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Abstract-Wei address the problem of large scale probabilistic 
association rule mining and consider the trade-otIs between 
accuracy of the mining results and quest of scalability on 
modest hardware infrastructure. We demonstrate how exten­
sions and adaptations of research findings can be integrated 
in an industrial application, and we present the commercially 
deployed SILVERBACK framework, developed at Voxsup Inc. 
SILVERBACK tackles the storage efficiency problem by proposing 
a probabilistic columnar infrastructure and using Bloom filters 
and reservoir sampling techniques. In addition, a probabilistic 
pruning technique has been introduced based on Apriori for 
mining frequent item-sets. The proposed target-driven technique 
yields a significant reduction on the size of the frequent item-set 
candidates. We present extensive experimental evaluations which 
demonstrate the benefits of a context-aware incorporation of 
infrastructure limitations into corresponding research techniques. 
The experiments indicate that, when compared to the traditional 
Hadoop-based approach for improving scalability by adding 
more hosts, SILVERBACK - which has been commercially de­
ployed and developed at Voxsup Inc. since May 2011 - has much 
better run-time performance with negligible accuracy sacrifices. 

I. INTRODUCTION 

Behavioral targeting refers to techniques used by advertisers 
whereby they can reach target audience by specific interests 
and/or users' activity history. 

To increase the effectiveness of their campaigns, advertisers 
employ behavioral targeting of customers, by capturing data 
generated by user activities. In the context of social websites 
behavioral data [ 1 ] ,  [2] is generated in the form of likes, posts, 
retweets, or comments - however its foremost characterization 
is the large volume. For example in March 20 1 2, nearly 1 
billion of public comments or post likes were generated by 
Facebook users alone, according to our estimation. 

Mining valuable knowledge from behavioral data relies on 
the data mining techniques developed for more traditional data 
sources. However, it turns out that analyzing the public social 
web and extracting the most relevant items (i.e., frequent item­
sets) is a valuable application of association rule mining to 
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large behavioral databases for a particular commercial interest. 
An interest could mean a group of online users, a brand 
or a product - e.g., the brand "Nikon" is a description of 
an interest in cameras. Given a set of interests and a large 
behavioral database of transactions of user activities in online 
social networks, an interesting task would be finding a list 
of relevant interests that share a similar demographic. As 
it may be observed, this operation is analogous to finding 
frequent item-sets and association rules from a large number 
of transactions of co-occurrences of the items [3].  

The scale of the data in the online behavioral world is one 
factor posing challenges of a different nature, with respect to 
the existing works on association mining. We are challenged 
with a behavioral database containing over 10 billion trans­
actions, up to 30,000 distinct items and growing by over 30 
million transactions every day. 

At the heart of the motivation for this project are the 
following two, in some sense, complementary observations: 
( 1 )  Adding more hardware could help addressing the scalabil­
ity - however, what if a Big Data startup cannot afford this 
"brute force" avenue of attaining sufficient computing power? 
Contrary to large enterprizes like Facebook or Twitter, many 
of their smaller-in-scale partner startups have few database en­
gineers challenged with designing a system that could handle 
inundating amount of data sent from their larger social network 
partners. Constraints on the budget and even considerations for 
energy-saving call for designing alternatives to the simple "put 
it on more machines and scale" approach, and are dictating 
careful designs on commodity hardware. 
(2) The utility of extracted knowledge from the large scale 
behavioral data may be improved by proper exploitation of 
statistical techniques. Probabilistic approaches, for as long as 
they do not affect the accuracy of mining results past certain 
degree of quality assurance, do seem like viable avenues 
towards efficient storage schemes. 

Our main contribution presented in this paper is SILVER­
BACK - a probabilistic framework for accurate association 
rule and frequent item-set mining at massive streaming scale, 
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implemented on a commodity hardware. It relies on a column­
based storage for managing large database of transactions, 
incorporating Bloom filters and appropriate sampling tech­
niques to yield faster probabilistic database while maintaining 
satisfactory accuracies. Complementary to this, we develop 
an Apriori [4], [5] based algorithm to probabilistically prune 
candidates without support-counting for every candidate item­
set. Our experimental findings demonstrate that S ILVERBACK 

is significantly more efficient than a generic MapReduce 
implementation. The framework and algorithmic implemen­
tations have been successfully deployed at large scale for 
commercial use and progressively improved to the current 
version since May 20 1 1. 

In the rest of this paper, after brief preliminaries and 
problem formulation (Section II), in Section III we position 
the work with respect to the related literature and present 
some observation justifying our approach. Sections IV and 
V address in greater detail the storage and infrastructure, as 
well as (versions of) algorithmic designs. In Section VI we 
present our comprehensive experimental observations, and in 
Section VII we conclude the work and outline directions for 
future work. 

II. PROBLEM FORMULATION 

We now give a more formal specification of the tasks 
addressed in this work. 

Given large databases of users' activity log, the challenge in 
our application is to parsimoniously and accurately compute 
target-driven frequent item-sets and association rules, and 
provide a real-time on-demand response. 

Let V denote a (large) list of users' activities across public 
walls in the Facebook network (or handles from Twitter), con­
sisting of quadruples (Ui,wi,ti,ai) E V (i = O,l, . . .  ,IVI) 
denoting individual user's activity. The interpretation is that 
for i-th transaction, user Ui made activity of type ai on wall 
Wi at timestamp ti. Each Ui belongs to U, the set of all user 
IDs; each Wi belongs to W, the set of all wall IDs. In practice, 
IWI « lUI « IVI· Therefore, it is entirely expected that 
Ui = Uj or Wi = Wj for some i =I- j. 

Aggregating the wall IDs in transactions from V by user 
ID generates Vu - which is a database of behavioral trans­
actions. There is a clear analogy between Vu and the famous 
supermarket example of frequent item-set mining. User IDs 
in Vu are equivalent to transactions of purchase; walls that a 
particular user has activities upon are equivalent to the items 
purchased in a particular transaction. In this paper, we use wall 
and item interchangeably. 

For a given (minimal) support level ex, a frequent item-set 
F, is a subset of W such that there are at least ex transaction in 
Vu. Fb a k-item-set, denotes a frequent item-set with exactly 
k number of items. A target-driven rule is generally defined 
as an implication of the fonn X =} Y where X, YeW, 
X n Y = 0, X U Y = Fb and Y is given as the target. 

The goal, given a live and rapidly growing V and a 
target Y, is to efficiently discover rules that imply Y. As an 

illustration, Vu in our settings is equivalent to an 800-million­
by-30,OOO table that would have over 20 trillion cells in full 
representation. 

III. RELATED WORK 

This section gives an overview of a body of relevant works 
and casts our work in that context. 

