€ IEEE TRANSACTIONS ON

' KNOWLEDGE AND
DATA ENGINEERING

A publication of the IEEE Computer Society

MARCH / APRIL 1999 VOLUME 11 NUMBER 2 ITKEEH (ISSN 1041-4347)
REGULAR PAPERS
Dynamic Programming in Datalog with Aggregates
S BIBEOD ettt ettt ettt ettt 265
Techniques for Increasing the Stream Capacity of A High-Performance Multimedia Server
D. Jadav, ANN. Choudhary, and P.B. BEITAccuuiiiiieriiieeiiniireee ettt ettt e et e e e e e e e e e eeeenn 284
Resource Scheduling In A High-Performance Multimedia Server
H.H. Pang, B. Jose, and M.S. KFISANGNccuiiiiiiiii e 303
Join Index Hierarchy: An Indexing Structure for Efficient Navigation in Object-Oriented Databases
EI =1 Ao N TR ———————— TSSO S 321
A Hybrid Estimator for Selectivity Estimation
Y. Ling, W. Sun, N.D. RiShe, @0 X. XIBNGrvuuveimieiitaieces oot e e ee oo e e 338
CORRESPONDENCE
Proof of the Correctness of EMYCIN Sequential Propagation Under Conditional Independence Assumptions
XoLUO @NG €. ZRANG ottt ettt et 355
1998 TKDE REVIEWEFS LIScccuieeuiiriieeieieeeeeeeeeeeeeee et 360

Dr. Naphtali Rishe |
Florida International University
IEEE ®

School of Computer Science
Southwest 8th St. and 107th Avenue COM PU%ER
University Park SOCIE

Miami, FL 33199
http://computer.org ¢ tkde@computer.org

1Cs

ak

JSA.

in the

mal or
(CCO)

resale.

om the

Journal of Intelligent Ménufacturing

Volume 10 Number 6 December 1999 ISSN: 0956-5515

Special issue on Computer-integrated Manufacturing Systems:
Recent Development and Applications

CONTENTS |

MENGCHU ZHOU and YUSHUN FAN 467
Editorial

PASCAL BERRUET, ABDOUL KARIM ARMAND TOGUYENI,
SAMIR ELKHATTABI and ETIENNE CRAYE 471
Tolerance evaluation of flexible manufacturing architectures

JIACUN WANG and YI DENG 485
Incremental modeling and verification of flexible manufacturing

systems

SRINI RAMASWAMY and YI YAN 503
Interactive modeling and simulation of virtual manufacturing
assemblies: An agent-based approach

NAIQI WU, NING MAO and YANMING QIAN 219
An approach to partner selection in agile manufacturing
SEONG JIN YIM and DOO YONG LEE 531

Scheduling cluster tools in wafer fabrication using candidate list ;
and simulated annealing

MU DER JENG, CHUNG SHI LIN and YI SHENG HUANG 541
Petri net dynamics-based scheduling of flexible manufacturing
systems with assembly

PINGTAO YAN, MENGCHU ZHOU, BAOSHENG HU

and ZUREN FENG 557
Modeling and control of workstation level information flow in
FMS using modified Petri nets

LUCA FERRARINI, LUIGI PIRODDI and STEFANO ALLEGRI 569
A comparative performance analysis of deadlock avoidance control
algorithms for FMS

YUSHUN FAN, SHI WEI and CHENG WU 587
Enterprise wide application integration platform for CIMS
implementation

wa@ Jouwrnal of Intelligent Manufacturing is published by
P'\‘ Kluwer Academic Publishers
Boston/Dordrecht/London

nd
S5

el
cal
co,
its.

et

- of
lity,

. to
tion

and

nes,
ches

pace
18 J.

renms
mring

ctur-
if, Al

y in
"xible

)6) A
FMS.

th an
Proc.

