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ABSTRACT 
The human brain is probably the most complex object in the 
universe, and also one of the least understood. For example, how 
the brain produces the mind and consciousness is a complete 
mystery. Nevertheless, the brain is amenable to measurements of 
various kinds that produce lots of data. It is a spatial object residing 
in the skull; it is also temporal in the sense that neurons 
communicate by signals that take traverse the brain network over 
time. In this paper we ask whether spatio-temporal data analysis 
can contribute to its understanding.  Toward this goal we propose 
several research directions that are inspired by GIS work. However, 
these are just examples, and other work on moving objects in space 
or on networks is applicable. 
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1. INTRODUCTION 

1.1 Background 
The human brain is probably the most complex object in the 
universe. It is also one of the least understood. For example, even 
for a basic activity such as sleep there is no consensus concerning 
its purpose and how the purpose is achieved. Higher level functions 
such as imagination, creativity, aggressiveness, and more generally 
consciousness are highly controversial. To some scientists 
consciousness is in some sense a fundamental (but still mysterious) 
element, whereas to others it is an emergent property resulting from 
neural computation and coding (see [14]). In this paper we argue 
that spatio-temporal data analysis can shed a light on such issues. 

Recently, brain research has received a boost from the BRAIN 
  

 

 
 
initiative of the Obama administration ([1]). A number of 
disciplines are involved in this research, including neuroscientists, 
psychiatrists, physicists, philosophers, computer scientists, and 
psychologists. The data management community has also become 
interested in the subject, emphasizing graph mining (e.g. [3]), and 
the performance improvement of database operations (e.g. [4]).  

Although the spatial-information community has not addressed the 
topic, the brain is fundamentally a spatial object. It has on the order 
of 100 billion neurons, each of which is connected (via synapses) 
to about 1,000 other neurons on average ([9]). Each neuron has a 
location in 3D space which is indexed using a common coordinate 
system, e.g. Talairach or MNI ([6]). Such a coordinate system is 
independent of individual differences between humans.  

The structure of the brain can be represented by a graph 𝐺𝐺 =
(𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a set of nodes representing neurons and 𝐸𝐸 is a 
set of edges representing synapses between these neurons. This 
graph is called the Structural Connectome (SC). Furthermore, the 
brain also has a temporal component in the sense that the neurons 
communicate by sending signals that travel from neuron to neuron, 
across the synapses, at a certain speed.  To some extent this is 
analogous to vehicles traveling along the road network, although 
some models of the brain communication allow a vehicle to “split” 
at an intersection and travel along multiple paths (the parallel-
communication model [15]); similarly, signals from multiple 
sources can be merged by a neuron into a single one. Although 
individual signals currently cannot be identified and tracked, 
signals clearly often travel from sources to destinations. For 
example, signals travel from the brain to a muscle to activate it.  

The set of signals communicated in the brain changes dynamically 
depending on the mental task, or the function, performed by a 
person; for example, it differs depending on whether the person is 
at rest, or solving a problem, or sleeping. Thus this set is referred 
to as the Functional Connectome (FC). 

Currently, limitations of brain imaging technology do not allow 
capturing the SC at the level of individual neurons. Similarly, the 
FC cannot yet capture the movement of individual signals; instead, 
aggregate movement is inferred from the level of activity of distinct 
brain regions. This is in contrast to common practice in the mobile 
data community, where mobile units (vehicles or pedestrians) are 
tracked by, for example, GPS receivers. Nevertheless, as we show 
in this paper, important questions in brain research can be 
addressed even when the available SC and FC data is at a coarse 
level of granularity. Furthermore, human brain mapping is 
advancing at a rapid pace, and animal studies already produce brain 
data at a much finer level of granularity ([5, 28]).  

1.2 Current construction of the connectome  
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Although neuronal- and signal-level SC and FC cannot be obtained 
using existing technology, some approximations can; furthermore, 
the data and software for producing these are in the public domain. 
In this subsection we discuss these approximations.  

Brain connectivity information is typically acquired via Diffusion 
Tensor Imaging (DTI) [10]. This technique produces neural tract 
images that are analyzed to calculate the number of fiber tracts that 
connect regions in the brain (see [11]). Using the DTI images, each 
of which may contain millions of voxels, the SC is produced as a 
weighted undirected graph. In this graph the nodes are brain 
regions, or parcels, formed by aggregating voxels of the image. 
And a weighted edge in the SC specifies the strength of a 
connection between two brain parcels. The strength may represent 
both, the number of fiber tracts and their length. The SC graph is 
may have hundreds or thousands of nodes, and is incomplete in the 
sense that not every pair of regions is connected.  

