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Abstract—The increasing complexity of IT environments
dictates the usage of intelligent automation driven by cognitive
technologies, aiming at providing higher quality and more
complex services.

Inspired by cognitive computing, an integrated framework
is proposed for a problem resolution. In order to improve
the efficiency of the problem resolution process, it is cru-
cial to formalize problem records and discover relationships
between elements of the records, records overall and other
technical information. In the proposed framework, the domain
knowledge is modeled using ontology. The key contribution
of the framework is a novel domain specific approach for
extracting useful phrases, that enables an automation improve-
ment through resolution recommendation utilizing the ontology
modeling technique. The effectiveness and efficiency of our
framework are evaluated by an extensive empirical study of a
large scale real ticket data.

Keywords-knowledge base; cognitive computing; ontology; IT
service management;

I. INTRODUCTION

A. Background

Driven by the rapid changes in the economic environment,
business enterprises constantly evaluate their competitive
position in the market and attempt to come up with in-
novative activities to gain competitive advantage. Value-
creating activities cannot be accomplished without solid and
continuous delivery of IT services. The increasing com-
plexity of IT environments dictates the usage of cognitive
incident management [15], one of the most critical processes
in IT service management [1], [21], resolves the incident
and restores the provision of services, while relying on
monitoring or human intervention.
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Figure 1: The overview of IT service management workflow.

A typical workflow of IT service management is illustrat-
ed in Fig. 1. It usually involves five steps. (1) As problems
detected by a monitoring agent on a server, alerts are gener-
ated, and the monitoring emits an event if the alert persists
beyond a predefined duration. (2) Events coming from an IT
environment are consolidated in an enterprise console, which
analyzes the monitoring events and determines whether to
create an incident ticket for IT problem reporting. (3) Tickets
are collected by IPC (Incident, Problem, and Change) system
and stored in the ticket database [1]. (4) The system admin-
istrators perform the problem determination, diagnosis, and
resolution based on the ticket description. The ticket reso-
lution part of IT service delivery workflow is often a labor-
intensive process. (5) In order to alleviate human efforts
and maximize the automation of IT service management,
the workflow incorporates an enrichment engine which in
turn uses various data mining techniques to create, maintain
and apply knowledge about the underlying IT system and
its possible issues. The paper focuses on the construction of
the knowledge base by processing ticketing information; it
outlines an integrated solution that uses obtained knowledge
to optimize problem resolution.

B. Motivation
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WPPWA544 UNKNOWN 4 WIN2K3 APPLICATION XXXX

TICKET SUMMARY:

STARACTUAT_6600 03/01/2014 04:30:28 STARACTUAT_6600

GLACTUA Market=CAAirMiles:Report_ID=MRF600:ReportPeriod From:

2014/02/01 to 2014/02/28:ErrorDesc=For CAAirMiles Actuate is out of

balance with STAR BalanceMRF600 & MRF601 Counts. Reconcilation

Difference = 2MRF600 & MRF601 Net Fee. Reconcilation Difference =

25MRF600 & MRF601 Gross Fee .Reconcilation Difference = 25

ProblemSolutionText:***** Updated by GLACTUA ******

Problem Reported : Reconciliation difference Root cause : Reconciliation was run before all

reports completed. This is as per the new SLAs.

Solution provided : Reconciliation was re-run after the next set of reports completed.There was

no user impact.

Closure code : WRKS_AS_DSIGND

RCADescription:***** Updated by GLACTUA ******

Problem Reported : Reconciliation difference

Root cause : Reconciliation was run before all reports completed. This is as per the new SLAs.

Solution provided : Reconciliation was re-run after the next set of reports completed.There was

no user impact.

Closure code : WRKS_AS_DSIGND
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Figure 3: A ticket in IT service management and its corre-
sponding resolution are given.

An example of an IT service management ticket is shown
in Fig. 3. It consists of both structured fields (e.g., OSTYPE,
COMPONENT) and unstructured free-form text fields (i.e.,
SUMMARY and RESOLUTION). Note that tickets are either
generated automatically or reported by the system’s user.
The structured fields and the summary of a ticket provide
the initial problem description for the system administrators
(SAs) to start ticket resolution. SAs usually record the trou-
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Figure 2: Ticket distribution with structured fields.
bleshooting steps in the resolution field as an unstructured
free-form text.

In order to improve the efficiency of the problem res-
olution process, it is crucial to formalize the content of
the ticket and, if possible, to discover a mapping between
symptoms or a ticket’s summary and resolutions. This is the
initial motivation of our study. After a meticulous study and
detailed analysis of the problem, a number of obstacles are
identified.

Challenge 1: Even in cases where the structured fields of
a ticket are properly set, they either have small coverage
or do not distinguish tickets well, and hence they contribute
little information to the problem resolution.

