
n
r tow

@IEEE TRANSACTToNS oN

KI{OWIEDGE AI{I)
DATA EI{GII{EERIIIG

A publication of the IEEE Computer Society

q ! fls
qq'trL

MARCH / APRIL 1999 VOLUME 1-I NUMBER 2 ITKEEH (rssN 1041-4347)

REGULAR PAPERS
Dynamic Programming in Datalog with Aggregates

Techniques for Increasing the Stream Capacity of A High-Performance Multimedia Senter

Resource Scheduling In A High-Performance Multimedia Sert er

Join Index Hierarchy: An Indexing Structurefor Efficient Navigation in Object-Orientecl Databases

A Hybrid Estimatorfor Selectivity Estimation
Y. Ling, W. Sun, N.D. Rishe, and X. Xiang

265

284

303

321

338

CORRESPONDBNCE
Proof of the Correctness of EMYCIN Sequential Propagation (Jnder Conditional Independence Assumptions

355

1998 TKDE Reviewers List 360

Dr. Naphtali Rishe
Florida International University
School of Computer Science
Southwest 8th St. and 107th Avenue
University Park
Miami, FL 33199

CoupurER
SOCIETY

http://computer.org . tkde@computer.org

qq-lrl
=

Journal of Intelligent Manufacturing

Volume 10 Number 6 December 1999 ISSN: 0956-5515

Special issue on C,omputer-integrated Manufacturing Systems :

Recent Development and Applications

CONTENTS

471

MENGCHU ZHOU and YUSHUN FAN
Editorial

PASCAL BERRUET, ABDOUL KARIM ARMAND TOGUYENI,
SAMIR ELKHATTABI and ETiENNE CRAYE

Tolerance evaluation of fl exible manufacturing architectures

JIACTIN V/ANG and YI DENG
Incremental modeling and verification of flexible manufacturing
systems

SRINI RAMASV/AMY and YI YAN
Interactive modeling and simulation of virtual manufacturing
assemblies: An agent-based approach

NAIQI WU, NING MAO and YANMING QIAN
An approach to partner selection in agile manufacturing

SEONG JIN YIM and DOO YONG LEE
Scheduling cluster toois in wafer fabrication using candidate list
and simulated annealing

MU DER IENG, CHI.]NG SHI LIN and YI SHENG HUANG
Petri net dynamics-based scheduling of flexible manufacturing
systems with assembly

PINGTAO YAN, MENGCHU ZHOU, BAOS}MNG HU
and ZUREN FENG

Modeling and control of workstation level information flow
FMS using modified Petri nets

LUCA FERRARINI, LUIGI PIRODDI ANd STEFANO ALLEGRI
A comparative pedormance anaiysis of deadlock avoidance control
algorithms for FMS

YUSHLIN FAN, SHI WEI and CIMNG WU
c-.^-i^^ .-,:l^ ^--l:^^.1^- i-i^--^rl^- -l^rf^- f^- rrTIlfQLrrLgrPr rJg wruE 4PPrrlarrul! urlc6lcLrvrl yraLrvrt!l lvl urrvrg

implementation

f ournal of Intelligent Manufacturing is published by
Kluwer Academic Publishers
B oston/Dordrecht/London

485

503

519

531

J.S.A

in rhe

mal or
(ccc)

rcsale-

om the \a
7Y

-L'.gs=
t3'"

il.

:-
n,

to

)n,

nd

ss

Jel

cal

co,

its.

et

'of
liry.

ito
tion
and

ne s,

:hes

Ienls

rring
ctut--

rf, A.

yin
xible

)6) A
FMS.

th an

Proc.

t des

INC ES:

itrie Ls ,

pace

rs. I

Journal of Intelligent Manttfacturing (1999) L0, 485-502

Incremental modeling and verification cf flexible

manufacturing systems*

JIACUN WANG andYI DENG

School of Computer Science, Florida International University

Received March 1998 and accepted August 1998

An FMS is a typical real-time concurrent system composed of a number of computer-controlled
machine tools, automated material handling and storage systems that operate as an integrated system
under the control of host computer(s). The growing demand for higher perfornance and flexibility in
these systems and the interlocking factors of concurrency, deadline-driven activities, and real-time
decision making pose a significant challenge to FMS design, especially in terms of control and

scheduling. A formal engineering approach that helps handie the complexity and dynamics of FMS
modeling, design and analysis is needed. A real-time architectural specification (RAS) modei and its
appiication in the modeling of flexible manufacturing system (FMS) are presented. RA.S combines

mature operational and descriptive formal methods, in particular time Petri nets (TPN) and real-time
computational tree logic (RTCTL), to form an integrated system model for architecturai specification
and analysis of real-time concurrent systems such as FMS. The contribution of RAS is twofold: First,
it provides a formal system to systematically maintain a strong correlation between (real-time)
requirements and design and to verify the conformance of the design to the requirements, which
helps enhance traceability and thus to help us to achieve high assurance in design, Second, it offers
better scalability in modeling and analysis, which provides an effective way to deal with complexity
in the application of formal methods. These two features together make RAS a suitable model for the
design of FMS.

Keyu,ords: Formal system design, reai-time systems,

logic, flexible manufacturing systems

1. Introduction

time Petri nets, real-time computational tree

Fiexible manufacturing systems (FMS) provide a

means to achieve better quality, lower cost, and

smaller lead-time in manufacturing. An FMS is a

tlpical reai-time concurrent system composed of a

number of computer-controlled machine tools, auto-

-^1^.l -^+^J^l
L^-.Jl:-.^ ^^A -t^-^-- ^-,^+^-^ +L^+lll4lgu Uld!91ral lldllulurB drlU ilui4BC Jj/niciiir aiidl

*This
work was supported in part by the NSF under Grant No. IIDR-

910'7016, by Air Force Office of Scientific Research under Grant
No. F49620-96-l-0221,by Army Research Office under grant No.
DAAG55-98-1-0428. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily

representing the official polices or endorsements either expressed or
implied by the above named agencies.

operate as an integrated system under the controi of
host computer(s). The growing demand for higher
performance and flexibiiity in these systems and the

interlocking factors of concurrency, deadline-driven
activities, and real-time decision.making pose a

significant challenge to FMS design, especially in
terms of control and scheduiing- Moreover, uncer-
toinrr. ;- --^'1"^f ;a'-ann l/-^"/ladoa finiteLarLtLJ Prvesv!
manufacturing capacity, random machine failures
and repair rates further make the system behavior
more dynamic and hard to predict. Given the

complexity of the FMS design, an ad hoc method is
clearly inadequate and a more rigorous approach

addressing the complexity and dynamics in FMS

modeling, design, and analysis is needed (Elmaraghy
and Ravi, 1992).

In recent years, formai techniques such as Petri nets

486

have been increasingly used in FMS modeling (see

Section 2). As a popular modeling tool for concurrent

and distributed systems, Petri nets provide a rigorous
and operational way to describe and analyze system

properties. ln addition to its rigor and analytic
capability, Petri net models are executable, and thus

can be used as a system prototype for simulation.
Furthermore, Petri nets are capable of describing both
software and hardware, system and environment, at

different ievels of abstraction. These strengths make

Petri nets a powerful modeling tool for FMS.
While offering many advantages, however,

ordinary Petri net models suffer from some problems
that limit their usability and application as a design
model for complex FMS. Petri net-based models tend
to become too large even for a modest-sized problem
(Murata, 1989). The primary concem of Petri nets, like
many other formai techniques, is behavior modeling
and analysis. They, however, lack mechanisms to

structure complex designs in such a way that both
helps enforce design integrity and provide a systematic
and incremental way for design and analysis. For
example, in an FMS, the physical configuration and

the functional behavior of its hardware components,
e.g., machine tools and AGVs, are quite stable and

static. The central issues of design are the coordina-
tion, control, and scheduling of these components. For
a complex FMS, it is necessary to experiment with
different aitematives of control and scheduling
policies against the same hardware configuration. It
is therefore highiy desirable to be able to "piug-in"
the specificationsof various control modules to a FMS
model without having to make major changes or re-
construct the entire system model each time. Most
Petri net-based modeis do not provide explicit or
adequate support to this task.