Signal activity information is gathered using fMRI, which is a 
method of functional brain imaging. It is used to evaluate 
interactions between brain parcels that occur when a subject is at 
rest or performing an explicit task [10]. This brain activity is 
observed through changes in blood flow. These changes generate a 
Blood-Oxygen-Level Dependent (BOLD) time series for each 
parcel. The BOLD signal time-series data is used to produce the FC 
which is a square matrix, or a complete graph. Each element 𝐹𝐹𝑖𝑖𝑖𝑖 
denotes the cross correlation between the time-series of parcel i and 
parcel j. The correlation is often used as a proxy metric for the 
magnitude of signal-communication between parcels i and j; the 
higher the absolute value of the correlation, the higher the traffic. 

Presently, data and software tools that are necessary to produce the 
SC and FC at an aggregate level, for varying levels of aggregation, 
have recently become available in the public domain ([7, 20, 21, 
27]). A notable example is the Human Connectome Project (HCP) 
([7]). In HCP the brains of over a thousand people have been 
imaged extensively. According to [8]: ”The goal of the Human 
Connectome Project is to build a "network map" (connectome) that 
will shed light on the anatomical and functional connectivity within 
the healthy human brain, as well as to produce a body of data that 
will facilitate research into brain disorders such as dyslexia, autism, 
Alzheimer's disease, and schizophrenia”. 

Observe that better understanding of the brain has implications that 
go beyond medicine, biology, and philosophy. The Artificial 
Neural Network is a transformative computational paradigm 
inspired by the brain, but its applicability seems limited to pattern 
recognition. Better understanding of the brain’s generation of 
common sense, understanding, and emotion can inform novel 
computational and communication paradigms (see [26]).   

Connectomics studies the whole brain as a network, aiming to 
understand its organizational properties. For this purpose 
neuroscientists have recently turned their attention specifically to 
GIS functionality (see e.g. [12]), and we feel that the Spatio-
Temporal Information research community can play an important 
role in better understanding the brain. Most existing work in 
connectomics, particularly in data mining (see [3]), address either 
the Functional or the Structural connectome, but not both. As 
demonstrated in this paper, the GIS community has expertise that 
puts it in a unique position to study the combination of the brain 
structure and dynamics. A preliminary spatio-temporal approach 
was published by the author jointly with neuroscientists ([13, 25]). 

The rest of the paper is organized as follows. In sec. 2 we discuss a 
spatial approach to understanding the modularity of the brain. In 

sec. 3 we discuss spatio-temporal objective functions for analyzing 
the brain; and in sec. 4 we conclude and discuss challenges. 

2.  MODULARITY OF THE BRAIN 
This section discusses spatial analysis of the brain. An important 
step in understanding the brain is finding its salient components or 
modules. Existing connectomics work focuses on parcellations of 
the brain based on an atlas of anatomically defined structures such 
as the hippocampus. This means that spatially adjacent brain 
imaging voxels are aggregated into parcels [15] according to a 
fixed and restricted number of options. Moreover, there is no 
consensus parcellation. However, many topological objective 
functions used in neuroscience, e.g. network efficiency (defined as 
the average reciprocal of the distance, or weight, between a pair of 
nodes) and betweenness centrality [15], depend on the parcellation.  

Indeed, the optimal parcellation depends on the objective function. 
For example, the PLACE-function maximizes inter-parcel path 
lengths and minimizes intra-parcel path lengths [16].  In other 
words, it finds an aggregation of the voxels into parcels that 
maximizes the ratio between the average inter-parcel and intra-
parcel path lengths. However, the optimal PLACE-parcellation is 
found by a heuristic algorithm that does not guarantee optimality.  

Other objective functions are optimized by different parcellations. 
In general, given n brain voxels the number of parcellations is 
𝑂𝑂(𝑛𝑛𝑛𝑛) [17]. Furthermore, even under simplifying assumptions the 
problem of finding the optimal parcellation is NP-complete [17]. 