A subset of tickets are extracted from the historical
ticket data set collected by IBM Global Services. Several
fields such as OSTYPE, COMPONENT, and SEVERITY are
investigated.

The distributions of the field values are shown in Fig. 2.
As illustrated, the distributions are highly imbalanced in
general. Specifically, most values of OSTYPE and COMPO-
NENT fields are missing and labeled as UNKNOWN. We also
observe that the field values such as STORAGE, NETWORK,
HARDWARE, and APPLICATION only provide general infor-
mation for problem type inference. Additionally, we provide
the distributions of both original severity values generated by
the monitoring and the severity values revised by human, de-
noted as ORIGINAL SEVERITY and SEVERITY, respectively.
The severity values are considerably subjective since the two
distributions of SEVERITY and ORIGINAL SEVERITY are
extremely inconsistent.

Consequently, these structured fields are useful but by far
not sufficient for precise problem inference. Thus we need
to focus more on the free-form text fields in order to gain
further insights into the underlying problem.

The analysis of free-form text fields reveals the following.
Challenge 2: The ambiguity brought by the free-form text

in both ticket summary and resolution poses difficulty in
problem inference, although more descriptive information is
provided.

Both ticket summary and resolution, illustrated in Fig. 3,
contain domain-specific terms such as SLAs, RCA, and
WRKS AS DSIGND. In addition they contain a number of
typos and grammatical errors, such as ErrorDesc and Problem-
SolutionText. Moreover, some text snippets may be repeated
multiple times in a single ticket and resolution. An example
is shown in Fig. 3 where phrases such as Reconciliation
Difference and several other sentences appear in both ticket
summary and resolution.

As a result, it becomes infeasible to identify useful infor-
mation for problem inference using only traditional Natural
Language Processing (NLP) techniques without any domain
expertise.

As illustrated further, our proposed integrated framework
is capable of gathering domain knowledge from logs, tick-
eting systems, and system administrators.

Challenge 3: IT service management and particularly
problem determination, diagnosis, and resolution require a
large investment of manual effort by system administrators.

It is still a formidable task to fully automate the entire
IT service management without the help of domain experts.
Therefore, modeling, gathering, and utilizing the domain
knowledge during ticket resolution become increasingly
crucial.

In the proposed framework, the domain knowledge is
modeled using ontology (see [3] for another application of
ontology to IT Management) and organized into a knowl-
edge base. In order to improve IT service management by
making a number of steps toward its automation, a recom-
mendation component leveraging the domain knowledge is
explored to facilitate the ticket resolution.

C. Contribution
The contribution of our work mainly focuses on proposing

and implementing an integrated framework that significantly
improves the automation of IT service management. The key
features of the proposed cognitive framework include:

• A novel domain-specific approach, designed to analyze
free-form text in both ticket summary and resolution
for useful phrase extraction.

• Utilization of the ontology modeling techniques, con-
structing a knowledge base by combining domain ex-
pertise with extracted useful phrases.

• Automation improvement of IT service management,
through development of a resolution recommendation
component based on domain knowledge.

• A closed feedback loop system, to facilitate learning
from an outcome of resolution recommendation, and
thus continuous extension of the knowledge base.

The effectiveness and efficiency of our framework are veri-
fied on a large data set of tickets from IBM Global Services.

The remainder of this paper is organized as follows. The
overall framework is briefly introduced in Section II. The
detail design and implementation of the proposed framework
is provided in Section III. Section IV describes an extensive
empirical study conducted over the real ticket data. The re-
lated work is presented in Section V. Section VI summarizes
and concludes the paper.

II. SYSTEM OVERVIEW

Taking the aforementioned challenges into account, an
integrated framework is proposed. The framework is ca-
pable of constructing a knowledge base from discovered
useful phrases mined from the tickets. It also incorporates



the domain knowledge provided by domain experts. The
framework shows how the constructed knowledge base is
used to optimize the IT service maintenance. The overall
architecture of the integrated framework is illustrated in
Fig. 4. Our proposed integrated framework consists of three
stages: (1) Phrase Extraction, (2) Knowledge Construction,
and (3) Ticket Resolution.
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Figure 4: An overview of the integrated framework.

The entire framework starts with the stage of Phrase
Extraction. The input of Phrase Extraction is a set of the
historical tickets, and the output are the useful domain
knowledge phrases. The Phrase Extraction stage involves
two main components: the Phrase Composition and Initial
Summary Analysis component, and the Phrase Refining
component. The Phrase Composition and Initial Summary
Analysis component builds phrases from the unstructured
text fields of tickets and estimates the frequency for each
obtained phrase. The Phrase Refining component applies
filters with diverse criteria (e.g., length, frequency, etc.) to
refine the extracted phrases.