In this paper, we go beyond conventional Petri nets

modeling and present an integrated formal method to
support scalable and evolutionary design of real-time
concurent systems from the perspective of time-
dependent architectural modeling and analysis. Our
approach is based on two basic hypotheses: (1) The
ability to systematicaliy maintain a strong correlation
between requirement and design at every design level
is the basis to achieve quality design. An effective
way to achieve such strong design traceability is to
incorporate (real-time) requirement constraints as an

integrai part of design modeling. (2) Constraint-driven
compositional analysis sensibly integrated as a part of
design process is a powerful means to control

Wang and Deng

complexity and cost in analysis. Based on these

principies, we have developed the Real-time
Architectural Specification (RAS) model (Deng er

al., 1997). RAS is built on top of Time Petri nets

(TPN) (Berthomieu and Diaz, 1991) and Real-Time
Computational Tree Logic (RTCTL) (Emerson and

Mok er al., 1992). Petri nets are a weil-klown
operational model best suited for modeli.ng the control

of distributed systems but cumbersome for specifying
rules and constraints. By contrast, temporal logic, a
popular descriptive formalism, is best suited for
describing rules and constraints but not control and

composition of systems. By integrating them into one

coherent architectural model, RAS estabiishes two
desirable features: First, it provides a formal system to

systematically maintain a strong correlation between
(real-time) requirements and design and to verify the

conformance of the design to the requirements.

Second, it offers better scalability in modeling and

analysis and provides an effective way to deal with
complexity in the application of formal methods.

These two features together make RAS a suitable

model for the design of FMS.
The rest of the paper is arranged as following:

Related work is discussed in Section 2. The RAS
model, including its conceptual framework and

formal definition, is given in Section 3. In Section 4,

we iliustrate the use of RAS to give an incremental
modeling of an FMS. Finally, in Section 5, we propose

an incremental verification technique based on the

RAS model. The formal description of a set of
component-levei TPN reduction rules which support

our incremental verification technique are given in
Appendix.

2. Related work

Petri nets have been applied to the specification,
verification, performance analysis, real-time conffol
and simulation of FMS. Net-based models have also

been used to obtain production rates, throughput,
deiays, capacity, resource utilization, reliability
measures and deadlock avoidance for FMS. The

detaiis of these applications can be found in surveys in
(D'souza and Khator, 1994; Shukla and Chen,199l).
Some typical uses of Petri nets in FMS modeling are

iisted below (Brussel et al., 1993; Camt:rri et al.,
1993; Huang and Chang, 1992; Knapp and Wang,

1992;Ln and Lee, 1995; Meng et a|.,1995; Qadri and

Int

Rc

Zh

al.

'l

netr

pro
goa

atic
con

F

mo(

sysl

mo(

Bru
al.,
elQ
r99
and

are

net r

certi

Hov
sem

An
Nets

fom
abili

.n8

me

et

ets

me

rnd

wn

rol
Lng

,a
for
md

)ne

wo
rto
)en

the

lts.
md

'ith
'ds.
ble

ng:

AS
md
t4,
ltal
ose

the
of

rort
in

.on,
trol
rlso

?ut,
lity
Ihe
sin
)7).
ate
al.,
u1g,

and

Incremental ntodeling and verification of fexible manLlfacturing slstems

Robbi, 1994; Soiot and Vliet, 1994; Wang, 1996;

Zhou and Dicesare, 1992:Zhot et al.,1993;Zhou et

aL.. 1995; Zuberek, 1995):

o Nets can be used as a graphical modeling tool to
visu-alize complex control structure and systems

behavior.
o The nets notation precisely captures the pre-

cedence relations and structural interactions of
stochastic, concurrent and asynchronous events,

which can be used to support the development of
operating strategies for work scheduling andjob
sequencing.

o The executibility of Petri net models enables

them to be used as simulation tools to evaluate
control and scheduling policies.

o Real-time Petri net models can be used to design
and implement real-time control systems.

r Their anaiytical capability supports deadlock
detection, performance evaluation, and verifica-
tion of real-time schedulability.

o Conflicts and buffer sizes can be modeled easily
and efficientiy.

o Net models can help identify production bottle-
necks, and to assess the capacity and utilization
of equipment.

Those studies deal with the issue of how to use Petri
nets to address specific modeiing and analysis
problems in FMS. We address a different issue. Our
goal is to develop an engineering practice to system-
atically and cost-effectively apply Petri net theory in
complex FMS modeiing, design and analysis.

Related to our approach, several structural Petri net
modeis are proposed both to provide a mechanism for
system composition and to manage complexity in
modeling. These include PROTOB (Baldasssri and

Bruno, 1991), OBJSA nets (Battiston and Cindio et

al.,1988), the Cooperative Objects Language (Bastide

et ctl., 1993), and OPNets (Emerson md Mok et al.,
1992). An application of OPNets in FMS modeling
and analysis is presented in (Wang, 1996), where they
are used to represent part of an object-oriented Petri
net cell control modei. Each of these models provides
certain object-based structure for system composition.
However, none of these models has a formal
semantics for modeling timing and timed behavior.

A rnore recent modei, Communicating Time Petri

Nets (CmTPN) (Bucci and Vicario, 1995), has a
formal semantics about time, and supports reach-
ability-based compositional verifi cation.

481

On the opposite side of Petri nets are various logic-
based models. Logic provides a more abstract

approach to the description and analysis of FMS. In
temporai logic, various temporal operators are

provided to describe and reason about how the truth-
value of assertions varies over time. It has proven to

be a very useful formalism for reactive systems

(Pnueli, 1977). RTCTL (Emerson er al., 1992), a real

time propositional branching time logic, has been a

popular choice for describing real time systems like
FMS. It ailows us to express various desired types of
behavior, including safety, Iiveness, and bounded-

fairness.
As an operational modei, Petri nets (with structural

extensions) are well suited to model FMS as abstract

programs, which can be formulated as the parallel
composition of subsystems. However, it is cumber-

some for describing system requirements. As a

descriptive model, temporal logic is appropriate for
specifying rules and constraints. However, it does not

reflect the component/interaction view relevant for
design level specification of FMS. So, when used

alone, neither of these two methods is sufficient for
architecture modeling of an FMS. In Mandrioii et a/.

(Mandrioli et al., 1995), the advantage of using the

TRIO logic and TPN together for system specification

and verification are suggested and explored. Uniike
our work on RAS, however, it is unclear to us what the

concrete objective of the suggested integration would

be. Moreover, a formal framework was yet to be

developed to show how to integrate TRIO with Petri

nets.

3. RAS models

In this section, we first give a conceptual framework
of the RAS model. Then we give a brief introduction
to TPN and RTCTL, two underlying formal methods

of our RAS modei. Finally, we formalize the RAS

notation.

3.1. Conceptual framework of RAS model

Our goal is to develop both a rigorous approach to

enhance the integrity of design and an evoiutionary
process to control complexity in system modeling and

analysis. To the end, RAS models a distributed system

as a multi-leveied composition of components and

real-time constraints that the components and their

488

compositions must satisfy at every design level- As

refinement to the system design goes on, these

architectural constraints are also decomposed and

propagated to the lower ievels of system architecture

(possibly new constraints are introduced). The

consistency between higher-level and iower-level

design constraints are either automaticaliy maintained

or verified to ensure consistency and progressive

characteristics ol analysis.
More specificaliy, an RAS model consists of three

basic eiements'. c omp o n e ti nto de I s, i nt e r - c o mp o rLe nt

corutections (connections in brief), and architectural
constraints (constraints in brief) organized into

multi-design levels. The component models describe

the real-time behavior and communication interface

of the components. The connections specify how the

components interact with each other and, in tum. form

the s-r,slerr contposition ntodel. Finally, the constraints

define real-time system requirements imposed on the

components and connections. All connections are

def,ned using only communication interfaces, s'hich
gives us the flexibility to change the design of
individual components without voiding the analysis

of the entire system.