t des

ances:

striels,

Journal of Intelligent Manufacturing (1999) 10, 485-502

Incremental modeling and verification of flexible
manufacturing systems

JIACUN WANG and YI DENG

School of Computer Science, Florida International University

Received March 1998 and accepted August 1998

An FMS is a typical real-time concurrent system composed of a number of computer-controlled
machine tools, automated material handling and storage systems that operate as an integrated system
under the control of host computer(s). The growing demand for higher performance and flexibility in
these systems and the interlocking factors of concurrency, deadline-driven activities, and real-time
decision making pose a significant challenge to FMS design, especially in terms of control and
scheduling. A formal engineering approach that helps handle the complexity and dynamics of FMS
modeling, design and analysis is needed. A real-time architectural specification (RAS) model and its
application in the modeling of flexible manufacturing system (FMS) are presented. RAS combines
mature operational and descriptive formal methods, in particular time Petri nets (TPN) and real-time
computational tree logic (RTCTL), to form an integrated system model for architectural specification
and analysis of real-time concurrent systems such as FMS. The contribution of RAS is twofold: First,
1t provides a formal system to systematically maintain a strong correlation between (real-time)
requirements and design and to verify the conformance of the design to the requirements, which
helps enhance traceability and thus to help us to achieve high assurance in design. Second, it offers
better scalability in modeling and analysis, which provides an effective way to deal with complexity
in the application of formal methods. These two features together make RAS a suitable model for the
design of FMS.

Keywords: Formal system design, real-time systems, time Petri nets, real-time computational tree
logic, flexible manufacturing systems

1. Introduction

Flexible manufacturing systems (FMS) provide a
means to achieve better quality, lower cost, and
smaller lead-time in manufacturing. An FMS is a
typical real-time concurrent system composed of a

number of computer-controlled machine tools, auto-

sastad seataiial basdlisce sl stsiamh SORPEAR 5
matea maieriar 0anaiing and storage stems itnat

C

“This work was supported in part by the NSF under Grant No. HDR-
9707076, by Air Force Office of Scientific Research under Grant
No. F49620-96-1-0221, by Army Research Office under grant No.
DAAGS55-98-1-0428. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official polices or endorsements either expressed or
implied by the above named agencies.

operate as an integrated system under the control of
host computer(s). The growing demand for higher
performance and flexibility in these systems and the
interlocking factors of concurrency, deadline-driven
activities, and real-time decision-making pose a
significant challenge to FMS design, especially in

manufacturing capacity, random machine failures
and repair rates further make the system behavior
more dynamic and hard to predict. Given the
complexity of the FMS design, an ad hoc method is
clearly inadequate and a more rigorous approach
addressing the complexity and dynamics in FMS
modeling, design, and analysis is needed (Elmaraghy
and Ravi, 1992).

In recent years, formal techniques such as Petri nets

486

have been increasingly used in FMS modeling (see
Section 2). As a popular modeling tool for concurrent
and distributed systems, Petri nets provide a rigorous
and operational way to describe and analyze system
properties. In addition to its rigor and analytic
capability, Petri net models are executable, and thus
can be used as a system prototype for simulation.
Furthermore, Petri nets are capable of describing both
software and hardware, system and environment, at
different levels of abstraction. These strengths make
Petri nets a powerful modeling tool for FMS.

While offering many advantages, however,
ordinary Petri net models suffer from some problems
that limit their usability and application as a design
model for complex FMS. Petri net-based models tend
to become too large even for a modest-sized problem
(Murata, 1989). The primary concern of Petri nets, like
many other formal techniques, is behavior modeling
and analysis. They, however, lack mechanisms to
structure complex designs in such a way that both
helps enforce design integrity and provide a systematic
and incremental way for design and analysis. For
example, in an FMS, the physical configuration and
the functional behavior of its hardware components,
e.g., machine tools and AGVs, are quite stable and
static. The central issues of design are the coordina-
tion, control, and scheduling of these components. For
a complex FMS, it is necessary to experiment with
different alternatives of control and scheduling
policies against the same hardware configuration. It
1s therefore highly desirable to be able to ‘‘plug-in”’
the specifications-of various control modules to a FMS
model without having to make major changes or re-
construct the entire system model each time. Most
Petri net-based models do not provide explicit or
adequate support to this task.

In this paper, we go beyond conventional Petri nets
modeling and present an integrated formal method to
support scalable and evolutionary design of real-time
concurrent systems from the perspective of time-
dependent architectural modeling and analysis. Our
approach is based on two basic hypotheses: (1) The
ability to systematically maintain a strong correlation
between requirement and design at every design level
is the basis to achieve quality design. An effective
way to achieve such strong design traceability 1s to
incorporate (real-time) requirement constraints as an
integral part of design modeling. (2) Constraint-driven
compositional analysis sensibly integrated as a part of
design process is a powerful means to control

