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ABSTRACT 
In this paper we propose a platform called Spatio-Temporal 
rEsources Marketplace (STEM) for users of spatio-temporal 
transportation resources such as electric vehicle charging stations 
or parking spaces. STEM exploits the gap between optimum and 
equilibrium in game theory in order to improve the position of 
users in competing for such resources, as well as improve social 
welfare. It does so via a proposed payment scheme called 
Guaranteed-Agent-Gain (GAG). In this scheme users pay STEM, 
but if STEM refunds its profit to the users, then the scheme 
amounts to peer-to-peer transactions.  We prove that in many 
cases GAG does not need to be subsidized in order to deliver its 
gains to travelers and society.  

We show that GAG raises the issue of user truthfulness, in the 
sense that users can gain from being untruthful about their private 
information, such as their current location. Thus we also analyze 
the application of Vickrey-Clarke-Groves (VCG) mechanisms 
studied in economics to the problem of location truthfulness in 
STEM. We show that these mechanisms can indeed induce 
location truthfulness, but at the cost of reduced revenue.    

General Terms 
Algorithms, Performance, Economics 

Keywords 
Optimum, equilibrium, parking, electric-vehicles, matching, 
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1. INTRODUCTION 
On average, people traveling during morning and evening rush 
hours in urban areas experienced 34 hours of delay annually in 
2010; in urban areas with population over 3 million that delay 
goes up to 52 hours [1]. Between 1990 and 2007, Vehicle-Miles- 
Travel (VMT) grew 41% [2], and the projected total VMT in 
2050 is 4,834 billion miles, an increase of 60% over 2007. 
Congestion is related to scarcity of resources, such as road space 
and parking. In one business district of Los Angeles, researchers 

found that vehicles searching for parking traveled a distance 
equivalent to 38 trips around world, produced 730 tons of carbon 
dioxide, and burned 47,000 gallons of gasoline in one year [3]. 

In this paper we propose to alleviate these problems by bridging 
the gap between equilibrium and optimum states. More 
specifically, it is well known that equilibrium is a stable state for 
transportation systems. Intuitively, this means that the system is 
settling into a state in which no user can unilaterally improve her 
performance. Unfortunately, the equilibrium state is often much 
worse overall than the optimum state, i.e. the state that maximizes 
overall social welfare. Moreover, the gap between equilibrium 
and optimum is potentially huge. Specifics depend on the 
particular system. But, for example, we have shown that for 
parking the gap between optimum and equilibrium is unbounded 
in the worst case [4], and is about 20% on average [5]. Imagine 
the potential of reducing travel-time by 20%! 

We propose here to move from equilibrium towards optimum by 
peer-to-peer (P2P) financial transactions that will guarantee that 
every user will not be worse off than in equilibrium; and often, as 
will be demonstrated in the paper, each user will be better off.  
These transactions will be executed by a software app on the 
mobile devices called Spatio-Temporal rEsources Marketplace 
(STEM). STEM may be supported by some central, i.e. cloud-
based, infrastructure, but it can also be implemented in a 
completely distributed fashion.  

We introduce STEM in the context of spatio-temporal 
transportation resources. These are resources in geo-space, or 
time-intervals, that may be available or unavailable to a user 
depending on other users. Examples of such resources include 
parking slots, taxi-cab customers, share-bikes, share-bike racks, 
ride- and car-shares, electric vehicles charging stations, and 
landing slots at an airport. 

We introduce a payment scheme called Guaranteed-Agent-Gain 
(GAG), and demonstrate a subset of configurations where STEM 
transactions are guaranteed to leave every user, and society 
overall, in a better off situation than in equilibrium (Theorem 0). 
These are configurations where the cost of using a resource is the 
driving time to the resource, and the value of time is the same for 
all users (imagine a resident searching for parking in a 
neighborhood with a homogeneous socio-economic class). 

A drawback of the proposed scheme is that it is vulnerable to 
strategic manipulation, e.g., users lying about their location in 
order to gain an advantage. We discuss several approaches to 
address this problem, and elaborate on one of them, namely 
Vickrey-Clarke-Groves (VCG) mechanisms for truthful auctions. 
We show that, in a model adapted from VCG where users pay for 
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resources based on their declared distance from them, and slightly 
different than the GAG model, payments can be defined in a way 
that incentivizes truth-telling. 