In the stage of Knowledge Construction, the domain
expertise (e.g., the knowledge from system administrators)
is utilized for ontology modeling. As usual the ontology is
composed of the classes and the relations among classes. The
phrases from the Phrase Extracting stage are tagged with the
classes defined in the ontology and archived for knowledge
base construction. The archived knowledge is leveraged for
ticket resolving in the next stage.

The incoming tickets are resolved in the stage of Ticket
Resolution. The unstructured text fields of each ticket are
first tagged by the Information Inference component. Provid-
ed with the tagged ticket, the Recommendation component
recommends a ranked list of the most relevant resolutions
to the system administrators. The SAs can choose the most
appropriate resolution. The ticket with the attached final
resolution is archived into the historical ticket repository.

The SAs accumulate more experience during ticket res-
olution. The newly obtained domain expertise can be used
to enrich the knowledge base and facilitate learning. As a
result, a closed feedback loop system is formed, and the
knowledge base can be incrementally built.

In summary, the enriched knowledge base further facili-
tates the resolution recommendation, allowing the improve-

ment of IT service management.

III. DESIGN AND IMPLEMENTATION

In this section, we explicitly describe the design and
implementation for each stage.

A. Phrase Extraction Stage
This stage takes the historical tickets as input and pro-

duces useful specific domain phrases (e.g., “available disk
space,” “backup client connection”) by analyzing the un-
structured text fields. Intuitively, those phrases encompass
the terms with high frequency as well as context information.
To achieve this goal, we first extract frequent phrases,
then filter out non-informative word combinations to keep
only informative phrases. This stage consists of two main
components: (1) Phrase Composing and Initial Summary
Analysis, and (2) Phrase Refining.

1) Phrase Composing and Initial Summary Analysis: Tra-
ditionally, n-gram model is extensively applied to capture the
frequently co-occurrent words in a given corpus, explored in
our initial approach. However, the extraction of all possible
n-grams from a large corpus is an highly time and computing
power consuming task. To solve the problem, we exploit the
data compression algorithm Lempel-Ziv-Welch (LZW) [4]
to extract the hot phrases from the massive ticket corpus.

We address two issues of LZW to achieve our goal of
extracting frequent phrases as follows. First, LZW typically
works at the character level, and we leverage it to the
word level LZW (WLZW). Second, the algorithm only finds
repeated patterns but not their frequencies.

Domain-Specific Dictionary Construction: In this part,
an input text T =“sql server sql server memory” with
repeated patterns is constructed to illustrate how we adopt
WLZW for efficient domain-specific dictionary extraction.

Beginning with an empty dictionary, the input T feeds
into the WLZW algorithm. We obtain a dictionary with
items (e.g., “sql,” ”sql server”) by reading the first two
words. When WLZW reads “sql” again, it already exists
in the dictionary. Then the algorithm continues to read the
next word “server” and combine it with the previous word
to be a new current phrase “sql server’ as a key that also
exists in the dictionary. Therefore, it keeps reading the next
word “memory” and merges it with “sql server,” a new long
phrase “sql server memory” composed and inserted into the
dictionary.

The WLZW algorithm seeks the trade-off between com-
pleteness and efficiency and attempts to find the longest n-
gram with a repeated prefix, indicating the importance of
the phrase. If an n-gram is not found, it adds the next word
and creates an n+1-gram in the dictionary.

The analysis of the time complexity: WLZW runs in a
linear time complexity of O(n), where n is the length of the
given text. Practically, WLZW takes less than one minute to
build the domain-specific dictionary from our entire ticket
resolutions.

Frequency of Phrase Estimation: We use the Aho-
Corasick algorithm (AC) [5] to locate all occurrences of
keys in a dictionary built by the WLZW algorithm and to
efficiently calculate the frequency of the found keywords or
phrases in the given corpus. The algorithm consists of three
parts:

1) Build a Trie (Keyword Tree) based on the domain-
specific dictionary,



2) Extend the Trie into a finite state string pattern match-
ing machine to support linear time matching,

3) Fed with the given text, find all matching keywords
or phrases appearing as a substring of the input text.

We provides a specific example to clarify how the AC
algorithm works in our integrated framework. Assume we
have a dictionary D comprising {“job failed due to plc
issue,” “job failed due to database deadlock,” “job failed
due to sql error,” “database connectivity,” “sql server,” “sql
server memory”}. Given the dictionary D, the Aho-Corasick
algorithm builds a Trie shown in Fig. 5. The solid arrows
are success transitions, while the dashed arrows are failure
transitions that might lead to potentially successful matches.
If matching the target word, the state of automaton transits
in the direction of the arrow from the current state to the
following state.
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Figure 5: An example of a finite state string pattern matching
machine.