A. Association Mining 

Association Mining aims at finding correlations between 
items in a dataset. And despite the recent advances in parallel 
association mining algorithms [6] [5],  the core technique is 
largely unmodified. The popular Apriori [4] algorithm iden­
tifies the frequent items by starting with small item-sets, and 
only proceeding to larger item-sets if all subsets are frequent -
incurring a cost-overheads because in every count step it scans 
the entire database. Several techniques have been proposed to 
improve issues of Apriori such as counting step, scanning and 
representing database, generating and pruning candidates and 
ordering of items, some of which we discuss in detail: 

1) Max-Miner: Max-Miner [ 10] addresses the limitations 
of basic Apriori by allowing only maximal frequent item-set 

(long patterns) to be mined. An item-set is maximal frequent 
if it has no superset that is frequent. This reduces the search 
space by pruning not only on subset infrequency but also on 
superset infrequency. 

Max-Miner uses a set enumeration tree which imposes 
a particular order on the parent and child nodes, but not 
its completeness. Each node in the set enumeration tree 
is considered as a candidate group (g). A candidate group 
consists of two item-sets. First called head (h(g», which 
is the item-set enumerated by the node. The second called 
tail (t(g», which is an ordered set and contains all items 
not in h(g). The ordering in the tail item-set indicates how 
the sub-nodes are expanded. The counting of support of a 
candidate group requires computing the support of item-sets 
h(g), h(g) u t(g), h(g) U {i},Vi E t(g). Superset pruning 
occurs when h(g) u t(g) is frequent. This implies that item­
set enumerated by sub-node will also be frequent but not 
maximal, and therefore the sub-node expansion can be halted. 
If h(g) u {i} is infrequent then any head of a sub-node that 
contains item i is infrequent. Consequently, subset pruning can 
be implemented by removing any such tail item from candidate 
group before expanding its sub-nodes. 

Although Max-Miner with superset frequency pruning re­
duces the search time, it still needs many passes of the 
transactions to get all the long patterns - becoming inefficient 
in terms of both memory and processor usage (i.e. storing 
item-sets in a set and iterating through the item-sets in the 
set) when working with sets of candidate groups. 

2) Frequent Pattern (FP) Growth: FP-Growth [ 1 1 ] gains 
speed-up over Apriori by allowing frequent item-set discovery 
without candidate item-set generation. It builds a compact 
data structure called the FP-tree which can be constructed by 
allowing two passes over the data-set, and frequent item-sets 
are discovered by traversing through the FP-tree. 
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TABLE I 
COMPARISON WITH POPULAR ASSOCIATION MINING ALGORITHMS 

Algorithm Transaction Freq. Itms. Db. Memory 
storage representation scans footprint 

Apriori Row-based Row-based Many Large 
Max-Miner Row-based Row-based Many Large 

Eclat Columnar Flexible A few Small 
FP-Growth Row-based FP tree 2 Enormous 

SILVERBACK Columnar Flexible A few Tiny 

In the first pass, the algorithm scans the data and finds 
support for each item, allowing infrequent items to be dis­
carded. The items are sorted in decreasing order of their 
support. The latter allows common prefixes to be shared during 
the construction of FP-Tree. In the second pass, the FP-tree 
is constructed by reading each transaction. If nodes in the 
transaction do not exist in the tree, then the nodes are created 
with the path. Counts on the nodes are set to be 1 .  Transactions 
that share common prefix item, the frequent count of the 
node(i.e. prefix item) is incremented. 

To extract the frequent item-sets, a bottom up approach is 
used (traversal from leaves to the root), adopting a divide and 
conquer approach where each prefix path sub-tree is processed 
recursively to extract the frequent item-sets and the solutions 
are then merged. 

Allowing fewer scans of the database comes at the expense 
of building the FP-Tree - the size of which may vary and 
may not fit in memory. Additionally, the support can only be 
computed once the entire data-set is added to FP-Tree. 

3) Eclat: Similarly to FP-growth, Eclat employs the divide 
and conquer strategy to decompose the original search space 
[ 12]. It allows frequent item-set discovery via transaction 
list (tid-list) intersections and is the first algorithm to use 
column-based, rather than row-based representation of the 
data. The support of an item-set is determined by intersecting 
the transaction lists for two subsets, and the union of these 
two subsets constitutes an item-set. 

The algorithm performs depth-first search on the search 
space. For each item, in the first step it scans the database 
to build a list of transactions containing that item. In the next 
step, it forms item-conditional database(if the item were to 
be removed) by intersecting tid-list of the item with tid-lists 
of all other items. Subsequently, the first step is applied on 
item-conditional database. The process is repeated for all other 
items as well. 

Like FP-Growth, Eclat reduces the scans of the database 
at the expense of maintaining several long transaction lists in 
memory, even for small item-sets. 

4) Distributed and Parallel Algorithms: Discovering pat­
terns from a large transaction data set can be computationally 
expensive and therefore almost all existing large scale associ­
ation rule mining utilities are implemented on the MapReduce 
framework. Such examples include Parallel Eclat [8] ,  Parallel 
Max-miner [7], Parallel FP-Growth [9] and Distributed Apriori 
[6]. 

Table I compares our proposed method with other popular 
existing methods in many aspects including their scalability to 

Cluster Empirical Support Lines of Accuracy 
scalability efficiency count code 

Good[6] benchmark Yes � 1 ,000 Exact 
Fair[7] � 5x Yes Unknown Exact 
Poor[8] 3x � lOx Yes �2 ,000 Exact 

Very Good[9] 5x � lOx Yes 7,000+ Exact 
Good > l5x Const. time �2,000 Probabilistic 

more nodes. 

B. Modern Applications of Bloom Filters 

Capturing demographic between any two interests can be 
very high in space complexity as it requires membership 
operation to be performed. Bloom filter is a popular space­
efficient probabilistic data structure used to test membership 
of an element [ l 3]. For example, Google's BigTable storage 
system uses Bloom filters to speed up queries, by avoiding 
disk accesses for rows or columns that don't  exist [ 1 4].  Similar 
to Google's BigTable, Apache modeled the HBase, which is 
a Hadoop database. HBase employs Bloom filters for two 
different use-cases. One is to access patterns with a lot of 
misses during reads. The other is to speed up reads by cutting 
down internal lookups. 

A nice property of Bloom filters is that the time needed 
either to add items or to check whether an item is in the set 
is fixed - O(k), where k is the number of hash functions -
independent of the number of items already in the set. The 
caveat, though, is that it allows for false positives. For a given 
false positive probability p, the length of a Bloom filter m 

is proportionate to the number of elements n being filtered: 
m = -nlnpj(ln2)2. 

C. OLAP and Data Warehouse 

Traditional OLAP (On-Line Analytical Processing) queries 
are usually generated by aggregation along different spatial 
and temporal dimensions at various granularities. For example, 
OLAP queries for a typical job posting website [ 1 5] include 
job views by day/week/month, job views by city, and job 

views by company. For efficiency, OLAP queries are issued 
against specifically designed data warehouses. Current indus­
trial practices usually build a data warehouse in three steps: ( 1 )  
cubifying the raw data; (2) storing the cubes; and (3) mapping 
OLAP queries into cube-level computations. 

