
SILVERBACK: Scalable Association Mining For

Temporal Data in Columnar Probabilistic Databases

Yusheng Xie #1, Diana Palsetia .2, Goce Trajcevski .3, Ankit Agrawal .4, Alok Choudhary #5

Voxsup Inc. ,

79 W Monroe St. , Chicago, IL USA
1yves@voxsupinc.com

5a1ok@voxsupinc.com

* EECS Department, Northwestern University

2145 Sheridan Rd. , Evanston, IL USA
2drp92S@eecs.northwestern.edu

3goce@eecs.northwestern.edu
4ankitag@eecs.northwestern.edu

Abstract-Wei address the problem of large scale probabilistic
association rule mining and consider the trade-otIs between
accuracy of the mining results and quest of scalability on
modest hardware infrastructure. We demonstrate how exten­
sions and adaptations of research findings can be integrated
in an industrial application, and we present the commercially
deployed SILVERBACK framework, developed at Voxsup Inc.
SILVERBACK tackles the storage efficiency problem by proposing
a probabilistic columnar infrastructure and using Bloom filters
and reservoir sampling techniques. In addition, a probabilistic
pruning technique has been introduced based on Apriori for
mining frequent item-sets. The proposed target-driven technique
yields a significant reduction on the size of the frequent item-set
candidates. We present extensive experimental evaluations which
demonstrate the benefits of a context-aware incorporation of
infrastructure limitations into corresponding research techniques.
The experiments indicate that, when compared to the traditional
Hadoop-based approach for improving scalability by adding
more hosts, SILVERBACK - which has been commercially de­
ployed and developed at Voxsup Inc. since May 2011 - has much
better run-time performance with negligible accuracy sacrifices.

I. INTRODUCTION

Behavioral targeting refers to techniques used by advertisers
whereby they can reach target audience by specific interests
and/or users' activity history.

To increase the effectiveness of their campaigns, advertisers
employ behavioral targeting of customers, by capturing data
generated by user activities. In the context of social websites
behavioral data [1] , [2] is generated in the form of likes, posts,
retweets, or comments - however its foremost characterization
is the large volume. For example in March 20 1 2, nearly 1
billion of public comments or post likes were generated by
Facebook users alone, according to our estimation.

Mining valuable knowledge from behavioral data relies on
the data mining techniques developed for more traditional data
sources. However, it turns out that analyzing the public social
web and extracting the most relevant items (i.e., frequent item­
sets) is a valuable application of association rule mining to

I Yusheng Xie and Diana Palsetia contributed equally.

large behavioral databases for a particular commercial interest.
An interest could mean a group of online users, a brand
or a product - e.g., the brand "Nikon" is a description of
an interest in cameras. Given a set of interests and a large
behavioral database of transactions of user activities in online
social networks, an interesting task would be finding a list
of relevant interests that share a similar demographic. As
it may be observed, this operation is analogous to finding
frequent item-sets and association rules from a large number
of transactions of co-occurrences of the items [3].

The scale of the data in the online behavioral world is one
factor posing challenges of a different nature, with respect to
the existing works on association mining. We are challenged
with a behavioral database containing over 10 billion trans­
actions, up to 30,000 distinct items and growing by over 30
million transactions every day.

At the heart of the motivation for this project are the
following two, in some sense, complementary observations:
(1) Adding more hardware could help addressing the scalabil­
ity - however, what if a Big Data startup cannot afford this
"brute force" avenue of attaining sufficient computing power?
Contrary to large enterprizes like Facebook or Twitter, many
of their smaller-in-scale partner startups have few database en­
gineers challenged with designing a system that could handle
inundating amount of data sent from their larger social network
partners. Constraints on the budget and even considerations for
energy-saving call for designing alternatives to the simple "put
it on more machines and scale" approach, and are dictating
careful designs on commodity hardware.
(2) The utility of extracted knowledge from the large scale
behavioral data may be improved by proper exploitation of
statistical techniques. Probabilistic approaches, for as long as
they do not affect the accuracy of mining results past certain
degree of quality assurance, do seem like viable avenues
towards efficient storage schemes.

Our main contribution presented in this paper is SILVER­
BACK - a probabilistic framework for accurate association
rule and frequent item-set mining at massive streaming scale,

978-1-4799-2555-1 1 14/$3 1 .00 © 201 4 IEEE 1 072 ICDE Conference 20 1 4

implemented on a commodity hardware. It relies on a column­
based storage for managing large database of transactions,
incorporating Bloom filters and appropriate sampling tech­
niques to yield faster probabilistic database while maintaining
satisfactory accuracies. Complementary to this, we develop
an Apriori [4], [5] based algorithm to probabilistically prune
candidates without support-counting for every candidate item­
set. Our experimental findings demonstrate that S ILVERBACK

is significantly more efficient than a generic MapReduce
implementation. The framework and algorithmic implemen­
tations have been successfully deployed at large scale for
commercial use and progressively improved to the current
version since May 20 1 1.

In the rest of this paper, after brief preliminaries and
problem formulation (Section II), in Section III we position
the work with respect to the related literature and present
some observation justifying our approach. Sections IV and
V address in greater detail the storage and infrastructure, as
well as (versions of) algorithmic designs. In Section VI we
present our comprehensive experimental observations, and in
Section VII we conclude the work and outline directions for
future work.

II. PROBLEM FORMULATION

We now give a more formal specification of the tasks
addressed in this work.

Given large databases of users' activity log, the challenge in
our application is to parsimoniously and accurately compute
target-driven frequent item-sets and association rules, and
provide a real-time on-demand response.

Let V denote a (large) list of users' activities across public
walls in the Facebook network (or handles from Twitter), con­
sisting of quadruples (Ui,wi,ti,ai) E V (i = O,l, . . . ,IVI)
denoting individual user's activity. The interpretation is that
for i-th transaction, user Ui made activity of type ai on wall
Wi at timestamp ti. Each Ui belongs to U, the set of all user
IDs; each Wi belongs to W, the set of all wall IDs. In practice,
IWI « lUI « IVI· Therefore, it is entirely expected that
Ui = Uj or Wi = Wj for some i =I- j.

Aggregating the wall IDs in transactions from V by user
ID generates Vu - which is a database of behavioral trans­
actions. There is a clear analogy between Vu and the famous
supermarket example of frequent item-set mining. User IDs
in Vu are equivalent to transactions of purchase; walls that a
particular user has activities upon are equivalent to the items
purchased in a particular transaction. In this paper, we use wall
and item interchangeably.

For a given (minimal) support level ex, a frequent item-set
F, is a subset of W such that there are at least ex transaction in
Vu. Fb a k-item-set, denotes a frequent item-set with exactly
k number of items. A target-driven rule is generally defined
as an implication of the fonn X =} Y where X, YeW,
X n Y = 0, X U Y = Fb and Y is given as the target.

The goal, given a live and rapidly growing V and a
target Y, is to efficiently discover rules that imply Y. As an

illustration, Vu in our settings is equivalent to an 800-million­
by-30,OOO table that would have over 20 trillion cells in full
representation.

III. RELATED WORK

This section gives an overview of a body of relevant works
and casts our work in that context.