Fortunately, analyzing the modularity search space is similar to a 
problem that was studied in economics, AI, and transportation, 
namely Coalition-Structure Generation (CSG) [18]. The CSG 
problem is to partition a set of agents (e.g. the travelers issuing 
origin-destination ride-requests in Manhattan between 10:00am 
and 10:01am) into coalitions (of taxi ridesharing partners) such that 
some objective function (the total mileage saved by ridesharing 
compared to solo-travel) is optimized.   

Furthermore, some existing CSG work is applicable. One approach 
that has proved useful is an anytime algorithm [19]. This approach 
starts with an approximation of the optimal solution, and then 
improves it. The larger the computation time allowed for 
improvement, the closer the algorithm gets to the optimum. 

Another promising approach is incremental processing, which we 
discuss for the rest of this section. The value of an objective 
function for a parcellation depends on the SC, or the FC, or both. 
However, the generation of the connectomes based on brain 
imaging data may take hours of computing time for a single 
parcellation [20, 21]. Then the exploration of a large number of 
parcellations may become infeasible even using CSG techniques. 

However, consider two parcellations 𝑃𝑃1  and 𝑃𝑃2  that are identical, 
except that two neighboring parcels a and b of 𝑃𝑃1  have been 
coalesced into a single parcel c to obtain 𝑃𝑃2. Rather than computing 
SC(𝑃𝑃2) from scratch, incremental processing would take advantage 
of the fact that SC(𝑃𝑃1) has already been computed in order to reduce 
the time of computing SC(𝑃𝑃2 ) from 𝑂𝑂(𝑛𝑛2)  to 𝑂𝑂(𝑛𝑛) . This can be 
done by computing the SC(𝑃𝑃2) matrix entries (𝑐𝑐, 𝑖𝑖) for every node 
i in 𝑃𝑃2 ; the rest of the SC(𝑃𝑃2 ) entries are identical to their 
corresponding entries in SC(𝑃𝑃1 ).  Furthermore, even the entries 
(𝑐𝑐, 𝑖𝑖)  can probably be machine learned based on the SC(𝑃𝑃1) entries 
(𝑎𝑎, 𝑖𝑖), (𝑏𝑏, 𝑖𝑖), rather than recomputed. What is the error introduced 
by doing so? 
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3. GIS-INSPIRED BRAIN ANALYSIS 
In this section we discuss two spatio-temporal objective functions, 
anarchy-gap and discovery-network-confirmation, that are rooted 
in Intelligent Transportation. Intuitively, the motivation is that 
dynamic signals in the brain travel along the SC in the same sense 
that vehicles travel on the road network; and the FC translates into 
the demand (by signals) for mobility, whereas the SC translates into 
the supply (of fibers) designed to meet the demand (see Fig. 1). 

The anarchy-gap and discovery-network-confirmation functions 
translate the insights of transportation networks to understanding 
communication dynamics in brain networks. The two functions 
represent two methodologies to bring intelligent transportation to 
bear on brain networks. Each one is applied for a different purpose.  

One purpose is to determine if brain networks satisfy certain 
properties, or are in certain mathematically defined states. Subsec. 
a does so by calibrating transportation networks to match the brain, 
and then evaluates the function to determine the state.  

The other purpose, addressed in subsec. b, is to determine whether 
brain networks perform some tasks that are analogous to tasks 
performed on transportation networks; for example, whether they 
search for resources in the way, for example, a taxi driver would 
search for customers. Here the proposed methodology is to use 
increasingly accurate algorithms for search execution, and 
determine whether the results of these algorithms on brain networks 
become increasingly close to the ground truth.  

  

Figure 1: The brain as a mobility supply/demand system 

The objective functions discussed in this section serve as a 
demonstration as to how GIS research can shed light on 
understanding the brain. Other GIS approaches used to mine urban 
data such as taxi-trajectories, pollution, bike-sharing, may prove 
successful in opening up research directions for understanding the 
brain, and how evolution shaped its efficiency. 

a. Anarchy-gap objective function 
In transportation one distinguishes between the concepts of 
equilibrium and optimum. An anarchical system, i.e. one in which 
each traveler behaves selfishly with the purpose of minimizing her 
own travel time, settles into a User equilibrium (UE) state. In 
contrast, if the system is centrally controlled, then the total travel 

time of all the vehicles can be reduced, leading to a System 
optimum (SO) state. It has been established that equilibrium and 
optimum states may differ significantly (see Braess paradox [22]).  

