a2 United States Patent

Wolfson

US007016781B1

(10) Patent No.:
5) Date of Patent:

US 7,016,781 B1
Mar. 21, 2006

(54

(75)

(73)

()

@D
(22

(63)
(60)

G

(52)

METHOD AND SYSTEM FOR QUERYING IN
A MOVING OBJECT DATABASE

Inventor: Ouri Wolfson, Highland Park, IL (US)

Assignee: Board of Trustees of the University of

Illinois, Chicago, IL (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 11/048,039

Filed: Jan. 31, 2005

Related U.S. Application Data

Continuation of application No. 10/074,903, filed on
Oct. 29, 2001, now Pat. No. 6,895,329.

Provisional application No. 60/243,839, filed on Oct.
30, 2000, provisional application No. 60/292,322,
filed on May 22, 2001.

Int. CI.

GOIC 23/00 (2006.01)

GOGF 19/00 (2006.01)

US. CL oo, 701/209; 701/201; 701/205;

701/210; 340/988; 340/995.23; 707/3

(58) Field of Classification Search 701/201,
701/209, 202, 204, 205, 210, 211; 340/988,
340/990, 991, 992, 993, 995.23; 707/3, 4,
707/5
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,662,105 B1* 12/2003 Tada et al. 701/209
6,791,472 B1* 9/2004 Hoffbergccoee. 340/905

* cited by examiner

Primary Examiner—Tan Q. Nguyen

(74) Attorney, Agent, or Firm—McDonnell Bochnen
Hulbert & Berghoff LLP.

57 ABSTRACT

A database receives location information about a moving
object. Using the destination of the object and an electronic
map, the database finds a projected path for the moving
object. From the projected path, the database computes a
trajectory. The trajectory may be used to estimate past and
future positions of the moving object. The moving object
may send location updates to the database when its actual
location differs from its anticipated location by more than an
uncertainty threshold.

26 Claims, 12 Drawing Sheets

550 WWW Client PDA Client " 552
Presentation Layer
654
HTTP Server
556 Map Server Application Adapter L 560
Application Adapter Layer
Management Query Pathway Geodetic
— Service Service Service Service
Application Service Layer 562 564 566 568
558 Data Storage 570
Data Storage Layer

U.S. Patent

Mar. 21, 2006 Sheet 1 of 12

Determine a
mobile device’s
current location

f20

Determine the
destination of the
mobile device

f22

Compute a path

trajectory of the
mobile device

24
for the mobile f
device
Compute a s 26

Estimate a future
location of the
mobile device

f28

Figure 1

US 7,016,781 Bl

US 7,016,781 Bl

Sheet 2 of 12

Mar. 21, 2006

U.S. Patent

N1lSd

85

oo./

Z 2inbi4

29

14°]

aseqgeleg

CLINETy
SSa|alIM

US 7,016,781 Bl

Sheet 3 of 12

Mar. 21, 2006

U.S. Patent

¢ ainbi4

¢kl

juiod

$S990Y

ENTE T

0L~

N1Sd f
901

801 —

144153

8il

aseqejeq
ocL
ELIVETg| /
SSajalIp 001

U.S. Patent Mar. 21,2006 Sheet 4 of 12 US 7,016,781 B1

4 Time (T)

(x3,y3.13) 168

trajectory volume
between t1 and {3

174 :
possible motion 2
curve 3

164~

158 162 -
N

150 156 152 >

unceriainty zone

Figure 4

U.S. Patent Mar. 21,2006 Sheet 5 of 12 US 7,016,781 B1

threshold?

Figure 5

Comp-ute A~ 200
location
Transmit to
database 202
: R?celve L~ 204
trajectory
206
Compute
expected
location
Compute .current |~ 208
location
Compare current
and expected (210
locations
212
Y Exceed N

U.S. Patent

Mar. 21, 2006 Sheet 6 of 12
Receive
location of [250
object
Compute path
to destination 252
Create A 254
trajectory
Send trajectory
to device 256
. /258
Display expected L<
location

Update from
object?

260

Receive new
location

/262

Figure 6

US 7,016,781 Bl

U.S. Patent Mar. 21, 2006

Determine
current location

" 300

Transmit
current location
to database

/" 302

Receive map

"\ 304

Compute
trajectory

" 306

Sheet 7 of 12

US 7,016,781 Bl

Compute
expected
location

/" 308

Determine
current location

310

Compare current
and expected
locations

312

Exceed
threshold?

316

S

Transmit current
location to
database

Figure 7

U.S. Patent Mar. 21,2006 Sheet 8 of 12 US 7,016,781 B1

speed

354

g ot - S time

350 352
traffic incident

Figure 8

U.S. Patent Mar. 21,2006 Sheet 9 of 12 US 7,016,781 B1

speed

time
§ rt
400
volatile incident

Figure 9

U.S. Patent Mar. 21,2006 Sheet 10 of 12 US 7,016,781 B1

A
speed
458 456
A S 5
] :
<~ 460
452 :
v g 454
time
S et
450

constant incident

Figure 10

US 7,016,781 Bl

Sheet 11 of 12

Mar. 21, 2006

U.S. Patent

i R
X \.hu_n: %snr
| [r 1...vJ IS '__a

;m&&?fwg

Jm H@@ﬁ

= l_m %.1,

b
L

gami
- -

1Ll

&

!

§-53

§

4
_w:u R

m.x..{{lit =mH|l.|l.r|.m...JeLw mnbme._kc
N M o _M __

- Hmﬁuq\ﬁ),l,._r/.
: |,|.||I¢-$.w

.z:u_. n>a| -

_ _\ﬁ R rn

t P
i/ o
2 o 2

&aiat._.u.ll —
H]

iS

RV V)
Ragine A¥e" "=

rlﬂ.f
I

T

‘ = -_ o

US 7,016,781 Bl

Sheet 12 of 12

Mar. 21, 2006

U.S. Patent

2l @inbi4

Jafe abeio)g BJRQ
0.5 abe.lo}g ejeq 965

756 995 595 795 19fe ao1Miag uoneanjddy

R TTVETS RV VTS R TV ETS 9JIMeg | —
21}9p0o9dn) Aemuyed Alanp juawabeue|y
J2fe 10)depy uonesddy
096 Jaydepy uoneodijddy Janseg depy " 966
d9Al9g dILH

14°L]

¢99

and vad

J9fe uonejuasald

Jusld MMM

" 0SS

US 7,016,781 B1

1

METHOD AND SYSTEM FOR QUERYING IN
A MOVING OBJECT DATABASE

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/074,903, filed Oct. 29, 2001, now U.S. Pat.
No. 6,895,329, which claims the benefit of both U.S. Pro-
visional Patent Application No. 60/243,839 filed Oct. 30,
2000, and U.S. Provisional Patent Application No. 60/292,
322 filed May 22, 2001. U.S. Provisional Patent Application
No. 60/243,839 filed Oct. 30, 2000, U.S. Provisional Patent
Application No. 60/292,322 filed May 22, 2001, and U.S.
patent application Ser. No. 10/074,903 are all incorporated
herein by reference in their entirety.

GOVERNMENT RIGHTS

This invention was made with government support under
grant numbers ITR-0086144, CCR-9816633, CCR-
9803974, IRI-9712967 and INT-9812325 sponsored by the
National Science Foundation, and DAAIL01-96-2-0003,
mods 18 and 34, sponsored by the Army Research Labora-
tories. The government may have certain rights in this
invention.

BACKGROUND

1. Field of the Invention

This invention relates to tracking moving objects. More
specifically, it relates to using past location and future
destination information to compute an expected trajectory of
a moving object.

2. Description of Related Art

Common devices such as cell phones, personal digital
assistants, laptops and the like, can be equipped to provide
location information. These devices are generally also
equipped for wireless transmission of data. The device’s
location is updated using positioning technologies.
Examples of positioning technologies include 1) global
positioning systems, commonly called GPS, 2) network
based positioning, which computes the location of a device
by triangulation of its wireless signal between transmission
towers, 3) a fixed sensor in the environment that identifies
the moving object, and 4) cell-identification, which identi-
fies the cell in which the moving object is located.

The devices can be carried by, or mounted on, moving
objects such as vehicles, aircraft, vessels or pedestrians. The
location of the small device corresponds directly to the
location of the larger device. Using the wireless capability of
the devices, the location is transmitted to a central system for
tracking the motion of the moving object. The central system
typically stores the location information of the object, and
provides a method for displaying that information to a user.

Location information management involves tracking the
moving object, modeling its location (for example, by
representing it in a server) and retrieving data. Existing
systems perform location management by receiving a time-
location point. This point is typically of the form (x,y,t), and
it is generated periodically by the device and transmitted to
the location management system. This may occur, for
example, once every 10 minutes. The point indicates the
object’s coordinates (X,y) at time t.

The location management system is typically a database
managed by a Database Management System (DBMS). The
database provides interfaces for receiving the location infor-
mation and for displaying the information to users. When the
DBMS receives a location point, it stores it in the database.
The DBMS supports Structured Query Language (SQL),
which can be used to access and query the information

10

15

20

25

30

35

40

45

50

55

60

65

2

stored in the database. In these systems, if the exact current
location of a moving object is required at a particular time,
then the object is contacted, its location is retrieved, and the
result is stored in the database. The method is called
point-location management, and it has several disadvan-
tages.

First, point-location management does not allow interpo-
lation or extrapolation of data. In point-location manage-
ment, the system only knows the time-location points stored
in its database. It cannot interpolate the past position of a
moving object, for example at time X, using data sets
subsequent to that time. Also, it cannot extrapolate a future
location of the moving object from past data sets. In addi-
tion, the point-location management system has difficulty
determining the current location of all its moving objects.
Since the system does not support extrapolation, to find the
current location of its moving objects the system must
simultaneously poll each moving object. This causes an
undesirable bandwidth spike on the network as the system
attempts to contact each object. Objects disconnected from
the network are not polled, and their location will not be
known.

A second disadvantage is that point-location leads to a
tradeoff between precision and resources. Obtaining an
accurate picture of moving objects’ precise locations
requires frequent location updates. This consumes limited
system resources such as bandwidth and processing power.
When these resources are not taxed by frequent location
updates, the location information quickly becomes dated
and, therefore, imprecise.

A third problem of point-location management is that it
leads to cumbersome and inefficient software development.
This creates several problems for developing location based
service applications. Existing DBMS’s are not well
equipped to handle continuously changing data, such as the
location of moving objects, because in existing databases
data is assumed to be constant unless it is explicitly modi-
fied. Location based service applications also need to man-
age space and time information; however, SQL is not
designed or optimized for these types of when/where que-
ries. For example, the query “retrieve the vehicles that are
inside the region R always between 4 pm and 5 pm” would
be extremely difficult to express in SQL.

Additionally, moving object locations are inherently
imprecise because the database location of the object (i.e.,
the object location stored in the database) cannot always be
identical to the actual location of the object. This inherent
uncertainty impacts database modeling, querying and index-
ing. For example, there can be two different kinds of answers
to queries. These are the set of object that “may” satisty the
query, and the set of objects that “must” satisfy the query.
These queries aren’t supported in current point-location
DBMS’s. Furthermore, existing DBMS’s have no param-
eters to account for varying levels of uncertainty, such as
was that truck within 100 inches, 100 feet, 100 yards, or 100
miles of an intermediate point calculated.