Web-scale real-time applications like Twitter and Facebook 
pose tremendous challenges to the three straightforward steps 
of building data warehouses. 

Insights-seekers basically demand real-time summary statis­
tics about the website at any granularity. To support such 
stringent demands, a modern data warehouse is typically first 
built from existing log data and incrementally updated by 
setting up a, so called, river - a persistent link between source 
and destination carrying real-time data stream. In addition, 
powerful and elastic MapReduce frameworks like Hadoop [ 1 6] 
are usually deployed to handle the first step, the cubification 
of web-scale data, and the third step, mapping queries to 
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Fig. 1 .  Facebook user activity distribution (June 2008 to January 20 12,  with 
vertical axis in log scale) 

cube-level computations. Durable and scalable key/value pair 
storages like Cassandra [ 1 7] are often necessary to fulfill the 
second step of building a web-scale data warehouse. In short, 
more hardware and scalability seem to be the two hosts that 
keep the system going - which, as indicated in Section I, is 
something that we aim to change. 

IV S TORAGE AND I NFRAS TRUCTURE 

Given the scale of Du in our settings, the traditional 
row-based storage assumed by [4] [ 1 1 ]  [ 1 8] would become 
out of depth. Our objective is to provide efficient storage 
scheme, however, we are not trying to invent a general-purpose 
advanced distributed storage engine to add to the already 
abundant list of such engines and file systems. Instead, we 
focus on an application/data-driven ad-hoc solution and we 
discover that a probabilistic column storage is very effective 
in tackling the massive data scale in our application domains. 

A. Scalable Column Storage 

The key observation that motivated our design is the sparsity 
of Du. The full representation of Du would require over 20 
trillion cells (740M users by 32K walls), which is impractical 
even in distributed environment (notwithstanding the budget). 
However, of the 20 trillion cells, less than 1% are populated. 
According to our estimates, an average user accesses less 
than 1 4  of the 32K walls. The sparsity of Du is neither a 
coincidence nor a surprise us - in fact, the global sparseness in 
a social graph and the power-law decay in its node degree dis­
tribution are part of the asymptotic behavior that we can safely 
assume. As an illustration, Figure 1 shows the distribution of 
Facebook users and the number of walls (items) they access, 
demonstrating that the number of users accessing x number 
of walls drastically decreases as x increases. Specifically, over 
40% of the users only access less than 5 of the 32,000 walls. 
We note that the "spike" on the right side is due to aggregating 
all users with more than 100 accessed walls into a single 
category. Hence, majority of the transactions in Du are likely 
to only contain a small number of items. 
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Fig. 2. Illustration of the columnar storage in place of traditional row-based 
transactions(trnsc.) and its probabilistic enhancement 

We use a sparse representation of the massive Du called 
"list of lists" (LIL) [ 1 9] (or "Column Family" in Cassandra 
[ 1 7]). LIL typically stores a massive sparse matrix by using 
a list to record the non-zero cells for each row. A column­
based "list of columns" (LIC) representation is implemented 
for representing Du. That is, the LIC representation of Du 
contains a wall-column for each wall ID, and each wall­
column only contains the active user IDs of the 800 million 
users. The upper part of Figure 2 illustrates how the traditional 
row-based transactions of items in a database are stored as 
columns. The LIC implementation is popular among columnar 
databases. 

One of the advantages in this columnar storage is data 
independency. The LIC representation of the database Du can 
be partitioned by columns and we can store the columns as 
physically different files on different hosts. Inserts, deletes, and 
updates to any wall will only affect its column and therefore 
avoids database locks, which is particularly helpful when the 
database is live like Du. 

B. Probabilistic Enhancement 

An important consequence of the sparsity of Du is that 
in LIL representation, the lists/columns for the walls will 
have drastically different lengths. For example, the wall-list 
for Coca-Cola on Facebook contains over 30 million user 
IDs, whereas the small (albeit important) interests like ACM 
SIGMOD have less than 100 user IDs in their lists. 

The main problem caused by the massive size differences is 
that the resource allocator would face a combinatorial problem 
- each host has a capacity and each column has different sizes. 
The situation would be much easier to deal with if all columns 
are similar in size, which would allow the allocator to treat 
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all columns equally. To tackle this problem, two approaches 
seem appealing: 
( 1 )  One may opt to shard the longer columns (e.g., Coca-Cola) 
- however, this introduces extra complexity as it diminishes 
the strong inter-column independency, which is important for 
us to scale easily. Extra locks would be required at column­
level and shard-level for different chunks of a sharded column. 
The situation becomes more complicated if the column is so 
big that its shards reside on multiple hosts. Indeed, sharding 
functionality is available in existing products like MongoDB 
[20]. But MongoDB 2.l generically implements readers-write 
lock and allows one write queue per database, which is not 
desirable in our case and may have unforeseeable impact at 
large scale. 
(2) Another approach - which we adopted as our philosophy 
is to simply solve the locking problem by "avoiding it". 
Namely, similar to [2 1 ] ,  we impose each column file to be 
single-threaded and therefore, no lock mechanism or extra 
complex management is required. The trade-off here is the 
need to make sure each column file size can be handled by a 
single thread with a reasonable delay. Sampling can alleviate 
the size difference among columns and make large columns 
controllable by a single-thread, and Reservoir sampler [22] 
is used for exceedingly long columns. In practice, we sample 
500,000 IDs for columns with more than 500,000 IDs. A bonus 
of using Reservoir sampler is the ability to incrementally 
update the pool as new IDs are added to a given column 
and guarantee that the pool is a uniform sample of the entire 
column at any given moment. For each sampled column, an 
extra field is required to record the sampling rate. 

However, the main problem now becomes that the column 
files still cannot fit into the main memory of our modest 
cluster, even after sampling - we note that loading all col­
umn files of the described Du requires roughly 300GB after 
sampling. The practical goal is to reduce the representation 
of Du from 300GB down to approximately 25GB - without 
breaking data independency, performance or scalability. With 
such constraints, our options are limited due to "facts of life" 
such as: (a) sampling based techniques cannot be used since 
any sampling would have happened in the previous stage; 
(b) coding-based information compression is also undesirable 
because of its impact on performance and updatability. 