A typical RAS model is illustrated in Fig. 1. The

hrgh-levet design has three components-A 1, A?, and

43. Component 43 is further refined at the next design

level into the composition of components B 1, 82, and

Wang and Deng

83. The design at any level must satisfy the

constraints specified at that level. A component

model has two parts: (1) contmunication ports

(denoted graphically by haif circles), includtng input

ports (e.g., portl) and output ports (e.g., porr8)' and

(2) a TPN that describes the time-dependent,

operational behavior of the component, that is, it
defines the semantics associated with the ports. The

communication between a component and its envir-

onment is solely through the ports. A connection

represents a charinel of interaction between compo-

nents. It is modeled by a simple TPN and deflnes the

direction of message flow and delay in the channel'

For example, components A1 and A2have a request-

reply relationship that is modeled by the bi-directional
channel. At any given design level, porls can also be

divided inlo external ports, e.g., portl, and intenwl
ports, e.g., port3 and port{. An internal port describes

interaction between components within a system (or

subsystem), while an external port describes the

inputs and outputs from and to the environment of a

system (or subsYstem).

ln addition to serving as a component's commu-

nication inierface, the ports also provide the linkage

between the operational design (components and

connections) and the descriptive architecturai con-

straints. In particular, time-critical system constraints

are specified by RTCTL formulas defined over ports,

Incr

whr
whi
pon
prol
con
onll
rev(
take

witl
pro(
isr
moc
that
boxt
ofa
arch
sysf(

guar
men
oblil

Fr

cons

cotls
the s

COIlS

derir
origi
main
invol
ensul

these

deriv
archi
logic
consl
CONSI

time-
envir
const
comp
const
InCSSi

nonn
wide)

3.2. I

in thi
and

methc

iri;,
ti{r:

Fig. 1. Framework of the RAS model

to

IC

1t

t.t

'tt
rd

It,

it
le

r-
)n

)-
ie
,1.

;t-

al

)e

al

or
1e

a

lncremental modeling and verification of flexible manufacturing srstems

where each pofi represents an qtomic proposirion,
which is true at the moment that a token arrives in the

port. These ports constitute the alphabet (atomic

propositions) of the RTCTL formulas that define the

constraints. All constraints are specified using ports
only, no intemai information about the components is
revealed. For example, constraint c, iimits the time
taken in a request-reply interaction between Al and

with A2, and constraint c2 specifies the required
processing time of component A3. This anangement
is criticai to achieve the goals of incremental
modeling and analysis described earlier, as it ensures
that the component designs can be treated as black-
boxes in the construction, understanding and analysis
of a system's architecture. As more detaiied system

architecture is constructed by decomposing one of the

system's components, it becomes possible for us

guarantee the satisfaction of system-wide require-
ments by verifying the new sub-architecture meets its
obligation imposed on its interface.

From the viewpoint of origination, architectural
constraints are divided into two groups, oneis original
constraints, which reflect the user's requirements on
the system under developed, and the other is derived
constraints, which are intermediate constraints
derived from original constraints. Notice that while
original constraints may indeed be few in number,
maintaining functionally correct original values may
involve a large set of interacting components. Thus, to
ensure these original constraints are satisfied, each of
these components will, in tum, be subject to their own
derived constraints. From the viewpoint of function,
architectural constraints in an RAS model can also be

logically divided into three classes: contponent
constraints, environmental constraints, and path
constraints. A component constraint describes a

time-critical property of a component that its
environment expects from it. An environmental
constraint describes a time-critical property that a

component expects from its environment. A path
constraint describes a time-critical property for
message transmission across components, which
normally describes a system-wide (or subsystem-
wide) timing requirement.

3.2. Underlying .formal methods

In this section, we give a brief introduction to TPN
and RTCTL, which are two underlying formal
methods of our RAS modei.

489

A. Time Petri l{ets
A TPN is a tuple (P, T, B, F, Mo, SIW where:

o P is a finite nonempty set of places;
o I is a finite nonempty set of transitions;
o B is the backward incidence function;
o F is the forward incidence function;
o Mo is the initial marking function (P, T, I, O and

Mo together define a Petri net);
o SIM is a mapping cailed static interval,

SIM :T+Qr x (.Q- U co), where Q* is the set

of positive rational numbers.

Let SIM(I,): (r,s,Ps) for some transirion /i, then
the interval of numbers (oi, fi) is called the static

firing interval of transition /,, the left bound aj the

static earliest firing time (state EtrT for short), and the

right bound B', the static latest firing rirue (static LFT
for short).

A state S of a TPN is a pair S : (M ,I) consisting of
a marking M and a firing interval set 1 which is a

vector of possible firing times. The number of entries
in this vector is given in the number of the transitions
enabled by marking M.

Transition t,tsfirable from state S: (M,l) attime
r -f 0 rf :urd only if:

(1) t, is enabled by marking M attime'c;
(2) The relative firing time d to the absolute

enabling time t, is not smaller than the FET of
transition /, and not greater than the smallest of the
LFT's of all the transitions enabled by marking M,
i.e., EFT of tt < 0 < min{LFT of r*}, where ft ranges

over the set of transitions enabled by M.

Assume that transition /i be firable at time r * 0

from state S: (M,I). Then the state S' : (M',1')
reached from S by flring t/ at the relative time 0 can be

computed as follows.

(l) M' is computed, for all places p, as

(Vp)u'(p) : u(p) - I(.r,,p) + o(r,,p);

(2) Il is computed in three steps:

o Remove from the expression of / the intervals
that are related to the transitions disabled when r;

is fired.
o Shift of the value 0 towards the origin of times all

remaining firing intervals, i.e., the intervals that
remain'enabled and so remain in.I, and truncate
them, when necessary, to nonnegative values.

o Introduce in the domain the static intervals of
the new transitions enabled.

u-
ge

rd
n-
ItS

!J,

lll

490

B. Real-Time Computational Tree Logic
An RTCTL Formula is defined as

o Each atomic proposition P is a formula.
o If p,4 are formulae, then so are pnq and

-nr'
o If p, q are formulae, then so are A@Uq),

E(pUq), and EX p.
o If. p, q are formulae and ft is any natural number,

then so arc AQtU<kq) arird. E(pU<kq).

A formula of RTCTL is interpreted with respect to a
temporal structure M: (S,R,L), where S is a set of
states, R is a binary relation on S that is total (so each

state has at ieast one successor), and I is a labeling
which assigns to each state a set of atomic
propositions, those intended to be true at the state.

Intuitively, this temporal structure X represents the

reachability graph of the architecture. A full-path
.t : sgr '!1 1s21 . . . in X is an infinite sequence of
states such that (s;,si*r)eR for each i; intuitively, a

full-path captures the notion of an execution
sequence.

3.3. Formalization of RAS model

An RAS consists of a set of compositions C (a

composition may corespond to a design level, or the

concept of sub-architecture given in Section 3.1) and a

hierarchical mapping fr.'