Therefore, there exists a need to more accurately represent
the travel paths of moving object and to predict the future
movement of objects. There further exists a need to allow
complex queries regarding the past and future locations of
moving objects.

SUMMARY

A database system receives location information from a
moving object. The object may be a vehicle, aircraft, pedes-
trian or some other object. Using the object’s destination and
a past known location, the system estimates the object’s
current location. The estimation is done by constructing and

US 7,016,781 B1

3

maintaining a trajectory of the moving object. Using the
trajectory, the system can also estimate past or future loca-
tions.

The moving object periodically transmits its location to a
moving object database (MOD). The moving object data-
base receives and stores the time and location of the moving
object. An electronic map, which contains travel time and
distances for permissible travel paths, is also stored in the
database. Destinations of the moving object are inputted into
the system. Using the electronic map, the system finds the
shortest path from the current location of the moving object
to its destination. The system then converts the path into a
trajectory.

The trajectory may be maintained by updating it to
account for location updates of the moving object. It may
also be updated to account for changes in travel conditions.
These may be received, for instance, from websites that
provide real-time traffic conditions. A traffic incident model
identifies trajectories affected by traffic incidents, and it
provides a method of updating a trajectory to account for
delays caused by traffic incidents.

The trajectory may be sent from the database to the
moving object. Using the trajectory, the moving object may
extrapolate its anticipated position from the trajectory. The
moving object compares its anticipated position to its actual
position and provides an updated location to the moving
object database when the difference between the two posi-
tions exceeds a specified threshold. The moving object
database then computes a new trajectory using the new
location information, and it sends this information back to
the moving object.

The system also defines a set of operators that can be used
to query trajectory data in the moving object database. For
example, a query might find the objects that will be within
1 mile of a certain location at a given time. The operators
may also be used to notify a user when specific condition
occurs. For example, a user may be notified when an object
is expected to be late by more than one hour. The operators
can be incorporated into the traditional SQL query language,
which has been widely adopted by many commercial data-
base systems. The new operators allow for the development
of complex spatial and temporal applications.

These as well as other aspects and advantages of the
present invention will become apparent to those of ordinary
skill in the art by reading the following detailed description,
with appropriate reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

An exemplary embodiment of the present invention is
described herein with reference to the drawings, in which:

FIG. 1 is a flowchart of the mobile object database
system’s operation;

FIG. 2 shows a connection between a wireless device and
the database;

FIG. 3 shows an alternate connection between a wireless
device and the database.

FIG. 4 illustrates a 3D uncertainty volume associated with
a trajectory and a 2D projection of the uncertainty volume;

FIG. 5 is a flowchart of one embodiment of a mobile
device’s operation;

FIG. 6 is a flowchart of one embodiment of the database’s
operation;

FIG. 7 is a flowchart of an alternate embodiment of a
mobile device’s operation;

FIG. 8 shows a graphical representation of a traffic
incident model,

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 9 shows a graphical representation of a volatile
traffic incident;

FIG. 10 shows a graphical representation of a constant
traffic incident;

FIG. 11 is a sample graphical output of the system
showing a trajectory and an uncertainty for a moving object;
and

FIG. 12 illustrates a configuration of the database system.

DETAILED DESCRIPTION OF AN
EXEMPLARY EMBODIMENT

FIG. 1 shows a high-level flowchart of a mobile object
database system. The database system tracks the location of
mobile objects. The system creates a trajectory for the
mobile object, and using the trajectory, the database can
predict the location of the mobile device at times when the
actual location is not known. The trajectory may be used to
estimate the location of the mobile object at a future time, or
it may be used to estimate the object’s location at a past time.

At Step 20, the database begins by determining a mobile
device’s current location. This may be done, for example, by
receiving a GPS location sent wirelessly from the mobile
object. Next, the database determines the destination of the
mobile device 22. A user may input the destination into the
database, or the destination may be obtained from the mobile
device.

Once the database knows the current location of the
device and the device’s destination, it computes a path 24
that the mobile object will use to travel between its current
location and its destination. The path may be determined in
a variety of ways, but in a preferred embodiment the
database expects the mobile object to travel on the shortest
path between its current location and its destination. Elec-
tronic maps containing distances and travel-times along the
distances can be used to determine an object’s path.

At Step 26 the database computes a trajectory of the
mobile device. The trajectory may be a sequence of points
that represents the time-based movement of the object along
its project path. The travel-times stored in the electronic map
are used in creating the time-based trajectory. The trajectory
can be simplified to reduce the number of segments it
contains. This may be done, for example, by using line
simplification.

The database also receives real-time traffic updates. The
updates can come, for example, from websites that provide
real-time traffic information. Various traffic incidents, such
as accidents and rush hour, can affect the travel-times on
road segments. A traffic incident model allows the database
to compensation for varying traffic conditions when com-
puting the trajectory. The updates from a traffic website
indicate the severity associated with a traffic incident. Using
the severity, the traffic incident model estimates the duration
of the traffic incident and its effect on travel times.

The trajectory can be recomputed by the database during
the travel of the moving object. For instance, when the
database receives information about a traffic incident, the
database may recompute the object’s trajectory to account
for the changes in travel-times caused by the incident.
Additionally, each segment on the trajectory may have an
uncertainty threshold associated with it. The uncertainty
threshold can reflect the maximum tolerable deviation of the
object from its expected path. By sending the trajectory,
including the uncertainty to the moving object, the moving
object can compute its expected location and its actual
location. If the difference between these locations exceeds
the uncertainty threshold, then the device sends an updated

US 7,016,781 B1

5

location to the database. The database then uses the updated
location to recompute the trajectory in order to more accu-
rately reflect the travel of the moving object.

After an object’s trajectory is computed and stored in the
database, a new set of time-location-based queries can be
used to access the data. The database can query the trajectory
information to estimate the future location of a moving
object 28 when its actual location is not known. Using the
trajectory, the database can also estimate the past or present
location of an object when the object’s actual location at that
time is not known. The database can also perform more
complex queries, for example, determining which moving
objects will be in a given region during a specified time.

The flowchart of FIG. 1 depicts a high-level description of
the database system’s operation. The description of FIG. 1
is not meant to cover all the possible variations and additions
that can be made to the database system. Other changes and
modifications may also be made.

The mobile device may communicate with the database
system to exchange location, trajectory or other information.
While the mobile device can communicate with the database
through a wired connected, in a preferred embodiment the
mobile device communicates wirelessly with the database. A
variety of devices are available that utilize wireless com-
munications to send and receive information. Cellular
phones, personal digital assistants (PDAs), laptop computers
and other application specific devices may all be equipped
for wireless communications. By connecting to a cellular
wireless network, these devices can connect to the public
switched telephone network (PSTN) or ultimately interface
with the Internet. It is also possible to communicate as a part
of other wireless networks.

Wireless communications can occur according to a num-
ber of various standards and signaling methods. Code divi-
sion multiple access (CDMA) is a commonly employed
standard for wireless networks. Geographic areas are gen-
erally divided into cells. The wireless devices communicate,
using the appropriate standard, with a base station in their
cell. The base station connects to the PSTN, which can then
also provide connectivity to the Internet. When the device
moves to another cell, a handoff procedure occurs. The
wireless device then communicates with a different base
station located in the new cell. The connection is transferred
to the new base station without interruption, and the handoff
appears transparent to the user. This way a device may move
seamlessly through multiple cells during one call.

FIG. 2 shows an implementation of a connection between
a wireless device 50 and a database 62. The wireless device
50 transmits a wireless signal 52 to a base station 54. In a
preferred embodiment, the wireless device 50 is part of a
cellular wireless network. The communication between the
wireless device 50 and the base station 54 occurs according
to the standard for wireless communications used in that
area. This may be, for example, code division multiple
access (CDMA).

The base station 54 provides connectivity to the PSTN,
shown generally by 58, through a link 56. The signal 52
from the wireless device 50 is received at the base station 54
and sent via the link 56 to the PSTN 58. The signal 52 is
routed through the PSTN 58 to the database 62. The database
62 runs on a computer 64. The computer is coupled to a
monitor 66, for displaying output, and a keyboard 68, for
receiving input. Many different variations to the computer
64 are possible, and additional or less equipment may be
attached to the computer 64. Generally, the computer 64
contains a central processing unit 70 for executing instruc-
tions and memory for storing data. The computer 64 con-

10

15

20

25

30

35

40

45

50

55

60

65

6

nects to the PSTN 58 using a modem or other interface
device. The resulting connection of the wireless device 50
and the database 62 through the PSTN 58 may be a circuit
switched connection or a packet switched connection.

FIG. 3 shows another configuration for connecting
between a wireless device 100 and a database 120. The
wireless device 100 sends a wireless signal 102 to a base
station 104. Preferably the wireless device 100 and the base
station 104 are part of a cellular wireless network. The
communication between the wireless device 100 and the
base station 104 occurs according to one of the communi-
cations standards employed in that area. The base station
104 connects via a link 106 to the PSTN 108. Through the
PSTN 108, the wireless device connects to the Internet,
shown generally by 112, via link 110.

The database 120 typically runs on a computer (not
shown). The computer may contain one or more processors
for performing computations. It also generally contains both
volatile and non-volatile memory, which are used in per-
forming computations and in data storage. The database 120
may run as a software program on the computer, and the
computer may also run other programs. A database may also
be implemented in other ways, for instance, it may be
distributed across more than one computer, or it may run on
dedicated hardware. Other ways also exist.

The computer may also be connected to the Internet 112.
FIG. 2 shows the database 120 connected to an access point
116 via a link 118. The access point 116 provides connec-
tivity to the Internet 112 through a link 114. In one embodi-
ment, the computer may be equipped with a modem. The
access point 116 may be the PSTN 108. The modem would
dial into the access point 116 and connect to the Internet 120
through the access point 116. In another embodiment, the
computer is equipped with a network interface card (NIC).
The computer connects via a link 118 to the access point 116,
which may be a network service provider. The access point
116 then interfaces the computer with the Internet 112.
Using this setup, the computer may establish a PPP or
TCP/IP connection with the Internet 112.

In a preferred embodiment each device 100, 120 con-
nected to the Internet is assigned an IP address. The address
is usually unique to each device 100, 120. The devices 100,
120 communicate over the Internet 112 using an established
protocol such as IPv4. They transmit packets of information
that are routed to the appropriate device based on the
device’s IP address. This allows communication between the
wireless device 100 and the database 120 via the Internet
112.

One skilled in the art will recognize that a variety of other
ways exist to establish a connection between the wireless
device 100 and the database 120.

A wireless device may also be equipped to obtain its
location. One common way of obtaining location informa-
tion is through the use of the Global Positioning System
(GPS). Another method is network based positioning, which
computes the location of a device by using three or more
transmission towers to triangulate the device’s wireless
signal. A fixed sensor in the environment may be used to
identify the moving object and determine its position. Vari-
ous other ways also exist to determine the location of a
device.

