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Abstract— In this short paper, we report on an approach to 
datamine the brain from a novel perspective, namely traffic 
analysis. Our datamining approach considers the brain regions 
and the tracts that connect them as a road network, and the 
signals traveling between them as vehicles. We analyze travel 
patterns by a process called traffic assignment. The results are 
unexpected in the sense that the movement of signals in the brain 
seems to follow some global optimization patterns as opposed to 
the anarchical system that would be favored by evolution. 

Keywords—Data mining; Connectomics; Transportation; 
Mobile Data Analytics; Brain Applications of Mobile Data 

I. INTRODUCTION 
Brain research has received a boost recently from the 

BRAIN initiative of the Obama administration ([1]). The data 
management community has also become interested in the 
subject, emphasizing graph mining (e.g. [2, 3]), and the 
performance improvement of database operations (e.g. [4]).  

In this paper we propose a novel approach that combines 
datamining and transportation research. More specifically, we 
examine the brain in terms of demand for communication of 
signals1 which move between neurons and brain regions, and 
the supply of fibers that enable, and serve the conduit for such 
movements. The objective of our demand/supply examination 
is to determine whether or not signal movement in the brain 
obeys some form of global design for optimum efficiency. Or, 
as evolution would suggest, movement patterns are emergent 
thus more anarchical, with various neurons and regions acting 
selfishly for the purpose of local optimization, regardless of the 
global perspective. The former would suggest a System 
Optimum (SO) signal movement, whereas the latter would 
suggest a User Equilibrium (UE) type of movement. 

                                                           
1  Also called firings 

 
 
 
 
 
 
 

Surprisingly, we have found that signal movement in the 
brain is closer to SO than to UE. This holds for healthy as well 
as depressed subjects. Nevertheless, the difference between the 
two is smaller in depressed subjects than in healthy ones. In 
other words, our analysis has two important implications: 1) it 
indicates some form of global control of communication traffic 
that is unexpected, and raises the question of how and by 
whom this control is exercised, and 2) it shows a distinction 
between healthy and depressed subjects that may be used as a 
diagnostic tool. Analysis of more subjects and finer 
granularities is desirable to confirm these results. 

The data used in this paper is obtained by neuroimaging 
technology, and it represents the movement and traffic of 
signals in the brain. Although analogous to vehicular traffic, 
limitations of the technology do not allow capturing the 
movement of individual signals yet. Instead, aggregate 
movement is inferred from the level of activity of distinct brain 
regions. This is in contrast to common practice in the mobile 
data community, where mobile units (vehicles or pedestrians) 
are tracked by, for example, GPS receivers. Nevertheless, as 
we demonstrate in this paper, questions in an important area 
such as brain research can be addressed even when the 
available data is at a coarse level of granularity. Furthermore, 
human brain mapping is advancing at a rapid pace, and animal 
studies produce brain data at a finer level of granularity ([5]). 
In one such study, researchers performed discrete-time 
simulations on structural connectomes of macaque monkeys 
[6]. The authors showed that information flow in that particular 
connectome had “higher loss rates, faster transit times, and 
lower throughput, suggesting that neural connectivity may be 
optimized for speed rather than fidelity”. These simulations 
relied on a random walk model of communication, in which 
the source and destination nodes of the signals were randomly 
selected. Then signals were propagated from source to 
destination by traveling to a neighboring node with equal 
probability. As such, the study did not incorporate information 
from a functional connectome, as is done in this paper. 

In other relevant work, analysis that combines structural 
and functional connectomes has been described in [7]. Authors 
simulated dynamics within the brain using a susceptible–
infected–susceptible model. They showed that the functional 
activity is linked to the underlying structure. Other works that 
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describe a link between the structural and functional 
connectomes include [8] and [9]. In [10], Daniel Graham 
discusses attempts at modeling communication in the brain, but 
references a fact that “very little work has been devoted to 
possible routing schemes in the brain”. In particular, the 
question of whether communication in the brain follows 
optimum or equilibrium patterns has never before been 
addressed. 