RAS : (C, ft)

(l) C: (Ct,Ct,...,C), and C': {Cm,Cn,Cs}
fnr eae h tt-. rvhere91,v:!

o Cm is a set of components. Each Cmt eC- is
defined by a TPN. Let

CT PoRTJN

: fttlpeCm,.P,* P oCm1,T: Oj

Cmt'PORT-OUT

: {plpeCry.P,P* oCry.T : @}

Cmt'PORT

- C^i' PORT JN U Cmt' PORT -OUT

Wang and Deng

Cry ' PORT JN is called the set of input ports of
component Cry, Cry.PORT-OUT the set of
output ports of Cry, and Cni.PORI the set of
ports of Crz;. Moreover, for YCm1, CmreCm,

CryPfiCm1'P:A

Cmt'T et Cmp'f : g
o Cnis connection. Cn: (P,T,I,O,Ms,S/) such

that

r'l
Cn'P n lUc^,,c^C.i\Cmj'PORTI: O

r'l
Cn' T n

lU r^,.r^Cni' T)
: g

Also, in the TPN of composition C;,

r-l
Ci' P n

lU c^,,c_Cnti' T) u Cn' P

' cn,,.rf r-tctt'rCi.TnlUr,,,.c^' r)

Let

Cj' PORT : U c.,.c.Cmj' PORT,

Cntj'PORTJNT
: {plpeci.PORT,. P nCi.T
l8 nP* nCi'r * Aj

Cnl'PORT-EXT
: {ptpeCi.PORT.' P aCi-T
:qvP*nCi'f:O\

Ci.PORTJNT is called the set of intrenal ports

of component Cry, Cmj'PORTEXT the set of
outpui ports of C;, and Ci'PORT the set of polts
of C,.

Cs is a set of constraints. Each C1 e Cs is an

RrcTL formula and it only uses ports as its
atomic propositions. The atomic proposition is

true The atomic proposition is true at the

moment r ifi
- marking transition happens at r, and
- the port contains a token in the new marking.
In the temporal structure t: (S,R,t),S
: (M,EM) where M is a TPN marking, and

<p* is the global time when the TPN enters M; R
is a binary relation on S, which is indicated by

FE
E.€

,: l&
iili:li

c(
gi
Er

a

n€

p(

&
a:
to
Sr

mr

Ec

co

iuch

teng

sof
:of
rof
Cm.

ports
set of
I ports

is an

as its
tion is
at the

ukirg.
?,1), s
g, and
.sM;R

rted by

Incremental modeling and verification of flexible manufacturing systems

firing transitions; and L is a mapping:
(M , E *) -Ci ' PORT . ln addition, the following
condition is enforced:

cr,lc,c',

491

Al. PORT JN : {port7,porr3,port9}, Al . PORT _OUT

: {port2,portl}}

CI .PORT : {1tort| ,pot't2,....portl}l

Cl.PORT,]I{T
: {port2, por t3, ..., portg}, Cl . PORT EXT
: {portl,port7}l

C2. ?ORT_EXT : {port7 ,porr8}
: Cl'Cm'A3' PORT

C1.. Cn : {cr,cz},C2. Cn : {.r}
: Cl .Cm'A3'Cn

4. Incremental modeling of an FMS

In this section, we iilustrate the use of RAS to model
an FMS. This will further explain the RAS framework
as well as illustrate the benefits of using the RAS
framework. We focus on the timing properties of an

FMS, which is closely related to the execution delay
of each activity of the system.

4.1. Ovemiew of the system

The manufacturing system is composed of three

subsystems: processing, checking, and repairing
subsystems. These three subsystems run concurrently.
The processing subsystem is composed of 7 machines,
indicated as MlJ. Two types of workpieces,
indicated as Wl and W2, are processed and then
assembled into a new one, indicated as W3. The
processing flow is shown in Fig. 2. That is, W1 and

W2 are first processed by Ml and M2, which results in
wl(r) and w2(1), respectively. Next, Wl(r) is
processed by either M3 or M5, which results in
Wi(2), then by either M4 or M6, which results in
W1(3)' W2 is processed by either M3 or M4, which
results in W2(3), then by either M5 or M6, which

----,r\ -. ., ,.,./3\ ,,,,^rl)
resuits in W-'''. Finaiiy, Wi''' anii Wl''' are further

w2

(1)

ForVCq e C;Cs,denotebyCs7' PORT thesetof
ports which are used as atomic propositions of
Csr. IF

Csk'PORTaCmj'PORT+Q
we say C.sp is defined on Cmi: if

Csk. PORT cCm,. PORT

we say Csp is defined only on Cm,. Let

Cmj. Cs: {Cs.lCs1 eCi.Cs nCsk
.PORT CCMJ.PORT}

(2) VCieC,VCmleC;.Cm,h: Cm1+C,,j f i,
such that

o Cml-PORT : Cj-PORTEXT (2)

c Cml.Csr-CjCs. (3)

In the above definition, Exp. (1) states that all
constraints should be consistent with each other, and it
gives the hori:ontal conslraint consistency condition.
Equation 2 states that when refining a component into
a sub-architecture which may be composed of several

new components, the sub-architecture must take all
ports of the component as all its external ports.
Equation 3 states that when refining a component into
a sub-architecture, the sub-architecture must conform
to all constraints which the component are subject to.

Such a consistency enforces that the system require-
ments are met in every step of the design process.

Equations 2 and 3 together give the yertical interface
c o nsist e ncy c ondit ions.

For exarrrpie, in the RAS modei sho\&'n in Fig. 1,

C : (C1,C2)

C1 . Cnt : {AI, A2,A3}, C". Cm

: {BI, 82, 83}, h(C 1. Cm. A3) : 6,

Cl - Cn: {c,, cz},C2. Cn: {cz}
Al . PORT : {port1, port2, port3, port9, portl\} Fig. 2. The processing flow of the processing subsy.stems.

492

Fig. 3. The processing ffow of the repairing subsystems.

assembied by M7 into W3. W3 is the product of the
processing subsystem.

After receiving a product from the processing
subsystem, the checking subsystem examines whether
the product satisfies quaiity control conditions. If it
does, then the product will be sealed and output as the
fina1 product of the whole system. If it doesn't, it will
be sent to the repairing subsystem for repair. When the
repairing activity is finished, ir will be rerumed ro rhe
checking subsystem and sealed.

The repairing subsystem is composed of 4
machines, indicated by M8-M11, as shown in Fig.
3. An unqualified product W3 of the piocessing
subsystem is first disassembled by M8 into two
workpieces, W1(3) and 1y2ta). y71{r) and W2(3) are
processed by M9 and Mi0, which results in Wl(a) and

W?(a), respectively. Then, W1(a) and W2(+' are

assembled by t.ll1 into W3(r), which is then retumed
to the checking subsystem-

In addition, there are two vehicles, vehicle 1 and
vehicie 2, responsible for the transfer of products
between processing and checking subsystems and
between checking and repairing subsystems, respec-
tively.

The requirements for timing properties of this FMS
design include:

(1) The processing time of the processing sub-

system for each pair of workpieces is not ionger than
25 time units.

(2) The processing time of the checking subsystem
for each product of the processing subsystem is not
lonser than 12 time units.

(3) After the checking subsystem sends an unqua-
lified product to the repairing subsystem, it must
receive the repaired product within 10 time units.

4.2. RAS architecture of the system

In order to capture the profiie of the operational model
of the manufacturing system, we flrst present its RAS

Fig. 4. RAS architecture of the FMS.

architecture in Fig. 4, where each component is
corresponding to a subsystem, namely the processing
subsystem is viewed as component PS, the checking
subsystem as CS, and the repairing subsystem as RS.

Table 1 and Table 2 show the meanings of all pons
and connection transitions.

4.3. Architectural constraints irnposed on the system

In this section, we give the RTCTL formulae for the
three constraints of the FMS design. The first
constraint, c,, is

c{. portl-AF!2sporr2

which is a component constraint and states that the
processing time of the processing subsystem for each

pair of workpieces is not longer than 25 time units.
The second constrainl, c2. is

c2: port3+AF!12por"t4

which is also a component constraint and states that
the processing time of the checking subsystem for
each product of the processing subsystem is not longer
than 12 time units. The third constraint, ca, is

c3 port5+AF52oport6

which is an environmental constraint and states that
after the checking subsystem sends an unqualifled
product to the repairing subsystem, it must receive the

repaired product within 20 time units.
The importance of this step is twofold: First, the

global system requirements are transformed into

port2 port3

Wang and Deng

port6

Ti

P3

T5

port5

T2

P7

T3

portT

Inc.