We select a real ticket resolution (e.g., “job failed due to
database connectivity”) as the input, and demonstrate step
by step how the AC algorithm finds all matching phrases
from the input:

• The automaton stays at the initial state “State 0” while
scanning non-matching words;

• When reading the word “job,” the automaton state
transits from “State 0” to “State 1,” and the output
of “State 1” is empty;

• Reading word by word, the automaton traverses success
transitions (e.g., solid arrows) until it fails in “State 7;”

• In “State 7,” it transits to “State 11” by following a
failure transition;

• With the input word “connectivity,” automaton transits
from “State 11” to “State 12,” and the output of
“State 12” is “database connectivity;”

• As reaching the end of the word sequence, the matching
substring “database connectivity” is output.

The analysis of the time complexity: Assume we locate
occurrences of a pattern set P = {P1, P2, ..., Pk} in text
T [W1,W2, ...,Wm]. Let n =

∑k
i=1 |Pi| and z is the number

of pattern occurrences in T , the AC algorithm runs in a linear
time complexity of O(n+m+ z).

2) Phrase Refining: The repeated phrases have been
extracted during the previous stage; however, not all of the
word combinations are useful and some should be omitted
from the constructed ontology. Intuitively, we should select
the most frequent pattern as important. However, many
of them are non-informative phrases (e.g. numbers, “no
action”). We apply the following three filters to the extracted
repeated phrases allowing the omission of non-informative
phrases.

Phrase Length & Frequency Filters: Intuitively, both
length and frequency are good indicators for important
phrases. Based on our experiments, we define several fil-
tering rules for phrase length & frequent filters: (1) Length
≥ 10 characters; (2) Frequency ≥ 5; (3) Single-word phrases
(part of a bi-gram or tri-gram); (4) containing only numbers
(non-informative phrases).

With respect to the length threshold setting for Phrase
Length Filter, Fig. 6 shows that most of the useful phrases
can be obtained when the length falls between 10 and 60. In
practice, we keep the phrases longer than 60 as well since
those long phrases indicate high frequent occurrences in the
WLZW algorithm. The frequency threshold setting is vali-
dated by the system administrators considering the trade-off
that lower frequency threshold can capture more informative
phrases but more noises are included, while higher frequency
threshold results in fewer informative phrases.
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Figure 6: Distribution of length of useful phrases.

Part-Of-Speech Filter: In [6], Justeson et al. claim that
technical terms consist mostly of noun phrases containing
adjectives, nouns, and occasionally prepositions. They an-
alyze four major technical dictionaries. Subsequently, they
come up with seven practical patterns defining a technical
term scheme. The scheme and the corresponding Penn
Treebank tagset are summarized in Table I. We utilize the
existing Stanford Log-linear Part-Of-Speech Tagger [7] to
tag input phrases. However, technical terms alone cannot

Table I: Definition of technical term’s schemes.
Justeson-Katz Patterns Penn Treebank Entity Patterns Examples in Tickets

A N JJ NN[P|S|PS]* global merchant
N N NN[P|S|PS]* NN[P|S|PS]* database deadlock

A A N JJ JJ NN[P|S|PS]* available physical memory
A N N JJ NN[P|S|PS] NN[P|S|PS] backup client connection
N A N NN[P|S|PS] JJ NN[P|S|PS] load balancing activity
N N N NN[P|S|PS] NN[P|S|PS] NN[P|S|PS] socket connectivity error
N P N NN[P|S|PS] IN NN[P|S|PS] failures at sfdc

A:Adjective, N: Noun, P: Preposition
JJ: Adjective, NN: singular Noun, NNS: plural Noun,

NNP: singular proper Noun, NNPS: plural proper Noun, IN: Preposition

cover all possible informative phrases since our dictionary
describes both terms and possible actions (actions may be
found in the summary part of the ticket as well as in the
resolution part of the ticket). We extend the work [6] by
including action describing domain-specific phrases - the
phrases that contain verbs in different forms (e.g. past tense
verb, gerund, etc.). Corresponding Penn Treebank Action
Patterns are outlined in Table II.

The input phrases that do not match defined patterns are
eliminated.

Table II: Definition of action term’s schemes.
Penn Treebank Action Patterns Examples in Tickets

VB[D|G|N]* run/check, updated/corrected
affecting/circumventing, given/taken

VB: base form Verb, VBD: past tense Verb, VBG: gerund Verb,VBN: past participle Verb,



After applying the three filters in a pipeline, a list of can-
didate phrases, including entities and actions, are created for
the class tagging procedure. It provides us a great benefit by
reducing unqualified and unmatched potential phrases from
manually unmanageable 400+K phrases to approximately
2K candidate phrases. The potential dictionary candidate
phrases are ready for manual look-up by domain experts.

