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Abstract—As a spatio-temporal data-management problem, taxi 
ridesharing has received a lot of attention recently in the database 
literature. The broader scientific community, and the commercial 
world have also addressed the issue through services such as 
UberPool and Lyftline. The issues addressed have been efficient 
matching of passengers and taxis, fares, and savings from ridesharing. 
However, ridesharing fairness has not been addressed so far. 
Ridesharing fairness is a new problem that we formally define in this 
paper. We also propose a method of combining the benefits of fair and 
optimal ridesharing, and of efficiently executing fair and optimal 
ridesharing queries.   

Keywords—Optimum,  stable-roommates problem 

I. BACKGROUND 
Taxi ridesharing1 has received increasing attention recently 

both in the database literature ([6,7,8,9,10,12]) and in the 
broader scientific community [5]. These references discuss the 
questions of how to match passengers and taxis efficiently (i.e. 
quickly), effectively (i.e. maximizing the benefits), and what 
savings (e.g., in terms of mileage, number of trips, or dollar 
values) can be obtained by this matching in various practical 
situations.  

Generally speaking the scientific literature is divided 
between papers that aim at optimizing some criteria such as 
travel time or distance (e.g. [5, 13]) and those that propose 
heuristics to find ridesharing partners quickly (e.g. [7]).  

Increasingly popular commercial ridesharing systems such 
as UberPool and LyftLine are also studied extensively. 
However, these systems offer limited information and choice to 
passengers, in most cases merely a price comparison between 
riding alone and ridesharing. As the ridesharing market 
develops passengers will undoubtedly demand greater 
transparency and choice. 

One problem with current commercial ridesharing systems 
is the lack of bounds on inconvenience due to ridesharing. 
Specifically, a passenger does not know in advance how long 
her trip will be delayed due to ridesharing, and cannot specify 

                                                                 
1 We use the term “taxi ridesharing” because it is common in the literature, but 

the results of this paper apply more broadly, i.e. also to the Mobility-As-A-
Service model of Uber and Lyft. 

2 In this paper we initially focus on the case where at most 2 trips can be merged. 
This limitation may be due to vehicle capacity, or individual traveler 
constraints, or both. This limitation will be relaxed in sec. 5. 

3 We believe that a transparent ridesharing service, that enables travelers to 
indicate their preferences in terms of partners and considers these preferences 
in forming the ridesharing plan, is more appealing than opaque services such 

constraints such as tolerable delay. Furthermore, to save money 
she may be willing to walk or bike to a designated ridesharing 
pickup location, or from a drop-off location to the final 
destination; however, current ridesharing services do not allow 
her to specify this willingness, or bounds on the length of 
walking time. The scientific literature has proposed modeling a 
trip using such bounds (e.g. [5, 6, 10, 12]), however these have 
not been adopted by industry yet.  

Two other problems with the taxi ridesharing are the lack of 
transparency and fairness. These problems are common to both 
commercial systems and the scientific literature, and we discuss 
them next. Consider first the lack of transparency. A passenger 
does not know the pool of available ridesharing candidates, and 
consequently, she does not have a say in her matching  with a 
ridesharing partner2. For example, assume that passenger C can 
save $3.5 when ridesharing with passenger B (compared to 
riding alone), and $4 if ridesharing with passenger D. This will 
be the case if the routes of C and D are more similar than those 
of C and B. Then C will be better off ridesharing with passenger 
D than with B. Furthermore, as we illustrate in Example 2 of 
sec. II, a ridesharing service such as Uber may be motivated to 
pair C with B rather than with D. Intuitively, this is due to the 
fact that Uber optimizes globally rather than locally, i.e. for a 
specific passenger. 

The solution to the lack of transparency is to show 
passengers (and their software agents) their potential 
ridesharing partners3. This transparency option of letting each 
passenger P see, and possibly automatically rank its potential 
ridesharing partners, e.g. in terms of dollar-savings4, introduces 
the fairness problem. Intuitively, fairness can be summarized as 
follows. If P is not matched with its top choice partner it is 
because the top choice preferred a different ridesharing partner; 
and recursively, if P is not matched with its second choice 
partner Q it is because Q preferred a different ridesharing 
partner, etc. As we demonstrate in this paper, the fair 

as Uber and Lyft. The choice will not be done manually for each ride. 
Instead, when installing the ridesharing app (e.g. Uber) the user will 
specify criteria that enables automatic ranking of potential partners.  

