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a b s t r a c t

In this study, a method is proposed based on multilinear principal component analysis (MPCA) for face

recognition. This method utilized less features than traditional MPCA algorithm without downgrading

the performance in recognition accuracy. The experiment results show that the proposed method is

more suitable for large dataset, obtaining better computational efficiency. Moreover, when support

vector machine is employed as the classification method, the superiority of the proposed algorithm

reflects significantly.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, remarkable efforts have been extended into the
face recognition problem [1], especially with the considerable
accessibility to new technologies and the wide range of
commercial applications that have become available.

Common sense dictates that all automatic face recognition
systems should include two key steps. The first step consists of
face detection and feature extraction processes, which is neces-
sary step to locate the face and extract thereafter face features in
the image that are essential for further processing. The features
extracted will then be fed into the second and critical step that of
face recognition process. The face recognition process remains a
challenging endeavor for researchers due to the myriad of faces
that can be considered and the variability in the circumstances
and ways under which images of these faces are taken. Therefore,
face recognition is considered the focal point of this research. The
Eigenface system for face recognition was initially developed by
Turk and Pentland [2]. Later, other PCA-based face recognition
methods were introduced with the use of independent compo-
nent analysis [3] and kernel PCA [4] applied using the kernel
Hilbert space. For these methods, there is a need to reshape a
series of p MN input images into a matrix with a higher
dimensional matrix of size MN p; this type of matrices may
overburden the computational requirements.

To decrease the effect of computational cost due to the high
dimensionality, Yang et al. [5] proposed the 2D PCA approach for
face recognition which reduced the computational complexity
significantly and improve the recognition accuracy. And Visani
et al. [7] prove the better robustness of 2D PCA. Various other
ll rights reserved.
studies [9–14] followed this trend with the intent to improve the
performance of 2D PCA. Nguyen et al. [15] proposed a random
subspace 2D PCA which combines 2D PCA with the random
subspace technique. In this method, not only the largest
eigenvectors are considered, but also some eigenvectors with
non-zero eigenvalues. This method shows better recognition rate
than traditional 2D PCA. Sanguansat et al. [16] and Xu et al. [17]
introduced similar methods as the one proposed in [15]. Pan and
Ruan [18] described a new method to using Gabor features
combining with the (2D)2PCA for palmprint recognition. While Yu
et al. [19] extended the concept of 2D PCA of both vertical and
horizontal direction into the linear discriminant analysis (LDA)
algorithm for face recognition application. Moreover, Yu and
Bennamoun [6] provided the nD-PCA algorithm based on high-
order singular value decomposition and test its validity and
performance on the face recognition grand challenge (FRGC) 3D
scan facial database. Lu et al. [20,21] provide a new framework of
multilinear PCA for dimensionality reduction and feature extrac-
tion with an application to gait recognition. Tao et al. [22,23]
provided the study of geometric mean for subspace selection and
Pang et al. [24] introduced new methods for extracting Gabor
features efficiently using kernalized region covariance matrix for
high dimensional data. And a comparative study for these
traditional methods has been performed in an earlier study [25].

This question posed at this juncture is whether those
computationally efficient methods do actually provide the neces-
sary features or the features provided are indeed sufficient for
solution to the face recognition problem. In retrospect, what these
methods (2D PCA and multilinear PCA) attempt to do is to
introduce more features to enhance the face recognition accuracy
and at the same time achieve computationally efficiency
for feature extraction, in contrast to the traditional PCA. Further-
more, in the classification process, the more features extracted the
more computational time will be needed for all the methods.

www.elsevier.com/locate/neucom
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Consequently, the proposed method based on the multilinear PCA
is designed to reduce the features necessary for face recognition
without compromising on the performance of the recognition
process. Different feature selections (in terms of the different PCA
projections) and classification methods (nearest neighbor classifier
and support vector machines) are compared in the experiments.
2. 2D principal component analysis

2D PCA [5] changes the Eigenface algorithm by keeping the
original images and doing the decomposition directly on the
mean covariance matrix of the images to find the feature basis.
Suppose the training data are composed of M face images Ai with
size m�n. The detailed algorithm of 2D PCA is described as
follows:
(a)
 Compute the average image of all training images A ¼

ð1=MÞ
PM

i ¼ 1 Ai.
(b)
 Construct the covariance matrix C ¼ ð1=MÞ
PM

i ¼ 1

ðAi�AÞðAi�AÞT .

