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Abstract. This study establishes the mathematical foundation for a fast incremental
multilinear method which combines the traditional sequential Karhunen-Loeve (SKL) al-
gorithm with the newly developed incremental modified fast Principal Component Anal-
ysis algorithm (IMFPCA). In accordance with the characteristics of the data structure,
the proposed algorithm achieves both computational efficiency and high accuracy for in-
cremental subspace updating. Moreover, the theoretical foundation is analyzed in detail
as to the competing aspects of IMFPCA and SKL with respect to the different data un-
folding schemes. Besides the general experiments designed to test the performance of the
proposed algorithm, incremental face recognition system was developed as a real-world
application for the proposed algorithm.
Keywords: Multilinear principal component analysis, Fast principal component analy-
sis, Incremental subspace learning, Sequential Karhunen-Loeve algorithm, Mean update

1. Introduction. The so-called appearance-based techniques, such as the Principal Com-
ponent Analysis (PCA) and the Linear Discriminant Analysis (LDA), have been exten-
sively used in the literature with a wide range of applications in fields such as computer
vision, pattern classification, signal/image processing, among others. However, their com-
putational complexity and their batch mode computational frameworks still impose prac-
tical constraints in applications that demand concurrently faster execution speed and
higher accuracy in the results. A variation on the singular value decomposition (R-SVD)
[1] provides a faster approach for obtaining a specific subspace of a given data structure.
Based on R-SVD, A. Levy and M. Lindenbaum developed the sequential Karhunen-Loeve
(SKL) algorithm [2], which is characterized by a faster execution speed and higher suitabil-
ity for dealing with image sequences. Many other applications were consequently reported
by utilizing the SKL algorithm. For instance, D. Ross et al. [3] proposed a visual tracking
system based on an incremental subspace method with sample mean update. Also, Zhao
et al. [4] developed a novel incremental PCA with specific application to face recognition.
Moreover, T. Jun et al. [5] developed the incremental subspace method for kernel PCA,
and applied it to offline and online face recognition as well as visual tracking. In study
[6], L. Hoegaertsa et al. proposed a method which is similar to the research concept in
[4], but extended it into the kernel space and included both updating and downdating
procedure for tracking purposes. Another kind of fast principal component extraction
method called Principal Component Orthogonal Projection Approximation and Subspace
Tracking (PC-OPAST) was introduced in [7] by S. Bartelmaos and K. Abed-Meraim to
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be applied for incremental learning as well. The PC-OPAST method alleviates the com-
putational burden for estimating the principal eigenvectors of the covariance matrix using
Givens rotations.

With the use of tensors in multilinear algebra being firmly established, great efforts have
been devoted to their potential for dimensionality reduction. Fewer features, based on
multilinear PCA, obtained to achieve the same accuracy, were described in [8]. In [9], the
alternative least squares method was used to find a desired tensor with minimum cost to
the original tensor. This method is applied to the multidimensional data directly. A new
framework of multilinear PCA for dimensionality reduction and feature extraction was
provided in [10] with an application to gait recognition. The iterative local optimization
procedure was applied to find projection matrices. Moreover, there are some studies on
the incremental learning of tensors. A visual tracking system proposed by X. Li et al. [11]
was based on an incremental tensor subspace learning method, and the subspace update
deployed the SKL algorithm. In [12], multilinear analysis and wavelets were combined for
the analysis of time evolving data. Alternating minimization was adopted for unfolding
modes without including time dimension as a compression step, and then discrete wavelet
transform was adopted on the results of the compression step. Moreover, in [13], the
subspace update is based on the characteristic of chunk data input. Unlike most articles
for incremental learning, which keep a static number of eigenvectors, the approach in
[14] was based on the reconstruction error, in which the number of eigenvectors used can
change with each incremental update.

In all of those studies, the challenge remains in finding the appropriate balance between
computational efficiency and high accuracy in estimating the eigenvectors. To come to
terms with this challenge, this study proposes a modified fast PCA algorithm embedding
an incremental multilinear method. Based on the characteristics of multilinear method, a
new incremental subspace update method is described. Practical implementations of this
new incremental procedure on different kinds of targets in image sequences are chosen
to prove the validity of the incremental multilinear PCA system. The rest of the paper
is structured in the following way: Section 2 introduces the theoretical framework of the
modified fast principal component analysis; Section 3 describes the concept of tensor incre-
mental learning, and evaluates the computational complexity of the proposed algorithm;
Section 4 provides the experimental results comparing fast PCA versus the modified fast
PCA, and the proposed incremental algorithm versus the traditional SKL-based incremen-
tal algorithm for tensor objects; in addition, a real-world application of face recognition
is tested by using the proposed incremental algorithm to assess its practical merit.

2. Modified Fast Principal Component Analysis. PCA is used for approximating
a set of vectors that will establish the lowest dimension subspace that can still contain
most of the relevant information. The theoretical merit and practical impact of the PCA
have been studied thoroughly over the years, especially with regard to its computational
complexity, and many of the improvements that have been accomplished, as reported in
the Cyclic Jacobi’s method [15], power method [16] and modified Cyclic Jacobi’s method
[17]. Moreover, the fast PCA [15] is a computationally efficient technique that is designed
for finding the leading eigenvectors. With covariance matrices of 2000× 2000 in size, the
fast PCA achieved a better computational efficiency requiring only 2.28s for its execution,
while the eigenvalue decomposition PCA required 153.26s, as reported in [18]. Besides
dealing with these heavy computational requirements, estimating the eigenvectors from
using these different methods is also important in order not to compromise on the desired
high accuracy in the results. For these two contending but essential objectives of accuracy
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and computational efficiency, the fast PCA algorithm is described, with emphasis placed
on the modifications that were made as a necessity for enhancing its key execution steps.

2.1. Fast principal component analysis. The fast PCA is obtained by minimizing
the mean square error between the original vectors and their reconstructed versions from
a dimensionally-reduced principal component transform, while no or minimal concessions
are made on accuracy.

Suppose that x ∈ Rm×1 represents a vector with a mean µ = E[x], the reduced dimen-
sional feature vector is then denoted as y ∈ Rh×1. With the reconstructed vector of x
being x̂ ∈ Rm×1, the mean square error can be presented as:

MSE = E
[
||x − x̂||2

]
(1)

where || • || denotes the norm value and the function E[•] is defined as the expectation
operation.