The data used in our experiments (see sec. IV) was 
produced at the University of Illinois at Chicago hospital (see 
[11] and [12] for details). However, data and software tools 
that are necessary to produce the necessary data structures for 
many more subjects have recently become available in the 
public domain as part of the Human Connectome Project 
(HCP) ([13]). According to [14]: ”The goal of the Human 
Connectome Project is to build a "network map" (connectome) 
that will shed light on the anatomical and functional 
connectivity within the healthy human brain, as well as to 
produce a body of data that will facilitate research into brain 
disorders such as dyslexia, autism, Alzheimer's disease, and 
schizophrenia”. 

The rest of the paper is organized as follows. In section II, 
we provide the connectome model, and we explain how data 
about the connectome is gathered. In section III, we describe 
the transportation model. In section IV, we make the 
connection between the connectome and transportation models, 
describe our experiments, and present the results. In section V 
we conclude and discuss future work. 

II. CONNECTOME MODEL AND DATA 
In this section we first present an abstraction of the brain as 

a graph, and then we discuss the data structures that we use to 
estimate the graph, and the activity within it. 

A brain is a graph � � ��� �� where �  is a finite set of 
nodes representing neurons, and � is a set of ordered pairs of 
nodes. A neuron communicates with other neurons by sending 
signals along the directed edges which represent synapses. So a 
signal that arrives at a neuron excites it, causing it to fire; 
which in turn excites a neighbor, causing it to fire, etc. In this 
sense, the signals travel along paths in the brain. 

Time is divided into slots. Intuitively, the slot represents the 
resting, excited (i.e. sending a signal), refractory (i.e. 
recovering, during which it does not respond to signals) 
biological cycle. Let us assume for simplicity that the system is 
synchronous in the sense that the time periods are common to 
all the nodes2. A Signal (or a firing, which in this paper is 
analogous to a vehicle or a message) is an (origin, destination, 
time-slot) triple. The origin is a node, so is the destination, and 
the time slot is a natural number. Intuitively, it means that a 
signal arrives at its origin from outside the brain, in the given 
time-slot, and travels from its origin to its destination.   

At the neuron-level granularity the human brain has on the 
order of 100 billion nodes, and 100 trillion edges [15]. 
Unfortunately, brain imaging technology cannot map 

                                                           
2  This is an abstraction commonly used in distributed computing 

systems, but is not strictly necessary for the purpose of this paper. 
 

individual neurons and monitor their signals even in animals 
(see [5]). Thus we use an approximation called the connectome 
in which each node is a contiguous 3-dimensional brain region, 
or volume, rather than an individual neuron. Then using neural 
imaging techniques we produced three data structures: 1) The 
structural connectome matrix, 2) the functional connectome 
matrix, and 3) the ALFF vector. Intuitively, these represent: 1) 
the brain regions and the signal-carrying capacity between each 
pair of regions, 2) the signal traffic between brain regions, and 
3) the level of activity of each region in terms of signals that 
are generated in, or passing through, the region. 

For the rest of this section we elaborate of these data 
structures, and how they are produced. Brain connectivity 
information is typically acquired via Diffusion Tensor Imaging 
(DTI) [16]. DTI is a magnetic resonance imaging technique 
that enables the measurement of the restricted diffusion of 
water in tissue. This technique produces neural tract images 
that are analyzed to calculate the number of fiber tracts that 
connect regions in the brain (see [17]). 

Using the DTI images, a weighted undirected graph called 
the structural connectome is produced. In this graph the nodes 
are brain regions, and the weighted edges specify the strength 
of a connection between two brain regions; the higher the 
weight, the more signals can travel simultaneously between the 
two regions connected by the edge. The graph is incomplete in 
the sense that not every pair of regions is connected. In the 
structural connectomes used in this paper the human brain is 
parcellated into 87 regions (the nodes).  

In neuroscience the structural connectome is usually 
represented by a square matrix, M (instead of sets of nodes and 
edges). Each element 	
�  denotes the weight of the edge 
between the two regions i and j.  