In this analogy, one asks the following fundamental control 
problem: If the brain is centrally controlled, then its “traffic” 
assignment will give rise to an SO assignment of the signals on the 
structural connectome, such that the total expected travel times of 
the signals is minimized. Alternatively, if the brain is not centrally 
controlled, it is “anarchical” in the sense that each signal acts as an 
independent agent. In this case, traffic assignment will settle into 
UE, i.e., a state in which no signal can unilaterally reduce its own 
travel time. From a neural perspective, a UE assignment represents 
a system that is slower due to increased signal interference. Such 
interference (or congestion) in the brain is discussed in ([13, 15]). 

Initial steps towards determining whether the brain is in a UE or 
SO state were reported [13]. There, surprisingly we have found that 
the SO flows per region are closer to the actual measured brain 
activity. Therefore, it is more likely that the true signal transport 
activity within the brain is closer to System Optimum than to User 
Equilibrium. If the result withstands scrutiny (see rest of 
subsection), it begs the question what are the mechanisms by which 
optimality is achieved. Could consciousness be involved? 
Otherwise, if evolution is responsible for the optimization, what are 
the mechanisms it uses? In transportation, tolling is a mechanism 
authorities use for converting UE to SO. If something similar 
occurs in the brain, where are the traffic control points (toll roads)?  

The SO-favorability result was obtained for a particular 
parcellation, and for healthy subjects. However, it may turn out that 
the result depends on the parcellation. Another important question 
is whether the parcellation that produces the maximum gap is 
similar to known anatomical or functional parcellations. For 
addressing this question it is necessary to define a measure of 
similarity between parcellations. This definition could be similar to 
the edit-distance between strings of symbols in the following sense: 
the edit distance is the minimum number of voxels that need to be 
moved to transform one parcel into another. 

 Another research direction has diagnostic implications. 
Specifically, the SO-favorability result was obtained for healthy 
subjects. For depressed subjects, |SO-flow – Actual-flow| was 
statistically not significantly different than |UE-flow – Actual-
flow|. Does this point towards a biomarker for detecting 
depression? Another possible future research question will ask 
whether the results hold for the parallel-communication model.  

b. Discovery net objective function 
An important field of brain research is neural coding [24]. It 
stipulates that each human experience has a neural code, i.e. a set 
of neurons that by firing simultaneously produce the experience.  
However, how such simultaneous firing occurs is unknown. Could 
neural coding be explained by a process similar to a search in a 
transportation network? In this subsection we address this vision. 
And, again, the discussion constitutes the demonstration of an idea 
that may be more widely applicable. 

More specifically, the hypothesis is that the SC and FC are 
consistent with a Resource Discovery Network (RDN). A RDN is 
a probabilistic network in which agents follow paths in the graph, 
searching for resources. Practically, a RDN can be viewed as the 
road network along with searching agents, e.g. taxi/Uber-drivers 
searching for customers. Each edge in the network has a traversal 
cost, and a probability of finding the resource on it. The objective 
of an agent is to find a resource at minimum (expected) cost. In the 



brain, the agents are communication signals, and a resource may be 
a subgraph of the connectome with a certain level/pattern of 
activity, or a similar object.  To test the hypothesis, one can use the 
structural connectome to construct the RDN, with a traversal cost 
on each edge. Then use the functional connectome to generate the 
probability of each edge. Intuitively, this means that we interpret 
the FC-correlation between two neighbors in the SC as an 
indication of the probability that a search finds the resource along 
the edge between the two neighbors. 

Now assume that signals in the brain indeed conduct a resource 
search. Then one would expect that millions of years of evolution 
would make this search more efficient than, for example, a random 
walk. Efficiency can be measured in various ways, but all of them 
would take into consideration edge costs and probabilities.  If so, 
and if indeed the brain conducts a search, then one would expect 
the traffic generated by an algorithm that takes into consideration 
the edge costs and probabilities in order to do the search to be closer 
to the traffic measured by the FC than the traffic generated by a 
Random Walk algorithm. Thus, to test the RDN hypothesis we 
evaluate the error of four increasingly efficient search algorithms, 
starting with a Random Walk and ending with the decision-theory 
based Expected Cost Minimization (ECM) algorithm (see [23]).  