In the PCA transform, the reduced eigenbasis is supposed to be U ∈ Rm×h, and then
the reduced dimensional vector can be computed as y = UT (x − µ), with zero empirical
mean. With the reduced dimensional vector y, the reconstructed x̂ of x can be computed
as x̂ = Uy + µ = UUT (x − µ) + µ. Therefore, Equation (1) can be rewritten as follows:

MSE = E
[
||(I − UU)T (x − µ)||2

]
(2)

The scalar function ||(I − UU)T (x − µ)||2, which determines the norm of a vector, can
thus be simplified as follows:

||(I − UUT )(x − µ)||2 = ((I − UUT )(x − µ))T (I − UUT )(x − µ)

= (x − µ)T (I − UUT )T (I − UUT )(x − µ)

= (x − µ)T (I − 2UUT + UUT UUT )(x − µ) (3)

Since the eigenvectors are orthomormal, the simplification UUT UUT = UIUT = UUT

can be used, which further simplifies Equation (3) to the following squared norm:

||(I − UUT )(x − µ)||2 = (x − µ)T (I − UUT )(x − µ) (4)

Then, finding the derivative of MSE [16] as:

∂

∂U
E
[
(x − µ)T (I − UUT )(x − µ)

]
= −2E

[
(x − µ)(x − µ)T U

]
(5)

The fixed-point algorithm [18] and Gram-Schmidt orthonormalization process [17] can
then be used to estimate the leading eigenvectors.

2.2. Modified fast principal component analysis. The eigenbasis U ∈ Rm×h of a
matrix D ∈ Rm×n should evidently satisfy the standard relation λU = DU , where λ
represents the corresponding eigenvalues. The eigenbasis U = [e1, e2, . . . , eh] should be
composed of eigenvectors with the largest eigenvalues, and should be ordered as e1, e2, . . . ,
eh column-wise in accordance to their respective eigenvalues such that λ1 ≥ λ2 ≥ . . . ≥ λh.
Under usual circumstances, eigenvectors are computed in a descending order of their
corresponding eigenvalues by the fast PCA. Unfortunately, the algorithm tends to be
numerically unstable if the initial vector is generated randomly [20,21]. Due to this
instability, the eigenvectors are not set in descending order. The intuitive approach is to
repeat the iteration with various initial vectors. In this case, the additional step is to check
if the new eigenvalue is smaller than the previous one. If so, proceed computing the next
eigenvector; otherwise go back to the previous step, and recalculate that eigenvalue and
respective eigenvector using a different initial vector. The pseudo-code implementation
of the modified fast PCA (MFPCA) is provided as below in Table 1. The processing
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sub step as shown in bold and italic within Step 3 indicates the modification that was
introduced in the MFPCA.

Table 1. Pseudocode implementation of MFPCA algorithm

Input: The scatter matrix ϕ of a centered matrix D̄, the number of eigenvectors k and
the error tolerance ε.

Output: The eigenvectors of D̄.
Algorithm:

Step 1 (Parameter Initialize): Set i = 1.
Step 2 (Vector Initialize): Initialize eigenvector U(i) randomly and define Uint =

U(i).
Step 3 (Optimization Computation):

– Calculate U(i) = ϕ ∗ U(i).
– Implement the Gram-Schmidt process.
U(i) = U(i) −

∑i−1
j=1 projU(j)U(i),

where projuv =
〈u, v〉
〈u, u〉u and 〈u, v〉 denotes the inner product of vector u and v.

In this case, 〈u, u〉 = 1.
– Calculate the norm λ(i) of U(i), λ(i) = norm(U(i)).
–∗ If i > 1 and λ(i) < λ(i − 1), set i = i − 1 and go to Step 2, else go to

Step 1.
– If |U(i)Uint| < ε is not satisfied, go to Step 3.
– Set i = i + 1 and go to Step 2 until i = k.

Considering this computational aspect of the modified fast PCA, its application as
an incremental algorithm can now be explored by incrementally updating the leading
eigenvectors with the inclusion of new data. The merit of incremental algorithms is that
with new data received, the previously obtained leading eigenvectors together with the
newly acquired data will generate a new set of leading eigenvectors for the whole dataset,
minimizing to a great extend the computational burden required of regenerating all the
leading eigenvectors using the whole dataset all over again.

3. Incremental Algorithms for Tensor Objects. The conventional method used for
incremental PCA is the SKL algorithm. In fact, most articles referenced earlier make use
of the SKL algorithm mainly for its computational efficiency. For most image-as-vector
systems, SKL is indeed very efficient. However, if the so-called “image-as-vector” systems
are re-arranged as tensor objects with different data structures after different modes of un-
folding, sometimes the covariance matrix itself provides new means for seeking additional
computational benefits. In our study, the modified fast PCA and SKL algorithms are
utilized for different unfolding modes in order to achieve better computational efficiency.
The following sections introduce basic multilinear algebra, propose the new unfolding
method, explain the incremental procedure and evaluate the computational complexity
as it pertains to the incremental algorithm.

3.1. Basic multilinear algebra and related terminology. A high-order tensor is de-
noted as A ∈ RI1×I2...×IN , where In with n = 1, . . . , N represents the size of the nth dimen-
sion of the tensor. The mode-n product of a tensor A by a matrix U ∈ RJn×In , denoted by
A×n U is determined by the tensor entries (A×n U)i1,...,in−1,jn,in+1,...,iN =

∑
in

ai1...iN ujnin ,
where in denotes the mode-n of A. The scalar product of two tensors A,B ∈ RI1×I2×...×IN
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Figure 1. Graphic description of the unfolding process for different modes.
From the top to the bottom, they are mode-1 unfolding, mode-2 unfolding
and mode-3 unfolding, respectively.

is defined as 〈A,B〉 =
∑

i1

∑
i2

. . .
∑

iN
ai1i2...iN bi1i2...iN . And the Frobenius norm of a ten-

sor A ∈ RI1×I2...×IN is defined as ||A|| =
√

〈A,A〉. Any tensor can be expressed as the
product A = G ×1 UA(1)

×2 UA(2)
. . . ×N UA(N)

, where G ∈ RJ1×J2...×JN is the core tensor,
defined as G = A×1 UA(1)

×2 UA(2)
. . . ×N UA(N)

, with UA(i)
= (uA(i)1, uA(i)2, . . . , uA(i)kA(i)

)

being a unitary matrix. A mode-n unfolding gives a matrix A(n) ∈ RIn×I1I2...In−1In+1...IN .
The different unfolding mechanisms for a 3rd-order tensor are illustrated Figure 1.