In neuroscience, signal activity information is gathered 
using resting state fMRI (rsfMRI or R-fMRI), which is a 
method of functional brain imaging. It is used to evaluate 
interactions between brain regions that occur when a subject is 
not performing an explicit task [16, 18]. This resting brain 
activity is observed through changes in blood flow in the brain. 
These changes generate a Blood-Oxygen-Level Dependent 
(BOLD) time series, that is measured using functional MRI.  

We measured the BOLD time-series of the 87 regions of 
the structural connectome. From this time-series, we compute 
the activity level of the region using the Amplitude of Low-
Frequency Fluctuation (ALFF) measure (see [11]). We use 
ALFF as a representation of the ground truth level of activity 
(i.e. number of signals produced) in each region.  
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The BOLD signal time-series data is also used to produce 
the functional connectome, F, which is a square matrix of the 
same order as 	�  Each element 
�  denotes the cross 
correlation between the time-series of region i and region j. We 
interpret the correlation as a proxy metric for the magnitude of 
communication (i.e., signals traveling)3 between regions i and j 
(see fig. 1), in a way that is described in sec. IV.A. This 
concludes the description of the three data structures. 

III.  TRANSPORTATION PLANNING: UE AND SO ASSIGNMENTS 
In order to achieve our objective of determining whether 

communication of brain signals follows a SO or a UE pattern, 
we employ approaches and tools from transportation planning 
[18][19]. Transportation planning manages travel supply-
demand.  

The supply is the road network, formally, a graph in which 
the nodes are the intersections and the edges are the road 
segments between two consecutive intersections. Each edge e 
is labeled by its free-flow travel time, ������which is the time it 
takes for a vehicle to traverse the edge assuming no traffic and 
a specified maximum speed; and capacity �� , which is the 
maximum number of vehicles per time unit that can exit this 
edge. Observe that �� may be obtained at a speed �� which is 
lower than the free-flow travel speed. For example, for an edge 
the max speed may be 60mi/hr, and at that speed at most 50 
vehicles per minute may exit the edge; however, if the speed 
decreases due to an increased density of vehicles, the flow may 
increase to 100 vehicles per minute. 

The demand for travel is usually given in the form of an 
Origin-Destination (OD) matrix. An OD matrix divides a 
metropolitan region into contiguous zones, and gives the travel 
demand between each pair of zones. For example, if on an 
average day 20,000 vehicles travel from region 20 to region 75, 

                                                           
3  If the firing of neuron i induces the firing of neuron j, which in turn 

induces the firing of neuron k, we say that a signal travels from i to k through 
j. And similarly if i, j, and k, are brain regions rather than individual neurons. 

then OD(20,75) = 20,000. Traffic assignment is the allocation 
of a route to each vehicle from its origin to its destination. 

For a given traffic assignment, as the vehicles traverse the 
network on their way from origin to destination, for each edge 
at any time-unit there is a density, which is the number of 
vehicles per unit length of the edge. The travel time of the edge 
is the time it takes to traverse the edge and it depends on the 
density; the travel time is monotonically increasing with 
density. Also, for each edge e in the network at any time-unit 
there is a flow ��, which is defined as the number of vehicles 
exiting the edge during the time unit. The flow is 
monotonically increasing with density up to a point, after 
which it decreases. 

Given a road network and an OD matrix, each vehicle may 
have many route choices of going from origin to destination, 
and the shortest-distance path may not have the shortest travel 
time if it is heavily traveled4.  

Clearly, the higher the number of vehicles that are allocated 
to the same road link, the slower the travel time of each vehicle 
on that link. An SO traffic assignment allocates routes to 
vehicles such that the total travel time of all the vehicles is 
minimized.  A UE traffic assignment allocates routes to 
vehicles such that no vehicle can unilaterally (i.e. if no other 
vehicle v changes v’s route) improve its travel time by 
changing its route from its origin to its destination. It is 
assumed that normally traffic conforms to a UE assignment. 
Often mechanisms such as tolls and restrictions are used by 
transportation authorities to move traffic towards an SO 
assignment. 