Once the location of a wireless device is obtained, it can
be transmitted, through the wireless network, to a central
point. The central point can be a database, or other system,
which stores and tracks the location of the wireless device.
The small wireless devices may also be coupled to larger
objects, such as airplanes, trucks, cars, bicycles, pedestrians

US 7,016,781 B1

7

or others. By tracking the location of the smaller wireless
device, the location of the larger object can be accurately
determined. Using this technique, it is possible to establish
a system to track one or more large objects.

In one embodiment a system to track the flight patterns of
commercial aircraft is established. A central authority, for
instance the air traffic controllers at an airport, may track the
location of all the aircraft in a particular area. Alternatively,
a particular airline may track all its planes in a geographic
area. In another embodiment, a shipping company may track
the location of its trucks. In yet another embodiment, a
delivery service may track the location of its mobile carriers.
A plethora of other applications exist for tracking the
location of objects.

In a preferred embodiment, the location information is
transmitted from the wireless device to a database system.
The database system uses trajectory location management to
store and process the location data. First, the current location
of the object is determined. This may be done using any of
the previously discussed methods, such as GPS. The loca-
tion information may be obtained directly from the wireless
device through the connection with the database.

In another embodiment, the location information is trans-
mitted from a source other than the wireless device to the
database system. For example, a central authority can track
the locations of cellular phones. The database may obtain the
location of a cell phone from the central authority instead of
directly from the cell phone. This method is not limited to
cell phones, but may be applied to any other device whose
location may be tracked by an external source.

Next, the destination of the moving object is determined
and inputted into the database. The destination may be
obtained by the database using a variety of different means.
Avuser may manually enter the information into the database.
This may be the case where a shipping company enters the
known route of one of its trucks, or where known flight plans
of airplanes are entered into the database. The input may also
occur automatically. This may be the case, for instance,
where a computer automatically generates a truck route for
a shipping company. The computer may be linked to the
database and automatically provide the truck route to the
database. It is also possible for a remote user to enter in the
destination. For instance, the driver of a truck may manually
enter his next destination into the wireless device, which
then transmits it to the database. The information can also be
obtained from a user’s electronic calendar. For example, the
database can obtain a user’s schedule from the user’s PDA.
Using the schedule, the database may determine that at 9:45
am the user is traveling to the destination of his 10:00 am
meeting.

The destination may be a single location. For instance, a
non-stop flight between Los Angeles and Orlando would
have a single destination. The destination may also be a list
of destinations. This would be the case for a delivery truck
that makes several stops on its daily route.

The database system stores an electronically coded map.
The map is typically coded with distance and travel-time
information for available road sections. A road section may
have one travel time associated with it, or it may have more
than one travel time associated with it. The map may provide
multiple travel times for a road section to take into account
changes in travel conditions that occur throughout the day.
The map information can be inputted into the database for
use in computing trajectories.

In one embodiment, the map is a graph, represented as a
relation where each tuple corresponds to a block with the
following attributes:

10

15

20

25

30

35

40

45

50

55

60

65

8

POLYLINE: each block is a polygonal line segment.
POLYLINE gives the sequence of the endpoints (x1,
y1),(x2,y2) . . . (xn,yn).

LENGTH: the length of the block

FID: the block ID number.

SPEED: speed limit along the block.

L_F_ADD: left side from street number.

L_T_ADD: left side to street number.

R_F_ADD: right side from street number.

R_T_ADD: right side to street number.

ZIPL: left side zip code.

ZIPR: right side zip code

ONE_WAY: a Boolean one way flag

METERS: length of the block in meters

DRIVE_TIME: typical drive time from one end of the
block to the other, in minutes.

The attributes L _F_ADD, L T ADD, R_F_ADD,
R_T_ADD, ZIPL, ZIPR, and METERS are geo-coded
attributes, which may be used to translate between a coor-
dinate and an address, such as “1030 North State Street.”
These types of maps are available from commercial vendors,
such as Geographic Data Technology Co. Other vendors also
provide maps. Many different formats may be used to store
the map data, and a map may provide additional or less data
than the above example.

In addition, it is possible to construct a new map for use
in the database system, or to obtain the information from
other sources. For instance, the travel-times for road seg-
ments may be obtained separately from the map. They may
come from a different source and be specific to the road
segments on the map, or the travel times may be estimates
based on the type of road (i.e., interstate, city street, etc. . .
.), the time of day (i.e., late night, rush hour, etc. . . .) or
other factors. The database may use a single map for a travel
area, or it may use a series of maps.

In another embodiment, the system tracks the location of
airplanes or other flying objects. The map may not corre-
spond to road segments since the sky doesn’t have actual
roads, but it may correspond to known flight patterns or
travel ways. The travel-times along flight paths in the sky
may be dependent on the type of aircraft and on weather
conditions. For instance, a headwind or a tailwind may alter
the flying time of a particular segment along a flight path. A
storm may alter the flying times or the flight paths of a flying
object. The database may receive real-time weather updates
and adjust the trajectories to account for these changing
conditions.

The database computes the path of the moving object
using the map. The path is specified by giving the starting
address or (X,y) coordinate, the start time, and the destina-
tion address or (x,y) coordinate. The path may be computed
using an external routine, which takes into account various
factors that will be discussed later. The path is then a
sequence of blocks (edges), i.e. tuples of the map. The
endpoint of one block POLYLINE is the beginning point of
the next block POLYLINE. Using the path and the trip’s
starting time, a trajectory may be computed. The DRIV-
E_TIME attribute may be used to determine the time at
which the object will reach the end of each poly-line
segment on the path.

In a preferred embodiment, the database computes the
shortest path between the object’s current location and the
destination. The shortest path may be based on different
factors. In one embodiment, the shortest path represents the
path that takes the least amount of time to travel. In another
embodiment the shortest path is the path the covers the least
distance. For an object with multiple destinations, additional

US 7,016,781 B1

9

paths are computed between subsequent destinations. The
optimal path can be computed using multi-stop routing
software.

In another embodiment, the database computes the
expected paths based on other criteria. For instance, an
object may travel on a known path for one or more legs of
a journey. The known information may be entered into the
database for use in generating the path information. Other
restrictions, such as not traveling on toll roads or only
traveling on major highways, may also be considered in
computing the object’s travel path. Additionally, historical
data can be used to determine the path of an object. These
additional considerations may cause the path to deviate from
the shortest between the two points.

In yet another embodiment, the database system sends the
current location and the destination information to another
site, which computes the path and provides the path back to
the database. The remote site may be another database
system linked to the moving object database through the
Internet or through some other connection. A commercial
vendor may provide the remote site, or it may be a part of
the database system distributed across one or more other
computers.

Roads and other travel ways are often non-linear. While it
is possible to represent the path as a compilation of non-
linear segments, in a preferred embodiment, the database
represents the path as a compilation of linear segments. The
map preferably represents the travels ways as linear seg-
ments; however it is possible to use a map containing
non-linear segments when developing the path. Using a map
containing linear segments, a linear path may be generated
directly; however, when using a map containing non-linear
segments, the non-linear segments may be stored in the
database to represent the path, or they may be converted into
linear segments for the database representation.

The path can be represented to a high degree of precision
using only straight lines. Decreasing the maximum length of
the lines correspondingly increases the number of line
segments used to represent a distance. An increase in the
number of lines representing a distance allows a more
accurate depiction of the actual travel path, thereby increas-
ing the precision of the representation; however, using more
line segments to represent the path increases the complexity
of the representation. More resources may be needed to store
the representation, and using a greater number of line
segments may decrease the system’s speed.

In a preferred embodiment, the shortest path is presumed
to be the route that the moving object follows. The database
converts the path, which was determined using the elec-
tronic map, into a trajectory. The trajectory may be a
sequence of straight-line segments (x1,y1,t1), (x2,y2,2), . .
., (xn,yn,tn) in 3-dimensional space. The times may be
determined using the average travel speeds of the road
sections in the electronic map. The database models the
motion of the object by progressing it a long the travel path.
The object starts at a location having coordinates (x1,y1) at
time t1, and it moves on a straight line at a constant speed
to the next coordinate. The object reaches location (x2,y2) at
time t2. Then it moves on a straight line at a constant speed
and reaches location (x3,y3) at time t3. This process con-
tinues until the object reaches its final destination. In a
preferred embodiment, the trajectory is continuous; how-
ever, it is possible that gaps can exist in the trajectory so that
it may not be possible to compute an object’s expected
location at every point between its beginning and ending
locations.

10

15

20

25

30

35

40

45

50

55

60

65

10

The trajectory of the object may be stored as the sequence
of coordinates. The trajectory approximates the expected
motion of the object in space and time. It is an approxima-
tion, because the object does not ordinarily move in straight
lines and at constant speeds. However, increasing the num-
ber of straight lines in the representation, the approximation
can be accurate up to an arbitrary precision. The number of
line segments on the trajectory impacts the performance and
precision of queries and triggers on the data. The perfor-
mance increases, and the precision decreases, as the number
of line segments decreases. Conversely, the performance
decreases, and the precision increases, as the number of line
segments increases.

The number of line segments on each trajectory can be
adjusted using a variety of different methods. In one embodi-
ment, adjacent line segments that have the same travel speed
and direction are coalesced. This decreases the total number
of line segments. A preferred embodiment uses line simpli-
fication to adjust the number of line segments on the
trajectory. In line simplification, a new set of line segments
connects the endpoints of the original trajectory. The new set
of line segments is such that each point on the original
trajectory is not further that some given distance from a
point on the new set of line segments. The simplification
may be performed on the trajectory to decrease the number
of line segments. It may also be performed before computing
the trajectory. For instance, the path may be simplified
before it is converted into the trajectory.

The trajectory is stored in the database and may also be
stored on board the moving object. At any point in time t
between t; and t,, ;, the database can compute the expected
location of the moving object at time t. This method allows
for both interpolation and extrapolation. The database can
compute the expected location of the moving object at any
point in time between the start and end times of the trip. For
example, if it is known that the object is at location (x5,y5)
at 5 pm and at location (x6,y6) at 6 pm, and it moves in a
straight line at constant speed between the two locations,
then the location at 5:16 pm can computed any time. The
computation can occur before 5:16 pm (e.g., extrapolation),
or after 5:16 pm, (e.g., interpolation).

An uncertainty may also be associated with each line
segment on the trajectory. The uncertainty corresponds to
the tolerance of the system to deviation of the actual location
from the expected location. For each point, the associated
uncertainty represents an area in which the moving object
may actually travel. This area may be in one dimension, or
may be in two dimensions.

In a preferred embodiment, each line segment in the
trajectory has its own uncertainty. It is possible, however, to
vary the uncertainty along a line segment. The uncertainty
may vary with location, or it may vary with time. Other
factors may also be used to vary the uncertainty.

FIG. 4 illustrates a two-dimensional uncertainty 162
associated with a trajectory 156. Three points 150, 152, 154
generate the trajectory. The continuous trajectory is the solid
line, indicated generally by 162. The moving object is
anticipated to travel along the trajectory 156 from the first
point 150 to the second point 152 and then to the third point
154. Each point along the trajectory has associated with it an
uncertainty. At point two 152, the uncertainty is shown by a
circle 160. The dashed lines, shown generally by 162,
indicate the outer bounds of the uncertainty. The uncertainty
is the area created by progressing a circle of radius r along
the entire length of the trajectory 156. The moving object

US 7,016,781 B1

11

ideally travels along the trajectory 156, but it actually may
travel on any path inside the uncertainty 162. One possible
path is shown at 158.