A. Association Mining

Association Mining aims at finding correlations between
items in a dataset. And despite the recent advances in parallel
association mining algorithms [6] [5], the core technique is
largely unmodified. The popular Apriori [4] algorithm iden­
tifies the frequent items by starting with small item-sets, and
only proceeding to larger item-sets if all subsets are frequent -
incurring a cost-overheads because in every count step it scans
the entire database. Several techniques have been proposed to
improve issues of Apriori such as counting step, scanning and
representing database, generating and pruning candidates and
ordering of items, some of which we discuss in detail:

1) Max-Miner: Max-Miner [10] addresses the limitations
of basic Apriori by allowing only maximal frequent item-set

(long patterns) to be mined. An item-set is maximal frequent
if it has no superset that is frequent. This reduces the search
space by pruning not only on subset infrequency but also on
superset infrequency.

Max-Miner uses a set enumeration tree which imposes
a particular order on the parent and child nodes, but not
its completeness. Each node in the set enumeration tree
is considered as a candidate group (g). A candidate group
consists of two item-sets. First called head (h(g», which
is the item-set enumerated by the node. The second called
tail (t(g», which is an ordered set and contains all items
not in h(g). The ordering in the tail item-set indicates how
the sub-nodes are expanded. The counting of support of a
candidate group requires computing the support of item-sets
h(g), h(g) u t(g), h(g) U {i},Vi E t(g). Superset pruning
occurs when h(g) u t(g) is frequent. This implies that item­
set enumerated by sub-node will also be frequent but not
maximal, and therefore the sub-node expansion can be halted.
If h(g) u {i} is infrequent then any head of a sub-node that
contains item i is infrequent. Consequently, subset pruning can
be implemented by removing any such tail item from candidate
group before expanding its sub-nodes.

Although Max-Miner with superset frequency pruning re­
duces the search time, it still needs many passes of the
transactions to get all the long patterns - becoming inefficient
in terms of both memory and processor usage (i.e. storing
item-sets in a set and iterating through the item-sets in the
set) when working with sets of candidate groups.

2) Frequent Pattern (FP) Growth: FP-Growth [1 1] gains
speed-up over Apriori by allowing frequent item-set discovery
without candidate item-set generation. It builds a compact
data structure called the FP-tree which can be constructed by
allowing two passes over the data-set, and frequent item-sets
are discovered by traversing through the FP-tree.

1 073

TABLE I
COMPARISON WITH POPULAR ASSOCIATION MINING ALGORITHMS

Algorithm Transaction Freq. Itms. Db. Memory
storage representation scans footprint

Apriori Row-based Row-based Many Large
Max-Miner Row-based Row-based Many Large

Eclat Columnar Flexible A few Small
FP-Growth Row-based FP tree 2 Enormous

SILVERBACK Columnar Flexible A few Tiny

In the first pass, the algorithm scans the data and finds
support for each item, allowing infrequent items to be dis­
carded. The items are sorted in decreasing order of their
support. The latter allows common prefixes to be shared during
the construction of FP-Tree. In the second pass, the FP-tree
is constructed by reading each transaction. If nodes in the
transaction do not exist in the tree, then the nodes are created
with the path. Counts on the nodes are set to be 1 . Transactions
that share common prefix item, the frequent count of the
node(i.e. prefix item) is incremented.

To extract the frequent item-sets, a bottom up approach is
used (traversal from leaves to the root), adopting a divide and
conquer approach where each prefix path sub-tree is processed
recursively to extract the frequent item-sets and the solutions
are then merged.

Allowing fewer scans of the database comes at the expense
of building the FP-Tree - the size of which may vary and
may not fit in memory. Additionally, the support can only be
computed once the entire data-set is added to FP-Tree.

3) Eclat: Similarly to FP-growth, Eclat employs the divide
and conquer strategy to decompose the original search space
[12]. It allows frequent item-set discovery via transaction
list (tid-list) intersections and is the first algorithm to use
column-based, rather than row-based representation of the
data. The support of an item-set is determined by intersecting
the transaction lists for two subsets, and the union of these
two subsets constitutes an item-set.

The algorithm performs depth-first search on the search
space. For each item, in the first step it scans the database
to build a list of transactions containing that item. In the next
step, it forms item-conditional database(if the item were to
be removed) by intersecting tid-list of the item with tid-lists
of all other items. Subsequently, the first step is applied on
item-conditional database. The process is repeated for all other
items as well.

Like FP-Growth, Eclat reduces the scans of the database
at the expense of maintaining several long transaction lists in
memory, even for small item-sets.

4) Distributed and Parallel Algorithms: Discovering pat­
terns from a large transaction data set can be computationally
expensive and therefore almost all existing large scale associ­
ation rule mining utilities are implemented on the MapReduce
framework. Such examples include Parallel Eclat [8] , Parallel
Max-miner [7], Parallel FP-Growth [9] and Distributed Apriori
[6].

Table I compares our proposed method with other popular
existing methods in many aspects including their scalability to

Cluster Empirical Support Lines of Accuracy
scalability efficiency count code

Good[6] benchmark Yes � 1 ,000 Exact
Fair[7] � 5x Yes Unknown Exact
Poor[8] 3x � lOx Yes �2 ,000 Exact

Very Good[9] 5x � lOx Yes 7,000+ Exact
Good > l5x Const. time �2,000 Probabilistic

more nodes.

B. Modern Applications of Bloom Filters

Capturing demographic between any two interests can be
very high in space complexity as it requires membership
operation to be performed. Bloom filter is a popular space­
efficient probabilistic data structure used to test membership
of an element [l 3]. For example, Google's BigTable storage
system uses Bloom filters to speed up queries, by avoiding
disk accesses for rows or columns that don't exist [1 4]. Similar
to Google's BigTable, Apache modeled the HBase, which is
a Hadoop database. HBase employs Bloom filters for two
different use-cases. One is to access patterns with a lot of
misses during reads. The other is to speed up reads by cutting
down internal lookups.

A nice property of Bloom filters is that the time needed
either to add items or to check whether an item is in the set
is fixed - O(k), where k is the number of hash functions -
independent of the number of items already in the set. The
caveat, though, is that it allows for false positives. For a given
false positive probability p, the length of a Bloom filter m

is proportionate to the number of elements n being filtered:
m = -nlnpj(ln2)2.

C. OLAP and Data Warehouse

Traditional OLAP (On-Line Analytical Processing) queries
are usually generated by aggregation along different spatial
and temporal dimensions at various granularities. For example,
OLAP queries for a typical job posting website [1 5] include
job views by day/week/month, job views by city, and job

views by company. For efficiency, OLAP queries are issued
against specifically designed data warehouses. Current indus­
trial practices usually build a data warehouse in three steps: (1)
cubifying the raw data; (2) storing the cubes; and (3) mapping
OLAP queries into cube-level computations.

Web-scale real-time applications like Twitter and Facebook
pose tremendous challenges to the three straightforward steps
of building data warehouses.

Insights-seekers basically demand real-time summary statis­
tics about the website at any granularity. To support such
stringent demands, a modern data warehouse is typically first
built from existing log data and incrementally updated by
setting up a, so called, river - a persistent link between source
and destination carrying real-time data stream. In addition,
powerful and elastic MapReduce frameworks like Hadoop [1 6]
are usually deployed to handle the first step, the cubification
of web-scale data, and the third step, mapping queries to

1 074

10

�L-�'�0��2 �0��3 �0��4�0��5 �0��6�0 ��7�0 ��8� 0��9� 0��>=1 00
The number of brands a user makes comments

Fig. 1 . Facebook user activity distribution (June 2008 to January 20 12, with
vertical axis in log scale)

cube-level computations. Durable and scalable key/value pair
storages like Cassandra [1 7] are often necessary to fulfill the
second step of building a web-scale data warehouse. In short,
more hardware and scalability seem to be the two hosts that
keep the system going - which, as indicated in Section I, is
something that we aim to change.