Given these observations, Bloom filter [ l 3] with its proba­
bilistic storage-efficiency seems a plausible choice. A Bloom 
filter is a space-efficient probabilistic data structure that is 
used to test whether an element is a member of a set. Hence, 
our idea is to construct a bloom filter for each column, as 
depicted in the bottom part in Figure 2. When the Bloom 
filters are built, they are meant to be cached in memory while 
the much larger columns can reside on slower disks. In our 
experience, Bloom filters' efficiency is about 5 to 7 bits per 
ID, where each ID is originally stored as a string of 1 0  to 
20 ASCII characters, depending on the chosen column. In 
addition to drastically reducing the storage size, Bloom filter 
files can be incrementally updated as more IDs are added 
to the corresponding column file, which means no rebuild is 

necessary for the filters. 
Although the Bloom filters created for different columns can 

use different number of hash functions, different false positive 
rate, or different number of set bits, we need to make sure all 
Bloom filter arrays are of the same size. In practice, we enforce 
the Bloom filter size to be 7,000,000 bits = 854.5 KBytes, 
which guarantees less than 0.1 % false positive rate with 
500,000 expected inserts. Doing the same for all 30,000 
columns would yield 854.5KBytes x 30,000 < 24.5 GBytes. 
That is, we expect at most 500,000 (the number of max sample 
size) IDs to be added to any Bloom filter. Assuming that each 
ID sets 7 different bits in the filter, at most 50% of the bits 
in the Bloom filter will be set which, in turn, guarantees the 
bound on the false positive rate on the filters. 

Together, the sampling limit and the size of the filter 
guarantee an acceptable/satisfactory level of accuracy. While 
this equal-in-size requirement might seem unnecessary and 
even superfluous - it is specifically imposed to enable bit 
operations between any two Bloom filters, which is critical 
in our association mining algorithm. As we will demonstrate 
in Section VI, both the sampling and Bloom filter have a very 
limited impact on the accuracy of the results. 

C. Deployment of S ILVERBACK 

The commercially deployed S ILVERBACK system consists 
of three major parts: ( 1 )  columnar probabilistic database of 
transactions; (2) a computation cluster; and (3) storage for 
output rules and frequent item-sets. 

The database of transactional records, D, is implemented 
using modified versions of MySQL [23] and MongoDB [20] 
on top of 6 relatively powerful nodes. Since the database 
infrastructure is shared with other data warehousing purposes, 
databases are served from dedicated servers (free of other 
computational chores) to achieve high I/O throughput. 

The computation nodes are the ones executing the SIL­
VERBACK mining algorithms (cf. Section V), implemented 
as web services and served from scalable web servers like 
Tornado [24]. Therefore, most communication between the 
database and the computation cluster is through internal HTTP 
requests. About 30 nodes are deployed in this cluster, which 
is a shared resource among several computation-intensive 
purposes including association mining. The cluster is logically 
organized as master server, shadow master servers for fault­
tolerance, and slave servers. However, physically several slave 
servers can reside on a same actual node; moreover, the master 
server is run alongside with slave servers on a same node as 
well. All the slave servers are designed to recover from crash 
and resume from its last checkpoint. 

Two important design decisions in our computation in­
frastructure are: ( 1 )  implementing the computation as web 
service-based transactions; and (2) the "ideological" separation 
between logical servers and physical nodes. 

A substantial advantage of turning computation tasks into 
service-based transactions is the elimination of startup cost of 
loading dictionaries, lookup tables from disk, since the end 
points for those web services are persistent. More specifically, 
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the Bloom filter structures, which are small in memory foot­
print, once fit into the main memory of the web servers can 
be tested, copied, and updated without modifying the disk as 
long as the hosting web services do not restart themselves. 
Service-based system also makes logging much easier and 
can be readily integrated with frameworks like Scribe [25]. 
Another advantage, of a particular interest for our commercial 
application, is the web-servers ' built-in handling for timeout 
requests. Suppose the system is calculating frequent item-sets 
on-the-fty from end-clients' requests. Often, the desideratum is 
not to find complete/exact frequent item-sets in as efficiently 
(in time) as possible. To the contrary, the clients expect to 
explore as many frequent item-sets as possible after a tolerably 
short time-delay, say, 1 second. Service-based implementation 
makes it easier to achieve such expectations. 

Separation between logical servers and physical nodes is 

Algorithm 1: Column-oriented algorithm for finding two 
frequent item-sets and association rules 

Input: a, minimal support, W, set of all items, Vu, the 
database of transactions 

Output: 0, set of all frequent two item-sets 
1 WI +--- {xix E W, length of x column 2: a}; 0 +--- {} 
2 for each y E WI do 
3 Uy +--- IDs from y column 
4 for each x E WI and x >-- y do 
5 8upportx,y +--- 0 
6 bf +--- x column's Bloom filter 
7 for each U E Uy do 
8 if U in b f then 
9 I 8upportx,y+ = 1 

10 end 
11 end 

a powerful approach, enabling better utilization of resources 
among different services on a shared computation cluster. If 13 
the cluster is split into smaller ones, each of which is dedicated 

12 

14 

if 8upportx,y 2: a then 
I append {x, y} to 0 

end 
to a particular service, then service A cannot use the idle 
resources in cluster B even when service B is not actively 
using cluster B. Deploying both service A and B on the 
cluster as a whole can alleviate that. Moreover, dynamically 
reducing/increasing the slave servers running on each cluster 
node within just a few minutes can maximize the utilization 
of available resources and also reduce energy consumption in 
real time. 

The execution of popular algorithms like Apriori [4] and 
FP-Growth [ 1 1 ] ,  even their distributed implementations [6], is 
row-based, where a transaction row is taken for granted as the 
execution unit. However, given the proposed storage scheme, 
this assumption is no longer valid and it is not straightforward 
to apply/generalize the existing algorithms to accommodate 
to our storage, due to the fundamental differences in data 
scanning between row-wise storage and columnar storage. In 
this section, we present the versions of our algorithms used in 
SILVERBACK. 

D. Two Item-set Algorithm 

We first demonstrate the column-oriented algorithm for find­
ing frequent two-item-sets {X = {x}, Y = {y}}, where X 
and Yare both single item-sets, with a given minimal support 
a. The two item-set algorithm is often used in our commercial 
practice, where the owner of a brand y is interested in finding 
out other brands that are most frequently associated with y. 

All the possible candidates for x are elements from W, 
the set of all items. Our algorithm starts by filtering out 
the unqualified candidates whose support is below a - a 
process can be done very efficiently by scanning 0 (IWI - 1) 
numbers, since the algorithm simply queries the length of each 
column file. 

Let WI <;;; W denote the subset of W, which contains all 
the walls whose column size is above a. For each y E WI, 
the algorithm loads the user IDs from column y into a set 
Uy. Since the actual user IDs are not explicitly stored with 
the Bloom filter and reside on a much slower disk, reading 

15 end 
16 end 
17 return 0 

user IDs from disk only happens once per wall to avoid 
cost (note that Uy at each iteration is small enough to fit 
in memory). In other words, the algorithm scans the whole 
database from the disk only once. Then for each wall's Bloom 
filter representation bx, where x E WI, the algorithm tests 
whether u is a member of bx for VuE Uy. By testing Uy 
against bx, the algorithm effectively finds (with false positives 
introduced by the use of Bloom filter) y n x, the intersection 
between y column and x column. At this stage, confidence 
and support filtering is applied and all qualified y columns 
are put into the output set O. The x >-- y constraint says that 
x must come after y in atomic order, which guarantees that 
{x, y} and {y, x} are not calculated twice. 