B. Knowledge Construction Stage
In the stage of Knowledge Construction, the SAs first

develop an ontology model. This ontology model provides
the semantic definition of the informative domain-specific
phrases obtained during the Phrase Extracting stage.

Second, the phrases with more specific definition are
tagged with the classes defined in the ontology, and finally
archived for knowledge base construction. To give a concrete
example, we are looking for the phrase “database deadlock”
instead of just “database,” since the former has more specific
meaning. The archived knowledge is leveraged for the ticket
resolution recommendation in the next stage.

1) Ontology Model: An ontology explicitly defines a
common vocabulary including the formal specifications of
the terms in the domain as well as the relations among them.
Development of an ontology includes [8]:

1) Defining classes in the ontology.
2) Arranging the classes in taxonomic hierarchy.
3) Defining relations amongst the classes.
Then we can construct a knowledge base by defining the

instances of these classes (or facts). We build an ontology
model with the help of domain experts. To verify coverage
and identify capability of our ontology model, we discuss
with domain experts the practical situations found in tickets
and describe them in terms of the ontology’s classes and
relations.

Classes: A class is a deterministic concept describing a
collection of objects in a given domain [8]. In our
ontology model, six classes are explicitly defined in
Table III to classify the important domain-specific
phrases from previous stages. For example, Entity
class represents all technical terms (e.g., memory
fault, filesystem error). ProblemCondition class is
the description of the negative state of an entity
(e.g., stopped, failed).

Relations: A relation describes the interaction among the
classes in our ontology model [8]. For example,
the Action class can have the “TAKEN ON” inter-
action on Entity class, and the SupportTeam class
can “WORK ON” Entity class. Note that there is
no relation between Action class and Activity class.
The outline of our ontology models is depicted in
Fig. 7.

Table III: Classes of our ontology model.
Class Definition Examples
Entity Object that can be created/destroyed/replace memory fault; database deadlock
Action Requires creating/destroying an entity restart; rerun; renew

Activity Requires interacting with an entity check; update; clean
Incident State known to not have a problem false alert; false positive

ProblemCondition Describe the condition that causes a problem offline; abended; failed
SupportTeam Team that works on the problem application team; databases team

2) Knowledge Archive: Based on our ontology model,
a domain expert manually tags the important keywords or
phrases with their most relevant classes defined in Sec-
tion III-B1. For example, the text snippet “certificates will

Entity

SupportTeam

Action Activity

ProblemCondition Incident

WORK ON

TAKEN ON TAKEN ON

DESCRIBES

STATE
OCCURS ON

Figure 7: Ontology model depicting interactions amongst
classes.

be renewed” can be tagged with classes into tuples such
as “[(certificates, Entity), (will, STOP WORD[17]), (be,
STOP WORD), (renewed, Action)].” Finally, we initiate our
domain knowledge base with approximately 630 instances
of Entity class, 240 instances of Activity class, 25 instances
of Action class, 21 instances of ProblemCondition class, two
instances of Incident class, and 76 instances of SupportTeam.

C. Ticket Resolution Stage
The goal of this stage is to recommend operational phrases

for an incoming ticket. The incoming ticket is first processed
by the Class Tagger module of Information Inference com-
ponent. Taking the tagged ticket as an input, the Recom-
mendation component provides the list of the most relevant
resolutions. Finally, SAs check the recommended results.
The ticket is archived into the historical ticket database, and
the newly obtained domain expertise can be used to enrich
the knowledge base.

1) Information Inference Component: The Information
Inference component is used to infer problems, activities,
and actions from trouble tickets by applying the constructed
knowledge base and ontology model. The three key ques-
tions addressed herein are as follows: (1) how to formalize
the physical words using the ontology model, (2) how to
define three key concepts (e.g., problem, activity, and action)
that can be extracted from the tagged ticket, (3) how to find
the corresponding entity phrases associated with problem,
activity or action phrases.

We address the questions as follows:
Class Tagger Module: The Class Tagger module is an

index tool based on our domain knowledge base. Taking the
ticket resolutions and knowledge base as the input, it outputs
tagged domain keywords or phrases with the corresponding
classes. The module has three steps for tagging: (1) tokenize
the input into sentences; (2) construct a Trie by using
ontology domain dictionary; (3) find the longest matching
phrases of each sentence using the Trie and knowledge base,
then map them onto the corresponding ontology classes.

For example, “database,” “deadlock,” and “database
deadlock” are all valid domain phrases of Entity class. But
the Class Tagger module only tags the “database deadlock”
as Entity in a given sentence. An example of tagged ticket
by the Class Tagger module is shown in Fig. 8.