IV S TORAGE AND I NFRAS TRUCTURE

Given the scale of Du in our settings, the traditional
row-based storage assumed by [4] [1 1] [1 8] would become
out of depth. Our objective is to provide efficient storage
scheme, however, we are not trying to invent a general-purpose
advanced distributed storage engine to add to the already
abundant list of such engines and file systems. Instead, we
focus on an application/data-driven ad-hoc solution and we
discover that a probabilistic column storage is very effective
in tackling the massive data scale in our application domains.

A. Scalable Column Storage

The key observation that motivated our design is the sparsity
of Du. The full representation of Du would require over 20
trillion cells (740M users by 32K walls), which is impractical
even in distributed environment (notwithstanding the budget).
However, of the 20 trillion cells, less than 1% are populated.
According to our estimates, an average user accesses less
than 1 4 of the 32K walls. The sparsity of Du is neither a
coincidence nor a surprise us - in fact, the global sparseness in
a social graph and the power-law decay in its node degree dis­
tribution are part of the asymptotic behavior that we can safely
assume. As an illustration, Figure 1 shows the distribution of
Facebook users and the number of walls (items) they access,
demonstrating that the number of users accessing x number
of walls drastically decreases as x increases. Specifically, over
40% of the users only access less than 5 of the 32,000 walls.
We note that the "spike" on the right side is due to aggregating
all users with more than 100 accessed walls into a single
category. Hence, majority of the transactions in Du are likely
to only contain a small number of items.

disk
r-------
:trnsc.

:irnsc.-- u2

-

:trnsc.

rirnsc.--
rirnsc�- u7 - - U-i -

--

-- -rir;;;�.-- --US-- -
-

- ----
-

rirnsc�­
rirnsc�-

cache

------ --- 1 , ,

� � �0� � � �]
�������]

u6
u7

u9

u10

.....
Q)
Q.
E
ct!

(j)

o
2:
Q)
C/)
Q)

a:

Fig. 2. Illustration of the columnar storage in place of traditional row-based
transactions(trnsc.) and its probabilistic enhancement

We use a sparse representation of the massive Du called
"list of lists" (LIL) [1 9] (or "Column Family" in Cassandra
[1 7]). LIL typically stores a massive sparse matrix by using
a list to record the non-zero cells for each row. A column­
based "list of columns" (LIC) representation is implemented
for representing Du. That is, the LIC representation of Du
contains a wall-column for each wall ID, and each wall­
column only contains the active user IDs of the 800 million
users. The upper part of Figure 2 illustrates how the traditional
row-based transactions of items in a database are stored as
columns. The LIC implementation is popular among columnar
databases.

One of the advantages in this columnar storage is data
independency. The LIC representation of the database Du can
be partitioned by columns and we can store the columns as
physically different files on different hosts. Inserts, deletes, and
updates to any wall will only affect its column and therefore
avoids database locks, which is particularly helpful when the
database is live like Du.

B. Probabilistic Enhancement

An important consequence of the sparsity of Du is that
in LIL representation, the lists/columns for the walls will
have drastically different lengths. For example, the wall-list
for Coca-Cola on Facebook contains over 30 million user
IDs, whereas the small (albeit important) interests like ACM
SIGMOD have less than 100 user IDs in their lists.

The main problem caused by the massive size differences is
that the resource allocator would face a combinatorial problem
- each host has a capacity and each column has different sizes.
The situation would be much easier to deal with if all columns
are similar in size, which would allow the allocator to treat

1 075

all columns equally. To tackle this problem, two approaches
seem appealing:
(1) One may opt to shard the longer columns (e.g., Coca-Cola)
- however, this introduces extra complexity as it diminishes
the strong inter-column independency, which is important for
us to scale easily. Extra locks would be required at column­
level and shard-level for different chunks of a sharded column.
The situation becomes more complicated if the column is so
big that its shards reside on multiple hosts. Indeed, sharding
functionality is available in existing products like MongoDB
[20]. But MongoDB 2.l generically implements readers-write
lock and allows one write queue per database, which is not
desirable in our case and may have unforeseeable impact at
large scale.
(2) Another approach - which we adopted as our philosophy
is to simply solve the locking problem by "avoiding it".
Namely, similar to [2 1] , we impose each column file to be
single-threaded and therefore, no lock mechanism or extra
complex management is required. The trade-off here is the
need to make sure each column file size can be handled by a
single thread with a reasonable delay. Sampling can alleviate
the size difference among columns and make large columns
controllable by a single-thread, and Reservoir sampler [22]
is used for exceedingly long columns. In practice, we sample
500,000 IDs for columns with more than 500,000 IDs. A bonus
of using Reservoir sampler is the ability to incrementally
update the pool as new IDs are added to a given column
and guarantee that the pool is a uniform sample of the entire
column at any given moment. For each sampled column, an
extra field is required to record the sampling rate.

However, the main problem now becomes that the column
files still cannot fit into the main memory of our modest
cluster, even after sampling - we note that loading all col­
umn files of the described Du requires roughly 300GB after
sampling. The practical goal is to reduce the representation
of Du from 300GB down to approximately 25GB - without
breaking data independency, performance or scalability. With
such constraints, our options are limited due to "facts of life"
such as: (a) sampling based techniques cannot be used since
any sampling would have happened in the previous stage;
(b) coding-based information compression is also undesirable
because of its impact on performance and updatability.

Given these observations, Bloom filter [l 3] with its proba­
bilistic storage-efficiency seems a plausible choice. A Bloom
filter is a space-efficient probabilistic data structure that is
used to test whether an element is a member of a set. Hence,
our idea is to construct a bloom filter for each column, as
depicted in the bottom part in Figure 2. When the Bloom
filters are built, they are meant to be cached in memory while
the much larger columns can reside on slower disks. In our
experience, Bloom filters' efficiency is about 5 to 7 bits per
ID, where each ID is originally stored as a string of 1 0 to
20 ASCII characters, depending on the chosen column. In
addition to drastically reducing the storage size, Bloom filter
files can be incrementally updated as more IDs are added
to the corresponding column file, which means no rebuild is

necessary for the filters.
Although the Bloom filters created for different columns can

use different number of hash functions, different false positive
rate, or different number of set bits, we need to make sure all
Bloom filter arrays are of the same size. In practice, we enforce
the Bloom filter size to be 7,000,000 bits = 854.5 KBytes,
which guarantees less than 0.1 % false positive rate with
500,000 expected inserts. Doing the same for all 30,000
columns would yield 854.5KBytes x 30,000 < 24.5 GBytes.
That is, we expect at most 500,000 (the number of max sample
size) IDs to be added to any Bloom filter. Assuming that each
ID sets 7 different bits in the filter, at most 50% of the bits
in the Bloom filter will be set which, in turn, guarantees the
bound on the false positive rate on the filters.

Together, the sampling limit and the size of the filter
guarantee an acceptable/satisfactory level of accuracy. While
this equal-in-size requirement might seem unnecessary and
even superfluous - it is specifically imposed to enable bit
operations between any two Bloom filters, which is critical
in our association mining algorithm. As we will demonstrate
in Section VI, both the sampling and Bloom filter have a very
limited impact on the accuracy of the results.