(c)
 Perform Eigen decomposition on C and let X¼[x1,x2,y,xk] be

the matrix consisting of the selected eigenvectors correspond-
ing to the largest k eigenvectors.
(d)
 Project a sample into this subspace to find the features
Yi ¼ ðAi�AÞT X.
(e)
 Perform the classification based on the features.
3. Multilinear principal component analysis

With the MPCA method, the training images are rearranged
into a 3D tensor as SARI1�I2�I3 , where I1 is the height of the
images, I2 is the width of the images and I3 presents the number of
images used in the training phase. The multilinear PCA algorithm
can be summarized as follows:
(a)
 Compute the mean matrix A ¼ ð1=I3Þ
PI3

i ¼ 1 Ai.
(b)
 Center the training tensor Ŝ ¼ ½A1�A,A2�A, . . . ,AI3
�A�.
(c)
 Unfold tensor into a matrix. For different modes, the
unfolding matrices are different. The elements in the mode-

n unfolding matrix are defined by ðŜðnÞÞðindexÞ ¼ ai1 i2 i3 , where

index¼

�
in,
Pnþ1

m ¼ 3 ðim�1Þ
Qnþ1

p ¼ m Ip

� � Q1
p ¼ n�1 Ip

� �
þ

P1
m ¼ n�1

ðim�1Þ
Q1

p ¼ m�1 Ip

�� �
.

(d)
 For a given mode-n, find the eigenvectors through covariance

matrix CðnÞ ¼ T̂ ðnÞT̂
T

ðnÞ, and let XðnÞ ¼ ½x1,x2, . . . ,xkðnÞ � be the

selected eigenvectors corresponding to the largest k(n)

eigenvectors.

(e)
 Two types of feature selections processes can be performed:

(a) using YiðnÞ ¼ ðAi�AÞ�nXT
ðnÞ for different modes and (b) using

Yi ¼ XT
1 ðAi�AÞXð2Þ. It is noted that the features obtained from

the two methods are different; in that, the first one provides

kð1Þ � I2þkð2Þ � I1 features while the second one provides

kð1Þ � kð2Þ features.
(f)
 Perform the classification process on either one of these two
sets of features.
It should be noted that the multilinear PCA for images is similar
to other 2D PCA algorithm provided in literatures [8–14]. The
difference is that when computing covariance matrix for multi-
linear PCA, the step of finding the mean covariance matrix is
ignored. Theoretically the two algorithms provide the same
results working on 2D images. However, multilinear PCA can be
applied to high dimension tensors while 2DPCA only works for 2D
images. Moreover, the superiority of MPCA is already stated in
those literatures.
4. Random subspace method

The random subspace method was first introduced by Ho [26]
is designed to randomly selects different features and constructs
multiple smaller subspaces. This algorithm has been utilized in
[15,16,27], using different implementation methods of the
random subspace.

In [27], the random subspace method is applied for randomly
choose eigenvectors from the whole eigenvector set. The
algorithm random choose k from those m�1 eigenvectors for
features. Recall that for the 2D PCA, there are m�1 eigenvectors
from the decomposition of the covariance matrix.

In [15], the random subspace is applied to the features that
were already found through projection to the first k largest
eigenvectors. The projection to the k eigenvectors is computed as

Yi ¼ ðAi�AÞT X, where YiARn�k. Then the random subspace
method random choose rows from matrix Yi, where the subspaces

are denoted as YiRARR�k, where Ron.
In [16], the random subspace method is used to construct the X

matrix in the 2D PCA algorithm. The first k largest eigenvectors
are determined, while k1 more eigenvectors from the rest non-
zero eigenvectors are chosen by the random subspace method.
The combination of k+k1 eigenvectors is utilized for further
classification.

Since the random subspace method was reported with better
performance when combined with 2D PCA in the literature
[15,16]. In this study, the performance of the random subspace
method combined with the MPCA will be assessed, and the
experimental results are provided.
5. Proposed algorithm

The proposed algorithm integrating MPCA to RSM in a 2-step
method seek an optimized number of features (steps (c)–(e))
without compromising the recognition accuracy. For the multi-
linear PCA, both feature selection methods described earlier are
taken into consideration. Furthermore, two ways of random
subspace methods are implemented. The detail steps for the
algorithm are:
(a)
 Perform the first four steps of the MPCA algorithm.
Branch 1I (RSM1)
Randomly choose k(n)1 more eigenvectors with non-
zero eigenvalues from the rest eigenvectors.
Generate new eigenvectors set XðnÞ ¼ ½x1,x2, . . . ,
xkðnÞ ,xkðnÞ þ1, . . . ,xkðnÞ þkðnÞ1 �.
End
(b)
 Find features of images
Branch 2I (MPCA1)
Find YiðnÞ ¼ ðAi�AÞ�nXT

ðnÞ for mode-1 and mode-2.
Branch 1II (RSM2)
It is known that Yið1ÞARI2�kð1Þ and Yið2ÞARI1�kð2Þ .
Random choose k(1)1 and k(2)1 rows from Yi(1) and Yi(2).
Generate new Yið1ÞARkð1Þ1�kð1Þ and Yið2ÞARkð2Þ1�kð2Þ .
End
Rearrange those features into a vector yi.
End
Branch 2II (MPCA2)
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Compute Yi ¼ XT
1 ðAi�AÞXð2Þ.