Traditional unfolding methods are called backward cyclic and forward cyclic. How
to implement incremental learning based on the traditional unfolding method was ad-
dressed in detail in [22]. In order to do the incremental learning, an extra step of matrix
computation is required. However, a new unfolding method is utilized in this study. Tak-
ing the backward cyclic unfolding for example, the elements in A(n) can be defined as
(A(n))(index) = ai1i2...iN , where

index =

[
in,

N∑

p1=n+1

(ip1 − 1)

(
N∏

p2=p1+1

Ip2

)(
n−1∏

p2=1

Ip2

)
+

n−1∑

p1=1

(ip1 − 1)

(
n−1∏

p2=p1+1

Ip2

)]
(6)

with Ip2 being the length of the dimension p2.
The elements obtained by the new unfolding method are defined with a different index,

index =

[
in,

n+1∑

p2=N

(ip2 − 1)

(
n+1∏

p1=p2

Ip1

)(
1∏

p1=n−1

Ip1

)
+

1∑

p2=n−1

(ip2 − 1)

(
1∏

p1=p2−1

Ip1

)]
(7)

Figure 2 shows the difference graphically among the new proposed unfolding method
for mode-1 and mode-2, the backward cyclic method as well as the forward cyclic method
for a 3rd-order tensor.

The new method keeps the newly added data at the end of the matrix, which can be
directly used in the incremental algorithm, instead of requiring other matrix computations.
The problem in the structuring of the unfolding between mode-1 and mode-2 as seen in
Figure 2 is now resolved by the proposed algorithm, where the structuring of the unfolding
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Figure 2. Graphic description of the mode-1 and mode-2 unfolding pro-
cess for different methods. The grey parts are newly added data. Different
unfolding methods provides different positions of the newly added data.

is unified in that the new data is placed at the end of the matrix for both mode-1 and
mode-2.

Therefore, if A is the old tensor and B is the new tensor, their unfolding can be expressed

as C(n) = [A(n), B(n)] for n = 1, 2, . . . , N−1 and C(N) =

[
A(N)

B(N)

]
for the last mode (n = N).

Due to the multilinear property, the transpose of the data after unfolding is utilized for
mode-N.

3.2. Incremental procedure. Both incremental processes of SKL and MFPCA algo-
rithms include mean update and total number of samples update, and these updates are
defined as follows:

Mean update is given by MC =
IANMA+IBNMB

IAN +IBN
, where MA and MB represent the mean

tensors for A and B, IA
N and IB

N define the number of tensors in the old and new tensor
sequences, respectively. The number of samples thus becomes IC

N = IA
N + IB

N .
Moreover, when new samples are taken into account, the mean value changes, affecting

as a consequence the old centered data in the sequence. Such a change should be taken
into consideration. Mean value update was first provided in [8], and was then extended in
[3], which not only provided explanation for mean update, but also included the concept of
“forgetting factor”. The so-called forgetting factor gives more weight to recent data over
old data. In this study, these aforementioned concepts are extended to a tensor object.
To facilitate the understanding of the mathematical foundation of the two incremental
procedures, the mean update is described in the Proposition and the forgetting factor is
defined in the Corollary below. The proof for Proposition and Corollary are provided
in Sections A of the Appendix.

Proposition 3.1. Let MA be the mean tensor of A, with Ā being tensor A after cen-
tering. Let UĀ(n)

(i) and λĀ(n)
(i), in = 1, . . . , kĀ(n)

be the largest kĀ(n)
eigenvectors and

eigenvalues of old unfolding data Ā(n), respectively. A new tensor sequence is denoted as
B, with B̄ being tensor B after centering. Suppose further that MB is the mean tensor
of B. Then for the incremental modified fast PCA (IMFPCA) algorithm, the mode-n
covariance matrix for the whole sequence with mean update can be expressed as:
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ϕC̄(n)
=

k
A(n)∑

i=1

λĀ(n)
(i)UĀ(n)

(i)T + B̄(n)B̄
T
(n) +

IA
NIB

N

IA
N + IB

N

(
MA

(n) − MB
(n)

) (
MA

(n) − MB
(n)

)T

As for the SKL algorithm, the mode-n unfolding of B̄ with mean update is generated by

B̂(n) =

[
B̄(n),

√
IAN IBN

IAN +IBN

(
MA

(n) − MB
(n)

)]
and the matrix R is generated as:




diag(λĀ(n)

) UT
Ā(n)

B̂(n)

0 Ẽ
(
B̂(n) − UĀ(n)

UT
Ā(n)

B̂(n)

)


 ,

where Ẽ = orth
(
B̂(n) − UĀ(n)

UT
Ā(n)

B̂(n)

)
with the orth function being used to orthonor-

malize the column-wise vectors in the resulting matrix [13].

Corollary 3.1. For the same definitions provided in the aforementioned the Proposition
with the inclusion of the forgetting factor f , the covariance matrix can now be generated
as follows:

ϕC̄(n)
= f2

k
A(n)∑

i=1

λĀ(n)
(i)UĀ(n)

(i)T + B̄(n)B̄
T
(n)

+
IA
NIB

N

(
f 2IB

N + IA
N

)

(IA
N + IB

N)
2

(
MA

(n) − MB
(n)

) (
MA

(n) − MB
(n)

)T

for the IMFPCA algorithm.
As for the SKL algorithm, the mode-n unfolding of B̄ with mean update is generated by

B̂(n) =

[
B̄(n),

√
IAN IBN

IAN +IBN
(MA

(n) − MB
(n))

]
while matrix R is generated as:




fdiag(λĀ(n)

) UT
Ā(n)

B̂(n)

0 Ẽ
(
B̂(n) − UĀ(n)

UT
Ā(n)

B̂(n)

)




where Ẽ = orth
(
B̂(n) − UĀ(n)

UT
Ā(n)

B̂(n)

)
.

Note that the proposition is a special case of the corollary, which considers the forgetting
factor as 1. The proposition described earlier applies to Steps 1 through 3 for the IMFPCA
algorithm described in Table 2 and to only Step 6 for the SKL algorithm described in
Table 3.