The equivalence between intersection of columns and union 

of item-sets allows us to compute other association mining 
concepts like lift, using the proposed storage and algorithm. 
This equivalence is best illustrated in single item case, but the 
same property carries over to general case as shown in [ 1 2] 
and in the following section. 

E. Two Issues With Apriori 

Two particular operations in the Apriori algorithm signifi­
cantly slow down its execution time. The first is the multiple 
scans of transactions. The other operation that significantly 
contributed to the temporal cost of traditional Apriori is 
candidate pruning, which requires counting support for each 
candidate generated. To overcome those two drawbacks, vari­
ous pruning and optimization techniques have been proposed, 
as discussed in the related work section. 

1) Minimizing scans of transactions: Apriori algorithm 
classifies candidate item-sets and explores their candidacy by 
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Algorithm 2: Apriori-gen algorithm for generating and 
probabilistically pruning candidates 

Input: Fk-l, frequent (k - 1) item-sets; a, minimal 
support; HI(c), ... , Hf(c), sorted lists that holds 
the Bloom hash indices for Ic/c E Fk-l; Se for 
Ic/c E Fk-l, support counts for all frequent (k - 1) 
item-sets 

Output: Ck> set of candidates for frequent k item-sets 
after pruning 

1 Ck +--{} 
2 for CI, C2 E Fk-l X Fk-l do 
3 if CI and C2 satisfy Equation 1 then 
4 for i E {1, ... , f} do 
5 SIG(hi(CI)) +-- first m indices in Hi(cI) 
6 SIG(hi(C2)) +-- first m indices in Hi(C2) 
7 SIG(hi(CI U C2)) +-- find the smallest m 

8 
9 

10 

11 
12 

13 

14 

15 

16 end 
17 end 

elements fro�IG(hi(CI)) U SIG(hi(c2)); 
Calculate Ji (CI, C2) based on Equation 5 

end 

J -( ) '\'f JJ;;;�e2) hybrid �2 +-- L..,i=l f 
if Jhybrid (CI,C2)· (Sel + Se2) ;::: a then 

C +-- CI U C2 

end 

order elements in C 
append C to Ck 

18 return Ck 

Algorithm 3: SILVERBACK - columnar probabilistic algo­
rithm for finding general frequent item-sets 

Input: a, minimal support, W, set of all walls, Vu, the 
database of transactions 

Output: 0, set of all frequent item-sets 
1 0+--{} 
2 FI +--{xix E W, and supportx ;::: a} 
3 F2 +-- Algorithm I (a, W, Vu) 
4 0 +-- 0 U FI U F2; k +-- 2 
5 for each C E F2 do 
6 

I 
Se +-- support counts from Algorithm I 's byproduct 

7 H1(c), ... , Hf(c) +-- obtained from Algorithmi 
8 end 
9 while Fk i= 0 do 

10 k + = 1 
11 Ck +-- apriori-gen(Fk_I' a, 

12 {HI (c), ... , Hf(C), supporte, 
13 for Ic/c E Fk-d) 
14 order elements in Ck 
15 for each C E Ck do 
16 HI ( c), ... , H f ( c) +-- empty ascending priority 

queues each with capped capacity m 

17 supporte +-- 0; bf +-- vector of Is 
18 y +--first item in c; Uy +-- IDs from y column 
19 for each x E c\y do 
20 I bf +-- AND-mask(bf, x column Bloom filter) 
21 end 
22 

23 

24 

25 

for each u E Uy do 

26 

hI' ... ' hf +-- u's indices in bf, respectively 
if hI' ... ' hf all set in bf then 

supporte+ = 1 
append hl, ... ,hf to HI(c), ... ,Hf(c), 
respectively the cardinality of the item-set, where at each cardinality level, 

the algorithm scans Vu (the entire database of transactions) for 27 
counting the supports of the candidate sets at that cardinality 28 
level. The problem then becomes obvious: the entire execution 

end 
end 

29 
of the algorithm scans the database multiple times, which is 

30 

if supporte;::: a then 
I append c to Fk; append c to 0 

end not desirable. 
Minimizing the iterations of scanning the database is critical 

in improving the overall efficiency of association mining algo­
rithms, especially for large databases. FP-Growth [ 1 1 ] offers 
improvements partially due to the fact that it only scans the 
database of transactions twice in building the FP-tree structure. 
However, as mentioned in Section III, the size of the FP-tree 
structure can be large and reading frequent patterns from the 
FP-tree requires traversing through the tree which, in turn, still 
incurs multiple loads. Benefiting from its columnar storage, 
Eclat [ 1 2] reads activities/transactions column by column and 
only the necessary columns and intersections of columns are 
retrieved into memory when checking the candidacy of each 
candidate. Similar to Eclat, our proposition only retrieves the 
necessary column files each time and further minimizes the 
110 by replacing intersections of columns by AND-masked 
Bloom filters. 

2) Candidate Generation and Probabilistic Pruning: Tra­
ditionally, avoiding the exponential growth of candidate item-

31 

32 end 
33 end 
34 return 0 

sets (21w1 possible candidates) by the Apriori principle and 
other algorithmic improvements [ 10], was based on pruning 
the unqualified candidate item-sets. Apriori principle becomes 
especially effective when Vu is sparse and contains large 
number of items and transactions, which exactly suits our 
practical usage. 

The Apriori-gen function in Algorithm 3 uses Fk-l x Fk-l 
method [26] to generate, Ck> the set of candidates for frequent 
k-item-sets. Apriori-gen function then uses a new, minHash­
based [27] pruning technique to drastically reduce the candi­
dates in Ck and to bring Ck as close to Fk as possible. Mini­
mizing the cost of reducing Ck to Fk is key in achieving much 
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higher performance than previous Apriori-based techniques. 
Fk-l x Fk-l method was first systematically described in 

[26]. The method basically merges a pair of frequent (k - 1)­
item-sets, Fk-l, only if their first k - 2 items are identical. 
Suppose Cl = {ml, ... ,mk-d and C2 = {nl, ... ,nk-d be 
a pair in Fk-l. Cl and C2 are merged if: 

mi = ni (for i = 1 ,  ... , k - 2), and mk-l i= nk-l' ( 1 )  

The Fk-l x Fk-l method generates 0 (lFk_112) number of 
candidates in Ck. The merging operation does not guarantee 
that the merged k-item-sets in Ck are all frequent. Determining 
the Fk from the usually much larger Ck becomes a major cost 
in Apriori execution. 

Can one efficiently determine if C E Fk for any C E Ck? 
This is the question people have been trying to directly 
address. But we think one can alternatively ask, based on the 
Fk-l x Fk-l method, Can one efficiently determine if C E Fk 
for any c such that c = CI U C2 and CI, C2 E Fk-l? Dealing 
with C directly basically throws away the known information 
about Cl and C2. The important question then becomes how 
can Cl and C2 help determine the candidacy of c. 