C. Deployment of S ILVERBACK

The commercially deployed S ILVERBACK system consists
of three major parts: (1) columnar probabilistic database of
transactions; (2) a computation cluster; and (3) storage for
output rules and frequent item-sets.

The database of transactional records, D, is implemented
using modified versions of MySQL [23] and MongoDB [20]
on top of 6 relatively powerful nodes. Since the database
infrastructure is shared with other data warehousing purposes,
databases are served from dedicated servers (free of other
computational chores) to achieve high I/O throughput.

The computation nodes are the ones executing the SIL­
VERBACK mining algorithms (cf. Section V), implemented
as web services and served from scalable web servers like
Tornado [24]. Therefore, most communication between the
database and the computation cluster is through internal HTTP
requests. About 30 nodes are deployed in this cluster, which
is a shared resource among several computation-intensive
purposes including association mining. The cluster is logically
organized as master server, shadow master servers for fault­
tolerance, and slave servers. However, physically several slave
servers can reside on a same actual node; moreover, the master
server is run alongside with slave servers on a same node as
well. All the slave servers are designed to recover from crash
and resume from its last checkpoint.

Two important design decisions in our computation in­
frastructure are: (1) implementing the computation as web
service-based transactions; and (2) the "ideological" separation
between logical servers and physical nodes.

A substantial advantage of turning computation tasks into
service-based transactions is the elimination of startup cost of
loading dictionaries, lookup tables from disk, since the end
points for those web services are persistent. More specifically,

1 076

the Bloom filter structures, which are small in memory foot­
print, once fit into the main memory of the web servers can
be tested, copied, and updated without modifying the disk as
long as the hosting web services do not restart themselves.
Service-based system also makes logging much easier and
can be readily integrated with frameworks like Scribe [25].
Another advantage, of a particular interest for our commercial
application, is the web-servers ' built-in handling for timeout
requests. Suppose the system is calculating frequent item-sets
on-the-fty from end-clients' requests. Often, the desideratum is
not to find complete/exact frequent item-sets in as efficiently
(in time) as possible. To the contrary, the clients expect to
explore as many frequent item-sets as possible after a tolerably
short time-delay, say, 1 second. Service-based implementation
makes it easier to achieve such expectations.

Separation between logical servers and physical nodes is

Algorithm 1: Column-oriented algorithm for finding two
frequent item-sets and association rules

Input: a, minimal support, W, set of all items, Vu, the
database of transactions

Output: 0, set of all frequent two item-sets
1 WI +--- {xix E W, length of x column 2: a}; 0 +--- {}
2 for each y E WI do
3 Uy +--- IDs from y column
4 for each x E WI and x >-- y do
5 8upportx,y +--- 0
6 bf +--- x column's Bloom filter
7 for each U E Uy do
8 if U in b f then
9 I 8upportx,y+ = 1

10 end
11 end

a powerful approach, enabling better utilization of resources
among different services on a shared computation cluster. If 13
the cluster is split into smaller ones, each of which is dedicated

12

14

if 8upportx,y 2: a then
I append {x, y} to 0

end
to a particular service, then service A cannot use the idle
resources in cluster B even when service B is not actively
using cluster B. Deploying both service A and B on the
cluster as a whole can alleviate that. Moreover, dynamically
reducing/increasing the slave servers running on each cluster
node within just a few minutes can maximize the utilization
of available resources and also reduce energy consumption in
real time.

The execution of popular algorithms like Apriori [4] and
FP-Growth [1 1] , even their distributed implementations [6], is
row-based, where a transaction row is taken for granted as the
execution unit. However, given the proposed storage scheme,
this assumption is no longer valid and it is not straightforward
to apply/generalize the existing algorithms to accommodate
to our storage, due to the fundamental differences in data
scanning between row-wise storage and columnar storage. In
this section, we present the versions of our algorithms used in
SILVERBACK.

D. Two Item-set Algorithm

We first demonstrate the column-oriented algorithm for find­
ing frequent two-item-sets {X = {x}, Y = {y}}, where X
and Yare both single item-sets, with a given minimal support
a. The two item-set algorithm is often used in our commercial
practice, where the owner of a brand y is interested in finding
out other brands that are most frequently associated with y.

All the possible candidates for x are elements from W,
the set of all items. Our algorithm starts by filtering out
the unqualified candidates whose support is below a - a
process can be done very efficiently by scanning 0 (IWI - 1)
numbers, since the algorithm simply queries the length of each
column file.

Let WI <;;; W denote the subset of W, which contains all
the walls whose column size is above a. For each y E WI,
the algorithm loads the user IDs from column y into a set
Uy. Since the actual user IDs are not explicitly stored with
the Bloom filter and reside on a much slower disk, reading

15 end
16 end
17 return 0

user IDs from disk only happens once per wall to avoid
cost (note that Uy at each iteration is small enough to fit
in memory). In other words, the algorithm scans the whole
database from the disk only once. Then for each wall's Bloom
filter representation bx, where x E WI, the algorithm tests
whether u is a member of bx for VuE Uy. By testing Uy
against bx, the algorithm effectively finds (with false positives
introduced by the use of Bloom filter) y n x, the intersection
between y column and x column. At this stage, confidence
and support filtering is applied and all qualified y columns
are put into the output set O. The x >-- y constraint says that
x must come after y in atomic order, which guarantees that
{x, y} and {y, x} are not calculated twice.

The equivalence between intersection of columns and union

of item-sets allows us to compute other association mining
concepts like lift, using the proposed storage and algorithm.
This equivalence is best illustrated in single item case, but the
same property carries over to general case as shown in [1 2]
and in the following section.

E. Two Issues With Apriori

Two particular operations in the Apriori algorithm signifi­
cantly slow down its execution time. The first is the multiple
scans of transactions. The other operation that significantly
contributed to the temporal cost of traditional Apriori is
candidate pruning, which requires counting support for each
candidate generated. To overcome those two drawbacks, vari­
ous pruning and optimization techniques have been proposed,
as discussed in the related work section.

1) Minimizing scans of transactions: Apriori algorithm
classifies candidate item-sets and explores their candidacy by

1 077

Algorithm 2: Apriori-gen algorithm for generating and
probabilistically pruning candidates

Input: Fk-l, frequent (k - 1) item-sets; a, minimal
support; HI(c), ... , Hf(c), sorted lists that holds
the Bloom hash indices for Ic/c E Fk-l; Se for
Ic/c E Fk-l, support counts for all frequent (k - 1)
item-sets

Output: Ck> set of candidates for frequent k item-sets
after pruning

1 Ck +--{}
2 for CI, C2 E Fk-l X Fk-l do
3 if CI and C2 satisfy Equation 1 then
4 for i E {1, ... , f} do
5 SIG(hi(CI)) +-- first m indices in Hi(cI)
6 SIG(hi(C2)) +-- first m indices in Hi(C2)
7 SIG(hi(CI U C2)) +-- find the smallest m

8
9

10

11
12

13

14

15

16 end
17 end

elements fro�IG(hi(CI)) U SIG(hi(c2));
Calculate Ji (CI, C2) based on Equation 5

end

J -() '\'f JJ;;;�e2) hybrid �2 +-- L..,i=l f
if Jhybrid (CI,C2)· (Sel + Se2) ;::: a then

C +-- CI U C2

end

order elements in C
append C to Ck

18 return Ck

Algorithm 3: SILVERBACK - columnar probabilistic algo­
rithm for finding general frequent item-sets