(post loading)/(Entity) (failed)/(ProblemCondition) due to (plc issue)/

(Entity). (updated)/(Activity) the (gft)/(Entity) after (proper validation)/

(Entity) and (processed)/(Activity) the (job)/(Entity) and (completed)/

(Action) successfully.

Figure 8: Ticket tagged by the Class Tagger module.
Defined Concept Patterns for Inference: We first define

three key concepts as follows:
Problem describes an entity in negative condition or state.
Activity denotes the diagnostic steps on an entity.
Action represents the fixing operation on an entity.



Using Class Tagger we obtain a total of 672+K tagged ticket
resolutions and find some concept patterns in the structured
corpus. For instance, ProblemCondition/Action keywords
and their corresponding entities always appear in a single
sentence. The structure of concepts is identified manually
as shown in Table IV.

Table IV: Defined concept patterns for inference.
Concept Pattern Examples
Problem Entity preceded/succeeded by ProblemCondition (jvm) is (down)
Activity Entity preceded/succeeded by Activity (check) the (gft record count)
Action Entity preceded/succeeded by Action (restart) the (database)

Problem, Activity, and Action Extraction: The derived
concepts provide their patterns for information inference
extraction. First, the Class Tagger module tokenizes the input
into sentences and outputs a list of tagged phrases. Second,
we decide whether it is an informative snippet or not by
checking if it exists in a ProblemCondition/Action list. Once
ProblemConditon/Action phrase is matched in the sentence,
the phrase is appended to the dictionary as a key, and all its
related entities are added as the corresponding values via a
neighborhood search. Each of the three key concepts has its
own dictionary. Finally, we obtain the problem, activity, and
action inferences. For instance, given the tagged snippet in
Fig. 8, the output is as follows:

• Problem - {failed: plc issue, post loading}
• Activity - {update: gft, proper validation; process: job}
• Action - {complete: job}
2) Ontology-based Resolution Recommendation Compo-

nent: In our prior work [9] for automatic problem resolution,
we propose a KNN-based algorithm in which the resolutions
of historical tickets with top summary similarity scores to
the incoming ticket summary are recommended. We use the
Jaccard similarity function [10] to calculate the summary
similarity score after tokenizing each summary into a bag
of words.

Typically, Jaccard similarity function ignores the semantic
information on ticket summaries. In our application, the
ticket summary and resolution are highly noisy, which makes
the Jaccard similarity function inappropriate. Table V shows
two ticket summaries describing the same issue “database
save failed.” However, a low Jaccard similarity score here is
due to many non-informative words.

Two extended works [11], [12] adopt several techniques
trying to alleviate the issue by grouping words into semantic
topics or mapping semantically similar words closely in
the same vector space. Those approaches, however, only
deal with semantically similar words without handling the
noise caused by the non-informative words. Fortunately,
the ontology model we constructed greatly facilitates our
resolution recommendation task, as it essentially enhances
our semantic understanding of the tickets and de-noises
tickets by filtering the non-informative words out of the
textual attributes. De-noising improves similarity allowing
tokenized Jaccard similarity function to concentrate only on
informative phrases.

Table V: Noisy ticket summary examples.
Inside ProcessTransaction. DetermineOutcome failed. Database save failed: Tried an insert, then tried an update
CRPE3I1Server Database save failed on lppwa899 00:19:46 lppwa899 /logs/websphere/wsfpp1lppwa
899CRPE3I1Server/SystemOut.log [3/20/14 0:19:33:371 MST] 0000002b SystemOut 20140320 00:19:33,
371 [WebContainer:30] [STANDARD] [DI US:01.22] (ng.AEXP US ISR Work Txn.Action) FATAL lpp-
wa899—10.16.4.4—SOAP—AEXP US ISR Roads3 Pkg —AEXPUSISRWorkInquiry—ProcessInquiry

3) Ontology Construction in ticket summary: Ontology
construction in ticket summary follows the same steps as in

ticket resolution. But ticket summary delivers the problem
symptoms instead of the problem resolution information.
It is reasonable to assume that only problem and activity
phrases present in ticket summary. Extracted activity phrases
describe automatically triggered system actions such as
“rerun,” “restart,” and so on. According to the assumption,
only three types of knowledge phrases, i.e., Entity, Activity
and Problem Condition, are recognized during the manual
tag process.

4) Tokenized Similarity function: Once we extract prob-
lems from ticket summary using concept patterns of Ta-
ble IV, the Jaccard similarity function is applied to the ex-
tracted Problem phrases. After removing the non-informative
phrases in ticket summary from the process of similarity
calculation, the same methodology is adopted for ticket
resolution recommendation as in the work [9]. A case study
given in Section IV illustrates that the revised similarity
function can better capture the similarity between ticket
summaries.

IV. EXPERIMENT

In this section, we present the dataset, the running envi-
ronment, and the discussion of experimental results.