The rest of this paper is organized as follows. In section 2 we 
introduce the model for spatio-temporal resources, and in section 
3 we introduce, discuss, and demonstrate the GAG payment 
scheme. We also prove that for a subset of configurations GAG 
transactions are guaranteed to leave every user and society in a 
better situation than in equilibrium. In section 4 we discuss 
truthfulness, and in section 5 we show intuitively that the 
concepts carry over to routing. In section 6 we discuss relevant 
work, and in section 7 we provide the conclusion and discuss 
future work. 

2. THE MODEL 
A configuration consists of a set of mobile agents (e.g. vehicles) 
V={1,2,...,n} in geo-space and a set of static available resources 
(e.g. parking slots) R={1,2,...,m}. Agents do not have an extent, 
thus at any time they are located at points in geo-space. The 
resources are either all spatial or all temporal. If spatial, then they 
are static and occupy point locations in geo-space. Temporal 
resources are time intervals. For example, landing time-slots at an 
airport-runway are temporal resources. A resource can be used by 
a single agent at a time, and the agent has to reach the resource in 
order to use it. An assignment is a mapping from agents to 
resources.  

At the outset all agents arrive simultaneously at various starting 
locations. At that time, for each agent i (iV) there is a driving-
time, Dij, to reach resource j (jR). Additionally, there is a natural 
cost Cij associated with agent i using resource j. This natural cost 
may, for example in the case of parking, be simply the driving-
time to the slot, or, a weighted average of (the driving time to the 
slot) + (the walking time from the slot to the driver's final 
destination). 

The locations of the resources are known to a software platform 
called the Spatio-Temporal rEsources Marketplace (STEM). 
STEM may reside centrally in the cloud, or a copy of it may 
reside in a tamper-resistant fashion in the mobile device of each 
agent. 

At the outset, each agent i sends STEM the information necessary 
to compute i’s driving-time to each resource and i’s natural cost 
for each resource. For example, in the case of parking, if the 
natural cost is a weighted average of (the driving time to the slot) 
+ (the walking time from the slot to the driver's final destination), 
then each agent sends STEM its starting location and its driver’s 
final destination. 

When receiving this information from all the agents, STEM 
computes all Dij’s and Cij’s, and then it computes an assignment 
and a payment scheme. The assignment M will minimize the total 
driving time. In general, such an assignment is optimal from a 
social-good point of view, but the problem is that some agents 
may incur a higher natural cost than necessary from their 
individual stand point of view.  

For example, consider the configuration in Figure 1 and assume 
that the costs of using the resources are simply the driving-times 
in an arbitrary road-network (thus the triangle inequality does not 
need to be satisfied). Then the minimum driving-time assignment 

M is M={(v1, s2), (v2, s1)} with a total cost of 7. But v1 will not 
collaborate since it can reach s1 before v2 and incur a cost of just 
1, lower by 1 than in M.  In other words, in a free-for-all 
competition in which agents do not use the services of STEM the 
system will converge to an equilibrium assignment E [6], where, 
intuitively, E is an assignment in which no agent can unilaterally 
improve its cost. In this example, E={(v1, s1), (v2, s2)} with a total 
cost of 9. 

Figure 1: A configuration of vehicles (agents v1 and v2) and 
parking slots (resources s1 and s2), where the edge-labels 
denote driving-times in the road network. 

Now we formally define the minimum and equilibrium 
assignments. For this purpose we assume in an assignment, if 
multiple agents are mapped to the same resource r, then the one 
having the shortest driving time to r gets it; and the remaining 
ones are left unallocated. An unallocated agent v incurs a very 
high natural cost, α. For example α may be higher than the sum of 
all the pairs of natural costs. Intuitively, it means that there is a 
high penalty for an agent not assigned a resource that they can 
capture. Obviously, if the number of resources is lower than the 
number of agents, any assignment will have some agents that are 
unallocated. The cost of an agent v (vV) in an assignment A, 
denoted C(v, A), is the natural cost of v in using the resource 
assigned to v in A. Suppose that v is assigned resource r (rR) in 
A, then C(v, A) = Cvr. If v is unallocated in A, then C(v, A) = α.  
The cost of an assignment A is   V

),(
v

vC A .  