4 Other criteria such as pollution-savings are possible. Furthermore, 
criteria can be combined; social, gender, safety preferences, and wait-
time, can be valued for each partnership. A weight and a value given to 
each criterion will result in a utility number for each potential partner. 
This in turn will result in a total ranking of the potential partners. 
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ridesharing plan - a set of combined trips to be executed - may 
be different than the optimal one.  

Example 1 (fairness): In order to demonstrate fairness in 
ridesharing, consider for example the ridesharing options 
represented by the graph in Fig. 1. The nodes represent single 
trips A, B, C, D; the edges represent shareability of trips, with 
each edge (X,Y) labeled by a pair of numbers: the number 
closer to X is the saving ($) of X from sharing the trip with Y, 
and the number closer to Y is the saving ($) of Y from sharing 
the trip with X. So the graph indicates that passenger A can 
rideshare with passenger B or D (but not both, due for example 
to vehicle capacity or constraints on the delay). If A rideshares 
with B, then A saves $0.5 compared to riding alone. If A 
rideshares with D, then A saves $3 compared to riding alone. 
Similarly, B can rideshare with A (saving $0.5), or rideshare 
with C saving $3.5. And similarly for passengers C and D.  

 
Figure 1: A Ridesharing-Graph 

Now assume that for each passenger, the saving ($) is the 
single criterion that dictates its ranking of the potential 
ridesharing partners. C can rideshare with B or D, but C prefers 
to rideshare with D because its saving is higher. Similarly, D 
can rideshare with A or C, but D prefers to rideshare with C 
because its saving is higher. In other words, C and D prefer each 
other over any other partner. Thus it would be unfair to pair C 
with a partner other than D; and similarly, it would be unfair to 
pair D with a partner other than C.  

Observe that fairness requires the pairing of C and D only 
in the case of reciprocity. This means that if C prefers D, but D 
prefers another partner, then it may be fair to pair C with 
another partner, e.g. B. But since in Fig. 1 both C and D prefer 
each other over other partners, it is unfair to pair either of them 
with other partners.  

Furthermore, even though A pays more when paired with B, 
the scheme is still fair to him. This is because D, A’s only other 
potential partner, prefers C over A. This is analogous to A 
making a partnership offer that is turned down. So the scheme 
is fair to A and B since they do not have a choice of ridesharing 
with other partners. 

Practically, even though transparency is more conducive to 
fairness, the two concepts are independent. Even an opaque but 
fair ridesharing system could commit to a passenger C that if it 
is matched with C’s i’th choice, then choices 1,…,i-1 preferred 
other partners. Moreover, even in an opaque system unfairness 
can be detected; for example, if C and D stand in a taxi line, by 

talking to each other they may discover that the system paired 
them unfairly. [] 

In this paper we introduce and formalize the notion of 
ridesharing fairness, and discuss algorithms to compute a fair 
ridesharing plan under various assumptions. We also introduce 
a payment scheme called Guaranteed-Ridesharing-Fairness 
(GRF) that enables a fair execution of an optimal plan. This 
means that the executed ridesharing plan is the optimal one, but 
the payments of the passengers are according to the fair plan, 
and often even lower. Furthermore, the GRF payment scheme 
is self-sustaining in the sense that it does not need to be 
externally subsidized. 

The rest of the paper is organized as follows. In Sec. 2 we 
define the model and the concept of fairness. In Sec. 3 we 
introduce the GRF payment scheme and prove its properties. 
GRF requires the computation of both the optimal ridesharing 
plan, and the fair one, thus in Sec. 4 we discuss the efficient 
computation of these plans. In Sec. 5 we extend the discussion 
to ridesharing that involves more than two passengers, and in 
Sec. 6 we conclude. 

II. THE MODEL 
In this section we first introduce the Transparent & Fair 

Ridesharing (TFR) system that produces ridesharing plans.  
Each ridesharing plan (rsp) is a set of combined trips to be 
executed, where a combined trip consists of at most two single 
trips (recall that the first four sections of this paper focus on the 
case where at most two single trips share a ride). Then we define 
the concept of a Ridesharing Graph (RSG) which models the 
ridesharing options and benefits. Then we formally define the 
concepts of an optimal rsp, and a fair rsp. We also demonstrate 
that an optimal rsp is not necessarily fair, and vice versa.  