In order to achieve better efficiency overall, the IMFPCA and SKL algorithms are
applied in accordance to their computational requirements, which means that for mode-1
up to mode-(N−1), IMFPCA is applied; while for the specific mode-N , the SKL algorithm
is used instead. Detail analyses of these computational requirements are explored next.

3.3. Computational complexity.

3.3.1. Computational complexity of MFPCA. In the iterative procedure of the pseudocode
of the MFPCA algorithm given in Table 1, the major processing steps and their respective
computational requirements are as shown in Table 4.
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Table 2. Pseudocode implementation of the IMFPCA algorithm

Input: Centered mode-n unfolding matrix B̄(n) of tensor B, mean tensor MB for
mode-1, . . . , mode-(N − 1) of B, the last mode IB

N of tensor B, the last mode
IA
N of previous tensor A, mean tensor MA for mode-1, . . . , mode-(N − 1) of
A, eigenvectors UĀ(n)

and eigenvalues λĀ(n)
, number of eigenvectors kC̄(n)

.
Output: The eigenvectors UC̄(n)

of C̄(n) and the eigenvalues λC̄(n)
,

where C is represented as C = [A,B], C ∈ RI1×I2...×IN−1×(IAN +IBN ).
Algorithm:

Step 1: Find the approximate covariance matrix for old data

ϕĀ(n)
=

∑kA(n)

i=1 λĀ(n)
(i)UĀ(n)

(i)T .
Step 2: Obtain the covariance matrix for the new data ϕB̄(n)

= B̄(n)B̄T
(n).

Step 3: Compute the covariance matrix for whole data with mean update

ϕC̄(n)
= f2ϕĀ(n)

+ ϕB̄(n)
+

IAN IBN (f2IBN+IAN )

IAN +IBN
(MA

(n) − MB
(n))(M

A
(n) − MB

(n))
T .

Step 4: MFPCA algorithm (in Table 1).

Table 3. Pseudocode implementation of the SKL algorithm

Input: Centered mode-n unfolding matrix B̄(n) of tensor B, mean tensor MB for
mode-1, . . . , mode-(N − 1) of B, the last mode IB

N of tensor B, the last mode
IA
N of previous tensor A, mean tensor MA for mode-1, . . . , mode-(N − 1) of
A, eigenvectors UĀ(n)

and eigenvalues λĀ(n)
, number of eigenvectors kC̄(n)

.
Output: The eigenvectors UC̄(n)

of C̄(n) and the eigenvalues λC̄(n)
,

where C is represented as C = [A,B], C ∈ RI1×I2...×IN−1×(IAN +IBN ).
Algorithm:

Step 1: Generate data B̂(n) =

[
B̄(n),

√
IAN IBN

IAN +IBN
(MA

(n) − MB
(n))

]
.

Step 2: Calculate D = UT
Ā(n)

B̂(n).

Step 3: Projection of new data E = B̂(n) − UĀ(n)
D.

Step 4: Calculate the orthogonal basis by QR decomposition Ẽ = qr(E),
where Ẽ is an orthogonal matrix.

Step 5: Construct matrix R =

[
fdiag(λĀ(n)

) UĀ(n)

0 Ẽ
(
B̂(n) − UĀ(n)

UT
Ā(n)

B̂(n)

)
]
.

Step 6: Calculate SV D(R) = Ũ Ṽ Q̃T .

Step 7: Calculate U =
[
UĀ(n)

, D̃(n)
]
Ũ .

Step 8: Define λC̄(n)
(i) = Ṽ (i, i) and UC̄(n)

(i) = U(i), where i = 1, . . . , kC̄(n)
.

In these operations, i takes on the values from 1 to k. Therefore, with the given relation
12 + 22 + 32 + . . . + k2 = k(k + 1)(2k + 1)/6, the order of complexity in the number of
operations can thus be approximated for all L iterations as O(I2

nL) + O(Ink3L).

3.3.2. Computational complexity of the IMFPCA. The major processing steps with their
respective computational complexities are given in Table 5.

These results followed the same reasoning used for finding the order of complexity in
the number of operations for the MFPCA.
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Table 4. Computational complexity of the MFPCA for a single iteration

Processing steps for the ith eigenvector Computational Complexity
Calculate U(i) = ϕ ∗ U(i) O(I2

n)
Gram-Schmidt process O(Ini2)
Calculate the norm λ(i) of U(i) O(I2

n)

Table 5. Computational complexity for steps in IMFPCA

Major processing steps in IMFPCA Computational Complexity

Approximate covariance matrix for Ā(n) O
(
I2
nkĀ(n)

)

Covariance matrix for B̄(n) O(InI1I2 . . . IN−1IB
N)

Covariance matrix for C̄(n) O(InI1I2 . . . IN−1)

Computational steps in MFPCA O(I2
nL) + O

(
Ink3

C̄(n)
L
)

3.3.3. Computational complexity of the SKL. Similarly, the major processing steps of SKL
with their computational complexities are as shown in Table 6.

Table 6. Computational complexity for steps in SKL

Major processing steps in SKL Computational Complexity
Calculate D = UT

Ā(n)
B̂(n) O(kĀ(n)

I1I2 . . . IN−1IB
N)

Projection of new data E = B̂(n) − UĀ(n)
D O(kĀ(n)

I1I2 . . . IN−1IB
N)

Calculate the orthogonal basis by O(InI1I2 . . . IN−1IB
N)

QR decomposition Ẽ = qr(E)
Suppose S = min(In, I1I2 . . . In−1In+1 . . . IN), O(InI1I2 . . . IN−1IBN

) + O((kĀ(n)
+ S)3)

caculate SV D(R) = Ũ Ṽ Q̃T

From Table 5 and Table 6, we can observe that the total number of operations for the
IMFPCA algorithm can be approximated by O(I2

n(kĀ(n)
+L))+O

(
InI1I2 . . . INIB

N

)
, while

the total number of operations for SKL can be approximated by O((kĀ(n)
+S)3)+O((kĀ(n)

+

In)I1I2 . . . INIB
N). Since the number kĀ(n)

is usually less than 15, and L is empirically
observed to be less than 10, the two computational complexities can be simplied into
O(I2

n) + O(InI1I2 . . . INIB
N) and O(S3) + O(InI1I2 . . . INIB

N). Therefore, for mode-1 up to
mode-(N − 1), it is obvious that IMFPCA outperforms SKL (in this case, S = In).