Given a road network and an OD matrix (i.e. given an 
input), it can be shown that UE and SO traffic assignments are 
often different. For example, [20], [21], and [22] provide 
examples of cases that result in different UE and SO 

                                                           
4  We postulate that the same phenomenon occurs in the brain due to 

the fact that immediately after firing, a neuron enters a refractory state during 
which it cannot fire; thus signals may be delayed if many of them travel 
through the same region. 

 

 
Fig. 1. Process of mapping brain data to a transportation network. First, structural and functional connectome matrices are mapped as roads and origin-

destination travel demands, respectively. Then the resulting traffic is assigned to the road network using either System Optimal (SO) or User 
Equilibrium (UE) assignments. The result is a set of flow values for each edge in the connectome graph that connects brain regions.  
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assignments. Intuitively, this means that if each traveler 
behaves selfishly by trying to optimize its own time, then the 
total travel time is suboptimal; and vice versa, if the total travel 
time is minimum, then some travelers can improve their 
individual travel time. 

UE and SO traffic assignments are performed by 
formulating these as optimization problems [23]. These 
problem take as input: (1) the specifications of the road 
network, (2) the OD matrix, and (3) the travel time function, 
which maps the flow on each road network edge to a travel 
time. The common choice for the travel time function is a 
formula devised by the Bureau of Public Roads (BPR) [24]. 
The BPR formula is defined as follows:  

�� �� � ���� �� � �� ������
� �

where for edge !, ���is its travel time, ����  is its free flow 
travel time, ���is its flow, and ���is its capacity. The � and � are 
parameters of the BPR formula, usually set to 0.15 and 4, 
respectively. 

The standard algorithm for solving the UE and SO traffic 
assignment problems is the Frank-Wolfe method [25]. The 
method works by iteratively solving a linear approximation to 
an optimization problem until it converges [26, 27]. 

IV. TRAFFIC ASSIGNMENT EXPERIMENTS 
In our experiments, we used pairs of structural and 

functional connectome matrices5 for 19 normal subjects and 19 
subjects suffering from depression, and modeled these as 
transportation networks (see sec. IV.A.). We then performed 
UE and SO traffic assignments for each subject for different 
parameter settings, using an implementation of the Franke-
Wolfe method. The assignment procedure produced flow 
values for each edge in the network for both UE and SO6. We 
then compared the UE and SO flow values, and selected 
parameter settings for which the overall difference between UE 
and SO was significant7 (see sec. IV.B.). Lastly, we analyzed 
whether the BOLD signals flow in the actual brain network is 
closer to a UE flow or to an SO flow. This analysis is described 
in section IV.C. 

A. Transformation of Connectome Matrices to a 
Transportation Network Instance 
We scaled the normalized structural matrix 	"#$%  by a 

scaling factor �%, to get 	&: 
	& � 	"#$% ' � �%�

We used this scaled matrix to derive the road network as 
follows. Each positive matrix value 	
�(  represents a road 
network edge going from node ) to node *, with a capacity of 

                                                           
5  The functional and structural matrices are 87 x 87 in size, with 87 

being the number of brain regions. 
6  The structural connectome represents an undirected graph, but the 

traffic assignment interprets each undirected edge as two opposing arcs, and 
assigns traffic to each one.  

7  If the overall difference between UE and SO is small, then the 
question whether the actual flow is closer to UE or closer to SO is not very 
meaningful because the two ends of the spectrum are close to each other. 

	
�( . Zero values of 	& were not used. The free-flow travel time 
of each edge was set to one8.  

The �matrix was then used as the OD matrix for the UE 
and SO traffic assignment computation9. We used the BPR 
formula as the travel time function. Since we set the free-flow 
travel time to one for all edges, and since we scaled the 
structural matrix, the travel time function became: 

�� �� �� � � � ���%���
� � � � ��%+� ������

�
 

In our experiments, we set � � ,��- as in [13], and we 
used different values of the scaling factor �%  (0.000001, 
0.00001, 0.0001 and 0.001). We also used different values of . 
(1 through 4). We discuss the effects of varying these 
parameters in the next section. 