The TFR system is cloud based. It receives from mobile 
clients information about individual trips, which form a 
ridesharing pool, and combination benefits. Specifically, a 
mobile client submits to the TFR system: 1) a single trip A, and 
2) the benefit of combining A with each one of the other trips 
in the pool. A single trip is a triplet (origin-address, destination-
address, and constraints). Constraints may include bounds on 
arrival time, pickup time, and wait time. Further details are 
found in [5, 10]. However, the model is applicable regardless 
of a specific precise format of a trip. Furthermore, the trip may 
be dynamic, i.e. currently being executed by a taxi (this 
corresponds to dynamic ridesharing [6,7]); or it may be static, 
i.e. just requested ([5, 10]) but not started. Indeed, a recent 
paper ([13]) uses pools that consist of both static and dynamic 
trips.  

Assuming that a dynamic passenger does not transfer from 
one taxi to another before completing her trip, two dynamic 
trips cannot be combined. This will be indicated by the absence 
of an edge between two dynamic trips. A static and a dynamic 
trips can be combined by the static passenger joining the taxi 
used by the dynamic trip. In the case that two dynamic trips are 
combined, a separate problem is allocating a taxi to such a 
combined trip. However, we regard this allocation as 
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orthogonal to the problem of constructing a ride-sharing plan. 
An existing scheme (see e.g. [7]) can be used for this purpose. 

The benefit of combining two trips is represented by a 
weighted average of multiple individual criteria. The criteria of 
two passengers may be different. In this paper we equate the 
benefit to individual savings ($). For example in Fig. 1, the 
benefit of A in ridesharing with D is $3 of individual saving. 
The computation of the benefit of combining two trips can be 
done in the cloud (e.g. in the TFR system), even though 
conceptually the benefit is submitted by the client. 

In TFR the problem of finding a ridesharing plan (e.g. the 
pairs of combined trips) is modeled as a weighted undirected 
Ridesharing Graph (RSG) (see e.g. Fig. 1). In an RSG(V,E), 
each node vi∈V is a single trip, and each edge eij∈E, if exists, 
connects trip vi to a potential ridesharing partner vj

5. The weight 
of edge eij, denoted Sij, represents the benefit obtained by 
combining the trips vi and vj , compared to the two separate 
single trips. Sij must be positive for the ridesharing between vi 
and vj to take place. In other words, if Sij <0 then vi and vj should 
not be combined and the edge eij does not exist, i.e., eij∉E. For 
example, in Fig. 1, edge eAB exists and its weight SAB equals 1 
(sum of the individual savings). It means that A and B are 
willing to rideshare, and if the ridesharing plan combines them, 
then the total benefit (cost-saving) of the combined trip is $1.  
For simplicity we assume that the weights are distinct, i.e., any 
two edges have different weights.  

In addition to the weight, each edge is also labeled by a pair 
of the individual savings (Si(j), Sj(i)), in which Si(j) is the saving 
(benefit) of vi when ridesharing with vj, and vice versa for Sj(i). 
The sum of Si(j) and Sj(i) equals Sij, the weight of the edge. So if 
the individual-savings label of edge eAB is (.25, .75) then the 
benefit (total saving) in combining trips A and B, SAB, is $1, and 
the savings of A, SA(B), is $0.25 and that of B, SB(A), is $0.75. In 
Fig. 1. each edge is labeled by the individual savings pair of the 
two trips that it connects. If a trip vk∈V is not connected by an 
edge to any other trips in V, then vk rides alone and the 
individual saving of vk, denoted Sk, is zero.  

The savings may be evenly or unevenly split. An Evenly-
split RSG is one in which the savings represented by the weight 
of each edge is evenly split between the two ridesharing 
partners. The RSG in Fig. 1 is evenly split.  

However, if the distance or time saved is uneven, then even 
splitting of the savings is unreasonable. For example, assume 
that two passengers A and B are picked up at the airport, and 
the taxi drives straight to A’s destination, drops her off, and 
then drives to B’s destination. Then A traveled along her 
shortest path, whereas B hasn’t. In this case, a better approach 
is to divide the “total saving” according to the increase in the 
distance (or time) traveled, compared to the shortest path. For 
instance, let’s assume that A’s destination is “n1” miles away 
along the shortest path, and in the joint path she travels “m1” 
                                                                 
5 See [5, 6, 10, 12] for efficient spatio-temporal data management algorithms 

that construct the RSG under various assumptions, e.g. whether or not 
passengers are willing to walk. The RSG can be constructed periodically, e.g. 

miles. For B, assume that the corresponding figures are “n2” 
and “m2”. Let x=m1/n1 and y=m2/n2. As a result, x/(x+y) of 
the saving is assigned to A, whereas the rest is assigned to B. 