Rearrange those features into a vector yi.
End
PCA
(c)
 If yiARk�1, generate new matrix G from the feature vectors
for each image, where GARk�I3 . Find the eigenvectors
Z¼[z1,z2,y,zp] with the first p largest eigenvectors using
SVD. For large dataset, SKL can be used to compute the
eigenvectors.
(d)
 Generate the features for each image as yyi ¼ ZT ðyi�yÞ, where
yyiARp�1.
(e)
 Perform the classification process based on features yyi.
Table 1
Top recognition accuracy (%) among 2DPCA, MPCA1 and MPCA2.
Note, for branch 1, either I or II in the branch can be utilized, or
none of them is utilized. For branch 2, either I or II should be
utilized.

For performance evaluation, different algorithms are imple-
mented including PCA, 2D PCA, MPCA1, MPCA2, 2D PCA+RSM1,
2D PCA+RSM2, and the newly developed MPCA1+RSM1,
MPCA1+RSM2, MPCA2+RSM1 (until step (b)). Based on the
obtained results, the best two methods in terms of recognition
accuracy will then be selected and run through steps (c) through
(e) for optimized feature selection (minimum number of features
and high recognition accuracy). Since MPCA2 has a comparatively
compact feature base of the images, there is no necessary to use
the RSM1 for finding subspaces.
Test PCA 2D PCA MPCA1 MPCA2

9 to 1

Parameters k¼11 k1¼3 k1¼1, k2¼3 k1¼3, k2¼7

Recognition accuracy 97.5 100 100 100

7 to 3

Parameters k¼76 k1¼5 k1¼7, k2¼2 k1¼6, k2¼11

Recognition accuracy 96.67 96.67 97.5 96.67

5 to 5

Parameters k¼43 k1¼5 k1¼3, k2¼1 k1¼7, k2¼3

Recognition accuracy 94.5 95.5 97.5 97

3 to 7

Parameters k¼64 k1¼16 k1¼6, k2¼1 k1¼7, k2¼6

Recognition accuracy 90 90.71 92.5 91.07

1 to 9

Parameters k¼40 k1¼10 k1¼10, k2¼1 k1¼13, k2¼6

Recognition accuracy 71.39 71.94 74.44 73.89

(a to b) are the numbers mentioned earlier, where a is the number of training

images and b is the number of testing images.
6. Experiment results

All the experiments were evaluated using Matlab on Windows
Vista based PC with Intel Core 2 1.60 GHz and 2 G RAM. Images
from the AT&T database have a resolution of 112�92, and 40
subjects with 10 images each included in the database. Fig. 1
shows some sample images from the database. Those images have
different characteristics, such as with or without glasses, and with
different facial expressions.

Different experiments were used to test the different algo-
rithms. The training images are chosen randomly. The first test
uses nine images for training; second one uses seven images for
training, third one uses five images for training, fourth one uses
three images for training, and the remaining images are used in
the phase testing.

The first experiment is run to compare 2D PCA, MPCA1 and
MPCA2, and to find out which parameters yield high accuracy in
the recognition process.

Results given in Table 1 indicate that MPCA1 has a superior
performance in best recognition accuracy than the other two
methods. Although all the algorithms except PCA yield a 100%
Fig. 1. Image examples
accuracy in 9 to 1 test, for all the other tests, MPCA1 has the
highest accuracy.

In the second experiment, only three tests are chosen with the
parameters obtained in Table 1 with the best recognition
accuracy, leaving out the PCA method. The algorithms that were
tested include 2D PCA+RSM1, 2D PCA+RSM2, MPCA1+RSM1,
MPCA1+RSM2 and MPCA2+RSM1 (these algorithms are combi-
nations of different RSM algorithms in the proposed algorithm
before step c under branch 1a and branch 1b as described earlier).
Moreover, since MPCA2 already has very compact features, there
is no need to test on the combination with RSM2. The results from
five different combinations are shown in Table 2.