An assignment M is a minimum-cost assignment if any other 
assignment B has a cost that is not higher than that of M. In [4] 
we have shown that given a finite set of agents and a finite set of 
resources, a minimum-cost assignment can be computed in 
strongly polynomial-time by representing it as a minimum-cost 
network flow on a bipartite graph [7]. 

Formally, an assignment E is an equilibrium assignment if for 
every agent j, and for every other assignment B that differs from 
E only in the assignment of j, C(j,E) ≤ C(j,B). In [5] we have 
shown that an equilibrium assignment can also be found in 
polynomial time using the Gale-Shapley deferred acceptance 
algorithm. 

An interesting point to observe is that if the number of agents is 
higher than the number of resources, i.e., n>m, then different sets 
of agents may be allocated a resource in E and M. In other words, 
different sets of agents may remain unallocated in the two 
assignments. To see this, consider Figure 2, which is just Figure 1 
with one more vehicle, v3, added. In this configuration, the 
minimum cost assignment is M={(v1,s2), (v2,s1)} with v3 
unallocated; and the equilibrium assignment is E={(v1,s1), (v3,s2)} 
with v2 unallocated.  



 

 

Figure 2: A configuration of vehicles and parking slots, where 
different subsets of the vehicles park in equilibrium (v1 and 
v3) and optimum (v1 and v2) assignments.  

3. PAYMENTS FOR EQUILIBRIUM-TO-
OPTIMUM CONVERSION 
Since some agents may be better off in E than in M, they may not 
cooperate with STEM. This means that from each agent’s 
viewpoint its necessary natural cost is the cost in an equilibrium 
assignment, and it will not cooperate if its cost in an assignment 
produced by STEM is higher than necessary. 

To compensate for this situation and induce cooperation, STEM 
uses the following Guaranteed-Agent-Gain (GAG) scheme for 
converting equilibrium to optimum. GAG is a payment scheme 
that guarantees to each agent v that its overall cost in M will not 
be higher than its natural cost in E. This is how GAG works.  

i. If for some agent v, Dv = C(v,E) – C(v,M) is negative, 
meaning the natural cost of v in E is smaller than in M, then 
STEM pays v an amount equal to |Dv| in dollars. This is to 
compensate for the increase in v's natural cost by moving v 
from E to M. 

ii. If Dv is positive, it means that v benefits by moving from E 
to M. Then v pays back STEM Dv in dollars and its overall 
cost in M is still no worse than that in E.  

Thus, the GAG payment scheme guarantees that each agent v 
pays an adjusted cost, i.e.  C(v,M) + Dv, which is not higher than 
v’s natural cost in equilibrium, C(v,E).  

Observe that the GAG payment scheme requires a $-payment for 
a natural cost. Finding the $-value of the natural cost is an 
implementation detail, but as an example, assume that an agent 
v’s cost of using a parking slot is simply v’s driving time to the 
slot. If so, the $-payment for the natural cost is simply the v’s 
value of time, e.g. $1/minute. Of course, this valuation can be 
adjusted to account for gas expended in driving to the slot, and 
also for the time to walk from the slot to the final destination. 

Assume now that STEM proceeds with the assignment M and the 
GAG payment scheme, i.e. it announces these to the agents, only 
when the $-income, i.e. the sum of Dv’s received from the agents 
in (ii), is not lower than the $-outcome, i.e. the sum of Dv’s paid 
out to the agents in (i). Otherwise STEM does not mediate the 
competition, and tells the agents to compete for the resources as 
they currently do, i.e. without the mechanism proposed in this 
paper.  

Definition 1. A minimum-cost assignment M combined with the 
GAG payment scheme is called viable if for M and GAG the $-
income is not lower than the $-outcome. 

Intuitively, if a minimum cost assignment combined with the 
GAG payment scheme is viable, then STEM does not need to 
subsidize the mechanism. The next theorem shows that many 
natural situations (or configurations) are viable.  