The error of a search algorithm SA for a parcellation P can be 
computed as follows. For each pair of nodes v and w that are not 
necessarily neighbors, compute 𝑓𝑓(𝑣𝑣,𝑤𝑤,𝑃𝑃) which is the probability 
that a search using SA and starting from 𝑣𝑣  ends at 𝑤𝑤 .  Then, 
assuming P has 𝑛𝑛 nodes, the error of SA is the average difference 
|𝑓𝑓(𝑣𝑣,𝑤𝑤,𝑃𝑃) – |𝐹𝐹𝐹𝐹(𝑣𝑣,𝑤𝑤,𝑃𝑃)|| over all pairs of nodes v and w, where 
𝐹𝐹𝐹𝐹(𝑣𝑣,𝑤𝑤,𝑃𝑃) is the value of the functional connectome matrix entry 
(𝑣𝑣,𝑤𝑤)  for the parcellation P. Formally, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃) =
2�∑ �𝑓𝑓(𝑣𝑣,𝑤𝑤)– |𝐹𝐹𝐹𝐹(𝑣𝑣,𝑤𝑤)|�𝑣𝑣,𝑤𝑤 �

n(n−1) . In other words, using the FC as the ground 
truth, compute the error of 𝐸𝐸𝐸𝐸 (the pairs of FC nodes used in the 
generation of the RDN can be excluded in computing the error).  

Then the hypothesis is supported if the error decreases as the 
efficiency of the search algorithm increases. More precisely, denote 
by 𝐸𝐸𝐸𝐸𝑖𝑖 , 𝑖𝑖 = 1 … 4  four search algorithms in order of increasing 
efficiency, with 𝐸𝐸𝐸𝐸1 being Random Walk and 𝐸𝐸𝐸𝐸4 being ECM. Let 
the Discovery-network-confirmation function be defined for 
parcellation P as 𝐷𝐷𝑛𝑛𝑐𝑐(𝑃𝑃) = ∑ (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖(𝑃𝑃) −4

2
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−1 (𝑃𝑃)) . So the 𝐷𝐷𝑛𝑛𝑐𝑐  function is the sum of the error 
improvement as the algorithm efficiency improves. Obviously, 
𝐷𝐷𝑛𝑛𝑐𝑐(𝑃𝑃) may be negative, in which case the hypothesis is refuted 
for P. And if 𝐷𝐷𝑛𝑛𝑐𝑐(𝑃𝑃1) > 𝐷𝐷𝑛𝑛𝑐𝑐(𝑃𝑃2) , then parcellation 𝑃𝑃1  confirms 
the hypothesis more than 𝑃𝑃2. 

In this case 𝐷𝐷𝑛𝑛𝑐𝑐(𝑃𝑃) serves as the objective function. What are the 
maximum and minimum of this function over the possible 
parcellations? Does the parcellation that optimizes the Dnc 
function correspond to a known one? Observe that even if 𝐷𝐷𝑛𝑛𝑐𝑐(𝑃𝑃) 
is positive for all parcellations, it doesn’t yet confirm that the brain 
is a RDN; it only indicates that further investigation is warranted. 

4.  CONCLUSION 
In this paper we proposed a vision of exploring the human brain as 
a spatio-temporal object, using spatio-temporal information 
analysis tools. We also pointed out some possible directions and 
approaches to do so. More specifically, we pointed towards spatial 
aggregation into parcellations of the brain, and the integration of 
brain structure and dynamics. 

The connectomics field is in its infancy. Decoding the connectome 
at the cellular level is a significantly more difficult task than 
sequencing the human genome, and the field of connectomics is 
currently at the level of genomics in the 80’s. This presents both 
challenges and opportunities. This paper focused on the 
opportunities for the spatio-temporal research community. 

The challenges are several. First is that although the brain is still 
very poorly understood, there exists a lot of work on connectomics 
([15]) and new results have to be put in context. Second is that often 
collaboration with neuroscientists may be necessary in order to 
ensure that the questions addressed are relevant and that the results 
are reasonable; nevertheless, the whole neuroscience approach to 
understanding the brain has recently been challenged [2], and the 
problem is ripe for new perspectives. Third is that the GIS 
community often considers moving objects that can be individually 
tracked, whereas in connectomics structure and dynamics are 
currently only available in aggregate. Finally, computer networking 
approaches may also need to inform the GIS work. 
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