From the results in Table 2, MPCA1+RSM1 algorithm provides
the best recognition accuracy among all other algorithms. When
combining with the RSM algorithm, the parameters for best
recognition accuracy are used which may restrict the result of
RSM. For example, in the 5 to 5 test, the RSM1 cannot improve the
recognition accuracy for MPCA1, while it helps MPCA2 to achieve
higher recognition accuracy randomly. But from 3 to 7 and 1 to 9
tests, it lets all the algorithms have the chance for better
recognition accuracy. Although the highest accuracy obtained is
better with the combination of the RSM, the mean recognition
from the databases.
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Table 2
Recognition accuracy (%) among 2D PCA+RSM1, 2D PCA+RSM2, MPCA1+RSM1, MPCA1+RSM2 and MPCA2+RSM1 (short term in the table: 2DR1, 2DR2, M1R1, M1R2 and

M2R1 respectively).

Test NN# 2DR1 2DR2 M1R1 M1R2 M2R1

Parameters k(1)1¼5 k(1)1¼50 k(1)1¼5 k(1)1¼50 k(1)1¼5

k(2)1¼5 k(2)1¼50 k(2)1¼5

5 to 5 5 95.47 94.66 97.1 96.7 96.26

[94.5,96] [93,95.5] [95,97.5] [94.5,97.5] [94,97.5]

10 95.41 94.76 97.18 96.73 96.52

[94.5, 96] [93, 96] [94.5, 97.5] [95.5, 97.5] [94,97.5]

15 95.43 94.58 97.20 96.52 96.68

[94.5,96] [93.5,95.5] [95.5,97.5] [95,97.5] [95,97.5]

3 to 7 5 90.71 89.99 92.34 91.37 90.96

[90.71,90.71] [87.86,91.07] [90.36,93.21] [88.57,93.21] [90.36,91.07]

10 90.71 90.13 92.36 91.63 90.96

[90.71,90.71] [88.21,91.43] [90,93.21] [90.36,93.21] [90,91.07]

15 90.71 90.11 92.24 91.36 90.89

[90.71,90.71] [87.5,91.79] [90.36,93.21] [89.64,92.86] [90,91.07]

1 to 9 5 71.98 71.89 73.85 72.28 73.16

[71.39,72.22] [70,74.17] [70.28,74.72] [70,75.56] [70.83,73.89]

10 71.88 71.62 73.81 72.14 73.19

[70.83,72.22] [70,74.17] [72.22,74.72] [70.28,74.44] [71.11,73.89]

15 72.01 71.79 73.94 72.21 73.08

[71.11,72.22] [69.44,73.89] [73.06,74.44] [69.72,73.89] [71.11,73.89]

The parameters for 2D PCA, MPCA1 and MPCA2 are adopted from Table 1, which gives the best recognition accuracy. Different numbers of classifiers (5, 10 and 15) are

given for the feature selection. The result in this table are presented as the mean accuracy of 50 trails followed by two values within brackets as [a,b] where a is the

minimum accuracy and b is the maximum accuracy.

Table 3
Best recognition accuracy (%) for MPCA 1_PCA and MPCA 2_PCA.

Tests Feature # with

further reduction

MPCA 1_PCA MPCA 2_PCA

Feature # Accuracy Feature # Accuracy

5 to 5 17 388 97 21 97

19 388 97.5 — —

3 to 7 33 664 92.14 42 91.07

42 664 92.5 — —

1 to 9 37 1032 73.89 78 73.89

39 1032 74.44 — —

When the best accuracy for MPCA 1_PCA is achieved with the minimum dimension, the recognition accuracy for MPCA 2_PCA is also given. Since the dimension for MPCA

2_PCA to achieve the best accuracy is less than MPCA 1_PCA. While the best accuracy for MPCA 1_PCA is given alone.
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accuracy rate did not improve over the different number of
classifiers used [15,16]. Therefore, the next experiments do not
combine RSM with MPCA1 and MPCA2, and involve only the
following combinations: MPCA 1_PCA and MPCA 2_PCA. In these
experiments, MPCA1 and MPCA2 use the parameters yielding the
best accuracy from Table 1.

The results shown in Table 3 prove that the proposed method
MPCA 1_PCA performs better than MPCA 2_PCA in terms of the
recognition accuracy while maintaining similar feature
dimensions. Further dimension reduction for MPCA2 is not as
necessary as for MPCA1, since MPCA2 has already a highly
compact feature basis. Also there are still a lot of redundant
features in the feature base of MPCA1. For example, from the tests
1 to 9, it requires 1032 feature dimension after MPCA 1 to achieve
the best accuracy 74.44%. Applying PCA to the feature shows only
39 are enough to obtain the same accuracy. With less features, the
processing time will be reduced as a gain. In the next experiment,
the processing time for the nearest neighbor classifier (NNC) is
compared. All parameters are set as in the previous experiment
(Table 4).