FIG. 4 also illustrates the three-dimensional uncertainty
162 used to create the two-dimensional projection. The 3D
first point 164 projects to the first point 150. The second 3d
point 166 projects to the second point 152, and the third 3D
point 168 projects to the third point 154. The 3D trajectory
170 connects the three 3D points 164, 166, 168. The possible
motion curve 174 represents part of a possible path traveled
by the moving object. This projects into two dimensions to
create the possible path 158. The three-dimensional uncer-
tainty volume 172 projects into two dimensions to create the
two-dimensional uncertainty 162.

Uncertainties may be implemented in the database by
representing a trajectory point as a five dimensional point.
The trajectory point (xn, yn, tn, rn, dn) contains the location
on the map (xn, yn) and the time (tn) that the object is
expected to be at that point. The value (dn) represents the
dimensionality of the uncertainty, and the value (rn) repre-
sents the deviation threshold. When the value of dn is one,
the dimensionality is one and rn represents the permissible
deviation in that dimension. For a dn value of two, the
deviation threshold is two-dimensional. The uncertainty is
then represented by a circle having its center at (xn,yn) and
a radius of (rn).

The uncertainty thresholds associated with line segments
on the trajectory may be used to synchronize location
updates between the moving object and the server. The
moving object may send an update to the server if it deviates
from its expected location, as determined from the trajec-
tory, by more than the allowed uncertainty. Software running
on the device may allow it to perform the necessary com-
putations to determine when it has traveled outside the
permissible uncertainty area.

In a preferred embodiment, the wireless device on the
moving object is capable of executing a software program.
Personal digital assistants are currently equipped to allow
users to download and run simple software programs on the
device. In addition, some commercially available cellular
phones also support user-loaded software programs. These
devices typically have less memory and less processing
power than a computer, but they are able to run various
software programs. The software may be written in a variety
of languages, including C, C++ and Java. It is also possible
to manufacture a device specifically for this application.
This device may have the necessary programs hardcoded
into its memory, or it may be capable of executing software
programs that are subsequently loaded onto the device.

The software running on the device allows it to be
programmed to implement the tracking system. For instance,
a device may be programmed to periodically receive trajec-
tory data from the database. The software may also enable
the device to compute its anticipated location versus it actual
location and to send a location update under given condi-
tions. The device may also be programmed to perform
additional functions.

The moving object periodically receives its location infor-
mation. For example, the device may receive a GPS location
update every two seconds. Of course other location systems
and other update time periods may also be utilized. Using
the update, the device knows its actual location. The device
also receives its trajectory from the database. Using the
trajectory, the device can interpolate its expected location.
The device then computes the distance between its actual
and its expected location. If the distance exceeds a deter-
mined threshold, the device may send a location update to

10

20

25

30

35

40

45

50

55

60

12

the database. In a preferred embodiment, the threshold is
sent from the database to the device. This allows the
database to set and vary the uncertainty allowed by the
device. The device may also have the uncertainty threshold
programmed in its software or entered by a user, or the
device may compute its own threshold. Other methods of
obtaining the threshold are also possible.

FIG. 5 depicts a flowchart for a device that receives
trajectory information from the database. The device begins
by obtaining its present location 200. Next, it transmits that
location to the moving object database 202. Using the
location information, the database computes a trajectory and
sends the trajectory to the device. The device receives the
trajectory 204, and it uses the trajectory to compute its
expected location 206. The device then obtains its current
location 208 and compares the current location to the
expected location 210. Next the device determines of the
difference between the expected location and the current
location exceeds a specified threshold 212. If the difference
exceeds the uncertainty threshold, the device begins the
processes over by obtaining its location 200 and transmitting
the location to the database 202. If the difference does not
exceed the uncertainty threshold the device returns to Step
206 and continues the process by obtaining another location
reading. This flowchart only depicts one possible implemen-
tation; other variations and implementations are also pos-
sible. In one example of a variation, after determining in
Step 212 that it has exceeded the maximum allowable
uncertainty, the device transmits the current location com-
puted in Step 208 to the database and proceeds from step 212
to Step 202.

FIG. 6 depicts a flowchart for the database in a system that
provides trajectory information to the device. The database
receives the location of the object 250. Next, it computes the
path between the current location and the destination 252.
The database then creates a trajectory for the object 254,
which is transmitted to the object 256. The database com-
putes and displays the expected location of the object 258.
The database then checks to see if the device is sending it
updated location information 260. If the device is sending
new location information, then the database receives the
location information 262, and it continues the process by
computing a new path 252 and trajectory 254. If the object
hasn’t updated its location information, then the database
proceeds from Step 260 back to section 258, and it continues
this cycle until the object arrives at its destination or sends
new location information. While this flowchart depicts one
possible implementation, others are possible and many
variations may be made. In one example of a possible
variation, Step 258 may be removed so that the database
does not display the expected location of the object.

In another embodiment, the device computes its own
trajectory. The database system may receive location infor-
mation from the device and compute a trajectory. Instead of
sending the trajectory back to the device, the database
system may send the device a map or a section of the map.
Using the map, the device may compute its own trajectory
and its own anticipated location. Then the device makes the
comparison against its own location and determines when to
send a location update to the database system. In another
embodiment, the device contains the required map seg-
ments. In this case, the device simply provides location
information to the database system. It is not necessary that
the device receive map or trajectory information back from
the database, although it is possible. The device may receive
an uncertainty threshold from the database, or it may com-
pute the threshold on its own and transmit it to the database.

US 7,016,781 B1

13

FIG. 7 illustrates a flowchart for a device that receives
map information from the database and computes its own
trajectory. The device determines its current location 300,
and it transmits that location to the database 302. The device
then receives a map from the database 304, and it uses the
map to compute its trajectory 306. The device then computes
it expected location 308 and determines its actual location.
Next, it compares its expected location to its actual location
312. At Step 314 the device determines whether it has
exceeded the maximum allowable uncertainty threshold. If
the device has not exceeded its threshold it then it returns to
Step 308 and continues the process. If, however, the device
has exceeded the uncertainty threshold, then it proceed from
Step 314 to Step 316 where it transmits its current location
to the database. From Step 316 the device returns to step 306
and continues the cycle. This flowchart only depicts one
possible implementation. Other implementations and varia-
tions to the process depicted in the flowchart are possible.

In another embodiment, the database and the moving
device use a remote site to compute the path. The database
receives the location and destination information for the
moving object. Then, the database sends the information to
a remote site, which computes the object’s path and sends
the path back to the database to be used in computing the
trajectory. The trajectory can be sent to the mobile device, or
the mobile device may similarly compute its own trajectory.
For instance, the mobile device can also send the location
and destination information to a remote site, which com-
putes the path and sends the path back to the mobile device.
The mobile device uses the path it receives to compute its
trajectory. It is preferred that the database and the mobile
device use the same remote site, so that they both obtain the
same path, and, thereby, compute the same trajectory; how-
ever, it is possible that they use different sites and receive
different paths.

The uncertainty thresholds may be obtained by various
methods. One method sets the uncertainty threshold based
on the maximum error-tolerance in queries. In this method,
a maximum error value is set for the results of the queries.
Then the maximum values of the uncertainties of the inputs
are determined so that the error of the resulting query
doesn’t exceed the maximum allowable value.

A preferred method sets the uncertainties using a cost
optimization function. The cost optimization function may
balance many factors, including bandwidth and imprecision.
It may also take into account factors such as the behavior of
past deviations, the message cost, the number of expected
queries and the probability of disconnect. Other factors may
also be considered. The cost optimization function may be
altered to compensation for changing conditions. For
instance, if the wireless network is slow and supports many
devices, then rapid location updates may not be practical. In
this case the cost function may be altered to allow more
imprecision and not to request as many updates. However,
if the wireless network is fast, then it may be practical to
design the cost function to tolerate a low uncertainty in
locations at the expense of requiring more frequency loca-
tion updates. The particular cost function used by the
database may be static while it tracks a series of moving
objects, or the system may modify the cost function during
the system’s operation.

Given a planned trajectory and an actual trajectory, in
order to maintain a lower level of uncertainty the moving
object needs to issue more updates. This creates a tradeoff
between communication cost and uncertainty. A cost-based
approach may be used to determine the appropriate uncer-

10

15

20

25

30

35

40

45

50

55

60

14

tainty parameter r for the system. The information cost of a
moving object’s trip has two components.

The first component is the query imprecision cost. The
uncertainty implies a cost, because a higher uncertainty
conveys less information when answering a query concern-
ing the object’s trajectory. The cost of the uncertainty
depends on the size of the uncertainty and the number of
queries that are issued during the trip. The penalty for each
unit of uncertainty per one query is Cq. The value of the
uncertainty radius is r, and the average number of queries per
time unit during [ta,tb] is Q. Then the total cost of the
uncertainty during the trip is f(t)}=Cq*r*Q*(tb-ta), where
(tb—ta) is the time of the trip.

The second component is the update data cost. The update
cost Cu, is a nonnegative number representing the cost of a
location-update message sent from the moving object to the
database. The update cost may differ from one moving
object to another, and it may even vary for a single moving
object during a trip, due to, for example, changes in the
availability of bandwidth. If N is the average number of
updates per time unit during the trip, then the total update
cost during the trip is defined by g(t)=Cu*N*(tb-ta).

The total information cost of a trip, denoted COST(ta,tb)
is the sum of the total uncertainty cost and the total update
cost. Therefore, COST(ta,tb)=Cq*r*Q*(tb-ta)+Cu*N*(tb-
ta). The optimal value of r may be found by quantifying the
relationship between N and r. A heuristic function may be
used to take an inverse-proportional dependence between N
and 1, i.e. N=K/r where K is a nonnegative integer. K can be
given based on an archive of historical trips. For example, by
using the values of N and r for each trip in the archive, K can
be derived using linear regression based on the values of N
and 1/r. The optimal value of r in this case is given by the
following formula:

r=square_root((Cu*K)/(Cq*Q))

Business considerations may also be used to set the
uncertainty threshold. For example, it may be required that
the location of the repair crew is known with an uncertainty
that does not exceed 3 miles. A lower uncertainty may be
desirable if the extra communications cost justifies it, but an
uncertainty of 3 miles is the maximum tolerable uncertainty.
A cost function may then be designed that balances other
factors. The balancing may return an uncertainty that doesn’t
exceed 3 miles. In this case, the cost function’s uncertainty
is used. The balancing of factors, however, may yield an
uncertainty that exceeds three miles. The resulting uncer-
tainty must then be limited to a ceiling of 3 miles.

One skilled in the art will recognize that many other ways
exist to determine the uncertainty threshold.

The moving object may update its uncertainty threshold at
each location update. For a location update, the database
recomputes a new trajectory, and it sends this trajectory back
to the devices. Along with the trajectory, the device may also
receive a new uncertainty. The device determines how far it
has strayed from its estimated course and uses the new
uncertainty to decide if it should provide updated location
information to the database. The new uncertainty may be a
result of a recomputed trajectory, it may be a result the
database using a different cost function; it may be a result of
the behavior of the deviation; or it may be a result of other
factors or a combination of factors.