Theorem 0: If the natural costs are the driving times, and if the 
value of time is the same for all agents, then for every 
configuration of agents and resources, the minimum-cost 
assignment M combined with the GAG payment scheme is viable.  

Proof: The proof follows from Theorem 4 in [5], and is based on 
the fact that the total system cost of the minimum-cost assignment 
M is not higher than the total system cost of the equilibrium 
assignment E. That is, the following inequality always holds: 

v C(v,E) ≥ v C(v,M)   (1) 

Then  

v [C(v,E) - C(v,M)] ≥ 0   (2) 

i.e.,  v Dv ≥ 0     (3) 

We rewrite (3) into the following: 

+ Dv + - Dv ≥ 0    (4) 

where + Dv represents the summation of all positive Dv’s and    
- Dv all negative Dv’s. Based on Definition 1, + Dv is simply the 
total $-income of STEM from the agents and - Dv is simply the 
total $-outcome from STEM to the agents. (4) says the total $-
income is always no less than the total $-outcome. Therefore, the 
GAG payment scheme combined with the minimum-cost 
assignment M is viable. [] 

Observe that for the purpose of computing the assignments and 
the payment scheme it does not matter whether STEM is 
implemented centrally in the cloud, or distributed on the mobile 
devices of the agents. If distributed, all mobile devices will 
receive the same information and compute the same assignment.  

Further assume that some refund scheme is followed, i.e. a 
scheme that refunds STEM’s profit to the agents. Distributing the 
profit evenly among the agents is one such a refund scheme. In 
this case, the distributed version of STEM simply assigns slots 
and implements peer-to-peer (P2P) financial transactions. For 
example, for the configuration of Figure 1, assume that for both 
vehicles (i.e. agents) the natural costs are the driving times, and 
that the value of time for each vehicle is $1/minute. Then, in the 
GAG payment scheme v2 pays STEM $3 (i.e. Dv2 in Table 1), and 
STEM pays v1 $1 (Dv1). The even-distribution refund-scheme 
means that the $2 profit of STEM is distributed evenly between v1 
and v2. Namely, v2’s payment to STEM is reduced by $1, from $3 
to $2; and v1’s payment received from STEM is increased by $1 
to $2. The net effect of this is that $2 is transferred in a P2P 
transaction from v2 to v1. As a result, the overall cost in GAG to 
both vehicles is equal to C(v,M) + Dv + Refund, which translates 
to $0 for v1 and $7 for v2. Both represent gains compared to $1 
and $8 respectively for v1 and v2 in the equilibrium assignment. 
Furthermore, the equilibrium assignment, which would have 
occurred without STEM, was converted to an optimum 
assignment, a conversion which benefits society at large as well 
(less total driving time means less pollution, congestion, gas 
consumption, etc.). 

Observe that although some central coordination occurs through 
STEM, due to the refund scheme STEM does not make a profit, 
i.e., all the money paid by agents is paid out to agents, and in this 



 

sense the transactions are P2P. However, observe that in the 
general case, these are not necessarily binary transactions. This 
means that the payment of one agent may be paid out to more 
than one other agent, or the combined payment of three agents 
may be paid out to four other agents. 

Table 1. Overall cost to agents in GAG in Figure 1 with even 
refund.  

Agent C(v,E
) ($) 

C(v,M) 
($) 

Dv 
($) 

Even 
refund 
($) 

Total 
add'l 
cost ($) 

Overall 
cost in 
GAG ($) 

v1 +1 +2 -1 -1 -2 0 

v2 +8 +5 +3 -1 +2 +7 

4. TRUTHFULNESS 
In the previous section we assumed that the agents provide STEM 
with the correct information to compute the Dij’s and Cij’s. 
However, observe that agents can gain from being untruthful. For 
example, consider Figure 1 again, suppose that the natural costs 
are the distances, and suppose that v2 reports its location as being 
at distance 0 from s1. If this were true, then the minimum 
assignment M = {(v1,s2), (v2,s1)} is also the equilibrium 
assignment. Therefore in the GAG payment scheme the $-income 
and the $-outcome are both 0. Furthermore, M is the minimum 
assignment in both, the truthful and the untruthful configurations. 
However, in the untruthful case v1 is cheated out of a payment by 
v2. Recall in Table 1 that v1 would have been paid $2 in the 
truthful configuration, and is not paid anything in the untruthful 
one. This is an undesirable situation, since the fact that cheating is 
possible may deter agents from participating in the scheme.  