Input: a, minimal support, W, set of all walls, Vu, the
database of transactions

Output: 0, set of all frequent item-sets
1 0+--{}
2 FI +--{xix E W, and supportx ;::: a}
3 F2 +-- Algorithm I (a, W, Vu)
4 0 +-- 0 U FI U F2; k +-- 2
5 for each C E F2 do
6

I
Se +-- support counts from Algorithm I 's byproduct

7 H1(c), ... , Hf(c) +-- obtained from Algorithmi
8 end
9 while Fk i= 0 do

10 k + = 1
11 Ck +-- apriori-gen(Fk_I' a,

12 {HI (c), ... , Hf(C), supporte,
13 for Ic/c E Fk-d)
14 order elements in Ck
15 for each C E Ck do
16 HI (c), ... , H f (c) +-- empty ascending priority

queues each with capped capacity m

17 supporte +-- 0; bf +-- vector of Is
18 y +--first item in c; Uy +-- IDs from y column
19 for each x E c\y do
20 I bf +-- AND-mask(bf, x column Bloom filter)
21 end
22

23

24

25

for each u E Uy do

26

hI' ... ' hf +-- u's indices in bf, respectively
if hI' ... ' hf all set in bf then

supporte+ = 1
append hl, ... ,hf to HI(c), ... ,Hf(c),
respectively the cardinality of the item-set, where at each cardinality level,

the algorithm scans Vu (the entire database of transactions) for 27
counting the supports of the candidate sets at that cardinality 28
level. The problem then becomes obvious: the entire execution

end
end

29
of the algorithm scans the database multiple times, which is

30

if supporte;::: a then
I append c to Fk; append c to 0

end not desirable.
Minimizing the iterations of scanning the database is critical

in improving the overall efficiency of association mining algo­
rithms, especially for large databases. FP-Growth [1 1] offers
improvements partially due to the fact that it only scans the
database of transactions twice in building the FP-tree structure.
However, as mentioned in Section III, the size of the FP-tree
structure can be large and reading frequent patterns from the
FP-tree requires traversing through the tree which, in turn, still
incurs multiple loads. Benefiting from its columnar storage,
Eclat [1 2] reads activities/transactions column by column and
only the necessary columns and intersections of columns are
retrieved into memory when checking the candidacy of each
candidate. Similar to Eclat, our proposition only retrieves the
necessary column files each time and further minimizes the
110 by replacing intersections of columns by AND-masked
Bloom filters.

2) Candidate Generation and Probabilistic Pruning: Tra­
ditionally, avoiding the exponential growth of candidate item-

31

32 end
33 end
34 return 0

sets (21w1 possible candidates) by the Apriori principle and
other algorithmic improvements [10], was based on pruning
the unqualified candidate item-sets. Apriori principle becomes
especially effective when Vu is sparse and contains large
number of items and transactions, which exactly suits our
practical usage.

The Apriori-gen function in Algorithm 3 uses Fk-l x Fk-l
method [26] to generate, Ck> the set of candidates for frequent
k-item-sets. Apriori-gen function then uses a new, minHash­
based [27] pruning technique to drastically reduce the candi­
dates in Ck and to bring Ck as close to Fk as possible. Mini­
mizing the cost of reducing Ck to Fk is key in achieving much

1 078

higher performance than previous Apriori-based techniques.
Fk-l x Fk-l method was first systematically described in

[26]. The method basically merges a pair of frequent (k - 1)­
item-sets, Fk-l, only if their first k - 2 items are identical.
Suppose Cl = {ml, ... ,mk-d and C2 = {nl, ... ,nk-d be
a pair in Fk-l. Cl and C2 are merged if:

mi = ni (for i = 1 , ... , k - 2), and mk-l i= nk-l' (1)

The Fk-l x Fk-l method generates 0 (lFk_112) number of
candidates in Ck. The merging operation does not guarantee
that the merged k-item-sets in Ck are all frequent. Determining
the Fk from the usually much larger Ck becomes a major cost
in Apriori execution.

Can one efficiently determine if C E Fk for any C E Ck?
This is the question people have been trying to directly
address. But we think one can alternatively ask, based on the
Fk-l x Fk-l method, Can one efficiently determine if C E Fk
for any c such that c = CI U C2 and CI, C2 E Fk-l? Dealing
with C directly basically throws away the known information
about Cl and C2. The important question then becomes how
can Cl and C2 help determine the candidacy of c.

The key clue lies in S(c), the support set of c. S(c) =
S(cd n S(C2)' From previous research, pruning based on the
cardinality of S(c) is very expensive. Instead, we propose to
consider the Jaccard similarity coefficient [28] in the Apriori­

gen function:

J () _ IS(cd n S(c2)1
Cl, C2 - IS(cd U S(c2)1

' (2)

Measuring J (Cl, C2) is just as costly, so Apriori-gen uses
minHash algorithm to propose a novel estimator for J (Cl, C2).

MinHash scheme is a way to estimate J (Cl, C2) without
counting all the elements. The basic idea in minHash is to
apply a hash function h, which maps IDs to integers, to the
elements in CI and C2. Then hmin(Cl/2) denotes the minimal
hash value among h(i), Vi E CI/2' Then we claim:

The above claim is easy to confirm because hmin(Cl) =
hmin(C2) happens if and only if hmin(ClnC2) = hmin(Cl UC2).
The indicator function, :n.{hmin (C,)=hmin(C2)}' is indeed an
unbiased estimator of J (CI, C2). However, one hash function
is not nearly enough for constructing a useful estimator for
J (Cl, C2) with reasonable variance. The original plan is to
choose k independent hash functions, hI,"" hk, and con­
struct an indicator random variable, :n.{hi,min(C,)=hi,min(C2)}'
for each. Then we can define the unbiased estimator of
J (CI, C2) as

(4)

Before the above estimator can be implemented, it is critical
to realize its computational overhead in practice. Often k =
50 or more is chosen and the k hash functions need to be
applied to each ID in the support of each candidate. At this

stage, typical applications of minHash often use the single­
hash variant to reduce computation, Given a hash function h
and a fixed integer k, the signature of c, SIG(h(c)), is defined
as the subset of k elements of C that have the smallest values
after hashing by h, provided that Ici 2: k. Then the unbiased,
single-hash variant of Equation 4 is

J
-
() _ ISIG(h(CI U C2)) n SIG(h(CI)) n SIG(h(c2))1

s.h. CI, C2 - ISIG(h(Cl U c2))1 '
(5)

where SIG(h(CI U C2)) is the smallest k indices in
SIG(h(cd) U SIG(h(c2)) and can be resolved in O(k).

In general, the single-hash variant is the best minHash can
offer in terms of minimizing computational cost. However,
one still needs to hash all elements in CI and C2 before
he/she can find the signatures, which would make Equation
5 basically as costly as Equation 2. The key step that makes
minHash estimation particularly efficient in our case is to link
it with the Bloom filters assumed in our framework. Testing a
member u in a Bloom filter essentially requires finding several
independent hash values that map u to different indices in a bit
array. Since the Bloom filter indices are comparable integers,
the idea here is to avoid extra hashing in minHash calculation
by re-utilizing these integer hash indices. Since all user IDs
in the support sets of all frequent item-sets will be tested by
the same Bloom hash functions, it guarantees the availability
of these hash indices.