The key clue lies in S(c), the support set of c. S(c) = 
S(cd n S(C2)' From previous research, pruning based on the 
cardinality of S(c) is very expensive. Instead, we propose to 
consider the Jaccard similarity coefficient [28] in the Apriori­

gen function: 

J ( ) _ IS(cd n S(c2)1 
Cl, C2 - IS(cd U S(c2)1

' (2) 

Measuring J (Cl, C2) is just as costly, so Apriori-gen uses 
minHash algorithm to propose a novel estimator for J (Cl, C2). 

MinHash scheme is a way to estimate J (Cl, C2) without 
counting all the elements. The basic idea in minHash is to 
apply a hash function h, which maps IDs to integers, to the 
elements in CI and C2. Then hmin(Cl/2) denotes the minimal 
hash value among h( i), Vi E CI/2' Then we claim: 

The above claim is easy to confirm because hmin(Cl) = 
hmin(C2) happens if and only if hmin(ClnC2) = hmin(Cl UC2). 
The indicator function, :n.{hmin (C,)=hmin(C2)}' is indeed an 
unbiased estimator of J (CI, C2). However, one hash function 
is not nearly enough for constructing a useful estimator for 
J (Cl, C2) with reasonable variance. The original plan is to 
choose k independent hash functions, hI,"" hk, and con­
struct an indicator random variable, :n.{hi,min(C,)=hi,min(C2)}' 
for each. Then we can define the unbiased estimator of 
J (CI, C2) as 

(4) 

Before the above estimator can be implemented, it is critical 
to realize its computational overhead in practice. Often k = 
50 or more is chosen and the k hash functions need to be 
applied to each ID in the support of each candidate. At this 

stage, typical applications of minHash often use the single­
hash variant to reduce computation, Given a hash function h 
and a fixed integer k, the signature of c, SIG(h(c)), is defined 
as the subset of k elements of C that have the smallest values 
after hashing by h, provided that Ici 2: k. Then the unbiased, 
single-hash variant of Equation 4 is 

J 
-
( ) _ ISIG(h(CI U C2)) n SIG(h(CI)) n SIG(h(c2))1 

s.h. CI, C2 - ISIG(h(Cl U c2))1 ' 
(5) 

where SIG(h(CI U C2)) is the smallest k indices in 
SIG(h(cd) U SIG(h(c2)) and can be resolved in O(k). 

In general, the single-hash variant is the best minHash can 
offer in terms of minimizing computational cost. However, 
one still needs to hash all elements in CI and C2 before 
he/she can find the signatures, which would make Equation 
5 basically as costly as Equation 2. The key step that makes 
minHash estimation particularly efficient in our case is to link 
it with the Bloom filters assumed in our framework. Testing a 
member u in a Bloom filter essentially requires finding several 
independent hash values that map u to different indices in a bit 
array. Since the Bloom filter indices are comparable integers, 
the idea here is to avoid extra hashing in minHash calculation 
by re-utilizing these integer hash indices. Since all user IDs 
in the support sets of all frequent item-sets will be tested by 
the same Bloom hash functions, it guarantees the availability 
of these hash indices. 

Suppose the Bloom filter test sets f number of bits (i.e. it 
runs the ID through hI, ... , h f for each ID, whose member­
ship is to be tested). The direct attempt of utilizing the Bloom 
filter indices in minHash is simply: 

f 
J (�C2) = L 

:n.{hi,min(C11hi,min(C2)} 
(6) 

i=l 
by replacing k in Equation 4 with f. A potential problem 
with this scheme is that, to achieve reasonable accuracies in 
Bloom filter and minHash, the expectations on f and k are 
very different. Indeed, we find f = 7 is sufficiently good 
for the Bloom filter while k is usually over 20 in order for 
minHash to give reliable estimates. 

To overcome the empirical difference between f and k, 
we design a f-hash hybrid approach that uses the f already 
calculated Bloom hash indices. Choose k to be a fixed integer 
such that k > f, k = f·m, and m is also an integer. Let hi, for 
i = 1 ,  ... , f, denote the i-th Bloom hash function. Then the 
i-th signature of c, SIG(hi(c)) is the subset of m elements of 
C that have the smallest values after hashing by hi, provided 
that Ici 2: m. Applying the sig�res to Equat� 5, we obtain 
f independent estimators, !JCI, C2)" . .  , Jf (CI, C2). Finally, 
the hybrid estimator J hybrid (CI, C2) is derived as 

f -- '" Ji (CI, C2) 
Jhybrid (CI, C2) = � f 

. 
i=l 

(7) 

In fact, Equation 6 is a special case of the hybrid estimator. 
When k = f and m = 1 ,  Equation 7 becomes equivalent to 
Equation 6. 
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Further, we have 

J(Cl,C2) ' ( IS(Cl)1 + IS(C2)1) 
IS(cd n S(C2) I . IS(Cl) I + IS(C2)1 

IS(CI) u S(C2)1 
2: IS(cI) n S(c2)1· 

(8) 

Since IS(cd n S(c2)1 = IS(c)l, it follows that if IS(c)1 2: 
ex, then J (Cl, C2) . ( IS(cdl + IS(C2)1) 2: � where ex is the 

min support. Replacing J (Cl, C2) with J (Cl, C2) gives us the 
rule Apriori-gen uses to reduce Ck closer to Fk. Observe that 
Apriori-gen applies the rule in reverse logical order, which 
introduces false positives. This is why Apriori-gen can only 
reduce Ck to some superset of Fk, but not exactly Fk. 

F The S ILVERBACK Algorithm 

The general association mining algorithm with the proposed 
pruning technique is presented in Algorithm 3. Schematically, 
it is similar to the original Apriori, but S ILVERBACK ef­
fectively addresses the two issues brought up earlier in this 
section. 

The iterations of transaction scans are minimized. The 
columnar database enables the algorithm to only load the 
necessary x column at each iteration. Further, by sorting the 
item-sets in each candidate set Ck and sorting the items in 
each item-sets, we can make sure each column is loaded only 
once from the disk and will stay in memory for iterations of 
all item-set candidates, to which this column belongs. 

Probabilistic candidate pruning is key in our proposed 
algorithm. Indeed, we already show how it can prune off 
the unworthy candidates. But we are equally interested in its 
impact to the complexity of the algorithm. In Algorithm 3, the 
only temporal performance impact is line 26, where the hash 
indices (which we get for free when testing memberships with 
Bloom filter) are inserted in Hl(C)" ", Hj(c), each of which 
is a priority queue of capped length m. The temporal cost 
for each ID in the test of each candidate without insertions 
to priority queues would be O(J). The insertions introduce an 
additional complexity O(J log m). In the Apriori-gen function, 
for each candidate, lines 5 and 6 cost is O(Jm) and line 7 
cost O(Jm log m) due to sorting. To claim that the temporal 
cost (and the spatial cost, which is bounded by temporal) is 
basically constant, we need to show that both f and m are 
small integers and the cost does not increase as the transactions 
or unique items increase. 

f, the number of Bloom hash functions, is said to be 7 
in previous section and it only grows logarithmically with 
respect to the total transactions. So f = 10 would be 
sufficient for some 1 trillion transactions. m, on the other 
hand, is determined by f and the minHash error rate. MinH ash 
introduces error E rv O( +.) to its Jaccard estimation J, 
which is between 0 and l. �ose that E < 0.06 is satisfactory 
and f = 7, then m = 40 is sufficient. Further, if f increases 
to 10, m = 28 would be sufficient for achieving the same E. 