One way to combat cheating is to give STEM direct access to 
GPS. This authorization may be combined with the authorization 
to impose fines if cheating is detected; and cheating can be 
detected by failure to arrive at the resource at the expected time. 
So, if v2 reports that it is at driving-time 0 from s1, but arrives 5 
minutes later than expected, such a fine can be imposed; 
particularly since the GPS trace indicates that v2 was not at the 
reported location. Furthermore, this method would not help if the 
natural cost includes accessing time to the final destination after 
parking.  

An alternative way is based on Vickrey-Clarke-Groves (VCG) 
mechanisms that price the resources in a way that incentivizes 
truthful location-revelation. The adaptation of such a mechanism 
to the resource assignment problem addressed in this paper is 
described for the rest of this section. 

Assume now that the location of each agent is only known to 
itself, and it may disclose to the STEM a false location. Assume 
further that for each agent i there is a value associated with using 
a resource j and that value is 1, and its natural cost for doing so is 
its driving-time to the resource, i.e., Cij = Dij. Then the Dij-
adjusted-value to i of using resource j, called DAVij, is 1-Dij. 
Namely, if Dij ≥ 1 then j is too far, and i would rather not use it, 
and DAVij is set to zero. In other words, j has no value to i. In this 
case we say that j is infeasible for i, otherwise it is feasible. In the 
case of temporal slots, a slot is infeasible if it is either too close to 
the present time and the airplane cannot get to it in time to land, 
or the slot is too far from the present time and will necessitate 
circling too long. 

Observe that this model is slightly different than the one in the 
previous section, particularly in the assumption that the value of 
the resource is 1. We didn’t make this assumption previously, but 
it is made here in order to adapt the VCG mechanisms to our 
resource assignment problem. 

So assume that STEM’s objective is to maximize the total DAV. 
This means maximizing the social welfare, and by the way the 
DAV is defined, this is maximized when the sum of the Dij’s is 
minimized. In other words, maximizing the sum of the DAV(i,j)’s 
is equivalent to minimizing the sum of Dij’s for the feasible pairs 
(agent, resource).  

Maximum-total-DAV is solved by a maximum matching in the 
following bipartite graph G. G has resources and agents as nodes, 
and an edge between each pair of an agent i and a feasible 
resource j; this edge has weight = DAVij. See maximum weighted 
bipartite matching in [8].  

Let DAVi be the DAV of agent i in the maximum-total-DAV 
assignment M. Let Bji be the DAV of agent j in an assignment M' 
of maximum total DAV that includes all the resources but does 
not include agent i.  

Definition 2. Pricing Scheme PA: Price paid by agent i to STEM 
in an assignment M of maximum total DAV, called PAi, is ∑j≠iBji 
- ∑j≠iDAVj. 

Theorem 1: PA is: 1) truthful (i.e., the best strategy for each 
agent is to declare its true location, which means its true value for 
each resource), 2) individually rational (i.e., PAi ≤ DAVi), and 3) 
each PAi ≥ 0 

Proof sketch: The theorem follows from the VCG theorem, with 
the Clarke pivot rule. More specifically, it follows from theorem 
9.17 and Lemma 9.20 in [9]. 9.17 addresses a model in which 
there is a set of alternatives A (corresponding to the possible 
assignments in our model), and a valuation function Vi(a) of each 
player (agent) for each alternative a in A. Vi(a) corresponds to  
DAVij, where j is the resource assigned to agent i in assignment a. 
9.17 indicates that a set of pricing schemes (mechanisms) is 
truthful, and 9.20 further refines these by indicating when these 
schemes are also individually rational and do not pay money to 
the players. Intuitively, this happens when agent i pays an amount 
that is “equal to the damage that he causes the other players – the 
difference between the social welfare of others with and without 
i’s participation. In other words, the payments make each player 
internalize the externalities that he causes [9]”. In our model, 
these translate into pricing scheme PA.[] 