Tal

Por

por
por
por
por
por

por,
port
pori

SP€t

mol
tem

Cor
q,hz

glol
we'
of rl

AS

imp
arcL

low
reqr
bvl
arch

nenl

desc

incc
petit

Tabl

Plac,

Pr
D

P3

Tran,

Tl
T2

73.
T4

t5

1
t
ti

tl

tn8

t'

n.l2Incremental modeling and verification of flexible manufacturing systems

Tatrle 1. Legends of ports in Fig. 4

rt4 Port Type Description

port I
port2
port3
port4

Port5

port6
portT
portB

input/extemal
output/intemal
input/internal
output/extemal
output/intemal

input/internal
input/intemal
output/intemai

A pair of workpieces are ready for processing
The processing of a product at the processing subsystem is finished
A product of the processing subsystem is ready for quaiity checking
A product of the whole system is available
A unqualified product of the processing subsystem is ready to be transferred to the

repairing subsystem.

A repaired product is ready for processing by the checking subsystem
A unqualified product of the processing subsystem is ready for repairing
The repairing of a unqualified product is finished

1S

ing
ing
RS.

lrts

tem

the
first

the
:ach

rits-

specific constraints on this particular architecture,
more precisely, constraints imposed on the subsys-
tems and connections between the subsystems.
Consequently, we gain a clear understanding about
what roie each subsystem plays in satisfying the
global requirements. This also eases analysis as now
we deal with specific conditions imposed on each part
of the system as oppose to requirement to the system
as a whole. This feature becomes increasingly
important as we approach to more detailed levels of
architectural design where the association between a

low-level system component and a system-wide
requirement becomes much harder to grasp. Second,
by formalizing time-critical requirements in terms of
architectural constraints (based solely on the compo-
nent interfaces), it not only removes ambiguity in the
description, but also makes it easier to detect possible
inconsistency or conflict between different (com-
peting) requirements.

Table 2. Legends of places and transitions in Fig. 4

4.4. Operational model of each component
(subsystem)

In this step, we use TPN as a tool to define the
operational behavior of each component- Using the
Petri net design methodologies, we can synthesize an

ordinary Petri net model for a component based on its
operations relationship among these operations. After
we get such an ordinary Petri net, giving time
requirements for various operation results in a TPN
modei, in which every transition is associated with an

appropriate time delay interval.
The operational model of components are shown as

in Figs. 5, 6 and J, and the legends of places and
transitions involved in these models are listed in
Tables 3, 4, and 5. Here, we use a thin bar to represent
an immediate transition, and we use a thick bar to
model timed transition. In Fig. 6, t32 and t33 form a

random switch. We assume that the probabilities for

that
for

nger

Place Description

D11

P1
Dt1

Vehicle 2 is available
Vehicle 2 is transferring
Vehicle 2 is transferring

the unqualified prociuct to the repafin_q system
the repaired product back to the checking system

Tran.sition Description Firing Interval
that
ified
r the

, rhe

into

Tl
T2

T3

T4

T5

Vehicle 1 transfers the product of the processing subsystem to the checking system
Vebicle 2 begins transferring the unqualified product to the repairing system
Vehicle 2 ends transferring the unqualified product to the repairing system
Vehicle 2 begins transferring the repaired product back to the checking system
Vehicle 2 ends transferring the repaired product back to the checking system

lr,2l

'1,21

11,21

494

Fig. 5- The operational model ol the processing subsyslem-

these two transitions are 0.9 and 0. 1, respectively.
This information is necessary when we verify the
system's constraints.

So far, we have got a complete, executable and

analyzable formal model that represents the top-ievel
design of the manufacturing system. Next, we
consider the refinement of the FMS modei.

4.5. Support for incremental design of the FMS

In this section, we further discuss the incremental
nature of RAS in the architectural modeiing of the
FMS. We illustrate the refinement of component of
checking-subsystem (CS) into a sub-architecture
which is composed of four components. Such an

Wang and Deng

ability is necessary to make a modeling approach
scale up.

Figure 8 shows the RAS sub-architecture of the

refined checking subsystem, which is composed of
four components, namely Checking Center, Analysis
Unit I, Analysis Unit II, and Sealing Unit. After
receiving a product from the processing subsystem,

the checking center does some checking operations
and then sends the resulting data to the two analysis
units for analysis (T11 and Ti3 fire). After the data

analysis, the two anaiysis units retum the analysis
results to the checking center (T12 and Tl4 fires). The
checking center then fuses the analysis results and

determines if the product satisfies quality control
conditions, If it does (T15 fires), then the product will
be sealed and output as the final product of the whole
system. If it doesn't (T16 fires), it will be sent to the

repairing subsystem for repair. When the repairing
activity rs finished, it will be retumed to the seaiing

rr=i

ihi

t4 p9 t8 t!2 P15 t16

p5 ?rrA /Y'1

t32 p32 t34

t3l p3 1

t33 p33

Fig. 6, The operational model of the checking subsysrem. Fig. 7, The operational model of the repairing subsystem

Inr

3
PL

pi,
p5

p7

p9

p1

p1.

p1:

p1'
p11

Trt

r1

t2

t4

t6

r8

tl0
t12

tl4
r16

r18

rZC

Ta

Plr

p3

p3'.

p3:

Tra

13 I

t32

t33
t34
r? {
t36

Tal

PIa

p61

p6:

Tra

16l

t62

t64

{

I

495
ng Incremental modeling and verification of fiexible manufacturing systems

Table 3. Legends of places and transitions in Fig. 5

Place Description

pi, i :1,2,3,4
p5 (p6)
p7 (p8)
p9 (p10)
pll (p12)
p13 (p1a)
p15 (pl6)
p17 (p18)
pI9 (p2o)

Mj is available, j:i+2
W1 (W2) is ready for processing at Ml (M2)

1ry1tt) 1y72<1); is ready for processing at either M3 or M5 (M4)

W1(1) is under processing by M3 (M5)

W2(1) is under processing by M3 (Ma)

lyitz) 6y2t2) is ready for probessing at either M4 (M5) or M6

w1(2) is under processing by M4 (M6)

w2(2) is under processing by M5 (M6)
y7i{:) iy72t3); is ready for processing at either M4 (M5) or M6

Transition Description Firing Interval

t1

t2 (t3)
14 (t5)
16 (t7)

18 (t9)
r10 (r11)

112 (tI3)
r14 (r15)

tr6 (t17)
r18 (t19)

t20

A pair of workpieces are loaded onto the two machines

M1 (M2) processes W1 (W2)

M3 (M5) begins processing Wltr)
M3 (M4) begins processing W2(r)

M3 (M5) ends processing W1(rl

M3 (M4) ends processing w2(r)
M4 (M6) begins processing W1(2)

M5 (M6) begins processing W2(?)

M4 (M6) ends processing W1(zl

M5 (M6) ends processin E WZet

M7 assembles Y71t3) un6 Y7r{:)

il)lt'. -l
tt,ol

'[2,4]

12,41

tt, ol

12,41

12,4)

Table ;1. Legends of places and transitions in Fig' 6

Place Description

ach

the
of

/sis

em,

ons
ysis

Jata

ysis

The
and

rtrol
will
10le

'the
ring
ling

p31

piz
p33

Checking result is available

Ready for sealing

Ready for being loaded onto the vehicle

Transition Destt iption Firhg Inten'al

131

t32
t33
t14
t35
r36

Checking the product

The product passes the test

The product doesn't Pass the test

The subsystem seals the Product
The subsystem ioads the product onto the vehicle

The subsystem unloads the product from the vehicle

?,41

12,41
oL)
l-) 'l
b4l1", J

Table 5. Legends of places and transitions in Fig. 7

P lace Description

p61 (p62)
p63 (p6a)

y71{:) 6,,2i3);
wi(4) (w2(4))

is ready for processing at W9 (W10)

is ready for processing at W1 1
po.t8

Description Firing Intenal
Transitiort

t61

t62 (t63)
t64

M8 disassembles W3

M9 (M10) processes Y71{:) 6ry2i3);

Ml1 assembles Wi(3) and W2(3)

12,41
b4l1"1 'l

12,41

i*--'"ri=l::

496

port5

Fig. 8. Refinement of the checking subsystem.

port6

unit and sealed. Notice that the connection transitions
T15 and T16 are the same as t32 and t33 in Fig. 6.