A. Data and Setup
Experimental tickets are collected from real production

servers of the IBM Tivoli Monitoring system [14]. The data
set covers three month time period containing |D| = 22, 423
tickets with 33 attributes corresponding to the columns of
tickets table.

Our integrated system is designed to compliment moni-
toring systems such as the IBM Tivoli Monitoring system
and to automate delivery of an IT service management. The
component is implemented in Java 1.8, and tested on 64-
bit Windows 8.1 Enterprise residing on a machine equipped
with Intel Core 2 Xeon CPU 3.4GHz and 16GB of RAM.

B. Evaluation Metrics and Evaluation Overview
Four commonly used evaluation metrics are applied in

our evaluation. Let TP, TN, FP, and FN correspond to true
positive, true negative, false positive, and false negative,
respectively. Accuracy is computed as TP+TN

TP+TN+FP+FN .
Precision is defined as TP

TP+FP , recall is defined as TP
TP+FN .

The F1 score is computed as 2 · Precision·Recall
Precision+Recall .

To evaluate our integrated system, we randomly split
our dataset into training and testing dataset. The training
set, 90% of the entire ticket dataset, is used to build the
knowledge base through our system, while the remaining are
used for testing. To build the ground truth, domain experts
manually find and tag all phrase instances into six classes
defined in Table III. Class Tagger is applied to the testing
tickets to produce tagged phrases with predefined classes.
Comparing the tagged phrases with the ground truth, we
obtain the performance evaluation shown in Fig. 9.

The precision, recall, F1 score, and accuracy for Prob-
lemCondition are close to 1 due to the small number of
instances (e.g., failed, occurred, expired, unavailable, etc.).
We also observe the precision of Entity, Action, and Activity
extraction is 99.86%, 94.42%, and 97%, recall is 88.73%,
95.12%, and 93%, F1 score is 93.97%, 94.77%, and 95.1%,
and accuracy is 97.05%, 97.72%, and 99.3%, respectively.
The reason is that the classes of Entity, Action, and Activity



contain a large amount of instances in typos and various verb
forms. The Incident class is observed with similar results
with ProblemCondition class, though its performance is not
illustrated explicitly herein.

C. Evaluating Information Inference
We also evaluate the usability and readability of our

automated information inference results and compare them
with traditional methods of manually analyzed tickets.

For the usability, we evaluate the extracting accuracy
for concepts, i.e., Problem, Activity, and Action. Similarly,
we tag the ground truth from the testing tickets and then
compare it with the result tagged by Information Inference
component. We evaluate the average accuracy to be 95.5%,
92.3%, and 86.2% for Problem, Activity, and Action respec-
tively.

To evaluate readability, we focus on measuring the time-
cost difference to understand a ticket with and without
the Information Inference component. First, 50 tickets are
randomly selected from the testing tickets and two domain
experts are invited for the task of Problem, Activity, and
Action identification. Then, one domain expert is required to
execute the task by inspecting these tickets directly, while the
other domain expert is presented with the same task utilizing
the output from the Information Inference component. We
observe a significant decrease in time cost to accomplish the
task from around 1000s to 100s totally.

D. Case Study: Resolution Recommendation Task
In this section, we describe a case study of our experi-

mental results and provide the insights learned during the
domain experts’ manual review process.

For the accurate evaluation one needs to fully understand
the semantics of the ticket summary and resolution. That’s
the reason why the manual review of the recommended
results by domain experts is conducted.

The recommendation is achieved based on the similarity
score which can be computed by both the word level and
the problem level Jaccard similarity functions shown in
Table VI. The word level Jaccard similarity function takes
the whole textual value of the ticket summary into account
for similarity score computing, while the problem level
Jaccard similarity function, utilizing the knowledge base
constructed in our work, takes only the Problem phrases
into account to obtain the similarity score.

To illustrate the difference between the two similarity
functions, our task is to recommend the resolution for the
ticket with summary “Patrol Agent is not running,” which
indicates Problem “not running: patrol agent.” As a fact
confirmed by domain experts, Problem “not running: patrol
agent” is the same as Problem “offline: patroal agent”
occurring in B2, but different from Problem “not running:
zpdc process” associated with A2. However, shown by
Table VI, the recommended result based on the word level
Jaccard similarity contradicts with the fact. By contrast,
the recommended result according to the problem level
Jaccard similarity presents the consistency with the domain
expertise.

By further investigating our case study, since the entity
“patrol agent” mismatches “zpdc process,” domain experts
assert that the resolution for the later problem contributes
little to resolve the previous one. However, if the two entities

are similar, such as “zpdc process” and “syslogd process,”
in the perspective of concept, the resolutions for the entity
“zpdc process” might also apply to the entity “syslogd
process.”