An Unevenly-split RSG is one which is not evenly split.  

We postulate that any ridesharing algorithm that optimizes 
some criteria (e.g. $-savings, or distance, or pollution), rather 
than providing a heuristic, must implicitly or explicitly use a 
variant of the RSG. The reason is that the RSG simply encodes 
the ridesharing options and benefits, and each optimization 
algorithm must consider these. Indeed existing optimization 
papers do so (e.g. [5, 10, 13]). 

In order to transparently construct the RSG, each 
passenger’s software agent pairs her trip with all the potential 
partner trips; pairs of trips that are connected to each other 
become an undirected edge in the RSG. Directed edges, 
indicating that only one of the partners is willing to rideshare 
with the other, are dropped from the RSG.  

Observe that the RSG models the ridesharing potential, i.e. 
which trips can be shared. However, not all the trips that can 
potentially be shared, will actually be shared in the set of 
executed combined trips. For example, in Fig. 1, passenger A 
cannot rideshare with both B and D because at most two trips 
can be combined; and even if they could, B and D cannot be 
combined. Thus, a ridesharing plan has to be computed. A 
ridesharing plan R is a subset of RSG(V,E) that contains only 
node-disjoint edges from the RSG.  Node-disjointness means 
that a trip can be shared with at most one other trip. R may not 
contain all the nodes (trips) in V. A trip that is unpaired in R 
rides alone and incurs zero individual saving.  

The total saving of a ridesharing plan (rsp) R is the sum of 
the weights of edges in R. Now we formally define the fair and 
the optimal rsp.   

Definition 1: given an RSG(V,E), an rsp O is optimum if no 
other rsp B has a total saving greater than that of O.   

Definition 2: given an RSG(V,E), an rsp R is unfair to a trip 
vi ∈V if: 1) there exists another trip vj ∈V and the edge eij ∈E 
is not in R; and 2) vi and vj both incur a higher individual saving 
if ridesharing with each other than with their partners in R.  

For example, consider the evenly split RSG in Fig. 2, and 
an R ={(A,D), (B,C)}. R is unfair to C (and to D) since C’s 
saving in R is $3.5, and D’s saving in R is $3. However, if C 
rideshares with D then each saves $4, i.e. more than that in R. 

An rsp F is fair if it is not unfair to any trip. The concept of 
fairness is related to the Nash Equilibrium (NE).  

Example 2 (difference between fair and optimal ridesharing 
plans): Consider the evenly split RSG in Fig. 2. This is simply 
the RSG of Fig. 1, with the weights, rather than the individual 
savings, of the edges displayed. An optimum rsp O is to 

every 5 minutes.  A large number of trip-requests can be pooled in short 
periods of time at hubs such as airports or train stations (see [10]). 
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combine trips B and C, and trips A and D. This leads to a total 
saving of $13. However, this plan would be unfair to C and D. 
Observe that both C and D prefer to be combined with each 
other rather than their partners in the optimum plan, since in 
this case the saving of each would be $4, compared to $3 and 
$3.5 respectively, in the optimal plan. And if C and D are 
combined, it leaves A and B to be combined. Thus, the fair rsp 
F, is the red one, having a total saving of $9.  

From the societal good perspective, an optimal rsp is 
preferred because it maximizes the social welfare in aggregate. 
However, it may not be fair to some individuals. To remedy this 
gap, it means that if an optimal rsp O is executed, then a 
compensation scheme should be according to a fair rsp F. In 
other words, fairness requires that after a passenger pays the 
cost of her trip, she is compensated according to a fair rsp, 
regardless of the rsp actually executed. For the example in Fig. 
1, this means that after ridesharing C is "compensated" at least 
$4 compared to riding alone. Likewise for D. This 
compensation scheme is discussed in the next section.  [] 

 
Figure 2: A Ridesharing Graph  

III. GUARANTEED-RIDESHARING-FAIRNESS (GRF) 
PAYMENT SCHEME 

In this section we introduce the GRF payment scheme. It 
executes the optimum rsp, while providing a fairness guarantee 
to each passenger. We show in this section that GRF is always 
feasible without external subsidies. GRF is an adaptation to 
ridesharing of a payment scheme for resources (e.g. parking 
slots), that was introduced in [2].  