In another embodiment, the device is not capable of
running its own software. This may prevent the device from
receiving information from the database system and from
determining when to send a location update. It may also
prevent the device from establishing a connection with the

US 7,016,781 B1

15

database system and sending location updates at all. These
devices, however, may still be used in the tracking system.

For example, the FCC has mandated that all wireless
carriers offer a 911 service with the ability to pinpoint the
location of callers making emergency requests. This has
caused many wireless carriers to upgrade their infrastruc-
tures to provide location data about mobile devices. This
may be done through GPS, triangulation or other methods.
The mobile devices may not be capable of running software
code or providing their location to 3d parties; however, it
may be possible to obtain the location information of a
mobile device from the wireless carrier. This may be done,
for example, by completing an authorization with the wire-
less carrier allowing it to provide the location information to
the database system. The database system may then receive
periodic updates from the wireless carrier as to the device’s
location. By knowing the device’s destinations, the database
system can compute an appropriate trajectory. The uncer-
tainty of the device’s location may be greater than for a
programmed device, because the database system may only
receive periodic location updates at a fixed frequency.

In yet another embodiment, the destination of an object
may not be known. This may prevent the database system of
computing a trajectory based on the object’s present location
and its destination, because its destination is unknown. The
system, however, may use dead reckoning to establish a
trajectory for the object. Under this implementation, an
object is presumed to continue on a straight course or on the
same route. The database then computes a trajectory based
on this assumption. The device may be programmed to
provide a location update when it changes roads, thereby
allowing the database to recompute its trajectory. It may also
be programmed to provide an update at specified time
intervals, to provide an update at specified distance intervals
to provide an update based on the uncertainty threshold or to
provide an update based on other criteria. In a preferred
embodiment, dead reckoning is used for moving object
traveling on major road segments, while periodic updates
are used for moving objects traveling on minor road seg-
ments. Electronic maps typically divide roads into major and
minor categories; however, it is also possible to use other
criteria to make the distinction.

At the database, the trajectory may be maintained by
revising it according to location-updates from the moving
object. It may also be revised based on real-time traffic
conditions. They may be obtained, for example, from com-
mercially available traffic websites. Traffic websites typi-
cally monitor current traffic conditions for delays, which
may be caused by accidents, rush hour or other circum-
stances. The information may then be used to update the
travel times of various road segments affected by the con-
ditions. It is possible to obtain the updated travel time
information and input it into the database. This allows the
database to adapt to real-time conditions.

A traffic incident model and a method of identifying the
trajectories affected by traffic incidents may be used. For
example, an object is scheduled to pass through highway
section X twenty minutes from now, and a traffic website
currently reports a traffic jam on highway section X. This
may affect the object’s expected arrival time at the destina-
tion. The effect depends on whether the traffic jam clears by
the time the van arrives at highway section X. Historical
information and a traffic model can be used to predict how
long the traffic incident will last.

Certain traffic incidents may occur periodically. For
instance, rush hour may cause a slow down Monday through
Friday during a general timeframe. A model may then be

10

15

20

25

30

35

40

45

50

55

60

65

16

created to estimate the length of this reoccurring delay. For
instance, it is possible to measure the length of the delay
over a period of time. The delays may then be averaged to
produce an estimate of the delay used during the operation
of the database system.

In another case, the traffic incidents may be accidents,
which are not periodically reoccurring; however, it is still
possible to develop models to characterize the length of a
delay. This may be done, for instance, by obtaining infor-
mation about past accidents. This information can be
obtained from a variety of sources, including a regional
Department of Transportation. The information generally
includes the location of an accident, the length of any delay
caused by the accident and the seriousness of the accident.
A model may be created, for example, by averaging the
length of the delay caused by each type of accident. This
model can then be applied in real-time to estimate the length
of a delay caused by an accident. Once the location and the
seriousness of an accident is known, the database can use the
model to estimate the duration of the delay caused by the
accident. The location and severity of an accident may be
obtained, for example, from the data stream of a real-time
traffic website.

In a preferred embodiment, the traffic incident is a three-
piece linear function, which gives the speed on block i as a
function of time since t when the incident occurs. The first
piece is a build-up interval, which models the slowdown in
traffic speed caused by the incident. The second piece is the
pair of points (v,t), (v,t+tp) where v is the traffic speed at time
t. [t, t+tp] is the persistent time interval. The third piece is
(v,t+tp), (vj, t+tp+tr) where vj is the speed of block i in the
jth time period for which Tj<=t<Tj+1. [t+tp, t+tp+tr] is the
recovery time interval. The build-up interval may be a
mirror image of the recovery interval, or it may be different.

FIG. 8 illustrates a traffic incident model. The traffic
incident shows two phases, the persistent interval 350 and
the recovery interval 352. The build-up interval is not
shown. In the persistent interval 350 the traffic speed is a
constant value, shown by line 354. During the recovery
interval 352 the speed recovers to the normal speed at a
constant rate. Dashed line 358 depicts the normal speed,
while line 356 shows the linearly increase speed during the
recovery interval 352. In addition to the traffic incident
model depicted in FIG. 7, there are two specialized traffic
incidents.

FIG. 9 shows the first specialized traffic incident model.
It has a persistent interval of length zero (not shown). The
zero length persistent interval means the incident is modeled
as beginning to recover immediately after it occurs. Line 402
shows the linear increase in speed during the recovery
interval 400. Dashed line 404 represents the normal speed on
the length, and at the end of the persistent interval 400 the
speed has returned to normal. This type of model is termed
a volatile incident. A volatile incident may occur when, for
example, a small accident happens and the damaged cars are
quickly removed off the road.

The second kind of incident is a constant incident,
depicted in FIG. 10. In this model the incident persists for a
certain amount of time and recovers suddenly. The constant
speed during the persistent interval 450 is indicated by a first
solid line 452. At the end of the persistent interval 450 the
speed is still at velocity v, shown generally at point 454. A
dashed line 460 indicates the end of the persistent interval
450. A second solid line 456 illustrates the increased speed
for times after the persistent interval 450. A constant incident
may occur when there is construction occurring on a section
of road. During the construction, the speed limit may be

US 7,016,781 B1

17

decreased on a section of road. At the end of the construction
the speed increases to its normal level, and the traffic
incident can be modeled as suddenly recovering.

In one embodiment, the traffic incident models are devel-
oped using data from various accidents. The data from
various traffic incidents is divided into classes. Different
classes are used for different levels of seriousness of acci-
dents, rush hour conditions or another occurrences. Each
data set in a class is analyzed to compute its persistent and
recovery intervals. The data sets are then averaged to create
one traffic incident model for each class. One skilled in the
art will recognize that there are many additional ways to
model and account for traffic incidents.

When a traffic incident is reported to the database, it
selects the appropriate traffic incident model to use in
recomputing trajectories. If a trajectory does not include the
section having a traffic incident, then it may not need to be
updated. If the object’s route includes the affected traffic
incident area, then its trajectory still may not need to be
updated if the traffic incident recovers before the object
reaches that segment. If however, the object reaches the
segment before it recovers, the object’s trajectory may need
to be updated.

In spite of the traffic incident, the object may stay on the
same path. In this case, the trajectory is updated taking into
account the change in travel time caused by the incident.
This may occur, for example, when the trajectory is com-
puted using the shortest distance between the starting loca-
tion and the destination. In another case, a new trajectory is
computed. The new trajectory will be computed taking into
account the traffic incident and the changes in travel time
caused by the persistent and recovery intervals of the traffic
incident model.

The use of a trajectory and an uncertainty threshold to
track a moving object has additional benefits over point
location management. In trajectory location management the
location of a moving object can be computed with a high
degree of precision, using a small number of location
updates, or no updates at all. If the moving object is “on
schedule”, i.e., it does not deviate from it prescribed trajec-
tory by more than the uncertainty threshold, then the object
may provide not location update and consume no additional
resources associated with a location update. Trajectory loca-
tion management allows the implementation of complex
queries that are not supported under point-location manage-
ment systems.

Database Operators

The location information is obtained and stored in the
database for the moving object the system is tracking. This
information is used to create trajectories for each of the
moving objects. A user of the system may wish to run
various queries on the data. The trajectory management
system supports many different types of queries that are not
available under a point-management implementation.

In an example implementation, the database system may
be employed by dispatchers to track the location of police
cars. A dispatcher may need to know which police officers
are currently within one mile from the location of an
emergency. To perform this query in a point location man-
agement system, all the objects are polled for their location.
This results in a bandwidth utilization spike, and objects that
are disconnected from the network are not identified—even
if they are within the range. In a trajectory management
system, some objects may need to be polled, but the number
of polled objects is smaller than in point location manage-
ment.

10

15

20

25

30

35

40

45

50

55

60

65

18

Since in the trajectory location management method there
is an uncertainty associated with the location of each police
car, the dispatcher would run a query that asks: “which
police cars may be within one mile of the location?” The
retrieved set of objects may be divided into two parts. The
first part is the set of police cars that are definitely within one
mile, and the second part is the set of police cars that are
possibly within one mile. For example, a police car may
have an expected location within 0.8 miles of the emergency.
If its uncertainty threshold is 0.2 miles or less, then the
police car satisfies the condition. If its uncertainty threshold
is greater than 0.2 miles, then it possibly, but not necessarily,
satisfies the condition. Objects that possibly, but not neces-
sarily, satisfy the condition are polled to more accurately
determine their position. The status of objects that are
disconnected will not be known, but since the polled set of
objects is smaller, the disconnection problem is not a great
as in point location management.

New operators may be implemented to access the data-
base. The operators query the database, and they express
when/where questions in an uncertain environment. They
can be incorporated into the traditional SQL query language,
which has been widely adopted by many commercial data-
base systems. Queries can also combine traditional database
conditions with the new operators. For example, using the
new queries, a dispatcher can run the query: “retrieve the
service-personnel who have Qualification=‘ds1’ AND will
be within 1 mile of 851 S. Morgan St. at 5 pm.” This also
means that the operators can be combined using Boolean
operators such as AND and OR. A user can enter these
operators/queries on a client computer, and the same set of
operators can be invoked for a program. The latter option
enables development of complex spatial and temporal appli-
cations.

Two operators, WHERE_AT and WHEN_AT, are defined
for point queries.

WHERE_AT(trajectory Tr, time t). This operator returns
the location of the object currently, or at an arbitrary time t.
If the current location of the object is requested, then the
maximum tolerable uncertainty u can also be specified. If the
current location uncertainty associated with object o in the
database is higher than u, then the server contacts the object
wirelessly to get its exact current location. This operator
may be used, for example, when a dispatcher needs to assign
a job to a mobile service employee. The job need to be done
at time t, and the dispatcher needs to know where the
technician is expected to be at that time according to the
current schedule.

WHEN_AT(trajectory Tr, location 1). This operator
returns the times at which the object on Tr is at location 1.
The answer may be a set of times, because the object may
pass through the same location more that once. If the
location 1 is not on the route of the trajectory, the query may
determine all the points on the trajectory that are closest to
1. The query then returns the times at which the object will
be at the points closest to 1.