It is important to note that for the last mode (n = N), the dimensional parameters
need to be changed to estimate the computational complexity. Suppose the parame-
ters for the dimensions are Iold

1 , Iold
2 , . . . , Iold

N−1, I
old
N , then the new parameters that are

used for evaluating the computational complexity are defined as Inew
N = Iold

1 Iold
2 . . . Iold

N−1,
Inew
1 , Inew

2 , . . . , Inew
N−2 = 1 and Inew

N−1 = Iold
N . The proof for this required change is provided

in Section A.2 of the Appendix. The computational complexity for the IMFPCA is thus
far more simplified than that of the SKL algorithm (in this case, S # IN).

For incremental learning, these theoretical results support the use of IMFPCA for the
mode-1 up to mode-(N − 1) and the use of SKL solely for mode-N . Following these
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theoretical findings, empirical results are provided in the next section to verify the effec-
tiveness of IMFPCA in a series of tests and the efficiency of the proposed incremental
method for face recognition as a real-world application.

4. Experimental Results. Several experiments were designed to assess the merit of the
modified fast PCA (MFPCA) with its efficient incremental procedure. The key aspects
of the algorithm investigated include:
1) Performance evaluation for finding leading eigenvectors of the MFPCA algorithm in
comparison to FPCA for face recognition application;
2) Accuracy obtained from the incremental learning procedure, contrasting the results of
both IMFPCA and SKL methods;
3) Processing time required for the incremental subspace update under different unfolding
modes between IMFPCA and SKL;
4) Effectiveness of the proposed incremental method for online face recognition applica-
tion.

In the experiments used for computational performance and accuracy evaluations pro-
vided in Sections IV.A and IV.B, the AT&T database of faces [23] and the MNIST
database of handwritten digits [24] are used. The AT&T database of faces contains im-
ages with dimensions 112 × 92 and 360 images were included; MNIST handwritten digit
database contains images with dimensions 28× 28, and 1000 images were considered. All
the experiments were evaluated using MATLAB on a Windows Vista-based PC with Intel
Core 2 1.60GHz and 2G RAM.

4.1. Performance of the modified fast PCA (MFPCA). To test the modified
method, images in the AT&T database are normalized into different dimensions 30× 30,
40 × 40 and 50 × 50, respectively. Then, all images are reshaped into a vector, and
matrices are generated. After centering the matrix and finding the covariance matrix,
covariance matrices of dimensions 900 × 900, 1600 × 1600 and 2500 × 2500 are obtained.
The comparative results, in terms of both accuracy in estimating the eigenvectors and
computational requirements between the Eigenvalue Decomposition (EVD), FPCA and
MFPCA, are given.

Figure 3 and Figure 4 show that MFPCA provides better similarity than the fast
PCA under different parameter settings as function of error tolerance and the number
of dimensions used. However, the defect of the fast PCA, which can be seen in the
eighth eigenvectors for all tests, cannot be overcome by the modified PCA. Although
the eigenvalues are in descending order, the local minimum still shows up and gives a
low similarity to EVD eigenvector. However, since the obtained eigenvector satisfied the
iterative requirement, the eigenvectors after the eight one still can have a good similarity
with the EVD eigenvectors. Moreover, under the same error tolerance, with the increase of
the dimension, the accuracy increases, too. As can be seen in Table 7, FPCA and MFPCA
have comparable processing time, both of which are significantly faster than EVD. The
entry in Table 7, with the image size of 30 × 30 and error tolerance of ε = 10−5, is the
only case where the MFPCA is faster than FPCA. The reason that less iterations were
required to achieve the error tolerance requirement is a purely coincidental case based on
the 100 random trials considered.

A face recognition application [25] was conducted to evaluate the performance of the
modified fast PCA (MFPCA) method in search of leading eigenvectors. For the face
images selected from the AT&T database, nine randomly picked images of one subject
are used as feature bases, and the one image remaining is then used for testing. The
number of the eigenvectors is set to be nine, with the consideration that the eigenface
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Figure 3. Similarity comparison between eigenvectors from FPCA, MF-
PCA and EVD methods with dimension changes for the same error toler-
ance ε = 10−5, and those subfigures are: (a) 30 × 30; (b) 40 × 40 and (c)
50 × 50. The curve is from the average over 100 trials.

Table 7. Processing time comparison

Image Size EVD
FPCA MFPCA FPCA MFPCA FPCA MFPCA

ε = 10−3 ε = 10−3 ε = 10−4 ε = 10−4 ε = 10−5 ε = 10−5

30 × 30 6.4860s 0.6221s 0.7758s 1.1759s 1.2575s 1.8219s 1.7588s
40 × 40 39.6555s 1.8825s 2.4675s 3.4587s 3.6353s 5.2412s 5.2497s
50 × 50 165.1443s 4.9189s 6.5651s 7.6038s 7.9852s 13.0582s 13.2501s

algorithm can achieve the highest recognition accuracy with nine eigenvectors retained.
The results shown in Table 8 indicate that the minimum accuracy for the MFPCA is
always higher than the minimum accuracy for the FPCA, while the maximum being
either higher or equal to that of the FPCA. The average recognition rate of MFPCA was
thus better than FPCA.

4.2. Accuracy for the incremental procedure. There are two sets of experiments
conducted in this section. First, the similarity between the first four eigenvectors from
SKL and IMFPCA, which is obtained by dot product, is ascertained. Second, the subspace
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Figure 4. Similarity comparison between eigenvectors from FPCA, MF-
PCA and EVD methods with error tolerance changes for the dimension
50 × 50, and those subfigures are: (a) ε = 10−3, (b) ε = 10−4 and (c)
ε = 10−5. The curve is from the average over 100 trials.

Table 8. Comparison of recognition rates (%)

Methods EVD
FPCA MFPCA FPCA MFPCA FPCA MFPCA

ε = 10−5 ε = 10−5 ε = 10−4 ε = 10−4 ε = 10−3 ε = 10−3

Recognition 95.00 94.70 95.00 93.90 94.88 93.33 93.90
Rate [90, 95] [95, 95] [90, 95] [92.5, 95] [85, 95] [90, 97.5]

Note: Z is the mean and [X, Y] is the the lowest and highest recognition rate for 100 trials.
distance among SKL, IMFPCA and batch mode PCA is determined. The forgetting factor
is set to be one in this test. The MNIST dataset, due to its large size, allows for more
iterations to be tested. Moreover, the image size (28 × 28) of MNIST dataset is found
to be more computationally suitable, since the dimension of the covariance matrix for
mode-3 in the AT&T dataset (112× 92) were considered unjustifiably large for the same
tests that were considered.