S ILVERBACK is scalable and can be deployed on a cluster. 
The column files and Bloom filter files are distributed across 
the slave servers of the cluster. An index file is stored 

on the master server to keep track of the slave, on which 
a particular column file or Bloom filter is stored. A nice 
property of S ILVERBACK is that only the user IDs from one 
column are necessary to be loaded in memory at any given 
moment of the execution of S ILVERBACK. This implies that 
the uncompressed, large column files are never moved from 
slave to slave over the network. Only the compressed strings 
of Bloom filters are loaded from other slaves when necessary. 
This property minimizes general intra-cluster I/O traffic and 
makes our algorithm scalable. 

V. EX PERIMENTAL OB SERVATION 

We now present the experiments that we conducted for 
evaluating the proposed methodologies. 

A. Dataset 

Our data is collected from two widely used social media 
platforms: Facebook and Twitter. Both Facebook and Twitter 
are a medium for individuals, groups or businesses to post 
content such messages, promotions or campaigns. The user 
comments/tweets, and user information from specific interests 

is publicly available and collected using Facebook API2 and 
Twitter AP13. In the experiments, the data collected over 20 12  
is  used. Table I I  shows the size of  the databases we are 
maintaining using the proposed infrastructure and the amount 
of data used in the experiments. 

TABLE II 
DATASETS SUMMARY STATISTICS 

Statistic Facebook Twitter 
Unique itemslinterests 32K+ llK+ 
(used in experiments) 22,576 4,29 1 
Total user activities lOB+ 900M+ 
(used in experiments) 226M 24.2M 
Unique users/transactions 740M+ 1 20M+ 
(used in experiments) 27 .4M 3 .7M 

B. Errors from Sampling and Bloom Filter 

As discussed earlier, a Bloom filter allows for false posi­
tives. In this section we discuss how different capacity sizes 
and false positive probabilities affect the target-driven rule 
calculation. With the introduction of the probabilistic data 
structure, the computation of Supp{X U Y} i.e. the COlmnon 
users that have shown interests in both interests X and Y is 
affected, which in turn affects the order the relevant precise 
interests. 

TABLE III 
COMMON USER COUNT 

interest TM CM Ct 
EASPORTS 242399 1647 33197 
techcrunch 202812 12295 32579 
iTunesMusic 189568 7265 24171 
googJe 149877 12022 21352 
facebook 120724 8904 14212 

2 http://deveIopers.facebook.coml 
3https:lldev.twitter.comldocs/ 

C2 C3 C4 
1647 10085 6611 
12295 17105 15647 
7265 10625 9698 
12022 13797 13621 
8904 9746 9859 

CS C6 C7 
1708 2136 1714 
12950 13147 12496 
7513 7640 7640 
12605 12636 12636 
9356 9365 9365 
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interest CI 
EASPORTS 3 1 550 
techcrunch 20284 
iTunesMusic 1 6906 
google 9330 
face book 5308 

interest Cl 
EASPORTS 0.829 
techcrunch 0.890 
iTunesMusic 0.908 
google 0.949 
facebook 0.97 1 

interest Cl 
EASPORTS 0.050 
techcrunch 0.377 
iTunesMusic 0.30 1 
google 0.563 
facebook 0.627 

interest Cl 
EASPORTS 0.095 
techcrunch 0.548 
iTunesMusic 0.462 
google 0.720 
facebook 0.770 

TABLE IV 
FALSE POSITI VES 

C2 C3 C4 
1 402 8438 4964 
1085 48 1 0  3 3 5 2  
5 6 8  3360 2433 
648 1775 1 599 
469 842 955 

TABLE V 
ACCURACY 

C2 
0.992 
0.994 
0.997 
0.996 
0.997 

C2 
0.540 
0.9 19  
0.927 
0.949 
0.950 

C2 
0.701 
0.958 
0.962 
0.974 
0.974 

C3 C4 
0.954 0.973 
0.974 0.982 
0.982 0.987 
0.990 0.99 1 
0.995 0.995 

TABLE VI 
PRECISION 

C3 C4 
0. 163 0.249 
0.7 1 9  0.786 
0.684 0.749 
0.87 1 0.883 
0.9 14 0.903 

TABLE VII 
F-MEASURE 

C3 C4 
0.28 1 0.40 1 
0.836 0.893 
0. 8 1 2  0.88 1 
0.93 1 0.952 
0.955 0.964 

CS C6 C7 
6 1  489 67 

655 852 20 1 
248 375 375 
5 8 3  6 1 4  6 1 4  
452 46 1 46 1 

CS C6 C7 
1 . 000 0.997 1 .000 
0.996 0.995 0.999 
0.999 0.998 0.998 
0.997 0.997 0.997 
0.998 0.997 0.997 

CS C6 C7 
0.964 0.77 1 0 .961 
0.949 0.935 0.984 
0.967 0.95 1 0.9 5 1  
0.954 0.95 1 0.9 5 1  
0.952 0.95 1 0.9 5 1  

CS C6 C7 
0.982 0.569 0.980 
0.974 0.932 0.992 
0.983 0.929 0.975 
0.976 0.964 0.975 
0.975 0.970 0.975 

Table III shows precise interests generated for target interest 
amazon for the period of July-December of 20 1 2. For each in­
terest we provide Total Mentions(TM), which is the number of 
users who expressed interest, COlmnon Mentions (CM), which 
is actual number of common users who expressed interest 
for both interests (true positives), and different configurations 
of Bloom filters. Configurations C1 ,  C2, and C3 have false 
probability 0.10, 0.002, and 0.02 respectively and a filter 
capacity of 1 00,000. Configurations C4, C5, and C6 have false 
probability 0.1 0, 0.002, and 0.02 respectively and a filter ca­
pacity of 200,000. Configuration C7 is the only configuration 
where the Bloom filter is built using sample(S) size equal to the 
capacity size (200,000) if the TM is over the capacity size and 
its false probability is 0.02. In configuration C7, the common 
mentions for the Bloom filter is then estimated proportionately 
based on the total mentions. Note the that total number of 
mentions for amazon is 1 84, 1 17. 