In one embodiment, the WHERE_AT operator is imple-
mented in O(log n) time using a binary search algorithm,
where n is the number of line segments of the trajectory. The
WHEN_AT operator is implemented in linear time by exam-
ining each line segment of the trajectory. Other ways also
exist to implement the queries.

Another type of query that may be developed is a spatio-
temporal range query. In this type of query the operators are
a set of conditions, and the conditions may be satisfied if a
moving object is inside a given range R, during a given time
interval [t1,t2]. A user may specify the range, for example,

US 7,016,781 B1

19
by drawing an appropriate region on a map displayed by the
database system. The region may be specified by manually
entering coordinates into the database system or by other
methods.

The spatio-temporal query has multiple operators that
account for the changing location of the moving object. For
instance, the condition may be satisfied sometime or always
within the time range. The object may satisfy the condition
everywhere or somewhere in the range. Due to the uncer-
tainty, the object may possibly satisfy the condition, or it
may definitely satisfy the condition.

In the following descriptions, the region is represented by
a static convex polygon. Tr is a trajectory of the form
(x1,y1,t1) . . . (xn,yn,tn), and r is an uncertainty threshold.
For each point (x,y,t) along T, its uncertainty area is a
horizontal circle with radius r centered at (x,y,t), where (X,y)
is the expected location at time t, which is an element of
[t1,tn]. The Possible Motion Curve PMC’r is any continuous
function £y, ,: Time—R* defined on the interval [t1,in]
such that for any t that is an element of [t1,tn], fpp”, is
inside the uncertainty area of the expected location at time
t. Given an uncertainty trajectory (Tr,r) and two end-points
(XYl (Xii1s Virpoti, 1) that are elements of Tr, the trajectory
volume of Tr between t; and t,, ; is the set of all points (X,y,t)
such that: (x,y,t) belongs to a possible motion curve of Tr
and t<=t<=t,, ;. Given a trajectory, Tr, and an uncertainty
threshold, 1, the trajectory volume of (Tr,r) is the set of all
trajectory volumes between t; and t,, ;. The 2D projection of
the trajectory volume is the uncertainty zone. VIt denotes
the trajectory volume of a given uncertainty trajectory
T=(Tr,r) between t1 and t2.

POSSIBLY_SOMETIME_INSIDE(T,R,t1,t2). This query
is true if and only if (iff) there exists a PMCT and there exists
a time, t, that is an element of [t1,t2] such that at time t the
PMC7 is inside the region R. The truth of the predicate
means that the moving object may take a possible route,
within its uncertainty zone, such that the particular route will
intersect the query polygon R between times t1 and t2.

SOMETIME_POSSIBLY_INSDE(T,R,t1,t2). This query
is true iff there exists a time t that is an element of [t1,t2] and
a possible motion curve PMC” of the trajectory T, which at
time t is inside the region R. This operator is semantically
equivalent to POSSIBLY_SOMETIME_INSIDE.

POSSIBLY_ALWAYS_INSIDE(T,R,t1,t2). This is true iff
there exists a possible motion curve PMCT of the trajectory
T which is inside the region R for every t in [t1,t2]. In other
words, the motion of the object is such that it may take (at
least one) specific 2D possible route, which is entirely
contained within the polygon R during the whole query time
interval.

ALWAYS_POSSIBLY_INSIDE(T,R,t1,t2). This is true iff
for every time point t that is an element of [t1,t2] there exists
a PMC? which will intersect the region R at t.

ALWAYS_DEFINITELY_INSIDE(T,R,t1,t2). This query
is true iff at every time t that is an element of [t1,t2], every
possible motion curve PMCT of the trajectory T is in the
region R. In other words, no matter which possible motion
curve the object takes, it is guaranteed to be within the query
polygon R throughout the entire interval [t1,t2]. This predi-
cate is semantically equivalent to DEFINITELY ALWAY-
S_INSIDE.

DEFINITELY_SOMETIME_INSIDE(T,R,t1,t2). This
query is true iff for every possible motion curve PMC” of the
trajectory T, there exists some time t that is an element of
[t1,t2] in which the particular motion curve is inside the
region R. No matter which possible motion curve within the
uncertainty zone is taken by the moving object, it will

10

15

20

25

30

35

40

45

50

55

60

65

20

intersect the polygon at some time between t1 and t2. The
time of intersection, however, may be different for different
possible motion curves.

SOMETIME_DEFINITELY_INSIDE(T,R,t1,t2). This is
true iff there exists a time point t that is an element of [t1,t2]
at which every possible route PMC” of the trajectory T is
inside the region R. Satisfaction of this predicate means that
no matter which possible motion curve is taken by the
moving object, at specific time t the object will be inside the
query polygon.

More complex query conditions can be expressed by a
composition of the operators. For example, the query
“retrieve all objects which are possibly within a region R,
always between the times the object A arrives at locations L1
and 1.2,” may be expressed as:

POSSIBLY_ALWAYS_INSIDE(T,R,WHEN_AT(Tr,L1),

WHEN_AT(Tr,L2)).

The region R along with the query time-interval [t1,t2]
can be represented as a prism Pr in 3d space: Pr={(x,y,0)I(x,
y) is an element R and t1<=t<=t2}. Pr is the query-prism. A
3D indexing scheme may be available in the under-lying
DBMS. The insertion of a trajectory in the index is done by
enclosing, for each trajectory, each trajectory volume
between t; and t,,; in a Minimum Bounding Box (MBB).

The operation of Minkowski Sum, denoted at ++ is
described as follows: let P denote a polygon and dr denote
a disk with radius r. P++dr is the set of all the points in a
plane which are elements of {P union (interior of P) union
(the points which are in the “sweep” of dr when its center
moves along the edges of P)}. Trx,y denotes the projection
of the trajectory Tr between t1 and t2, on the X-Y plane.

POSSIBLY_SOMETIME_INSDE(T,R,t1,t2)—Sample
Algorithm

1. Construct the Minkowski sum of R and the disk dr with

radius r, where r is the uncertainty of T. Denote it
R++dr.

2. If Trx,y N(R++dr)=null between t1 and t2

3. then return false;

4. else return true.

ALWAYS_POSSIBLY_INSIDE(T,R,t1,t2)—Sample
Algorithm

1. Construct the Minkowski sum of R and the disk dr with

radius r, where r is the uncertainty of T. Denote it
R++dr.

2. If Trx,y lies completely inside R++dr

3. then return true;

4. else return false.

The algorithm for this operator is the same as for ALWAY-
S_POSSIBLY_INSIDE.

DEFINITELY_ALWAYS_INSIDE(Tr,R,t1,t2)—Sample
Algorithm

1. For each segment [t1,,t1,,,] of Tr, between t1 and t2

2. If the uncertainty zone of the segment is not entirely

contained in R;

3. then return false and exit;

4. EndFor;

5. return true.

SOMETIME_DEFINITELY_INSIDE(Tr,R,t1,t2)—
Sample Algorithm

1. For each segment [t,t,,,] of Tr such that Trx,y NR

l=null

2. If R contains a circle with radius r centered at some

point on Trx,y,
. Then return true and exit;
. EndFor,
. EndFor;
. return false.

o bW

US 7,016,781 B1

21

DEFINITELY_SOMETIME_INSIDE(T,R,t1,t2)—
Sample Algorithm

PTr is the uncertainty zone of the trajectory (equivalently,
the 2D projection of VTr, the uncertainty volume). PTrr is
PTr with the uncertainty areas at t1 and t2 eliminated. L is
the boundary of PTrr. L has at most 2k line segments and
k+1 circular segments (at most one around the endpoints of
each segment). Lprime=I\D, where D denotes two half-
circles which bound the uncertainty areas at tl1 and t2.
Clearly Lprime has two disjoint “lines” 11 and 12 which are
left from the initial boundaries of the uncertainty zone.
Using these definitions, an algorithm can be developed

1. If there exists a path P between a point 11 and one on

12 which consists entirely of edges R (or parts thereof)
AND P is entirely in PTrr

2. then return true and exit;

3. return false.

The previously discussed algorithm implementations
apply to convex polygons. It is also possible to specify a
circular region. The circular region may be implemented by
approximating it as a convex polygon. The approximation
can be accurate up to an arbitrary precision by increasing the
number of sides in the polygon. These algorithms can also
be applied to certain concave polygonal regions; however,
the Minkowski sum, when applied to a concave polygon,
may produce a resulting 2D region that is not simple. For
these polygons, significant time points may be used to
specify the finite set of horizontal planes where the verifi-
cation of the predicate is not performed. This is similar to the
notion of the sweep lines in computational geometry.

Other operators may also be implemented. The algorithms
for these operators may be developed similarly to those
previously described.

POSSIBLY-WITHIN [distance ditravel-time t] from R,
sometime in the time interval T. This condition is satisfied by
the objects which are at distance at-most d or travel time
at-most t from R, sometime in the time interval T. The time
interval may indicate currently. This operator is used, for
example, when a dispatcher needs to assign a job R to a
technician. The job needs to be done in the time-interval T.
The dispatcher needs to know which technicians are
expected to be within distance d or travel-time t from R
within the time interval T. Since there is an uncertainty
associated with the location at each object at each point in
time, the condition retrieves the objects that are possibly
within-sometime.

DEFINITELY-WITHIN [distance ditravel-time t] from R,
sometime in the interval T. The difference between this
operator and the previous operator is the certainty quantifier.
This operator retrieves the objects that are definitely within-
sometime. The dispatcher may use this operator when many
technicians are possibly within-sometime. To narrow the
search, the dispatcher is interested in the ones that, accord-
ing to the current schedule, definitely satisfy the condition.

POSSIBLY-WITHIN [distance ditravel-time t] from R,
always in the time interval T. For example, the police
dispatcher may need to know which patrol cars will stay in
the region R for the whole duration T.

DEFINITELY-WITHIN [distance ditravel-time t] form R,
always in the time interval T. This is a combination of
operators 2 and 3. This may be used, for example, when a
police dispatcher needs to know which patrol cars will
definitely stay in the region R for a whole duration T,
according to the current schedule.

POSSIBLY-DURING time interval T, everywhere in R.
This would represent which police cars will possibly cover
the whole region R during interval T.

10

15

20

25

30

35

40

45

50

55

60

65

22

DEFINITELY-DURING time interval T, everywhere in R.
This would represent which police cars will definitely cover
the whole region R during the interval T.

POSSIBLY-CLOSEST-TO (or furthest from) R, some-
time in time interval T. This will show which technician is
possibly closest to location R sometime during T. Due to the
uncertainty and the duration of T, there may be more than a
single technician that may be closest to R during the interval.
To find out if there is a single technician that will definitely
be the closest, then the next operator should be used.

DEFINITELY-CLOSEST-TO (or furthest from) R, some-
time in time interval T. The operator identifies object 01, 02,
etc. ... such that o1 is definitely closest between times t1 and
t2, 02 is definitely closest between times t3 and t4, etc. . . .
Due to the location uncertainty there may be time intervals
within T for which no single moving object will definitely be
the closest.