The parameters for the dataset are set as follows: (a) PCA: k = 4, (b) SKL: k = 8 and
(c) IMFPCA: k = 8. Only the first four eigenvectors are used in the test, the remaining
four eigenvectors for the incremental algorithms are used to minimize the error. The batch



A FAST INCREMENTAL MPCA ALGORITHM 6031

number for MNIST is 30. A different error tolerance of ε = 10−7 is chosen to ensure that
the incremental algorithm used will provide more accurate results.
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Figure 5. Similarity between eigenvectors from SKL and IMPCA and
from SKL and IMFPCA using the MNIST database with mode-1 unfolding,
and mode-3 unfolding, respectively. The x-axis is used for the number
of updates, and the y-axis is used for the similarity measure. For better
visualization, different scales were adopted for different tests; however, the
same test with different algorithms is visualized with the same scale.

Since mode-2 is similar to mode-1, only mode-1 results were shown for simplicity sake.
From the similarity results in Figure 5, it is obvious that IMFPCA performs better than
IFPCA, and with smoother curves or transitions. Some similarities of the FPCA algo-
rithm, as described in Section 4.1, drop to a low value where a local minimum happens;
however, it satisfied the criteria of minimizing the mean square error, which can still al-
low for the eigenvectors estimated after the local minimum to achieve a higher similarity.
Moreover, although the final similarity values are close among the different algorithms,
the IMFPCA is the more consistent in estimating the eigenvectors over many trials, as
can be clearly seen in Figure 5. This outcome is significant and will yield better accuracy
in the real-world applications, such as incremental face recognition provided in this study.
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It is also essential to carry out experiments involving the use of IMFPCA with different
error tolerance settings, as evidenced in the results provided below.

The error accumulated along the incremental procedure brings up the discrepancy be-
tween the incremental results and the true results (from batch methods). This defect
is unavoidable for incremental procedures. A distance measure based on the principal
angles in [26] between subspaces was used here to examine the nature of this discrepancy.

The distance is expressed by d(U0, U1) =
√∑k

i=1 θ2
i where U0 and U1 are k-dimensional

subspaces and θ1, θ2, . . ., θk are the principal angles between them. Given θi ∈
[
0, π

2

]
, the

distance satisfies d ∈
[
0,

√
kπ
2

]
. If the two subspaces are identical, then d −→ 0. It can be

seen in Figure 6 that the subspace distance converges to the true result gradually.
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Figure 6. Subspace distance examination on MNIST database. (a) Mode-
1: SKL, IMFPCA with ε = 10−6, IMFPCA with ε = 10−7 and IMFPCA
with ε = 10−8. (b) Mode-3: SKL, IMFPCA with ε = 10−6, IMFPCA with
ε = 10−6 and IMFPCA with ε = 10−6. And the curve is the average results
from 100 trials.

In Figure 6, the SKL algorithm is proven to perform better in this case than IMFPCA
in all tests. With error tolerance of 10−6 for both mode-1 and mode-3, IMFPCA had the
distance increased after ten iterations, which means the error tolerance cannot be adopted.
However, if the error tolerance is set at a lower scale, such as 10−7 and 10−8, then the
distance can be considered as a stable discrepancy from the true result (which is the
result from eigen decomposition based on the whole dataset). The lower error tolerance
leads to better convergence. It is worth noticing that the subspace distance for mode-1
is smaller than mode-3 (take error tolerance 10−7, for example, where the final subspace
distance for mode-1 was 0.0991 and for mode-3 was 0.2888), which does not conform to
the conclusion made from the experiment described in Section 4.1, “under same error
tolerance, with the increase of the dimension, the accuracy increases, too”. The reason is
that in the incremental procedure, the dimension for mode-1 is 28, while the dimension
for mode-3 is 784, and both of them used the first eight eigenvectors. Obviously, for
the larger dimension mode, the error was higher. From this test, it can be concluded
that both SKL and IMFPCA methods can provide acceptable discrepancy distance in the
incremental procedure with proper parameter settings.
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4.3. Processing time for the incremental procedure. The processing times of SKL
and IMFPCA for the incremental procedure are compared next. It can be observed that
for mode-1 unfolding, IMFPCA outperforms SKL, while for mode-3 unfolding, it is the
SKL algorithm that outperforms IMFPCA.

Table 9. The total incremental learning processing time for different
modes unfolding corresponding to Figure 6

figure and ε value (a)10−6 (a)10−7 (a)10−8 (b)10−6 (b)10−7 (b)10−8

Processing time
IMFPCA 0.3340s 0.3927s 0.4607s 14.1518s 18.3362s 23.7908s

SKL 11.1481s 0.4938s

In Table 9, it shows that for mode-1, IMFPCA performs faster while for mode-3, the
SKL is faster, regardless of the error tolerance. Those results validate the discussion
on the computational complexity in Section 3.3 and it shows the merit of the proposed
algorithm.

4.4. Real-world application for the online face recognition. The face image dataset
used in this experiment was collected from the face recognition database of University of
Essex [27], the Georgia Tech face database [28] and the AT&T the database of faces
[23]. The dataset considered in this experiment is composed of 240 subjects with 10
images each. All the images are preprocessed to include only the face and normalized
into 168 × 118. For some subjects, the images were taken at different times, with differ-
ent lighting conditions, different facial expressions (open/closed eyes, smiling/not smiling,
etc.) and different facial details (glasses/no glasses, etc.). Figure 7 provides sample images
from the database as illustrative examples.

Figure 7. Sample images from the dataset used for the incremental face
recognition experiment

Different from the traditional face recognition system with a certain training set, the
training set of the online face recognition increases as more faces are introduced. As
one application of the proposed algorithm, a simple system is designed with an arbitrary
threshold and without the verification step. To make the system more robust, usually
adaptive threshold and verification are suggested. The flow chart for the incremental face
recognition is shown in Figure 8.