B. Comparison of SO and UE Traffic Assignments for 
Different Parameter Values 
We ran the SO and UE traffic assignment procedure for all 

subjects for different values of the structural matrix scaling 
factor �%  and different .  values (see previous section). We 
then compared the results of UE to SO by computing the 
absolute value of the difference between UE and SO flow 
values, relative to SO flow, averaged over all edges and 
subjects: 

/���� � �0 1 �2
 1 3��
� 4 ��
�3��
��56��78
56��9
 

where K is the number of subjects, Ni is the number of 
edges in the road network (i.e. structural connectome) of 
subject i, and ��
�  and ��
�  are the User Equilibrium and 
System Optimum traffic assignment flow values for edge * and 
subject ). The results are shown in fig. 2. 

 
Fig. 2. Comparison of SO and UE traffic assignments using :;<=>, for 

different values of ?@ and A.  

In fig. 2 we see that the difference is maximum for smaller 
values of �%  and the difference approaches zero as B% 
increases. This is intuitive because increasing the �%  factor 
increases the capacity of the entire network. In the extreme, 

                                                           
8  This is based on the assumption that if two nodes a and b are 

connected by an edge, then when direct signals are transmitted along the 
connection from a to b, their travel time is independent of the distance in the 
brain between nodes a and b.  

9  The  matrix values that were negative were set to zero. These 
indicated functional anticorrelations and are usually removed (set to zero) in 
most studies [16].  
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there will be enough capacity to accommodate all the signals to 
travel along the shortest-distance paths, and the UE and SO 
assignments will be the same. Thus, in the experiments we 
used the 0.000001 scaling factor 10 . In other words, our 
objective is to find whether the traffic pattern in the brain is 
closer to UE or SO, assuming that there is a difference between 
the two. Therefore we are examining calibrations that produce 
a difference between the two types of traffic assignment, and 
this is the reason for the choice of scaling factor. 

C. Comparison of SO and UE Assignments to Actual Activity 
To compare the traffic assignments to actual brain activity, 

we measured the activity of each node using ALFF. We 
compare this measure with the computed UE and SO flows for 
each node, and find the diversion of both UE and SO flows 
from the ALFF values. Since the ALFF values are computed 
for each brain region (node), while UE and SO flow values are 
computed for each edge, we defined the notions of flow per 
region. This was done by summing up, for each region C, all 
the flow that originates at region C. Let DEFG and HIFG be the 
flow values for UE and SO, respectively, for the edge from 
region C to region J��. Then the UE and SO flows for each 
region C, is defined as: 

��$ � 1��$KK
������������$ � 1��$KK

 

In other words, the UE flow for region r is the sum of the 
flows on the edges that are exiting from r. After computing the 
UE and SO flows per region, we normalize the UE flow per 
region, the SO flow per region, and the ALFF values, by 
dividing each by the subject’s mean value. This makes each of 
the values dimensionless as they now represent ratios. This 
makes it possible to compare the UE and SO flows per region 
to the ALFF values. To make the comparison, we computed 
the Euclidean distance of UE flow per region to ALFF, and the 
SO flow per region to ALFF. The idea is that the flows with 
shorter distance to ALFF, which is a measure of the actual 
brain activity, represent the true signal-traffic activity within 
the brain. 

The Euclidean distance measure for subject B, which we 
label as JL� is defined as: 

JL���L� MNOP� � Q 1 ���$L 4 RS$L�TF56�U�VW
 

for UE and 

JL���L� RSL� � Q 1 ���$L 4 RS$L�TF56�����VW
 

for SO. In other words, we treat the ALFF, UE, and SO 
flows for each subject as 87-dimensional points, and compute 
the distances between ALFF and UE, and ALFF and SO. 

                                                           
10  Lower scaling values were tested, but the results showed a very 

large degree of variance, which indicates that due to low capacity the results 
are insignificant. 

11  Recall that the UE and SO assignments give a flow for each 
directed edge. 

We performed the comparison for four different . values 
(1, 2, 3, and 4). For all . values, the average distance to ALFF 
for SO was smaller than for UE (see Table 1). A paired T-Test 
was used to verify that these results are statistically significant. 
For the healthy subjects the T-test gave p<0.032 for all . 
values, 1, 2, 3, 4; which means that the conclusion is unlikely 
to be due to the particular choice of subjects. 