Suppose the Bloom filter test sets f number of bits (i.e. it
runs the ID through hI, ... , h f for each ID, whose member­
ship is to be tested). The direct attempt of utilizing the Bloom
filter indices in minHash is simply:

f
J (�C2) = L

:n.{hi,min(C11hi,min(C2)}
(6)

i=l
by replacing k in Equation 4 with f. A potential problem
with this scheme is that, to achieve reasonable accuracies in
Bloom filter and minHash, the expectations on f and k are
very different. Indeed, we find f = 7 is sufficiently good
for the Bloom filter while k is usually over 20 in order for
minHash to give reliable estimates.

To overcome the empirical difference between f and k,
we design a f-hash hybrid approach that uses the f already
calculated Bloom hash indices. Choose k to be a fixed integer
such that k > f, k = f·m, and m is also an integer. Let hi, for
i = 1 , ... , f, denote the i-th Bloom hash function. Then the
i-th signature of c, SIG(hi(c)) is the subset of m elements of
C that have the smallest values after hashing by hi, provided
that Ici 2: m. Applying the sig�res to Equat� 5, we obtain
f independent estimators, !JCI, C2)" . . , Jf (CI, C2). Finally,
the hybrid estimator J hybrid (CI, C2) is derived as

f -- '" Ji (CI, C2)
Jhybrid (CI, C2) = � f

.
i=l

(7)

In fact, Equation 6 is a special case of the hybrid estimator.
When k = f and m = 1 , Equation 7 becomes equivalent to
Equation 6.

1 079

Further, we have

J(Cl,C2) ' (IS(Cl)1 + IS(C2)1)
IS(cd n S(C2) I . IS(Cl) I + IS(C2)1

IS(CI) u S(C2)1
2: IS(cI) n S(c2)1·

(8)

Since IS(cd n S(c2)1 = IS(c)l, it follows that if IS(c)1 2:
ex, then J (Cl, C2) . (IS(cdl + IS(C2)1) 2: � where ex is the

min support. Replacing J (Cl, C2) with J (Cl, C2) gives us the
rule Apriori-gen uses to reduce Ck closer to Fk. Observe that
Apriori-gen applies the rule in reverse logical order, which
introduces false positives. This is why Apriori-gen can only
reduce Ck to some superset of Fk, but not exactly Fk.

F The S ILVERBACK Algorithm

The general association mining algorithm with the proposed
pruning technique is presented in Algorithm 3. Schematically,
it is similar to the original Apriori, but S ILVERBACK ef­
fectively addresses the two issues brought up earlier in this
section.

The iterations of transaction scans are minimized. The
columnar database enables the algorithm to only load the
necessary x column at each iteration. Further, by sorting the
item-sets in each candidate set Ck and sorting the items in
each item-sets, we can make sure each column is loaded only
once from the disk and will stay in memory for iterations of
all item-set candidates, to which this column belongs.

Probabilistic candidate pruning is key in our proposed
algorithm. Indeed, we already show how it can prune off
the unworthy candidates. But we are equally interested in its
impact to the complexity of the algorithm. In Algorithm 3, the
only temporal performance impact is line 26, where the hash
indices (which we get for free when testing memberships with
Bloom filter) are inserted in Hl(C)" ", Hj(c), each of which
is a priority queue of capped length m. The temporal cost
for each ID in the test of each candidate without insertions
to priority queues would be O(J). The insertions introduce an
additional complexity O(J log m). In the Apriori-gen function,
for each candidate, lines 5 and 6 cost is O(Jm) and line 7
cost O(Jm log m) due to sorting. To claim that the temporal
cost (and the spatial cost, which is bounded by temporal) is
basically constant, we need to show that both f and m are
small integers and the cost does not increase as the transactions
or unique items increase.

f, the number of Bloom hash functions, is said to be 7
in previous section and it only grows logarithmically with
respect to the total transactions. So f = 10 would be
sufficient for some 1 trillion transactions. m, on the other
hand, is determined by f and the minHash error rate. MinH ash
introduces error E rv O(+.) to its Jaccard estimation J,
which is between 0 and l. �ose that E < 0.06 is satisfactory
and f = 7, then m = 40 is sufficient. Further, if f increases
to 10, m = 28 would be sufficient for achieving the same E.

S ILVERBACK is scalable and can be deployed on a cluster.
The column files and Bloom filter files are distributed across
the slave servers of the cluster. An index file is stored

on the master server to keep track of the slave, on which
a particular column file or Bloom filter is stored. A nice
property of S ILVERBACK is that only the user IDs from one
column are necessary to be loaded in memory at any given
moment of the execution of S ILVERBACK. This implies that
the uncompressed, large column files are never moved from
slave to slave over the network. Only the compressed strings
of Bloom filters are loaded from other slaves when necessary.
This property minimizes general intra-cluster I/O traffic and
makes our algorithm scalable.

V. EX PERIMENTAL OB SERVATION

We now present the experiments that we conducted for
evaluating the proposed methodologies.

A. Dataset

Our data is collected from two widely used social media
platforms: Facebook and Twitter. Both Facebook and Twitter
are a medium for individuals, groups or businesses to post
content such messages, promotions or campaigns. The user
comments/tweets, and user information from specific interests

is publicly available and collected using Facebook API2 and
Twitter AP13. In the experiments, the data collected over 20 12
is used. Table I I shows the size of the databases we are
maintaining using the proposed infrastructure and the amount
of data used in the experiments.

TABLE II
DATASETS SUMMARY STATISTICS

Statistic Facebook Twitter
Unique itemslinterests 32K+ llK+
(used in experiments) 22,576 4,29 1
Total user activities lOB+ 900M+
(used in experiments) 226M 24.2M
Unique users/transactions 740M+ 1 20M+
(used in experiments) 27 .4M 3 .7M

B. Errors from Sampling and Bloom Filter

As discussed earlier, a Bloom filter allows for false posi­
tives. In this section we discuss how different capacity sizes
and false positive probabilities affect the target-driven rule
calculation. With the introduction of the probabilistic data
structure, the computation of Supp{X U Y} i.e. the COlmnon
users that have shown interests in both interests X and Y is
affected, which in turn affects the order the relevant precise
interests.

TABLE III
COMMON USER COUNT

interest TM CM Ct
EASPORTS 242399 1647 33197
techcrunch 202812 12295 32579
iTunesMusic 189568 7265 24171
googJe 149877 12022 21352
facebook 120724 8904 14212

2 http://deveIopers.facebook.coml
3https:lldev.twitter.comldocs/

C2 C3 C4
1647 10085 6611
12295 17105 15647
7265 10625 9698
12022 13797 13621
8904 9746 9859

CS C6 C7
1708 2136 1714
12950 13147 12496
7513 7640 7640
12605 12636 12636
9356 9365 9365

1 080

interest CI
EASPORTS 3 1 550
techcrunch 20284
iTunesMusic 1 6906
google 9330
face book 5308

interest Cl
EASPORTS 0.829
techcrunch 0.890
iTunesMusic 0.908
google 0.949
facebook 0.97 1

interest Cl
EASPORTS 0.050
techcrunch 0.377
iTunesMusic 0.30 1
google 0.563
facebook 0.627

interest Cl
EASPORTS 0.095
techcrunch 0.548
iTunesMusic 0.462
google 0.720
facebook 0.770