As pointed out in Section 3.3, this refined sub-
architecture must satisfy two vertical consistency
conditions. The ports of the old component design
shown in Fig. 6 have been totally inherited by the sub-
architecture; we also need to ask the sub-architecture
conform to all constraints which the old component
design are subject to. Otherwise, we cannot safeiy
plug the new component into the system's RAS
model. From the top-level RAS model we know that
component CS is subject to a component constraint c.
and has a requirement of environmental constraint ca.

Therefore, this sub-architecture must satisfy cz

whenever the environmental constraint ca is satisfied.
The next important issue of our RAS model is the

verification of constraints against the system opera-
tional model. We address it in the next section.

5. Constraint-driven compositional verification

The modular nature of RAS model and its emphasis
on maintaining a strong correiation between design
and requirements provide a nafural support for
incremental veriflcation and for enforcing confor-
mance of the design to the requirements. We have
developed a two dimensional incremental verificarion
technique that helps to achieve these benefits. In this
section, we briefly introduce our verification tech-
nique and illustrate its illustrated its working on the
FMS described in Section 4.

Wang and Deng

A general framework for our RAS verification
technique can be described as foilows: The process of
verification is driven by showing that the components
and their composition satisfy thefu corresponding
constraints at every design level. We cut down the

verification complexity by supporting horizontal as

well as vertical composition-abiiity. At any given
level, verification proceeds by analyzing the compo-
nents against their corresponding component
constraints one at a time and then composing these

results to deduce system-wide properties as specified
by connection and cross-comection constraints at that
Ievel- Thus, the compiexity of anaiysis is proportional
to the size and number of components, rather than the
size of the entire model. After a design has been
verified at a given level, it is further refined into lower
level design. The high level constraints are propagated
to the lower ievel. Then the design at the lower level is
checked against the lower level constraints, and the
refinement process continues. At every level, we
make sure that the constraints are consistent with the
constraints at the parent level so that a verified lower-
level design can be safely plugged into its parent level
architecture without having to reverify the entire
model.

The salient features of our technique are: (1) it
enforces design integrity by maintaining a tight
combination of design and system requirements and
(2) it reduces the verification complexity by introdu-
cing many component-level reduction rules.

We first describe the verification algorithm for a

given ievel ofdesign. Then we discuss the verification
across design levels. We assume that we have proved
that all constraints are consistent each other-

5.1- Incremental veification at a given design level

Our algorithm works in two stages. In the first stage,
we order the components so that the timing behavior
of any component depends only on the components
which are lower in this order. This stage assumes that

-\ ponr lrt tt por,.==+p*f{
(a) N

(b) N

i:.1

ll :l

Fig. 9. Illustration of componentJevel reduction rule 1.

In

p

p

Fir

thr

ac

on

)L<

co

TT

thr

of

der

De

Le.

ant

pa,

pot
cal
enl

i.s L

De-

Let
a17(

pai
pot
pa5

en.\

son

I
-^:.yaL

l
pair

Po(_)

Fig.
reacl

follo

eng

ion
;of
)nts

ing
the

.as
ven
po-
lent
rese

fied
that
lnal
the

reen

wer
rted
el is
the
we
the

ver-
evel
ttire

r) it
ight
and
rdu-

ora
rtion
rved

level

tage,

rvior
lents
t\zt

i_--

Incremental modeling and verifcation of fexible manufacturing systens

o) N'

Fig. 10. Illustration of componentJevel reduction rule 2.

the underlying dependency-graph of components is

acyclic. In the next stage, we consider components
one at a time in the order computed in the previous
stage. Each component is verified against its
component constraints and then reduced to a simple
TPN of constant size that preserves the ports and all
the extemally observable time-dependent properties
of the component.

The following two definitions are needed for the
description of our verification algorithm.

Definition)
Let PORTJN and PORT-OW be tlte input port set

and output port set of a component, respectively. A
pair of ports, <portjn,port-out>, where
portjnePORTJN and port-oute PORT-OUT, is a
calling pair of the component if a reply token from the
environment is expected at port-in whenever a token
is sent to some other component from port-oltt.

Definition 2
Ler PORTJN and PORT-OUT be the input port set
and output port set of a component, respectively. A
pair of ports, <portjnlpu't-out>, where
port-inePORTJN and port-outePORT-OUT, is a
passing pair if a token is expected to be sent to the

environment from port-out wheneyer a token fi'om
some other component is received at porljn.

For example, in Fig- 4, <ports, port6 > is a calling
pair, whereas < port3 , port4 > is a passing pair.

The basic idea of the aigorithm is to close passing
pairs by connecting them with timed transitions,

Qr.a

491

(a) N(a) N

(a) N o) lr

Fig. 11. nlustration of component-level reduction rule 3. The token

rezched portl will either foilows token flow path I to reach port2, or
follow token flow path 2 to reach port3.

_ ,*l'
qr' D Port

>cF{--c<
--'h t /-l')
---'}''l-tf-r\-7--.-|

pofrl- !Lt

o) N'

Fig- 12- Illustration of component-level reduction rule 4. The
arrival of a token atporrl will result in a token reaches eacb of port2
and port3-

thereby replacing each component by a very simple
net of constant size that preserves all extemal
observable time-critical properties of rhe component
being replaced. In Figs. 9-13, we introduce a set of
component-level reduction rules to support such
closure (The formal description of these rules is
inciuded in Appendix). The reduction rules intro-
duced here work at a much coarser level than the
reduction rules given in (Sloan and Buy, 1996), which
work at individual transition level- Consequently, we
need fewer applications of our rules to reduce the size
of the model being analyzed. In these rules, the static
firing time interval S1(rtr,rl) of transition /1r,2; is the

same as D_(portl, pott2), the time delay interval of
the message kansferbetween the epoch ofportl being
marked and that of port2 being marked, and

S1(r111,21,:1) of l((r,z),:) is the same as D-((portl,
pofl2), port3), the time delay interval of the message
transfer between the epoch of both portl and port2
being marked and that of port3 being marked, and so

on. Without the loss of generality, in our reduction
rules, we assume that for any component model to be

reduced, no transitions in the model are enabled in the

initial state of the system. Particularly, we assume:

Assumption I
The TPN model of the system under design is safe.

This assumption implies that the system takes the
same statistical properry of time to deal with inputs
arriving in different time, This enables us to consider
only one set ofinputs to verify the system constraints.
ln tjrls ca.e- for anv comDonent to be reduced, no' ''J -'

(a)

Fig- 13. Illusrradon of component reduction rule 5.

499?n8

on

)o-
jng

rcy

la
lrst

nts

he
ne,

)se

[ncremental modeling and veifcation of fexible manufacning systems

kr. zr

poctQ---tf--)Q ron2

(a)

tc. rt

pon: Q-_rf--rQ ponr

reachability analysis (Berthomieu and Diaz, 1991),
we conclude

SI(t6,2): Ul,221, and

S1(r1r,r;) : [1,13]

So the constraint cl: port l+1f12s pofi 2 is
verified. Next, we consider the component CS-
Figure lO(c) shows CS and its interacrion with
simplified PS arrd RS, and we use it to venfy other
constraints. Based on Fig. 14(c) and the fact that the
switch probabilities for transirion t32 and t33 are 0.9
and O. 1, respectively, we obtain

D-(port5, port6) : .y(r3) + S1(/tr,rt) + S/(I5)

+ [9,17]

and

D,Qtort3, port4)

: 0.9 x [sl(t:,) + st(tu)l * 0.1 x [s/(/rr)
* D-Qtort3,port4) + SI(tr) + SI(t.,)l

: [4.t,9.1j.