The so-called L-2 norm distance is used for recognition. In the test, a threshold is given
to evaluate if this image is already in the accumulated data. The projection of the qth

image on mode-n best kĀ(n)
eigenvectors UĀ(n)

is given as follows: Yq(n) =
(
Aq − Ā

)
×nUT

Ā(n)

for n < N . For storage and computational convenience, the projection of each image
under each mode is rearranged into a vector yq(n) ∈ Rl×1. To classify the test image
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Figure 8. Flow chart for the incremental face recognition procedure

with the projection yt(n), the norm between projections of the two images is determined

as d(q) =
∑N

n=1 ||yt(n) − yq(n)||, where yq(n) represents the projection of mode-n unfolding
of the qth image in in the accumulated set. The index of min(d) gives the preliminary
recognition result in the accumulated data for the testing image. Then it is assumed that
when the distance is less than the threshold, the face is associated to a person in the
accumulated data. Otherwise, this person will be considered as a new subject who is not
yet included in the accumulated images.

Since there are too many combinations among k1, k2 and k3, in our case, we just select
k1 = 2, k2 = 3, k3 = 15 randomly among many other combinations that can be selected.
It provides an example of the incremental face recognition experiments, where the batch
number is set at 100. This batch number is used to indicate that after every 100 images,
the eigenvectors can be updated incrementally (a different number could also be used,
keeping in mind that the larger this number is, the less iterations there would be and the
less meaningful would be the comparison between the two methods).

The threshold [29-32] is chosen based on the following steps. The first 200 images are
used as the basis for the incremental learning with their identification. First, compute the
eigenvectors of the first 100 images. Second, perform the recognition process on the other
100 images using their previous images as the training pool. Third, record the distance
of the 100 images from the recognition process. Fourth, determine the threshold that will
be used for deciding whether the new image is in the previous image data. Since we have
two classes, the optimal approach to select a threshold in bimodal histogram is used as
detailed in Section A.3 of the Appendix.

With the conditions set above, the threshold is determined as 2.26 × 107. And the
incremental accuracy is determined by Nc

N , where Nc is the number of images that are
recognized correctly and N is the accumulated number of images that were used for
incremental recognition.
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Figure 9. Incremental face recognition accuracy

From the recognition accuracy results given in Figure 9, the two methods provide iden-
tical performance in terms of recognition rate. However, when comparing the processing
time, the proposed subspace update method has faster speed of 85.3325s than the SKL-
based incremental multilinear PCA of 285.9654s.

Table 10 below provides evidence that the selection of the values of k1, k2 and k3 can
be randomly made and the results will always show that the proposed method is faster
for the same accuracy than the SKL-based method.

Table 10. Processing time and accuracy for different parameter settings

Proposed/SKL k1 = 2, k2 = 2 k1 = 2, k2 = 4 k1 = 4, k2 = 2 k1 = 4, k2 = 4

k3 = 10
Time 86.3s/286.0s 84.8s/289.5s 86.2s/289.6s 87.2s/298.4s

Accuracy 88.1%/88.1% 89.7%/89.7% 89.3%/89.3% 90.2%/90.2%

k3 = 20
Time 86.6s/288.7s 87.5s/291.3s 88.2s/294.5s 87.0s/292.0s

Accuracy 89.2%/89.2% 90.1%/90.1% 89.8%/89.8% 90.6%/90.6%

It should be noted that the proposed method focuses on improving the computational
efficiency for the incremental multilinear PCA. There are already many algorithms pro-
vided that can improve the recognition accuracy such as LDA, ICA, Kernal PCA and
other PCA related algorithms [33-35]. For those cases, when the incremental multilinear
process is necessary, the proposed method can also be adopted to reduce the computa-
tional complexity without loss of accuracy.

5. Conclusion. This study introduced a new integrated incremental multilinear method
that combines an incremental modified fast PCA (IMFPCA) and the sequential Karhunen-
Loeve (SKL) that was tested for incremental face recognition. The incremental accuracy
and processing time for IMFPCA and SKL were thoroughly examined. Mathematical
derivations prove the advantage of fast processing speed when combining these two meth-
ods without compromising accuracy. The key aspect of this research is in establishing an
effective method for estimating leading eigenvectors in an accurate and computationally
efficient way as a critical first step. The results were supported by experimental evalu-
ations involving different tests on the AT&T face database and MNIST database. The
proposed method was tested for incremental face recognition using all three face databases
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(the AT&T database, the database from University of Essex and the face database from
Georgia Institute of Technology). The results were obtained with a much faster speed
than traditional SKL while achieving the same recognition accuracy rate in the incremen-
tal process. These improvements in results show that accurate estimation of the leading
eigenvectors as a critical first step is a meaningful contribution that led to the development
of this new method for incremental learning.
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Appendix A.

A.1. Proof of the proposition and the corollary. Since the proposition is considered
as a special case of the corollary when the forgetting factor is 1, the proof for the corollary
will be analyzed first.

This proof is to show the theoretical derivation of equation

ϕC̄(n)
= f 2

kA(n)∑

i=1

λĀ(n)
(i)UĀ(n)

(:, i)UĀ(n)
(:, i)T + B̄(n)B̄

T
(n)

+
IA
NIB

N(IA
N + f 2IB

N)

(IA
N + IB

N)
2

(
MA

(n) − MB
(n)

)
(MA

(n) − MB
(n))

T

for IMFPCA and equation

B̂(n) =

[
B̄(n),

√
IA
NIB

N(IA
N + f2IB

N)

(IA
N + IB

N)2
(MA

(n) − MB
(n))

]

and

R(n) =

[
fdiag(λĀ(n)

) UĀ(n)

0 B̃(n)

(
B̂(n) − UĀ(n)

UĀ(n)T
B̂(n)

)
]

,
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where B̃(n) = orth
(
B̂(n) − UĀ(n)

UĀ(n)

)
for SKL with the forgetting factor f included.

The mean tensor for a tensor sequence A ∈ RI1×I2...×IAN is defined as MA = 1
IAN

∑IAN
i=1 A(:,

. . . , i) where MA ∈ RI1×I2...×IN−1 . Similarly, for the new tensor sequence B ∈ RI1×I2...×IBN ,
the mean computed in the same fashion as for A is MB ∈ RI1×I2...×IN−1 .

The centered tensor sequences are given by Ā(:, . . . , i) = A(:, . . . , i) − MA and B̄(:,
. . . , i) = B(:, . . . , i) −MB, where i = 1, . . . , IA

N or IB
N . Then a new tensor sequence C is

generated as C = [A,B] to yield C ∈ RI1×...×(IAN +IBN ).