POSSIBLY-CLOSEST-TO (or furthest from) R, always in
time interval T. This would show, for example, which
technician is possibly closest to location R always during T.

DEFINITELY-CLOSEST-TO (or furthest from) R,
always in time interval T. This operation would be the same
as the previous one, except it searches for moving objects
satisfying the condition.

Each operator may be implemented in one of two varia-
tions. These variations are 1) Along Existing Route (AER)
or 2) Along Shortest Route (ASR). For example, the first
condition POSSIBLY-WITHIN-SOMETIME may be satis-
fied with the AER variant for object O, if R is on O’s route,
and o is within distance d from R while traveling along its
predefined route. However, a police dispatcher, for instance,
may be interested in the patrol cars that can reach an
emergency destination while traveling along the shortest
path from their current location to the destination. In this
ASR variant, the patrol cars are allowed to abandon their
predefined route in order to reach the destination.

POSSIBLY-WITHIN [distance ditravel-time t], sometime
in time interval T. The condition is satisfied by the pairs of
trajectories that are within distance d or travel time t from
each other, sometime in time interval T. This operator is
used, for example, in an air-traffic control system that stores
the trajectories of planes. We assume that, in contrast to the
existing system in which planes fly on “highways in the
sky,” the new free-flight system has been implemented. An
air traffic controller may need to know which planes are
expected to be within distance d from each other, thus
representing a safety hazard.

An opposite operator may also be implemented.

POSSIBLY-FARTHERTHAN [distance ditravel-time t],
sometime in time interval T. This condition is satisfied by the
pairs of trajectories which are farther than distance d or
travel time t from each other, sometime in time interval T.
This operator is used, for example, in a military situation in
which a database represents vehicles and aircraft moving as
a unit. This operator enables the commander to know if a
vehicle moves too far away from the rest of the company.

Some single-trajectory-analysis operators may be applied
to pairs of trajectories. For example, WEN trajectory i AND
trajectory j are CLOSEST. This operator returns a list of
times at which the two trajectories come closest to each
other.

Operators and queries may be applied as a trigger. In this
capacity an alert message is sent when the condition of the
operator is satisfied. For example, the SECTIONS operator
may be used with the set of facilities as a list of locations of
motel. When used as a trigger, this operator may alert the
driver every time he is closest to, or within X minutes

US 7,016,781 B1

23

drive-time, from a motel. To provide another example, the
POSSIBLY-WITHIN-DISTANCE operator may be used as
a trigger to send an alert message when the trajectories of
two airplanes are too close to each other.

The new operators may be used to set alerts (triggers) that
occur when conditions are satisfied by the database. The
alerts can notify a user when a query would return a
particular result, or when another event occurs. The notifi-
cations can correspond to queries that may be implemented
using the new operators or to other events. For instance, a
user may be notified “if truck X will pass within 5 miles of
location Y.” The user may be notified by a particular output
on the user’s display. Other methods, such as sending a
wireless message to the user’s PDA, pager or cell phone can
also be used. Auser may also be notified by an email, a voice
message or another type of notification.

Triggers may be implemented using continuous queries.
Continuous queries are queries that execute continually. Due
to performance constraints the queries may not actually be
continuously executed, but their frequency may be such that
their output appears continuous to a user. The query may
execute at given time intervals, or when other events occur.
The resulting set of retrieved objects may change as the
database changes.

The database system may provide output in a variety of
different ways. A display can be attached to a computer in
the database system. FIG. 11 shows a sample output. The
database outputs a map, shown generally by 500. The map
plots a tracked object as a point 502 and the uncertainty as
a circle surrounding the point 504. It additionally shows the
current trajectory of the object as a darkened line 506 on the
map. A user can change the scale of the map by zooming in
or out on the display. This allows the user to view the full
range of objects tracked by the system, or to see more
detailed information about a subset of objects tracked by the
system.

The output information may also be sent to remote users.
This may be done, for instance, by sending the output over
the Internet to another user. The display may be the same as
for the terminal attached to the database system, or it may be
different. The information sent to the remote user may be
altered so that its precision is decreased. For instance, the
remote user may only be able to view a less detailed map or
may only be allowed to view a map covering a larger area.
This decreases the precision of the trajectory shown to the
remote user. The output may be sent to multiple users, and
the precision of the output sent to the multiple users may be
varied among the users. It is also possible to encrypt the data
sent to the remote users, in order to provide a higher level
of security for the system.

In one embodiment, the database system simultaneously
tracks moving objects for multiple companies. The database
only allows a particular company to view the trajectories and
location of objects from that company. It cannot view the
information for other companies. In another embodiment,
one company can view the trajectory and location informa-
tion for the objects from one or more other companies.

In another display format, the database outputs a map and
a location of the moving object at a certain time. Then, the
user can vary the time and view the corresponding locations
of the object. For instance, the user could replay the object’s
past travel, or the user could watch the projected travel of the
object for future times. The database uses the known data
points, and then interpolates and extrapolates the locations
of the object for the running times. The location of the object
on the map is updated as the times change. This is similar to

10

15

20

25

30

35

40

45

50

55

60

65

24

watching the object travel in real-time. The user may fast
forward to a new time or rewind replay sections of the travel.

One skilled in the art will recognize that various other
output formats also exist. For instance, it is possible to
simply output a list of the objects that satisfy a certain query.
It is also possible to output a list of destinations and
currently estimated arrival times for the moving objects.
Other outputs are also possible.

Example Database System Configuration

A mobile object database (MOD) can be implemented in
many different configurations. In a preferred embodiment,
the MOD provides inheritable abstract data types (ADTs) for
moving objects, a set of query operators, methods to define
and manipulate the abstract data types, and geodetic and
trajectory finding services. When combined with the appli-
cation tier, the MOD can connect to wireless and World
Wide Web (WWW) applications.

FIG. 12 depicts an exemplary configuration for the data-
base. The database uses two types of clients, a WWW client
550 and a PDA client 552; however, it is possible to use
additional or fewer clients. The WWW client 550 monitors
moving objects. Users may use the WWW client 550 to
query the moving, objects, monitor and review their motion,
and communicate with the database or with other devices. It
can display a graphical user interface of various queries, and
it may provide trajectory visualization, triggers and notifi-
cations. Additionally, the WWW client 550 can perform a
VCR-like function to playback the motion of moving
objects. It also renders the map as background of moving
object’s motion and provides basic GIS [ealures such as
geodetic, label and distance measurement. The WWW client
550 may be a program running on a user’s computer
specifically designed for use with the database, or it may be
an existing program on the user’s computer, such as one
used to connect to the Internet or to another type of network.

The PDA client 552 handles the interface of the moving
objects. Mobile users may use the PDA client 552 to acquire
current location information, update the location informa-
tion, navigate, manage moving plans, monitor moving states
or otherwise interface with the database. It may also handle
location device management, provide a moving state moni-
tor and synchronize the trajectory between the client and
server. Additionally, it can update the trajectory and provide
an interface of geodetic services. The PDA client 552 may
also provide connectivity to another user or system. It may
provide a graphical user interface, which displays data from
the device, from the database or from another source. The
PDA client 552 can be a software program running on a
movable object that provides these or other features. Each
movable object may have its own PDA client 552.

In one embodiment, the PDA client 552 communicates
directly with the WWW client 550. This may be done
through the Internet or through some other type of connec-
tion. The PDA client 552 and the WWW client 550 com-
municate with the database through the HTTP server 554. In
a preferred embodiment, the PDA client 552 and the WWW
client 550 communicate with the HTTP server 554 through
the Internet; however, other connections are possible. The
HTTP server 554 may be a software program running on the
database that provides connectivity between the other
devices and the database.

The map server 556 connects to the GIS data module 558.
The GIS data module 558 may be, for example, a hard disk
that provides storage for the electronic map information. The
map server 556 contains information about the storage
structure of the map information stored in the GIS data

US 7,016,781 B1

25

module 558. It provides an interface between the GIS data
module 558 and the clients 550, 552 or other system parts.
For example, the map server 556 may translate the data
stored in the GIS data module 558 into protocols or formats
that can be understood by the clients 550, 552 or other
module. Likewise, it may take data and protocols received
from the clients 550, 552 or other modules and convert it
into the format used in the GIS data module 558.
The application adapter 560 connects with the data stor-
age 570. It provides an interface between the clients 550,
552 and other modules. The application adapter may convert
data into protocols or formats that can be understood by the
clients 550, 552 or other system parts, and it may convert
data from other sources into protocols or formats understood
by its subsystems. It may also perform additional functions.
Four services connect to the application adapter 560. They
are: the management service 562, the query service 564, the
pathway service 566 and the geodetic service 568. These
services 562, 564, 566, 568 provide various functions of the
database system. The management service 562, for example,
may perform functions of the database management system.
The query service 564 may be the software subsystem that
implements the queries on the data stored in the data storage
570. The pathway service may aid in the interface of the
database to the clients 550, 552 and to other software
subsystems. The geodetic service 568 may compute the
trajectories of moving objects and interface with the map
server 556. The services 562, 564, 566, 568 may access the
GIS data storage 558 through the map server 556, or
alternatively they may access the GIS data storage 558
directly.
While FIG. 12 shows the MOD partitioned into four
layers (the presentation layer, the application adaptor layer,
the application serviced layer and the data storage layer), it
is only one exemplary embodiment. One skilled in the art
will recognize the many different ways exist to implement
the database system. For instance, the database may be part
of one computer system, or it may be partitioned across
multiple computers. The GIS data storage 558 and the data
storage 570 can be merged into one module. A fewer or
greater number of services may be used to provide func-
tionality to the database system. The map server 556 and the
application adapter 560 can be merged into one system.
Many additional changes can also be made.
An exemplary embodiment of the present invention has
been described above. Those skilled in the art will under-
stand, however, that changes and modifications may be
made to this embodiment without departing from the true
scope and spirit of the present invention, which is defined by
the claims.
I claim:
1. A method of providing a notification, the method
comprising:
storing respective trajectories for each of a plurality of
moving objects, wherein each respective trajectory
defines permissible spatial and temporal uncertainties
in actual locations of one of the moving objects relative
to expected locations of the moving object along a
temporal-spatial path that the moving object travels
from a starting location through intermediate locations
to a destination location;
obtaining a condition for one of the moving objects;
determining that the condition has occurred, wherein the
determination is made at least in part by querying the
respective trajectory for the moving object; and

responsively providing a notification that the condition
has occurred to a user.

10

15

20

25

30

35

40

45

50

55

60

65

26

2. A computer readable medium having stored therein
instructions for causing a processor to execute the method of
claim 1.

3. The method of claim 1, wherein determining that the
condition has occurred comprises determining that the con-
dition has become true.

4. The method of claim 1, wherein determining that the
condition has occurred comprises determining that the con-
dition has become false.

5. The method of claim 1, wherein responsively providing
the notification comprising sending the notification to the
user via a wireless communication interface.

6. The method of claim 1, further comprising providing
the notification that the condition has occurred to a second
user.

7. The method of claim 1, further comprising:

obtaining a second condition for the moving object;

determining that the second condition has occurred,

wherein the determination is made at least in part by
querying the respective trajectory for the moving
object; and

responsively providing a second notification that the

second condition has occurred to a user.