Based on these values, we have verified
ca'. port5+ApS20port6 and c2: port3+\f5tz
port4-Therefore, ail constraints have been verified.

la2fi2a4I'r
I ot p3r

po'6

T1

5.2. Co nstraints de compo sitio n and inc reme ntal
verification across design levels

Our technique for constraint decomposition and
incremental verification across design levels consists
of three basic elements: (1) We automarically derive
constraints for the lower-level design that is consistent
with the higherJevel consrraints. (2) The lower-level
design is verified using the technique discussed in the
last section. (3) The sub-architecture is plugged into
the parent-level architecture to form a more detailed
architecfural modei.

In fact, when we refine an RAS component into a

sub-architecture, the RAS model mandates that it
inherit ali the ports from the high-level component to
ensure interface consistency. During the verification
of the high-level design, we compute time delays for
certain port pairs of (input porr, output port).
Correctness of the highJevel design is contingent on.
the values of these time delays. So for rhe lower levei
design, we add these delays as constraints that must be
satisfied- As long as these constraints are satisfied, we
can ensure that the iower-level designs is consistent
with the high-level design. If on all these port-pairs
there are component constraints defined, then the
lower-level design is just required to obey these
component constrailts.

Let's take the analysis of the FMS as an example. In
the last subsection, we finished the verification of its
high-level design- Figure 8 shows ports por3, port4,
port5 and port6 are intrerited from Fig- 6, the high-

ler
fte
lur

t8e
'nt,

is
of

hm
t3.

on
we
lre
fe.
ed-

Lnd

we

RS

ple

tb)

(c)

hat
Fig- 14' (a) Reduction of componenl PS. (b) Reduction of component RS. (c) The simple but equivalenr model of rhe system_

nd
is

n't

tt.
.

the
:or:
I

If.
the ',

rl3 plo

s00

level (top-levei in fact) design model for CS. From the

top-level RAS model we know that component CS is
only subject to a component constraint c2. Therefore,
cy : porl3 +!f<1? port4 is used as the constraint of
the lower-level design.

6. Conclusion

Based on the requirement of the modeling, design, and

analysis of FMS, we have presented an RAS-based
incremental approach to architectural modeling and
veriflcation of real-time distributed systems, and

illuslrated the use of the approach to ilcrementaily
model a given FN{S. The contribution of this paper is

twofold: First, it provides a systematic way to link
real-time system constraints to the process of formai
modeling and analysis to ensure that the constraints
are met at any given design levej. Second, our
approach is scalabie in both modeling and analysis.
We also proposed a two dimensional incremental
verification technique, which further shows the

benefits of our RAS rnodel- To enlarge the applicable
area of the verification technique, we are improving it
by weakening its precondition for application.

Appendix: Formal description of reduction rules

In this appendix we give the formal description of our
component-level reduction rules for TPN's.

Componenl-Level Reduclion Rule 1

Let N be the TPN model of a system, and N' the TPN
model of a component in the system.

C'PORTJN : {port}, C.PORT-OU7 : {porfl}.
The component has no enabled transition under the

initial marking of N. If
(1) u,henever portl receives a token. port2 ts

guaranteed to receive a token in the future, and
(2) portl cannot receive another token until porl?

has received a token,

then we can reduce N iato N' by replacing Na with a
simple net which is composed of two places', portl
and port2, and one transition: t1r,z;, such that

(1) portl* -* port2: {r1y,zy},- t(t,z) : {portl},
I* 0.2): {port2}, while -portl and porrT* remain
unchanged, and

IVang and Deng

12) S1(t11.a) : SI-Qtctrtl,port2), rhe latter is the

time delay inten'al for the token transfer from portT to
portz. (See Fig. 9.)

Component-Level Reduction Rute 2

Let N be the TPN model of system S, and Nr the TPN
model of component C of S- C.PORTJN =
{port1,porr2), C.PORT-OW : {porr3}, and
portl* : port2*. The component has no enabled
transition under the initial markiag of N. If

(1) whenever both portl and port2 receive a token,
porI3 is guaranteed to receive a token in the future, and

(2) at least one of portl and portL cannot receive
another token until port3 h,as received a token,

then we can reduce N into M by replacing /y'a with a

simpie net which is composed of three places port7,
portz and por8, and one transition: f11r.21,31, such

that

(l) portl- : port?* -. port3: {t(,.2),:l},"
111r,21,:; : {portl ,pot't2}, titr.zl.tl : {port3}, while
' port7, r portZ and port3' remain unchanged, and

12) S1(r11r,uy,:) : SI _((nortl,porr2),port3), rhe

latter is the time delay inlerval from two tokens
arriving in portl and port2, respectively, to a token
reaching port3. (See Fig. 10.)

Componenl-Level Redaction RuIe 3:
kt N be the TPN modei of a system S, and N6 the
TPN modei of component C of S. C.PORT-IN :
{portl}, C.PORT-OU7 : fuort2,porl3}. The com-
ponent has no enabled transition under the initial
marking of N. If

(l) whenever port). receives a token, one and only
one of port2 and port3 is guaranteed to receive a token
in the future, and

(2) portl cannot receive another token until one of
._^--:a ^..i -^--.t L^^ -^^^:--^) ^ r^r-^-pul tL 4ttu pur t) tt4> lELslvcs 4 Lu^sll,

then we can reduce y'y' into M by replacing ly',^ with a

simple net which is composed of three places: port7,
portz and port3, and two transition: t6.71 and tg31,
such that

(1) portl-: {/1,,2;, t1r31},* potZ: {r1r,z1},*port3 : {1,,r; }, r rg,z) : /1r,3) : {port1}, t* g.z) -
{port2},t* p2): {port3}, whrle 'portl, port2* and
port3. remain unchanged, and

(2) S1(r1t ut) : SI -(portl,portT)"and, S1(r11,:1) :
SI-Qtortl1port3). (See Fig. 11.)

C
L
T
C

C
n(

ar

fu

p(

rh

si:

p(
/(r

{t
{r'
{r'
re

.t1

Ct
Le

TI
{p
po
fta

tol
re(

an

re(

th(
sin

po
su(

{rr
t* (,
po,

(

(pt

ii,;:
liri :

iri ri li
I lriilr.i

)eng

ihe
il to

TPN

and
bled

,ken,

, and
:eive

ith a
ort7,
such

vhile
d

the
rkens
.oken

c the
IN-
com-
nitial

ionly
token

rne of

vith a

)ort 1 ,

Itr,sj,

1,2) -* and

Incremental modeling and verificarion of fiexible nranufacturing g:stems

Component-Level Reduction RuIe 1:

Let N be the TPN model of a system S, and N. the

TPN model of component C of S.

C.7ORTJN: tporrt\,
C.PORT-OW : {port2,pot-t3}- The componenr has

no enabled transition under the initial marking of 1/. If

(1) whenever portl receives a token, both of port2
and port3 are guaranteed to receive a token in the

future, and
(2) portl cannot receive another token untii both of

portz and porl3 have received a token,

then we can reduce N into M by replacing N6 with a
simple net which is composed of four places: port7|,
portlz, port2 and port3, and two transition: rirr,:1 and

r,, - ,,, such that

(l) "portll -* portl't :* portl,pot-tl l- :
{rg37},portt2- : {tgz.s1},' tgr.?) :
{porrll},- /11r,3) : {portlT}, t* 6r.2)

:
{port2},t* gz.t) - {port3}, whl\e port2 and port3*
remain unchanged, and

(2) 51(1,r,21) : SI-jtortl,port2), and S/(/11:,:1) :
SI Qtorrl,porl3)- (See Fig. 12.)