Given an RSG(V,E), let O be an optimum rsp, and let F be 
a fair rsp. GRF is a payment scheme that guarantees to each 
passenger/trip vi∈V that its saving in O, denoted S(i,O), will be 
no less than its saving in F, denoted S(i,F).  We denote the 
difference between the two savings by Di, i.e., 

( ) ( )FO ,, iSiSD i −=   (1) 

This is how GRF works: 

i. If Di is negative, then the TFR system pays passenger vi an 
amount equal to |Di| to compensate the decrease in vi's 
saving by moving from F to O. 

ii. If Di is positive - this means that vi benefits from some 
other passengers "sacrificing" what they could have saved 
in F - then vi pays to the TFR system the amount of Di; and 
its overall saving in O is still no less than that in F.  

Thus, the GRF payment scheme guarantees that each 
passenger vi incurs an adjusted saving, i.e. S(i,O)-Di, which is 
not less than vi’s fair saving, S(i,F), according to Eq.(1).  Hence, 
GRF is Pareto-improving meaning no one is worse off in O with 
the GRF payment scheme, than in F. 

Example 3 (the GRF payment scheme): For the example in Fig. 
1, each passenger expects to be fairly compensated (i.e., the 
individual saving) according to the red color-coded rsp even 
when an optimum rsp (black color-coded) is executed. This can 
be done without any subsidy by implementing GRF as follows. 
In the optimum plan, the individual savings are: S(A,O)=3, 
S(B,O)=3.5, S(C,O)=3.5, and S(D,O)=3, and the total saving is 
$13. In the fair plan, the individual savings are: S(A,F)=0.5, 
S(B,F)=0.5, S(C,F)=4, S(D,F)=4, and the total saving is $9. So 
according to fairness, A and B are over compensated, and C and 
D are under compensated in the optimum plan O. Thus TFR 
with GRF collects $2.5 from A and $3 from B (i.e., a total of 
$5.5 collected by TFR), and compensates C $0.5 and D $1. 
After that, $4 is left over to distribute among the passengers and 
ridesharing platform in any mutually agreeable form. In 
particular, the leftover $4 can be distributed evenly among the 
4 passengers to make each passenger better off than its 
compensation in a fair plan. [] [][] 

Now we prove that the properties demonstrated in Table 1 hold 
in general. Assume that the TFR system selects the optimum 
rsp O and the GRF payment scheme. Then the total income (I), 
is the sum of the Di’s received from the passengers in (ii). The 
total outcome (U), is the sum of |Di|’s paid out to passengers in 
(i).  The GRF payment scheme is revenue neutral if and only if 
the total income is no less than the total outcome, i.e., I � U. 

Theorem 1: For every RSG(V,E), the GRF payment 
scheme combined with the optimum rsp O is revenue neutral. 

Proof is based on the fact that the total system saving of 
assignment O is no less than the total system saving of any other 
assignment, including F. That is, the following inequality 
always holds: 

�≥�
∈∀∈∀ VV

FO
ii

iSiS ),(),(   (2). 

Then  

0)],(),([ ≥−�
∈∀

FO
V

iSiS
i

  (3), 

i.e., 0≥�
∈∀ Vi

iD     (4). 

We rewrite (4) into the following: 

0≥�−+�+ ii DD    (5), 

where �+ iD represents the summation of all positive Di’s and 

�− iD  all negative Di’s.  As denoted,�+ iD is the total income 
I of the TFR system from the passengers, and �− iD is the total 
outcome U from the TFR system to the passengers.  Thus Eq. 
(5) indicates that I �U.  [] 
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Now we will briefly discuss the practical implications of the 
GRF scheme. Generally, ridesharing represents a tradeoff 
between time and cost. If a passenger rideshares, she saves cost 
versus riding alone, but wastes time since her trajectory is not 
direct. Furthermore, a higher cost-savings indicates higher 
similarity in the individual trajectories of the two trips, and thus 
a lower amount of time wasted. Then the optimal plan implies 
that overall, a minimum amount of time wasted.  