To see that payment scheme PA induces truth-telling, consider 
again the configuration of Figure 1. We assume that the value of 
using a resource is $10, and the value of time for each driver is 
$1/minute. In this case DAV11=9, DAV12=8, DAV21=5, DAV22=2, 
B12=9, B21=5, DAV1=8, DAV2=5. Thus in the assignment M = 
{(v1,s2), (v2,s1)} the price paid by v1 is PA1 = B21 - DAV2 = 0. 
And the price paid by v2 is PA2 = B12 – DAV1 = 1. Observe that if 
v2 lies and says she is very close to (e.g. driving time 0.1 minutes 
from) s1, and v1 tells the truth, the maximum-total-DAV 
assignment would not change, and v2’s price would still be 1. 
Intuitively, the reason for this is that the price paid by v2 depends 
on the damage that her assignment in M causes the other drivers. 
This is similar to Vickrey’s second price auction, where the price 
paid by the winning player does not depend on the value she 
declared, but on the value declared by the 2nd highest bidder. In 



 

other words, the winner’s price depends on the damage she causes 
the other players, which is the value to the 2nd highest bid.  

Similarly, if v1 lies and says he is very close to s1, his price would 
still be 0 because the maximum-total-DAV assignment would still 
be the same and PA1 = B21 - DAV2. 

Now observe that incentivizing truthfulness has its price. 
Specifically, STEM’s revenue suffers due to the incentive that it 
provides for truthfulness. To see this, let the Naïve payment 
scheme PN be one in which each agent i declares to STEM its 
true location, and thus its DAV for each resource j (i.e. DAVij), 
and pays the price equal to the DAV of the assigned resource. As 
previously, STEM makes the assignments which maximize total 
welfare. Thus, since each agent declares its true location, then the 
payment of agent i, denoted PNi, is DAVi. Then: 

ThePriceOfTruthfulness = PAi – PNi = ∑j≠iBij - ∑j≠iDAVj – DAVi 
= ∑j≠iBij - ∑jDAVj < 0.  

The last inequality holds since the second sum is the value of the 
maximum-cost assignment, whereas the first sum is the value of 
some assignment that does not even include all the agents (i.e. it 
does not include i).  

This means that each agent pays less under PA than under PN, 
and the difference is the price that the STEM pays to induce each 
agent to be truthful. Again, this is similar to the situation in which 
the Vickrey second-price auction is compared with the naïve 
auction, i.e. the one where each agent declares and pays his value 
for the item; in the auction case, the winner also pays less in 
Vickrey auction than in naïve auction. Specifically, in Vickrey’s 
2nd price auction, the house revenue is not the highest bid, but the 
2nd highest. 

The implication of this observation is that even if the PA pricing 
scheme and the GAG pricing scheme can be reconciled, i.e. the 
PA pricing scheme can be adapted to the GAG model, then 
Theorem 0 would probably not hold anymore. 

5. EXTENSION TO ROUTING 
The gap between optimum and equilibrium exists in routing as 
well, i.e. routing settles into an equilibrium state, which is often 
suboptimal. To see that consider the configuration in Figure 3 that 
represents the adaptation of the Braess paradox for our purpose.  

 

Figure 3: Routing 4000 vehicles from Start to End through the 
network with indicated travel times. t=V/100 means that the 
travel time on the link depends on the number of vehicles; it is 
the number of vehicles V divided by 100. So if 4000 vehicles 
use the link, the time to traverse the link is 40 minutes. t=45 
means that the time is 45 minutes, independently of the 
number of traveling vehicles.  

Specifically, if 4000 vehicles go from start to end their 
equilibrium route is: Start > A > B > End, with a total travel time 

of 85 minutes for each vehicle. This is an equilibrium route in the 
sense that if a vehicle deviates from this route, its total travel-time 
will increase. In contrast, the minimum travel-time routes are as 
follows. 2000 vehicles to go: Start > A > End, and the other 2000 
to go: Start > B > End. In this case the travel-time for each 
vehicle is 65 minutes.  