TABLE I.  DISTANCE TO ALFF VALUES FOR DIFFERENT ASSIGNMENTS, 
SUBJECTS, AND BETA PARAMETER SETTINGS. 

Subjects Assignment Beta 
1 2 3 4 

Healthy UE 6.515 8.839 9.054 8.348 
SO 6.514 8.801 8.957 7.660 

With 
Depression 

UE 6.664 8.892 8.712 7.712 
SO 6.663 8.859 8.612 7.562 

 

For the depressed subjects, the average SO values were also 
smaller than UE, but the differences were small and for . � X, 
shown to be insignificant (for the paired T-Test, p=0.54).   

The largest differences between UE and SO flows occurred 
for . � X  and these results are shown in figures 3 and 4, 
below. 

 
Fig. 3. Comparison of SO and UE traffic assignments to brain activity 

measured using ALFF, for each healthy subject. 

 

Fig. 4. Comparison of SO and UE traffic assignments to brain activity 
measured by ALFF, for each depressed subject. 

As can be seen in fig. 3, in almost all cases, the distance 
between SO and ALFF is smaller than the distance between 
UE and ALFF. This suggests that the SO flows per region are 
closer to the actual measured brain activity. Therefore, it is 
more likely that the true signal transport activity within the 
brain is closer to System Optimum, than to User Equilibrium.  
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For the depressed subjects, the average distance was still 
smaller for SO than for UE, but the difference was 
insignificant. In particular, the average SO distance from ALFF 
was similar for healthy and depressed subjects; but the average 
UE distance differed substantially between healthy and 
depressed subjects. This suggests either that the routing of 
brain signals in depressed subjects is measurably different than 
in healthy ones, or that the structural connectomes are 
different. Determining which of these two options is true is the 
subject of future work. 

V. CONCLUSION AND FUTURE WORK 
In this paper we analyzed the communication in the brain 

using vehicular traffic tools.  In particular, we were interested 
in the way the communication signals travel along the 
communication pathways in the brain.  Traffic theory points to 
two fundamental assignments of vehicles to the road network: 
User Equilibrium and System Optimum. UE represents a state 
which lacks a global or centralized control, and in which 
vehicles act selfishly to minimize their travel time. Thus, in a 
UE state no vehicle can unilaterally deviate from the assigned 
route to improve its travel time.  This anarchical situation 
should be contrasted with SO, which is analogous to a 
benevolent dictatorship that optimizes the global travel time. In 
an SO state, some individual vehicles can improve their travel 
time by rerouting; however, doing so would impede other 
vehicles by congesting their routes, and violating global 
optimality. Thus they are prevented by the dictator from such 
rerouting, i.e deviation from the assigned SO-route.  

     Our analysis of 38 subjects (connectomes) indicates that, 
given certain calibrations to bridge between traffic and 
neuroscience, UE and SO represent different states. This means 
that, for example, in the UE state, an edge (v,w), where v and 
w are brain regions, is traveled by many signals; whereas in the 
SO state edge (v,w) is traveled by few signals.  Furthermore, 
communication in the brain is closer to an SO state rather than 
a UE state. This is surprising since the only means of 
communication in the brain that neuroscience knows are the 
signals (analogous to vehicles). Thus, in this model it is hard to 
see how individual signals can be controlled to achieve global 
optimality, and if so by whom. Is it possible that the global 
optimization is related to consciousness? A way to address this 
question is to repeat the experiments for comatose (i.e. 
unconscious) patients; these are left for future work.  
Furthermore, our experiments were performed on connectome 
data obtained from subjects in a resting state. Data is often 
obtained in other states, i.e. when subjects perform some task, 
and again, our results should be confirmed for those.    

The techniques presented in this paper may be extendible to 
other types of networks that can be modeled in terms of 
transportation supply and demand. For example, the internet 
can be modeled as a transportation network carrying packets of 
data (vehicles) that flow on the physical communication (road) 
network. However, traffic flow on the internet is much better 
understood, and controlled, than the traffic of signals in the 
brain; thus this type of analysis is less interesting.  
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