Suppose further that the parameters provided are eigenvectors UĀ(n)
∈ RIn×kA(n) , eigen-

values λĀ(n)
∈ RkA(n)

×1
for the mode-n unfolding matrix Ā(n), mean tensor MA of tensor

A and new tensor sequence B with mean MB. Let MC be the mean tensor of C, and
X (i) = X (:, . . . , i) be one tensor object in the tensor sequence. We can compute the co-
variance matrix for mode-n unfolding matrix C̄(n) with the forgetting factor f as follows:

ϕC̄(n)
=

IAN∑

i=1

(f(C(i)(n) − MC
(n)))(f(C(i)(n) − MC

(n)))
T

+

IAN +IBN∑

j=IAN +1

(
C(j)(n) − MC

(n)

) (
C(j)(n) − MC

(n)

)T

=f2

IAN∑

i=1

(
A(i)(n) − MA

(n) + MA
(n) − MC

(n)

) (
A(i)(n) − MA

(n) + MA
(n) − MC

(n)

)T

+

IBN∑

j=1

(
B(i)(n) − MB

(n) + MB
(n) − MC

(n)

) (
B(i)(n) − MB

(n) + MB
(n) − MC

(n)

)T

=f2ϕĀ(n)
+ ϕB̄(n)

+ f2IA
N

(
MA

(n) − MC
(n)

) (
MA

(n) − MC
(n)

)T

+ IB
N

(
MB

(n) − MC
(n)

) (
MB

(n) − MC
(n)

)T

Since the relation among MA, MB and MC is given by MC = 1
IAN +IBN

(IA
NMA + IB

NMB),

we can simplify the formula above to yield

ϕC̄(n)
= f 2ϕĀ(n)

+ ϕB̄(n)
+

IA
NIB

N(f2IB
N + IA

N )

(IA
N + IB

N)2
(MA

(n) − MB
(n))(M

A
(n) − MB

(n))
T

Therefore, for IMFPCA algorithm, the mode-n covariance matrix for the sequence with
mean update is given by

ϕC̄(n)
= f2

kA(n)∑

i=1

λĀ(n)
(i)UĀ(n)

(:, i)UĀ(n)
(:, i)T + B̄(n)B̄

T
(n)

+
IA
NIB

N(f 2IB
N + IA

N )

(IA
N + IB

N)2
(MA

(n) − MB
(n))(M

A
(n) − MB

(n))
T ,

which completes the proof.
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Figure 10. Bimodal histogram example

For the SKL algorithm as s second part of the Proposition, we have

ϕC̄(n)
= ϕĀ(n)

+ B̄(n)B̄
T
(n) +

IA
NIB

N(f 2IB
N + IA

N )

(IA
N + IB

N)2
(MA

(n) − MB
(n))(M

A
(n) − MB

(n))
T

= ϕĀ(n)
+

[
B̄(n),

√
IA
NIB

N(f 2IB
N + IA

N )

(IA
N + IB

N)2
(MA

(n) − MB
(n))

]

[
B̄(n),

√
IA
NIB

N(f 2IB
N + IA

N )

(IA
N + IB

N)2
(MA

(n) − MB
(n))

]T

And recall that this equation can also be expressed as ϕC̄(n)
= ϕĀ(n)

+B̂(n)B̂T
(n). Therefore,

the mode-n unfolding of B with mean update is generated simply by using B̂(n) as derived
below

B̂(n) =

[
B̄(n),

√
IA
NIB

N (f 2IB
N + IA

N )

(IA
N + IB

N)
2

(
MA

(n) − MB
(n)

)
]

Moreover, take the forgetting factor in f 2ϕĀ(n)
into consideration, the matrix R(n) is

generated as 


fdiag

(
λĀ(n)

)
UĀ(n)

0 B̃(n)

(
B̂(n) − UĀ(n)

UĀ(n)T
B̂(n)

)



 ,

where B̃(n) = orth
(
B̂(n) − UĀ(n)

UĀ(n)

)
.

In the case, where f = 1, then the equations for the Proposition can be obtained.

A.2. Proof of the statement in Section 3.3. Using the same definitions provided
in the Proposition, for the last mode unfolding, we have A(N) ∈ RIAN×I1...IN−1 , B(N) ∈
RIBN×I1...IN−1 and C(N) ∈ R(IAN +IBN )×I1...IN−1 . Since the procedure applies to their transpose,

it gives AT
(N) ∈ RI1...IN−1×IAN , BT

(N) ∈ RI1...IN−1×IBN and CT
(N) ∈ RI1...IN−1×(IAN +IBN ). In order

to follow the Pseudocode and be consistent with the computational complexity definition,
we set Inew

N = Iold
1 Iold

2 . . . Iold
N−1, then let Inew

1 , Inew
2 , . . . , Inew

N−2 = 1 and IA
N−1

new
= IA

N ,

IB
N−1

new
= IB

N to obtain AT
(N) ∈ RInew

N ×Inew
1 Inew

2 ...IAN−1
new

, BT
(N) ∈ RInew

N ×Inew
1 Inew

2 ...IBN−1
new

and CT
(N) ∈ RInew

N ×Inew
1 Inew

2 ...(IAN−1
new

+IBN−1
new

).
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A.3. Threshold by bimodal histogram. Consider the bimodal histogram example in
Figure 10, we have PI = Pr(CI) =

∑θ
i=1 Pi and PII = Pr(CII) =

∑N
i=θ+1 di, where θ is

considered as the index of threshold and Dθ the threshold that separates the two classes,
PI is the probability density of distances smaller than the threshold Dθ and PII is the
probability density of distances bigger than the threshold Dθ, and Nd is the number of
the distances in the recognition process.

The mean of the distances of all the images is µ =
∑Nd

i=1 DiPi. And the mean distance
of correctly recognized images and the mean distance of the wrongly recognized images
are defined respectively by µI = 1

PI

∑θ
i=1 DiPi and µII = 1

PII

∑Nd
i=θ+1 DiPi.

The threshold is optimal when the interclass variance given by V (Dθ) = PI(µ− µI)2 +
PII(µ − µII)2 is maximized.

In the example, the parameter chosen are k1 = 2, k2 = 3 and k3 = 15 as mentioned
in Section 4.4 to obtain the histogram shown in Figure 11, which gives the threshold as
2.26 × 107.
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Figure 11. Histogram in our experiment to determine the threshold