The processing times for the two algorithms using NNC are
almost the same and the processing time for MPCA 1_PCA is longer
for the additional decomposition and projection processes.

To verify the benefits gained with the proposed algorithm, a
larger dataset is utilized. The face images are collected from the
AT&T database [28], the database from University of Essex [29]
and the face database from Georgia Institute of Technology [30].
The collective dataset composed of the above three datasets
contains 240 subjects with 10 images for each subject for a total
of 2400 images. All the images are cropped with the face
remaining and normalized into 168�118 resolutions. Moreover,
images in the database from the University of Essex and the face
database from Georgia Institute of Technology are color images,
and they are converted into grayscale for the test.

Because of the largeness of the collective dataset, values for k1

and k2 are assigned both a moderate value of 3 based on the prior
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Table 4
Total processing times for MPCA1 and MPCA 1_PCA algorithm based on the

parameters obtained in the previous tests using NNC algorithm.

Tests Feature # Total processing time (s)

MPCA1

5 to 5 388 12.3553

3 to 7 664 8.4241

1 to 9 1032 5.6160

MPCA 1_PCA

5 to 5 19 12.6985

3 to 7 42 8.6425

1 to 9 39 6.4740

Table 5
Processing time and recognition accuracy (%) for MPCA1 and MPCA 1_PCA

algorithm using NNC algorithm and SVM algorithm.

Tests Feature # NNC SVM

Accuracy Time (s) Accuracy Time (s)

MPCA1

7 to 3 858 96.67 41.1687 96.67 203.2693

5 to 5 858 94.75 40.9347 95.42 246.9652

3 to 7 858 92.2 62.3068 92.74 222.3638

MPCA 1_PCA

7 to 3 54 97.22 39.5775 96.81 46.6755

5 to 5 40 94.83 30.1862 95.42 53.7111

3 to 7 30 92.44 47.2839 92.26 48.6411

PCA

7 to 3 54 77.5 19.4377 82.5 30.3578

5 to 5 40 67 20.9977 71 35.5838

3 to 7 30 43.93 15.2101 43.29 35.1314

For MPCA1, choose k1¼k2¼3 and for further reduction, the feature number

(k1 � I2þk2 � I1) is shown in the table.
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results given in Table 1 so as to run a generalized test for both
methods (with no guarantee for the best accuracy), since the test
is to determine the different processing requirements. A feature
number for additional Eigen decomposition is obtained with best
accuracy for NNC algorithm (with no guarantee for best accuracy
using SVM [31]). Since both MPCA1 and MPCA 1_PCA assume
same processing time for image loading and eigenvector finding,
the processing time shown in Table 5 is the total time for the
different additional steps required for MPCA1 and MPCA 1_PCA (as
detailed in Proposed Algorithm Section 5). Moreover, in order to
highlight the better performance of MPCA 1_PCA, the comparative
results of the direct dimension reduction with PCA to the feature
number used by MPCA 1_PCA are shown in Table 5.
7. Conclusion

Through the comparison between different methods, the MPCA

1_PCA algorithm can be used for face recognition with fewer
features without downgrading the performance in recognition
accuracy. A significant contribution of this study is in significantly
reducing the feature number and yet consolidating a faster
processing time with equally high recognition accuracy. Note
that these good results are obtained for both NNC and SVM
methods. From the results given earlier in Table 5, it can be
observed that for the NNC classification, there are no significant
differences in processing time between MPCA1 and MPCA 1_PCA.
However, MPCA 1_PCA method is faster in all the tests, noting that
the larger is the dataset the more pronounced is the difference in
processing time between MPCA1 and MPCA 1_PCA. The recogni-
tion accuracy for MPCA 1_PCA for most times is better than
MPCA1; this is on the basis of the pre-assigned value for
k1¼k2¼3. For the SVM classification, it is obvious that MPCA

1_PCA algorithm is more computationally efficient than MPCA1
algorithm, although the accuracy is somewhat similar but with
the stipulation that the reduced feature number is used with the
best accuracy obtained using NNC and not the SVM. Moreover, by
comparing the results obtained using PCA of the same feature
number as MPCA 1_PCA, the benefits in term of the recognition
rate of the proposed algorithm is obvious.
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