Wang and Deng

complexity and cost in analysis. Based on these
principles, we have developed the Real-time
Architectural Specification (RAS) model (Deng et
al., 1997). RAS is built on top of Time Petri nets
(TPN) (Berthomieu and Diaz, 1991) and Real-Time
Computational Tree Logic (RTCTL) (Emerson and
Mok et al., 1992). Petri nets are a well-known
operational model best suited for modeling the control
of distributed systems but cumbersome for specifying
rules and constraints. By contrast, temporal logic, a
popular descriptive formalism, is best suited for
describing rules and constraints but not control and
composition of systems. By integrating them into one
coherent architectural model, RAS establishes two
desirable features: First, it provides a formal system to
systematically maintain a strong correlation between
(real-time) requirements and design and to verify the
conformance of the design to the requirements.
Second, it offers better scalability in modeling and
analysis and provides an effective way to deal with
complexity in the application of formal methods.
These two features together make RAS a suitable
model for the design of FMS.

The rest of the paper is arranged as following:
Related work is discussed in Section 2. The RAS
model, including its conceptual framework and
formal definition, is given in Section 3. In Section 4,
we illustrate the use of RAS to give an incremental
modeling of an FMS. Finally, in Section 5, we propose
an incremental verification technique based on the
RAS model. The formal description of a set of
component-level TPN reduction rules which support
our incremental verification technique are given in
Appendix.

2. Related work

Petri nets have been applied to the specification,
verification, performance analysis, real-time control
and simulation of FMS. Net-based models have also
been used to obtain production rates, throughput,
delays, capacity, resource utilization, reliability
measures and deadlock avoidance for FMS. The
details of these applications can be found in surveys in
(D’souza and Khator, 1994; Shukla and Chen, 1997).
Some typical uses of Petri nets in FMS modeling are
listed below (Brussel et al., 1993; Camurri ef al.,
1993; Huang and Chang, 1992; Knapp and Wang,
1992: Lin and Lee, 1995; Meng er al., 1995; Qadri and

Inc

Rc
Zh
al.

net:
pro
goa
atic
con

mox
syst
mox

al.
et a
199
and

net«
certi
Hov
sem
A n
Nets
forn
abili

ng
2se

et
ets

the
1ts.
ind
'ith
ds.
ble

ng:
AS
nd
1 4,
ital
ose
the

of
»ort

in

on,
trol
iso
out,
lity
The
sin
7).

are
al.,
ing,
and

Incremental modeling and verification of flexible manufacturing systems 487

Robbi, 1994; Solot and Vliet, 1994; Wang, 1996;
Zhou and Dicesare, 1992; Zhou et al., 1993; Zhou et
al., 1995; Zuberek, 1995):

e Nets can be used as a graphical modeling tool to
visualize complex control structure and systems
behavior.

e The nets notation precisely captures the pre-
cedence relations and structural interactions of
stochastic, concurrent and asynchronous events,
which can be used to support the development of
operating strategies for work scheduling and job
sequencing.

e The executibility of Petri net models enables
them to be used as simulation tools to evaluate
control and scheduling policies.

e Real-time Petri net models can be used to design
and implement real-time control systems.

e Their analytical capability supports deadlock
detection, performance evaluation, and verifica-
tion of real-time schedulability.

e Conflicts and buffer sizes can be modeled easily
and efficiently.

e Net models can help identify production bottle-
necks, and to assess the capacity and utilization
of equipment.

Those studies deal with the issue of how to use Petri
nets to address specific modeling and analysis
problems in FMS. We address a different issue. Our
goal is to develop an engineering practice to system-
atically and cost-effectively apply Petri net theory in
complex FMS modeling, design and analysis.

Related to our approach, several structural Petri net
models are proposed both to provide a mechanism for
system composition and to manage complexity in
modeling. These include PROTOB (Baldasssri and
Bruno, 1991), OBJSA nets (Battiston and Cindio er
al., 1988), the Cooperative Objects Language (Bastide
et al., 1993), and OPNets (Emerson and Mok et al.,
1992). An application of OPNets in FMS modeling
and analysis is presented in (Wang, 1996), where they
are used to represent part of an object-oriented Petri
net cell control model. Each of these models provides
certain object-based structure for system composition.
However, none of these models has a formal
semantics for modeling timing and timed behavior.
A more recent model, Communicating Time Petri
Nets (CmTPN) (Bucci and Vicario, 1995), has a
formal semantics about time, and supports reach-
ability-based compositional verification.

