecting and estimating the 
availability of street parking spaces. On the other hand, [19, 
22] focus on optimizing the effectiveness of the parking 
search process through user oriented performance metrics, 
such as the parking search time, route length, and the 
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proximity of the found or assigned parking spot to the user 
travel destination. 

Our work is orthogonal to [5] and [24] which study how 
parking availability information is disseminated and how 
parking slots are reserved and allocated among vehicles in a 
vehicular ad-hoc network.   

Other areas of parking research includes pursuing 
parking spaces and responding to pricing policies about 
public and private parking facilities that is studied in [20, 
21]. The drivers are modeled as strategic agents who make 
rational decisions while minimizing the cost of the acquiring 
parking spots, under deterministic or probabilistic 
information for the overall parking demand.  

Google’s approach to parking status detection is called 
OpenSpot [23] and relies on drivers to manually report an 
empty parking spot when they depark or see one available. 
This system is cumbersome and drivers don’t feel 
comfortable to use their mobile phones for manual reporting 
while driving. The proposed approach in this paper 
automates parking status detection and manual entry of 
available street parking spaces is not required.  

VIII. CONCLUSIONS 
In this paper, parking status detection, historical parking 

profile construction, and parking estimation algorithms are 
proposed. The algorithms are validated using real-time and 
real world parking availability data. For parking status 
detection, we propose a cost effective solution that utilizes 
mobile phone sensors such as GPS, accelerometer, and 
Bluetooth sensors. Furthermore, the parking status detection 
algorithm may piggy back on pay-by-phone for parking 
transactions.  

Given the fact that not all drivers carry a mobile phone 
and the fact that not all drivers with a mobile phone have the 
PhonePark system installed, the penetration ratio of the 
PhonePark system may not be 100%. Additionally, 
PhonePark may produce false observations of parking 
activities due to GPS errors, transportation mode detection 
errors, and Bluetooth pairing errors. The parking availability 
estimation algorithms take these limitations into 
consideration and then provide a final estimate on the 
availability of street parking spaces.  

Specifically, parking availability estimation (PAE) 
algorithms estimate the street parking availability in real-
time by combining historical parking statistics with real-time 
parking observations. Several approaches on combining 
historical parking statistics with real-time parking 
observations are considered. Experimental and theoretical 
analysis demonstrate the effectiveness of the parking 
availability estimation algorithms. Specifically, for 
penetration ratios of 1%, the average error of street parking 
availability estimation is below 2. More studies show that the 
combination of historical parking statistics and real-time 
parking observations as done in weighted average (WA) and 
Kalman Filter (KF) is more effective than using solely 
historical parking statistics (HS) or solely real time 
observations (SPP).  

In general, the proposed approach is economical, 
convenient, and flexible. It produces good estimation in real-

time on the availability of street parking spaces. The 
estimation of parking availability has potential to improve 
drivers’ parking experience by saving parking search time, 
reducing gas consumption and CO2 emission.  
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