Due to the probabilistic nature of the data structure, we use 
predictive analysis approach where we evaluate the effective 
measure of our system by formulating a confusion matrix, 
i.e., a table with two rows and two columns that reports 
the number of false positives, false negatives, true positives, 
and true negatives. The COlmnon mentions given by Bloom 
filter comprise of true positives and false negatives. Table 

IV provides the number of false positive (jp), which deduced 
using conunon mentions from Bloom filter and true COlmnon 
mentions. The number of false negatives is always zero due to 
the nature of Bloom filter. Therefore, the true negatives (table 
not shown) are easily deduced. The accuracy, precision and 
F-measure is provided in Table V, VI and VII, respectively. 

As expected, for a given capacity, as the false positive 
probability decreases, the accuracy ( (tp + tn)/(tp + tn + 
fp + fn» and precision (tp/ (tp + fp» both increase. The 
recall (tp/ (tp + fn» is always 1.0, i.e., all relevant users 
were retrieved because our system with Bloom filter does 
not permit false negatives. The precision for our system is 
always less than 1.0 as not every result retrieved by the 
Bloom filter is relevant. As the capacity is increased, the 
accuracy and precision further improve. Note that when the 
total mentions is greater than the capacity, the Bloom filter 
has higher inaccuracy for a fixed false probability. For example 
for EASPORTS , the accuracy is 15% lower for capacity of 
size l OOK vs. 200K for the false probability of 0.10. This is 
due to the property that adding elements to the Bloom filter 
never fails. However, the false positive rate increases steadily 
as elements are added until all bits in the filter are set to 1.  
To counter this effect we sample data to be added to Bloom 
filter. Sampling can have an impact on the false positive rate of 
Bloom filters depending on the sampling quality. For example 
the number of false positives for EASPORTS, for Bloom filter 
configurations C5 and C7, are 6 1  and 67 respectively. But the 
false positives drop for techcrunch when sampling is used. 

Due to probability of false positives, the interests order 
arranged in decreasing order of the common mentions count 
can be different. We use the Kendall Rank Correlation co­
efficient or short for Kendall's tau (7) coefficient [29] to 
evaluate our results. Measuring the rank difference instead 
of absolute error that our probabilistic algorithm makes is 
due to practical interests. It is more often the case that our 
customers would ask queries like the top X number offrequent 

items associated with my brand. 7 is defined as the ratio of 
the difference between concordant and discordant pairs to the 
total number of pair combinations. The coefficient range is 
-1  :s; 7 :s; 1 ,  where 1 implies perfect agreement between 
rankings. Table VIII provides the Kendall statistics for two 
Bloom filter configurations. Both configurations approximately 
have 7 value of 0.98, implying that our rankings are very close 
in agreement compared to original rank. Also since the 2-sided 
p-value is less than 0.0000 1,  this implies that the two orderings 
are related and the 7 values are obtained with almost 1 00% 
certainty. 

TABLE VIII 
KENDALL T RANK CORRELATION TABLE 

Measure 200K, 0.02 200K, 0.002 
Kendall T-statistic 0 .9825 1 0 .98455 
2-sided p-value < 0 . 00001 < 0. 00001 
S. Kendall Score 3847 3855 
Var (S) 79624.33 79624.34 
SIT. Denominator 3915 .5  3915 .5  
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C. Temporal Scalability and Efficiency 

Fig. 3. Scalability comparison 

In addition to evaluating the accuracy of our probabilistic 
algorithms, we still need to demonstrate their efficiency and 
scalability. After all, good efficiency and scalability are ex­
pected trade-offs by sacrificing accuracy. 

In Figure 3, we report the run times for different combi­
nations of computing nodes, and minimum support threshold 
values, for four different algorithms. In the legend of Figure 
3, HA denotes the naive implementation of Apriori in the 
MapReduce framework [5]. CS, CSBF, and S ILvERBACK de­
note our proposed algorithm with progressively more features. 
CS denotes a diminished version, where only the columnar 
storage is used but not the Bloom filter enhancement or the 
minHash pruning technique; CSBF is like CS but implements 
the Bloom filter enhancement for each column file; and finally, 
S ILVER BACK is the fully blown version that incorporates all 
techniques presented in our paper including the minHash prun­
ing technique. In addition, a dashed line of ideal scalability is 
included for each of the four methods compared in Figure 3. 

In both support levels (0.05% & 1 %), HA seems to have 
the most reliable speedup as the number of computation nodes 
increases. The CS method significantly deviates from the ideal 
speedup as we increase up to 32 nodes. We suspect its lack of 
scalability is due to the increase of I/O traffic, since the IDs in 
each column are not compressed like CSBF or S ILvERBACK 

and would pose significant load on the I/O. Both CSBF and 
S ILVER BACK exhibit superior scalability over CS, especially 
in the low support setup. 

HA, the Hadoop solution, seems to have better scalability 
than all other algorithms, although its absolute run time is not 

the lowest. Will HA be the fastest eventually if the number of 
nodes keeps on increasing? We think the relatively superior 
scalability in HA is mainly due to two aspects. First, HA, 
unlike the other three methods, is implemented on a Hadoop 
cluster with slightly better computational capability per node 
but much better inter-node connections (32 Gbitls InfiniBand). 
The budget cluster, on which CS, CSBF, and S ILvERBACK 

are implemented, simply uses corporation-domain IP addresses 
as node identifiers. Second, S ILvERBACK still has room to 
improve its scalability to more nodes as this algorithm is only 
proposed in this paper while Hadoop Apriori is much more 
mature. 

The ranks of performance for the four methods are con­
sistent under both support levels. The two probabilistic ap­
proaches, CSBF and S ILvERBACK, perform consistently faster 
than the exact ones, HA and CS, which is predicted as 
we expect sacrificing accuracy would significantly boost the 
temporal performance. CS performs consistently worst, which 
suggests that proposing a columnar storage by itself does not 
quite solve any problem. 

Investigating the relative changes in the inter-method gaps 
under different support levels reveals more on the impact of 
minHash pruning and Bloom filter enhancement. First, the 
difference made by using Bloom filters, as illustrated by CS 
and CSBF, increases when min support level drops. Second, 
the use of minHash pruning technique also amplifies its impact 
as the support level decreases. 

VI. CONCLUSIONS 

We presented the S ILvERBACK framework, a novel solution 
for association mining from a very large database under 
constraints of a modest hardware. We proposed accurate prob­
abilistic algorithms for mining frequent item-sets, specifically 
catering to the columnar storage that we adopted, which is en­
hanced by Bloom filters and reservoir sampling techniques to 
enable storage efficiency. Our Apriori-based mining algorithm 
prunes candidate item-sets without counting every candidate's 
support. As our experiments showed, S ILvERBACK outper­
forms Hadoop Apriori on a more powerful cluster in terms of 
run time, while our probabilistic approach yields a satisfactory 
level of accuracy. 

The S ILvERBACK framework has been successfully de­
ployed and maintained at Voxsup since May 20 1 1. Our 
ongoing efforts are focusing on further improvement our 
system performance and scalability. Specifically, in the near 
future we would like to develop more efficient inter-nodal 
communication solutions, which is critical to scale to hundreds 
of nodes. 
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