TABLE IV
FALSE POSITI VES

C2 C3 C4
1 402 8438 4964
1085 48 1 0 3 3 5 2
5 6 8 3360 2433
648 1775 1 599
469 842 955

TABLE V
ACCURACY

C2
0.992
0.994
0.997
0.996
0.997

C2
0.540
0.9 19
0.927
0.949
0.950

C2
0.701
0.958
0.962
0.974
0.974

C3 C4
0.954 0.973
0.974 0.982
0.982 0.987
0.990 0.99 1
0.995 0.995

TABLE VI
PRECISION

C3 C4
0. 163 0.249
0.7 1 9 0.786
0.684 0.749
0.87 1 0.883
0.9 14 0.903

TABLE VII
F-MEASURE

C3 C4
0.28 1 0.40 1
0.836 0.893
0. 8 1 2 0.88 1
0.93 1 0.952
0.955 0.964

CS C6 C7
6 1 489 67

655 852 20 1
248 375 375
5 8 3 6 1 4 6 1 4
452 46 1 46 1

CS C6 C7
1 . 000 0.997 1 .000
0.996 0.995 0.999
0.999 0.998 0.998
0.997 0.997 0.997
0.998 0.997 0.997

CS C6 C7
0.964 0.77 1 0 .961
0.949 0.935 0.984
0.967 0.95 1 0.9 5 1
0.954 0.95 1 0.9 5 1
0.952 0.95 1 0.9 5 1

CS C6 C7
0.982 0.569 0.980
0.974 0.932 0.992
0.983 0.929 0.975
0.976 0.964 0.975
0.975 0.970 0.975

Table III shows precise interests generated for target interest
amazon for the period of July-December of 20 1 2. For each in­
terest we provide Total Mentions(TM), which is the number of
users who expressed interest, COlmnon Mentions (CM), which
is actual number of common users who expressed interest
for both interests (true positives), and different configurations
of Bloom filters. Configurations C1 , C2, and C3 have false
probability 0.10, 0.002, and 0.02 respectively and a filter
capacity of 1 00,000. Configurations C4, C5, and C6 have false
probability 0.1 0, 0.002, and 0.02 respectively and a filter ca­
pacity of 200,000. Configuration C7 is the only configuration
where the Bloom filter is built using sample(S) size equal to the
capacity size (200,000) if the TM is over the capacity size and
its false probability is 0.02. In configuration C7, the common
mentions for the Bloom filter is then estimated proportionately
based on the total mentions. Note the that total number of
mentions for amazon is 1 84, 1 17.

Due to the probabilistic nature of the data structure, we use
predictive analysis approach where we evaluate the effective
measure of our system by formulating a confusion matrix,
i.e., a table with two rows and two columns that reports
the number of false positives, false negatives, true positives,
and true negatives. The COlmnon mentions given by Bloom
filter comprise of true positives and false negatives. Table

IV provides the number of false positive (jp), which deduced
using conunon mentions from Bloom filter and true COlmnon
mentions. The number of false negatives is always zero due to
the nature of Bloom filter. Therefore, the true negatives (table
not shown) are easily deduced. The accuracy, precision and
F-measure is provided in Table V, VI and VII, respectively.

As expected, for a given capacity, as the false positive
probability decreases, the accuracy ((tp + tn)/(tp + tn +
fp + fn» and precision (tp/ (tp + fp» both increase. The
recall (tp/ (tp + fn» is always 1.0, i.e., all relevant users
were retrieved because our system with Bloom filter does
not permit false negatives. The precision for our system is
always less than 1.0 as not every result retrieved by the
Bloom filter is relevant. As the capacity is increased, the
accuracy and precision further improve. Note that when the
total mentions is greater than the capacity, the Bloom filter
has higher inaccuracy for a fixed false probability. For example
for EASPORTS , the accuracy is 15% lower for capacity of
size l OOK vs. 200K for the false probability of 0.10. This is
due to the property that adding elements to the Bloom filter
never fails. However, the false positive rate increases steadily
as elements are added until all bits in the filter are set to 1.
To counter this effect we sample data to be added to Bloom
filter. Sampling can have an impact on the false positive rate of
Bloom filters depending on the sampling quality. For example
the number of false positives for EASPORTS, for Bloom filter
configurations C5 and C7, are 6 1 and 67 respectively. But the
false positives drop for techcrunch when sampling is used.

Due to probability of false positives, the interests order
arranged in decreasing order of the common mentions count
can be different. We use the Kendall Rank Correlation co­
efficient or short for Kendall's tau (7) coefficient [29] to
evaluate our results. Measuring the rank difference instead
of absolute error that our probabilistic algorithm makes is
due to practical interests. It is more often the case that our
customers would ask queries like the top X number offrequent

items associated with my brand. 7 is defined as the ratio of
the difference between concordant and discordant pairs to the
total number of pair combinations. The coefficient range is
-1 :s; 7 :s; 1 , where 1 implies perfect agreement between
rankings. Table VIII provides the Kendall statistics for two
Bloom filter configurations. Both configurations approximately
have 7 value of 0.98, implying that our rankings are very close
in agreement compared to original rank. Also since the 2-sided
p-value is less than 0.0000 1, this implies that the two orderings
are related and the 7 values are obtained with almost 1 00%
certainty.

TABLE VIII
KENDALL T RANK CORRELATION TABLE

Measure 200K, 0.02 200K, 0.002
Kendall T-statistic 0 .9825 1 0 .98455
2-sided p-value < 0 . 00001 < 0. 00001
S. Kendall Score 3847 3855
Var (S) 79624.33 79624.34
SIT. Denominator 3915 .5 3915 .5

1 08 1

C. Temporal Scalability and Efficiency

Fig. 3. Scalability comparison

In addition to evaluating the accuracy of our probabilistic
algorithms, we still need to demonstrate their efficiency and
scalability. After all, good efficiency and scalability are ex­
pected trade-offs by sacrificing accuracy.

In Figure 3, we report the run times for different combi­
nations of computing nodes, and minimum support threshold
values, for four different algorithms. In the legend of Figure
3, HA denotes the naive implementation of Apriori in the
MapReduce framework [5]. CS, CSBF, and S ILvERBACK de­
note our proposed algorithm with progressively more features.
CS denotes a diminished version, where only the columnar
storage is used but not the Bloom filter enhancement or the
minHash pruning technique; CSBF is like CS but implements
the Bloom filter enhancement for each column file; and finally,
S ILVER BACK is the fully blown version that incorporates all
techniques presented in our paper including the minHash prun­
ing technique. In addition, a dashed line of ideal scalability is
included for each of the four methods compared in Figure 3.

In both support levels (0.05% & 1 %), HA seems to have
the most reliable speedup as the number of computation nodes
increases. The CS method significantly deviates from the ideal
speedup as we increase up to 32 nodes. We suspect its lack of
scalability is due to the increase of I/O traffic, since the IDs in
each column are not compressed like CSBF or S ILvERBACK

and would pose significant load on the I/O. Both CSBF and
S ILVER BACK exhibit superior scalability over CS, especially
in the low support setup.

HA, the Hadoop solution, seems to have better scalability
than all other algorithms, although its absolute run time is not

the lowest. Will HA be the fastest eventually if the number of
nodes keeps on increasing? We think the relatively superior
scalability in HA is mainly due to two aspects. First, HA,
unlike the other three methods, is implemented on a Hadoop
cluster with slightly better computational capability per node
but much better inter-node connections (32 Gbitls InfiniBand).
The budget cluster, on which CS, CSBF, and S ILvERBACK

are implemented, simply uses corporation-domain IP addresses
as node identifiers. Second, S ILvERBACK still has room to
improve its scalability to more nodes as this algorithm is only
proposed in this paper while Hadoop Apriori is much more
mature.