8. The method of claim 1, wherein determining that the
condition has occurred comprises:

performing a query on the respective trajectory for the

moving object;

based on a result of the query, determining that the

condition has not occurred; and

repeating the query at least one time, and based on a result

of the repeated query, determining that the condition
has occurred.

9. The method of claim 1, wherein obtaining the condition
for one of the moving objects comprises receiving the
condition from the user.

10. A method of providing a notification, the method
comprising:

storing respective trajectories for each of a plurality of

moving objects, wherein each respective trajectory
defines permissible spatial and temporal uncertainties
in actual locations of one of the moving objects relative
to expected locations of the moving object along a
temporal-spatial path that the moving object travels
from a starting location through intermediate locations
to a destination location;

for each of a plurality of moving objects, obtaining a

respective condition for the moving object;
monitoring the conditions of the moving objects to deter-
mine if one or more of the conditions occurs;
determining that the respective condition for one of the
moving objects has occurred, wherein the determina-
tion is made at least in part by querying the respective
trajectory for the moving object; and
responsively providing a notification that the respective
condition for one of the moving object has occurred to
a user.

11. A computer readable medium having stored therein
instructions for causing a processor to execute the method of
claim 10.

12. The method of claim 10, wherein determining that the
respective condition has occurred comprises determining
that the respective condition has become true.

13. The method of claim 10, wherein determining that the
respective condition has occurred comprises determining
that the respective condition has become false.

US 7,016,781 B1

27

14. The method of claim 10, wherein responsively pro-
viding the notification comprising sending the notification to
the user via a wireless communication interface.

15. The method of claim 10, further comprising providing
the notification to a second user.

16. The method of claim 10, further comprising:

obtaining a second condition for the moving object;

determining that the second condition has occurred,
wherein the determination is made at least in part by
querying the trajectory for the moving object; and

responsively providing a second notification that the
second condition has occurred to a user.

17. The method of claim 10, wherein determining that the
respective condition has occurred comprises:

performing a query on the respective trajectory for the

moving object;

based on a result of the query, determining that the

respective condition has not occurred; and

repeating the query at least one time, and based on a result

of the repeated query, determining that the respective
condition has occurred.

18. A method of providing a notification, the method
comprising:

storing respective trajectories for each of a plurality of

moving objects, wherein each respective trajectory
defines permissible spatial and temporal uncertainties
in actual locations of one of the moving objects relative
to expected locations of the moving object along a
temporal-spatial path that the moving object travels
from a starting location through intermediate locations
to a destination location;

obtaining a condition involving at least two of the moving

objects;
determining that the condition has occurred, wherein the
determination is made at least in part by querying the
respective trajectories for the two moving objects; and

responsively providing a notification that the condition
has occurred to a user.

28

19. A computer readable medium having stored therein
instructions for causing a processor to execute the method of
claim 18.

20. The method of claim 18, wherein determining that the

5 condition has occurred comprises determining that the con-
dition has become true.

21. The method of claim 18, wherein determining that the
condition has occurred comprises determining that the con-
dition has become false.

22. The method of claim 18, wherein responsively pro-
viding the notification comprising sending the notification to
the user via a wireless communication interface.

23. The method of claim 18, further comprising providing
the notification to a second user.

24. The method of claim 18, further comprising:

obtaining a second condition involving the two moving

objects;

determining that the second condition has occurred,

wherein the determination is made at least in part by

querying the respective trajectories for the two moving
objects; and

responsively providing a second notification that the

second condition has occurred to a user.

25. The method of claim 18, wherein determining that the
condition has occurred comprises:

performing a query on the respective trajectories for the

two moving objects;

based on a result of the query, determining that the

condition has not occurred; and

repeating the query at least one time, and based on a result

of the repeated query, determining that the condition

has occurred.

26. The method of claim 18, wherein obtaining a condi-
35 tion for one of the moving objects comprises receiving the

condition from the user.

10

15

20

30

US007016781C1

120 EX PARTE REEXAMINATION CERTIFICATE (6344th)
United States Patent

US 7,016,781 C1

(10) Number:

Wolfson 45) Certificate Issued: Aug. 5, 2008
(54) METHOD AND SYSTEM FOR QUERYING IN 6,067,499 A 5/2000 Yagyu et al.
A MOVING OBJECT DATABASE 6,192,314 Bl 2/2001 Khavakh et al.
6,249,740 Bl 6/2001 Tto
(75) Inventor: Quri Wolfson, Highland Park, IL. (US) 6,282,480 Bl 8/2001 Bellesfield et al.
6,298,303 B1 10/2001 Khavakh et al.
. R 6,314,369 B1 11/2001 Ito
(73) Assignee: Fluensee, Inc., Englewood, CO (US) 631768 Bl 11/2001 Ran
. . . 6,321,158 B1 * 11/2001 DeLorme et al. 701/201
Reexamination Request: 6324467 Bl 11/2001 Machii et al.
No. 90/008,571, Aug. 3, 2007 6,339,746 Bl 1/2002 Sugiyama et al.
. . . 6,347,278 B2 * 2/2002 Tto ..cceevrvriniinieneneaennn. 701/200
Reexamination Certificate for: 6,381,535 Bl 4/2002 Durocher et al.
Patent No.: 7,016,781 6,401,034 Bl 6/2002 Kaplan et al.
Issued: Mar. 21, 2006 6,580,904 B2 6/2003 Cox et al.
Appl. No.: 11/048,039 6,587,782 Bl X 7/2003 Nocek et al.
Filed: Jan. 31, 2005 6,622,084 B2 * 9/2003 Cardno etal.ccooo..... 701/202
6,707,421 Bl 3/2004 Drury et al.
.. 6,738,710 B2 * 5/2004 Nagaki ...cccocvvvveeeeerennn. 701/208
Related U.S. Application Data 6.801,.850 Bl 10/2004 Wolfson
6,895,329 Bl 5/2005 Wolfson
(63) Continuation of application No. 10/074,903, filed on Oct. 6.917,877 B2 7/2005 Yang
(60) 12)9’ 2_091’110‘” Plf%t I;T°~6£95’6302/3~92 329, filed on Mav 22 6,965,827 Bl 11/2005 Wolfson
rovisional application 0. N N ed on ay N
2001, and provisional application No. 60/243,839, filed on 6,968,271 Bl 1172005 Wolfson
Oct. 30, 2000. OTHER PUBLICATIONS
G IGn0tIng 3/00 2006.01 Hu Cao et al., Spatio—temporal Data Reduction with Deter-
Gore 2 E oo 1% ministic Error Bounds, DIALM—POMC, Sep. 2003, San
’ Diego, California.
GOe6F 19/00 (2006.01) Goce Trajcevski et al., Managing Uncertain Trajectories of
Moving Objects with Domino, Proc. of the 4% International
(52) US.CL ..o 701/209; 701/201; 701/205; Confernce on Enterprise Information Systems, Apr. 2002,
701/210; 707/3; 340/988; 340/995.23 Spain.
(58) Field of Classification Search None .
See application file for complete search history. (Continued)
Primary Examiner—Jeanne M. Clark
(56) References Cited

U.S. PATENT DOCUMENTS

5,243,528 A * 9/1993
5,272,638 A 12/1993
5,414,629 A 5/1995
5,787,383 A 7/1998
5911,775 A * 6/1999
5,924,075 A 7/1999
5,987,377 A 11/1999
6,009,403 A 12/1999
6,034,626 A 3/2000

Lefebvre
Martin et al.
Inoue
Moroto et al.
Tanimoto
Kanemitsu
Westerlage et al.
Sato

Maekawa et al.

701/211

701/210

(57) ABSTRACT

A database receives location information about a moving
object. Using the destination of the object and an electronic
map, the database finds a projected path for the moving
object. From the projected path, the database computes a
trajectory. The trajectory may be used to estimate past and
future positions of the moving object. The moving object
may send location updates to the database when its actual
location differs from its anticipated location by more than an
uncertainty threshold.

5§50/ 1 WWW Client I
Presentation Layer

| PDA Client }./ 852

556 1 Map Server |

Application Adapter Layer

l Application Adapter |-/ §60

AppRcation Service Layer

Query athway eodefic
Service Service Service
64 -

558

570

Data Storage

Data Storage Layer

US 7,016,781 C1
Page 2

OTHER PUBLICATIONS

Ouri Wolfson et al., Updating and Querying Databases that
Track Mobile Units, Distributed and Parallel Databases
Journal (DAPD) on Mobile Data Management and Applica-
tions, 7(3), 1999, Kluwer Academic Publishers, pp.
257-288.

M. Vazirgiannis et al., A Spatiotemporal Model and Lan-
guage for Moving Objects on Road Networks, Springer Ver-
lag Lecture Notes in Comp. Sci., No. 2121, Proceedings of
the 7 Intl. Symposium on Spatial and Temporal Databases,
Jul. 2001, Los Angeles, CA.

Dr. James Snyder et al., New Technologies for Realizing
Model-Based Battle Command, Proceedings of the ARL
Federated Laboratory 4” Annual Symposium, Mar. 2000,
College Park, MD.

Goce Trajcevski et al, Research Directions in Moving
Objects Databases, Proceedings of the First International
Conference on Geographic Information Science, Oct.
28-31, 2000, pp. 206207, Savannah GA.

A. Prasad Sistla et al., Minimization of Communication Cost
through Caching in Mobile Environments, IEEE Transac-
tions on Parallel and Distributed System, 9(4), Apr. 1998,
pp. 378-390.

Ouri Wolfson et al., An Adaptive Data Replication Algo-
rithm, ACM Transactions on Database Systems (TODS),
vol. 22(2), Jun. 1997, pp. 255-314.

A. Prasad Sistla et al., Temporal Triggers in Active Data-
bases, IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), vol. 7(3), Jun. 1995, pp. 471-486.

Ouri Wolfson et al., Databases for Tracking Mobile Units in
Real Time, Lecture Notes in Computer Science, No. 1540,
Proceedings of the 7 International Conference on Database
Theory (ICDT), Jerusalem, Isreal, Jan. 1999, pp. 169-186.
Son K. Dao et al., Semantic Multicast: Intelligently Sharing
Collaborative Sessions, ACM Computing Surveys,
31(2es):3, 1999.

Ouri Wolfson et al., Moving Objects Databases: Issues and
Solutions, Proceedings of the 10” International Conference
on Scientific and Statistical Database Management (ISS-
DBM98), Capri, Italy, Jul. 1-3, 1998, pp. 111-122.

Ouri Wolfson et al., Domino: Databases fOr MovING
Objects tracking, Proceedings of the ACM-Sigmond 1999,
International Conference on Management of Data, Philadel-
phia, PA, Jun. 1999, pp. 547-549.

Partial Listing of the Publications of Ouri Wolfson found at
http://'www.cs.uic.edu/~wolfson/html/ouri_ publish.html,
downloaded from the World Wide Web on Jul. 3, 2007.

* cited by examiner

US 7,016,781 C1

1 2
EX PARTE AS A RESULT OF REEXAMINATION, IT HAS BEEN
REEXAMINATION CERTIFICATE DETERMINED THAT:

ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW. I T S

Claims 1-26 are cancelled.