Component-level Reduction Rule 5:
Let N be the TPN model of a system S, and N. the

TPN modei of component C of S. C.PORTJN:
{port1, potr2},C "PORT -Og7 : {porr3,port4), and
portl' : porp' . Tlre component has no enabled
transition under the initial marking of N- If

(1) wl.renever both porll and porfl receives a

token, both of port3 and port4 are guaranteed to
receive a token in the future, and

(2) at least one of portl and portZ cannot receive
another token until both of port3 and port4 have
received a token,

then we can reduce 1{ into M by replacin-e N. wirh a

simple net which is composed of four p\aces: portl ,

port2, port3 and port4, and one transition: /11t.21,1:.+;;,

such thet

(1) portl. : port2. :* port3 :* portl :
{r11',r;,1r,0;;},. t((r,z),(t,+)) : {pctrtl,Ttorr2} and

/.11r,21,1:o;; : {port3,porr4}, while -portl, 'porr2,
porl3* and port4* renain unchanged, and

(2) SI (t
111 z;,1:,+;y : S1-((p ortl,, port2),

Qtorr3,port4)). (See Fig. 13.)

Refereces

Baldasssri, M. and Bruno, G. (i991) korob: An object-

oriented methodol6gy for developing discrere event

dlnamic systems. Computer Lan guage, 16(I), 3943.
Bastide, R., Blanc, C. and Palanque,P. (1993) Cooperative

objects: A concurrent Petri-net based, objected-

oriented l:nguage, in Proceedings of the IEEE
International Conference on System, Man and

Cyberneric s, 3, 286-291.
Battiston, E., Cindio, F. and Mauri, G. (1988) Objsa nets: A

ciass of highJevel nets having objects as domains, in

Advances in Petri Nets, Lecture Notes on Conzputer

Science,340,2M3.
Berthomieu, B. and Diaz, M. (1991) Modeling and

verification of time dependent systems u.sing time

Petri nets. IEEE Transactions on Softu,are
E n g i ne e ri n g, 17 (3), 259-27 3.

Brussel, H- V., Peng, Y. and Valickenaers, P. (1993)

Modeling flexibie manufacturing systems based on

Petri nets. Annals of tlrc CIRP, 12(1),479484.
Bucci. G. and Vicario, E. (1995) Compositional validation

of time-criticel systems using communicating time

Petri nets. IEEE Transactions on Software
E n g i ne e ri n g, 2l(12), 969-992.

Camurri, A., Franchi, P., Gandolfo, F- and Zaccaria, R.

(1993) Petri net based process scheduiing: a model of
the control system of flexible manufacturing systems.

Journal of inrelligent and Robotic Systems,8,99-12f,
Deng, Y. and Yang, C. (1999) Architecture-driven nrodelirrg

of real-time concurrent systems with application in
FMS. Journal of Systems and Sofrware 45, 61-78.

Deng, Y-, Wang. J. and Sinha, R- K. (1997) Integrated

Architeclural Modeling of Real-Time Concurrent

Systems with Applications in FMS, Technical Repon,
School of Computer Science, Florida International
Un ivcrs iry.

D'souza, K. A. and Khator, S. K. (1994) A survey of Petri

net applications in modeling controls for automated

manufacturing systems. Computers in Industry, 24,

5-16.
Elmaraghy, H. A- and Ravi, T. (i992) Modem tools for the

design, modeling and evaluation of flexible manufac-

turing systems. Robotics & Computer-[ntegrated
M a nufac tur ir g, 9 (4), 335-340.

Err-rerson. E. A., j''{ok, A, K., Sisiia, A- P. an.J Sr*ivasial, i.
(1992) Quantitative temporal reasoning. Real-Tinte

Sysrems, 4,331-352.
IJuang, H. P. and Chang, P. C. (1992) Specification,

modeling and control of a flexible manufacturing
cell. International Journal of Production Research,

30(11), 25t5-2543 .

Knapp, G. M. and Wang, H. P. (1992) Modeling

501

502

of automated storage/retrievd systems using Petri

fiets- Journal of Manufacturing Systems, 11(1),
20-29.

Lee, Y. and Park, S. (1993) Opnets: An object-oriented high-
level Petri net model for real-time systems. fournal of
Systents & Softv,are, SE-13(3), 69-86.

Lin, J- T. and lce, C. C. (I 995) A CTPN-based scheduier for
a flexible manufacturhg cell Journal of the Chinese
I nstitute of Engineers, l8(5), 655412.

Luckham, D. C., Kenny, J- J., Augustin, L. M., Vera, J.,

Bryan, D. and Mann, W. (i995) Specifcation and

analysis of system architecture using Rapide. IEEE
Transac tions on Software Eng ine ering, 2l(4), 336-355 -

Luckham, D. C-, Vera, J. and Meldal, S. (1995) Three

concepts of system architecture, Technical Report,

Stanford University.
Mandrioli, D., Morzenti, 4., Pezze, M., Pietro P. S. and

Silva, S. (1995) A Petri net and logic approach to the

specification ard verification of real time systems, in
Formal Methods for Real time Campuring, Heitrneyer,
C- and Mandrioli, D. (eds.), John Wiley & Sons

Lrd.
Meng, J., Soh, Y. C" and Warg, Y. (1995) A TCPN model

and deadlock avoidance for FMS jobshop scheduling
and control system. IEEE International Workshop on

Emer ging Technologies and Factory Aulornation, Pais
Frarce, 5?1-532.

Murata, T, Petri nets: Propefties, analysis and applications.

P roceedings of IEEE, 77 @).
Pnueli, A. (1917) The temporal logic of programs.

Proceedings of ISth Annual IEEE Symposium on
Foundations of Computer Science, 46-5-/.

Wang and Deng

Qadri, F. and Robbi, A. (1994) Timed Petri nets for flexible

manufacturing cell design, IEEE International
Conference on Systems, Man and Cybernetics,Texas,
t 695-t 699.

Shukla, C. S. and Chen, F. F. (1996) The state-of+he-art in
intelligent real-time FMS control: a comprehensive

suwey. Journal of Inrelligent Manufacturing 7(6),

4r'.1456.
Sloan, R. and Buy, U- (1996) Reduction rules for time Petri

nets. Acta I nfo rmnt ic a, 33, 68'l -l 06.
Solot, P. and \4iet, M. V. (1994) Analytrcal models for FMS

design optimization: A survey. International Journal of
F I e xi b I e M anufac t uri n g S),s t e ms, 6(3), 209 -23 3.

Wzurg, L.-C. (1996) The development of an object-oriented
Petri ner ceil control mode]r lnternntional Journal on

Advanced Manufacturing Technology, tl, 5949.
Zhou, M. C-, Dicesare, F. and Rudolph, D. L. (1992) Design

and implementation of a Petri net based supervisor for a

ffexible manufacturing system. Automatica, 28(6),

I I 99-1 208.

Zhou,M. C., McDermott, K. and Patel, P. A. (1993) Petri net

synthesis and analysis of a flexible manufacturirg
system ceil- IEEE Transactions on Sy'stem, Man and
C yb e r ne t ic s, 23(2), 573-53 l.

Zhou, Q., Wang, M. and Dutta, S. P. (1995) Generation of
optimal control policy for flexible manufacturing cells:

a Petri net appro^ch. International Journal of Advanced

M anufacturi ng tec hnology, I 0, 59-65.
Zuberek W M. (1995) Schedules of ffexibie manufacturing

cells and their timed colored Petri net models IEEE
International Confercncc on Sl,stems, Man and
Cybernerics, New York, 2742-2141.

,.1
xl

iill.

t:

Ir
m

aI

S.

Dr]

Rec

Int
maI

resl
acc

ope

toa

Ke)

1-

Vir
intt
sen

imr
onr
en\
del
of.
Dis
en!
the

eac

mii

+Ih
Rob

of tl
Eng
Uni'
Eng
beer

R.g'
Crn

095