The ranks of performance for the four methods are con­
sistent under both support levels. The two probabilistic ap­
proaches, CSBF and S ILvERBACK, perform consistently faster
than the exact ones, HA and CS, which is predicted as
we expect sacrificing accuracy would significantly boost the
temporal performance. CS performs consistently worst, which
suggests that proposing a columnar storage by itself does not
quite solve any problem.

Investigating the relative changes in the inter-method gaps
under different support levels reveals more on the impact of
minHash pruning and Bloom filter enhancement. First, the
difference made by using Bloom filters, as illustrated by CS
and CSBF, increases when min support level drops. Second,
the use of minHash pruning technique also amplifies its impact
as the support level decreases.

VI. CONCLUSIONS

We presented the S ILvERBACK framework, a novel solution
for association mining from a very large database under
constraints of a modest hardware. We proposed accurate prob­
abilistic algorithms for mining frequent item-sets, specifically
catering to the columnar storage that we adopted, which is en­
hanced by Bloom filters and reservoir sampling techniques to
enable storage efficiency. Our Apriori-based mining algorithm
prunes candidate item-sets without counting every candidate's
support. As our experiments showed, S ILvERBACK outper­
forms Hadoop Apriori on a more powerful cluster in terms of
run time, while our probabilistic approach yields a satisfactory
level of accuracy.

The S ILvERBACK framework has been successfully de­
ployed and maintained at Voxsup since May 20 1 1. Our
ongoing efforts are focusing on further improvement our
system performance and scalability. Specifically, in the near
future we would like to develop more efficient inter-nodal
communication solutions, which is critical to scale to hundreds
of nodes.

AC KNOWLED GMENTS

This research was supported by Voxsup, Inc. and
in part by NSF awards CCF-0833 1 3 1 , CNS-0830927,
CNS-09 10952, III- 1 2 1 303 8, IIS-0905205, CCF-0938000,
CCF-1029 1 66, ACI-1 l4406 1 , and IIS- 1 343639 ; DOE awards
DE-FG02-08ER25848, DE-SC000 1 283, DE-SC0005309,

1 082

DESC0005340, and DESC0007456; AFOSR award FA9550-
1 2-1-0458. We are thankful to our colleagues Zhengzhang
Chen and Yu Cheng for their insights in our technical
discussion.

REFERENCES

[I] Y. Xie, Z. Chen, K. Zhang, M. M. A. Pat wary, Y. Cheng, H. Liu,
A. Agrawal, and A. N. Choudhary, "Graphical modeling of macro
behavioral targeting in social networks." in SDM. SIAM, 20 1 3 , pp.
740-748 .

[2] Y. Xie, Y. Cheng, D. Honbo, K. Zhang, A. Agrawal, A. N. Choudhary,
Y. Gao. and J. Gou, "Probabilistic macro behavioral targeting." in
D UBMMSM, 20 12 , pp. 7-10 .

[3] R. Agrawal, T . Imielinski. and A. Swami, "Mining association rules
between sets of items in large databases," in SIGMOD '93. ACM,
1993, pp. 207-2 16 .

[4] R. Agrawal and R. Srikant, "Fast algorithms for mining association
rules in large databases," in Proc. VLDB Endow. , ser. VLDB '94. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. , 1 994, pp. 487-
499.

[5] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, "Apriori-based frequent itemset
mining algorithms on mapreduce," in ICUlMC '12 . ACM, 20 12, pp.
76: 1-76:8 .

[6] Y. Ye and c.-c. Chiang, "A parallel apriori algorithm for frequent
itemsets mining," in SERA '06. IEEE, 2006, pp. 87-94.

[7] S. Chung and C. Luo, "Parallel mining of maximal frequent itemsets
from databases," in ICTAl '03, 2003, pp. 1 34-139 .

[8] M. J. Zaki, S . Parthasarathy, and W. Li, "A localized algorithm for
parallel association mining," in SPAA '97. ACM, 1 997, pp. 321-330.

[9] H. Li, Y. Wang, D . Zhang, M. Zhang, and E. Chang, "Pfp: parallel fp­
growth for query recommendation," in RecSys '08. ACM, 2008, pp.
1 07-1 14.

[1 0] R. J. Bayardo, Jr., "Efficiently mining long patterns from databases," in
SIGMOD '98. New York, NY, USA: ACM, 1998, pp. 85-93 .

[1 1] J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate
generation," in SIGMOD '00. New York, NY, USA: ACM, 2000, pp.
1-12 .

[I 2] M. J. Zaki, "Scalable algorithms for association mining," IEEE TKDE,
vol. 12 , no. 3, pp. 372-390, May 2000 .

[13] B. H. Bloom, "Space/time trade-offs in hash coding with allowable
errors," Commun. ACM, vol. 1 3 , no. 7, pp. 422-426, Jul. 1 970.

[14] F. Chang, J. Dean, S . Ghemawat, W. C. Hsieh, D . A. Wallach, M. Bur­
rows, T. Chandra, A. Fikes, and R. E. Gruber, "Bigtable: a distributed
storage system for structured data," in OSDI '06. USENIX Association,
2006, pp. 1 5-15 .

[I 5] L. Wu, R. Sumbaly, C. Riccomini, G. Koo, H. J. Kim, J. Kreps, and
S. Shah, "Avatara: Olap for web-scale analytics products," Proc. VLDB
Endow. , vol. 5, no. 12 , pp. 1 874-1 877, Aug. 2012 .

[1 6] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan, "Distributed cube
materialization on holistic measures," in ICDE ' l 1 , 201 1 , pp. 1 83-194.

[17] A. Lakshman and P. Malik, "Cassandra: a decentralized structured
storage system," SIGOPS Oper. Syst. Rev. , vol. 44, no. 2, pp. 35-40,
Apr. 20 10 .

[1 8] B . Lan, B . C . Ooi, and K.-L. Tan, "Efficient indexing structures for
mining frequent patterns," in ICDE '02 . IEEE Computer Society, 2002,
pp. 453-462.

[I9] Sparse matrices, http://docs.scipy.org/doc/scipy/reference/sparse.html.
[20] Mongodb, http://www.mongodb.org.
[2 1] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,

E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, "H-store: a high-performance, distributed main memory
transaction processing system," Proc. VLDB Endow. , vol. I , no. 2, pp.
1496-1499, Aug. 2008.

[22] J. S . Vitter, "Random sampling with a reservoir," ACM Trans. Math.
So/tw. , vol. I I , no. I , pp. 37-57, Mar. 1 985.

[23] Mysql, http://www.mysql.com.
[24] Tornado, http://www.tornadoweb.org/en/stable/.
[25] Facebook's scribe technology, http://www.facebook.com/note.php?

note_id=320082689 19 .
[26] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,

1 st ed. Addison Wesley, May 2005.

[27] E. Cohen, M. Datar, S . Fujiwara, A. Gionis, P. Indyk, R. Motwani, 1. D.
Ullman, and C. Yang, "Finding interesting associations without support
pruning," IEEE TKDE, vol. 1 3 , no. I , pp. 64-78, 200 1 .

[28] R. Turrisi and J . Jaccard, Interaction effects i n multiple regression. Sage
Publications, Incorporated, 2003, vol . 72.

[29] M. G. Kendall, "A new measure of rank correlation;' Biometrika,
vol. 30, no. 112, pp. pp. 8 1-93 , 1938 . [Online] . Available:
http://www.jstor.orglstableI2332226

1 083