So, in these terms, what does the GRF scheme practically 
mean for each one of the passengers in Fig. 1? A and B waste 
less time in the optimal plan actually executed (than in the fair 
plan), but are reimbursed less than the executed plan warrants 
(0.5 instead of 3). On the other hand, C and D waste more time 
in the executed plan than in the fair plan, but they are 
compensated more than the executed plan warrants.  

In case the weight of an edge represents pollution savings 
and the system is cap-and-trade, the GRF scheme’s currency 
may be pollution credits. If the benefit of ridesharing consists 
of a combination of criteria, then the GRF scheme can be 
applied by mapping the benefit to some $-cost. 

IV. DATA MANAGEMENT AND COMPUTATIONAL 
ISSUES 

The GRF payment scheme requires that the Transparent and 
Fair Ridesharing (TFR) system construct the RSG of a given 
pool of candidate trips and compute two ridesharing plans, the 
fair and the optimum. In this section we address the problem of 
computing these rsp’s.  

Consider first construction of the RSG. If we assume that a 
pool consists of all the taxi-trips originating from an airport 
during a 5 minutes interval, then the number of trips is less than 
50 on average (see [10, 4]). The computation of the RSG 
requires multiple shortest path computations over the road 
network (which in NYC has about 500,000 edges). This 
computation, including optimizations such as Euclidean 
filtering, was addressed and can be done efficiently (see [10]). 

Now consider the computation of the optimum rsp. Observe 
that any rsp is simply a matching, i.e. a subset R of the RSG 
edges, such that no two edges in R share a node (due to the fact 
that at most two trips can be shared). And an optimum rsp is a 
maximum-weight matching. Computing the maximum 
matching can be done in O(n2.5), where n is the number of nodes 
of the RSG, i.e. trips in the ridesharing pool (see [3]).  

Now consider the computation of the fair rsp. This 
computation differs depending on whether or not the 
Ridesharing Graph is evenly or unevenly split. These two cases 
are addressed in IV.A and IV.B, respectively. 

A. Evenly-split Ridesharing Graphs 
A fair rsp is computed iteratively by combining trips 

connected by the heaviest edge in the RSG, and removing them 
from the RSG. More specifically, the fair rsp F is computed by 
the following algorithm (NE4.1):  

a. Let F consist of the empty set. 

b. While there are edges in the remaining RSG do: 
   b.1) find the heaviest edge eXY in the remaining RSG,  
   b.2) put the edge eXY in F (i.e. combine trips X and Y), and 
remove X,Y and their adjacent edges from the remaining 
RSG.[] 

Theorem 2: For an evenly split RSG, the rsp F computed 
by Algorithm NE4.1 is fair. 

Proof: Assume by contradiction that there exist two trips A 
and B that are not paired with each other in F, but both A and 
B have a higher individual-saving if they rideshare with each 
other, rather than with their assigned partners in F. Then the  
edge eAB must have been removed at step b.2 in some iteration 
of NE4.1. Furthermore, at that iteration another edge, say eAC, 
must have been put in F. The fact that NE4.1 selected eAC rather 
than say eAB means that the weight of eAC is higher than that of 
eAB, and therefore, since the RSG is evenly split and the weights 
are distinct, the saving of A in ridesharing with C is higher than 
in ridesharing with B. This is a contradiction to the assumption 
that A’s saving is higher when ridesharing with B.[] 

NE4.1 can be made to run in O(n log n) (see [11]).  

B. Unevenly-split Ridesharing Graphs 
In the case of unevenly-split RSG’s the NE4.1 algorithm 

does not work anymore. The reason is that NE4.1 uses the fact 
that at any iteration, if eXY is the maximum-weight edge, then 
trip X is the preferred ridesharing partner for trip Y, and Y is 
the preferred partner for X. However, if the split is uneven, this 
not necessarily true. So in the example of Fig. 2 assume that trip 
D’s individual-saving in ridesharing with C is 7 and in 
ridesharing with A is 2. So trip D prefers ridesharing partner C 
over partner A. However, if C’s savings when riding with B is 
3, then C prefers B over D. 