Here also, automatic negotiation and transactions among the 
STEM agents on the mobile devices of the 4000 vehicles can 
convert the equilibrium to an optimum.  Observe that recent  
trends in transportation, geo-spatial computation, and wireless 
communication make such transactions seem a natural 
progression. For example, more and more people use smartphones 
and in-vehicle systems for navigation, and thus enter their 
destination at the start of a trip, even in familiar environments in 
order to get traffic information. Moreover, v2v communication 
seems imminent in the developed world [10]. 

6. RELATED WORK 
In this paper we assume that all agents can receive information 
about available resources. Such information can indeed be 
obtained by already existing research work and technologies on 
monitoring and sensing open parking slots. Examples of research 
works dealing with detection of open parking slots include the use 
of ultrasonic sensor technology to determine the spatial 
dimensions of open parking slots [11], and the use of wireless 
sensors that are used to track open parking slots in a parking 
facility [12]. Beyond simple detection of slots, [3] show how to 
couple detection with sharing of the parking slot information in a 
mobile sensor network by presenting a methodology for vehicles 
driving past curbside parking slots to detect open ones, as 
opposed to having to spend on equipping each parking slot with 
wireless sensors for monitoring. These mobile sensors generate a 
map of parking slot availability. 

In [4, 5], we introduced the so-called Parking Slot Assignment 
Games (PSAG) to analyze various parking related problems in 
competitive settings. The parking problem was studied in a 
centralized context as well as in the context of a distributed model 
with individual selfish agents, and a relationship between the 
Nash equilibrium and stable marriage assignments [13] was 
established in [5]. When drivers are selfish and cannot be 
controlled by a central authority, it is well accepted that the 
overall system converges to the Nash equilibrium since it 
describes a situation where they cannot improve on their incurred 
costs. In [5] we discussed pricing of resources (specifically 
parking slots) to convert the equilibrium to an optimum. In this 
paper we carry this work a step further by introducing financial 
transactions and truthfulness in bridging the gap from equilibrium 
to optimum.  

Pricing of resources to obtain some system-wide objectives as 
studied in this paper has been considered in the past in other 
contexts for transportation applications. In the transportation 
literature this is commonly known as ``congestion pricing'' [14]. 
The most common type of congestion pricing is that of toll-like 
prices assessed on major urban areas or major roads to decrease 
the demand of entering to these areas and roads, and pricing 
strategies of similar type has been famously implemented in the 
central business district of Singapore [15] and in other major 
cities across the world. In principle, road tolling also attempts to 
bridge the gap between optimum and equilibrium [16, 17]. 



 

However, tolling is a form of taxation. In contrast, in this paper 
we propose to bridge this gap in a revenue neutral way, by P2P 
transactions among users.  

This paper investigates the pricing problems in the context of 
algorithmic game theory which has a rich history, see textbooks 
such as [9] for further details. 

7. CONCLUSION AND FUTURE WORK 
In this paper we proposed STEM, a platform that facilitates 
transactions among users of spatio-temporal resources such as taxi 
cab customers, parking slots, and EV charging stations. Under the 
GAG payment scheme introduced in this paper, we showed that 
often such transactions can enable the transition from an 
equilibrium state to an optimum state, in a way that benefits the 
users as well as society (e.g. the environment). Furthermore, 
Theorem 0 showed that under the GAG payment scheme, society 
does not need to subsidize this transition from equilibrium to 
optimum. 

The GAG payment scheme raises the issue of truthfulness. 
Specifically, in the vanilla GAG scheme users need to disclose to 
STEM private information such as their location, and they may be 
able to gain from being untruthful.  Therefore we considered 
STEM truthfulness using the Vickrey-Clarke-Groves mechanisms 
studied in economics, and we showed how location truthfulness 
can be induced using such mechanisms. Nevertheless, truthful 
disclosure using VCG mechanisms comes at a price of reduced 
revenue, and therefore we conjecture that applying VCG will 
require a subsidy by society to sustain GAG. This conjecture is 
the subject of future work.  

Another subject of future work is extension of the GAG payment 
scheme to sequential, rather than simultaneous arrival of the 
agents. From a practical point of view, is there a problem of 
scalpers, i.e. drivers circling around parking spaces to be paid by 
bona fide users of parking spaces? 
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