V. RELATED WORK

In this section, we provide a short survey of the litera-
ture related to the automated IT service management and
knowledge base construction.

The automation of IT service management is largely
achieved through service-providing facilities in combination
with automation of subroutine procedures such as problem
detection, determination, and resolution for the service in-
frastructure. Automatic problem detection is typically real-
ized by system monitoring software, such as IBM Tivoli
Monitoring [14] and HP OpenView [16]. In [18], Xu et al.
develop the automated system runtime problem detection by
analyzing console logs. Tang et al. [19] propose an integrated
framework to minimize the false positive and maximize the
coverage for system fault detection. For problem determina-
tion, significant efforts have been put on analyzing structured
logs or unstructured text fields. A hierarchical multi-label
classification method [20] is proposed to determine the prob-
lem types in the monitoring IT tickets. Rish et al. [22] use
probabilistic reasoning techniques to solve real-time problem
diagnosis in a large distributed system. Automated ticket
resolution [9] is a big challenge in IT service management
since it requires vast domain knowledge about the target
infrastructure. This requirement also inspires our work in
this paper. Some prior works apply the approaches in text
mining to explore hidden semantic relationship between
terms [11], [23], [13]. Another area of interests focuses on
the analysis of time series and event data. For example, Zeng
et al. [2] adopt an advanced mining algorithm capable of
finding fluctuating event correlations and root causes from
system failure logs.

However, these studies mainly work on structured da-
ta, ignoring valuable domain-specific knowledge hidden in
those unstructured text fields/logs. The knowledge base built
in our work is not only fundamental to the understanding
of the system problems but also can greatly benefit those
aforementioned tasks.

Ontology modeling [8] represents domain knowledge that
specifies the classes and relations among the classes. It has
been extensively investigated by many researchers due to
its effectiveness and simplicity, and applied into various
research domains (e.g. knowledge management, natural lan-
guage processing [24], recommender system [25], and so
on).

After ontology modeling, the great challenge lies in the
knowledge base construction. The authors in [26] analyze
natural structured English text to construct the knowledge
base. In [27], the authors propose a framework to incre-
mentally build, maintain, and use knowledge bases from
Wikipedia semi-structured articles. Lee et al. [28] adopt an
episode-based ontology construction mechanism to extract
domain knowledge from text documents. However, these
studies build their ontology models by taking natural lan-
guage text as an input.

Our work focuses on mining domain-specific phrases from
unstructured texts with little syntax structure and mapping
them onto predefined domain knowledge classes to facilitate
ontology construction.
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Figure 9: Evaluation of our integrated system.
Table VI: Case study for testing ticket summary “Patrol Agent is not running”.

Similarity function Top most similar summary Associated resolutions

word level

A1: Patrol Agent is not running.
Problem - {not running: patrol agent}

Server’s uptime indicates server was unavailable. Server is available now
and patrol agent connectivity present

A2: The zpdc process is not running
Problem - {not running: zpdc process}

Downstream of DB crash

A3: The syslogd process is not running
Problem - {not running: syslogd process}

No actions taken, the process is running as expected on server according
to System Operations Procedures

problem level

B1: Patrol Agent is not running
Problem - {not running: patroal agent}

Server’s uptime indicates server was unavailable. Server is available now,
patrol agent connectivity present

B2: Patrol Agent Offline: Failed to reconnect to Patrol Agent on host
WWPP, port 3181. Will retry in 3 timer ticks.
Problem - {offline: patroal agent}

Verified connectivity. Patrol Agent connectivity test failed.

B3: The zpdc process is not running
Problem - {not running: zpdc process}

Downstream of DB crash

VI. CONCLUSION

In this paper, we study the problem of constructing a
domain specific knowledge base using a large number of
tickets in an IT service management system. An integrated
cognitive computing framework proposed in our work sup-
ports incremental knowledge extraction and ontology con-
struction. We first address the issues of efficient extraction
and identification of the domain specific phrases from noisy
unstructured text fields in tickets and then construct the
knowledge base with the help of domain experts.

We conduct an empirical study that leverages a construct-
ed knowledge base to generate ticket resolution recommen-
dations. Our encouraging results show the effectiveness and
efficiency of our integrated framework as applied to the task,
and also the scalability to other critical tasks in IT service
management system.

There are several avenues for future research. First, we
plan to investigate intelligent techniques that reduce the ef-
forts in manual phrase tagging, such as training a conditional
random field model [29] to directly tag phrases supervised
by an existing knowledge base. Second, our current res-
olution recommendation task uses problem level Jaccard
similarity, which can be further improved by considering
the term similarity based on the constructed domain specific
ontology [30], [31]. Finally, we plan to incorporate the
obtained knowledge base into other tasks in the IT service
management system.
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