Thus we introduce the NE4.2 algorithm, which computes 
the fair rsp of the RSG, if such an rsp exists, using a solution to 
the stable-roommates problem (SRP). In a given instance of the 
stable-roommates problem (SRP), each of 2n participants ranks 
the others in strict order of preference. A matching is a set of n 
disjoint pairs of participants. A matching M in an instance of 
SRP is stable if there are no two participants x and y, each of 
whom prefers the other to their partner in M [16].  

This is done as follows.  Each trip X sorts its neighbors 
(potential partners in the ridesharing plan) in increasing order 
of X’s cost in the partnership. The a solution to the SRP can be 
found in O(n2), where n is the number of trips(see [1]). And it 
is easy to see that this solution constitutes a fair rsp. 

However, a solution to an SRP problem may not exist, and 
similarly a fair rsp may not exist for an unevenly split RSG.  

Example 4 (nonexistence of a fair rsp): Consider the RSG 
of Fig. 3 that uses the same notation as Fig. 1 in example 1. 
Consider the rsp R={(A,D), (B,C)}. This rsp is unfair to A, 
since both A and C save more when pairing with each other 
than with their rsp partners (D and B respectively). Also, if B 
or C pairs with D instead of A, it can be similarly shown that 
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the plan would be unfair to D’s partner. Since the benefit in 
partnering with D is > 0, any rsp R will partner a passenger with 
D, and that R will be unfair to that passenger.  

 
Figure 3: A Ridesharing Graph for which a fair rsp does not exist. [] 

If there is no fair rsp, there are several options. The first one 
is to declare that in this case, GRF is inapplicable, and each 
passenger is reimbursed according to the executed, optimum 
rsp. The second option is to invoke an algorithm that finds the 
minimum number of trips to be deleted from the RSG, such that 
the remaining set of trips have a solution to the SRP problem. 
Such an algorithm exists and has time complexity O(n2) ([14]).  

V. COMBINING MORE THAN TWO TRIPS 
In this case the problem of finding a ridesharing plan (i.e. 

the subsets of combined trips) is represented as a weighted 
undirected Ridesharing-Hypergraph (RSH). In a hypergraph 
each (hyper)edge is a set of nodes; the cardinality of each edge 
is c or lower, where c is the maximum capacity of a vehicle. 
The weight of each hyperedge is the total savings obtained if 
the set of trips is combined into a single one. The individual-
savings in an RSH is defined analogously to the RSG. Observe 
that all the subsets of a hyperedge are also hyperedges in the 
RSH. The reason is that if trips A, B, C can be combined such 
that the constraints of each one of them is satisfied, then clearly 
they can be pairwise combined such that the same set of 
constraints is satisfied.  

A ridesharing plan is a set of node-disjoint hyperedges in 
the RSH.  An optimum rsp is an rsp of maximum weight, and 
finding it becomes NP-complete in hypergraphs; but a 
polynomial (2c+1)/3-approximation exists (see [5]). 

An rsp F is fair if there is no hyperedge in RSH in which all 
the trips have a higher individual savings than in F. Define an 
evenly-split RSH to be one in which savings represented by the 
weight of each hyperedge is evenly split among its nodes (i.e. 
trips). Then an equivalent of the algorithm NE4.1, i.e. the 
selection of hyperedges in decreasing order of their i-s, works 
to find a fair rsp. Observe that here, in contrast to NE4.1, it is 
possible that at some iteration of step b.1 of NE4.1, a selected 
hyperedge H may have a lower weight than that of another 
hyperedge K in the remaining RSH, even though H’s i-s is 
higher (due to the fact that H has a lower cardinality).  

The problem of finding a fair rsp (if it exists) for an 
unevenly split RSH is NP-complete (can be shown by reduction 
from 3D-SR [15]), so approximations should be developed.   

VI. CONCLUSION 
In this paper we introduced the concept of ridesharing 

fairness, and contrasted it with the optimum currently used. We 
also introduced the Guaranteed Ridesharing Fairness (GRF) 
payment scheme, which executes an optimum ridesharing plan, 
but compensates the passengers fairly without external 
subsidies. GRF requires the computation of a Ridesharing 
Graph (RSG), and the fair and optimum ridesharing plans, so 
we also discussed the data management and complexity issues 
involved in these computations. These issues differ for 
ridesharing that involves at most two trips, and for ridesharing 
that involves more than 2 trips. They also differ depending on 
whether or not the savings from ridesharing are evenly split 
among the passengers.  
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