On the opposite side of Petri nets are various logic-
based models. Logic provides a more abstract
approach to the description and analysis of FMS. In
temporal logic, various temporal operators are
provided to describe and reason about how the truth-
value of assertions varies over time. It has proven to
be a very useful formalism for reactive systems
(Pnueli, 1977). RTCTL (Emerson et al., 1992), a real
time propositional branching time logic, has been a
popular choice for describing real time systems like
FMS. Tt allows us to express various desired types of
behavior, including safety, liveness, and bounded-
fairness.

As an operational model, Petri nets (with structural
extensions) are well suited to model FMS as abstract
programs, which can be formulated as the parallel
composition of subsystems. However, it is cumber-
some for describing system requirements. As a
descriptive model, temporal logic is appropriate for
specifying rules and constraints. However, it does not
reflect the component/interaction view relevant for
design level specification of FMS. So, when used
alone, neither of these two methods is sufficient for
architecture modeling of an FMS. In Mandrioli et al.
(Mandrioli ez al., 1995), the advantage of using the
TRIO logic and TPN together for system specification
and verification are suggested and explored. Unlike
our work on RAS, however, it is unclear to us what the
concrete objective of the suggested integration would
be. Moreover, a formal framework was yet to be
developed to show how to integrate TRIO with Petri
nets.

3. RAS models

In this section, we first give a conceptual framework
of the RAS model. Then we give a brief introduction
to TPN and RTCTL, two underlying formal methods
of our RAS model. Finally, we formalize the RAS
notation.

3.1. Conceptual framework of RAS model

Our goal is to develop both a rigorous approach to
enhance the integrity of design and an evolutionary
process to control complexity in system modeling and
analysis. To the end, RAS models a distributed system
as a multi-leveled composition of components and
real-time constraints that the components and their

488

compositions must satisfy at every design level. As
refinement to the system design goes onm, these
architectural constraints are also decomposed and
propagated to the lower levels of system architecture
(possibly new constraints are introduced). The
consistency between higher-level and lower-level
design constraints are either automatically maintained
or verified to ensure consistency and progressive
characteristics of analysis.

More specifically, an RAS model consists of three
basic elements: component models, inter-component
connections (connections in brief), and architectural
constraints (constraints in brief) organized into
multi-design levels. The component models describe
the real-time behavior and communication interface
of the components. The connections specify how the
components interact with each other and, in turn, form
the system composition model. Finally, the constraints
define real-time system requirements imposed on the
components and connections. All connections are
defined using only communication interfaces, which
gives us the flexibility to change the design of
individual components without voiding the analysis
of the entire system.

A typical RAS model is illustrated in Fig. 1. The
high-level design has three components—A1, A2, and
A3. Component A3 is further refined at the next design
level into the composition of components B1, B2, and

¢, For request issued from
Al.port2, n:le must be
received at Al.pors3 within 20

c;: A flow initiated from
A3.port7 must reach A3.pori8
in 20 - 30 time units.

Wang and Deng

B3. The design at any level must satisfy the
constraints specified at that level. A component
model has two parts: (1) communication ports
(denoted graphically by half circles), including input
ports (e.g., port7) and output ports (e.g., port8), and
(2) a TPN that describes the time-dependent,
operational behavior of the component, that is, it
defines the semantics associated with the ports. The
communication between a component and its envir-
onment is solely through the ports. A connection
represents a channel of interaction between compo-
nents. It is modeled by a simple TPN and defines the
direction of message flow and delay in the channel.
For example, components A1 and A2 have a request-
reply relationship that is modeled by the bi-directional
channel. At any given design level, ports can also be
divided into external ports, e.g., portl, and internal
ports, e.g., port3 and port4. An internal port describes
interaction between components within a system (or
subsystem), while an external port describes the
inputs and outputs from and to the environment of a
system (or subsystem).

In addition to serving as a component’s commu-
nication interface, the ports also provide the linkage
between the operational design (components and
connections) and the descriptive architectural con-
straints. In particular, time-critical system constraints
are specified by RTCTL formulas defined over ports,

Fig. 1. Framework of the RAS model.

cy: A flow initiated from porré

must reach port7 in 20 — 30
time units.

Incr

whe
whi
port
pro]
con
onh
reve
take
with
proc
Is ¢
moc¢
that
boxt¢
of a
arch
Syst¢
guar
men
oblig
Fr
cons
cons
the s
cons
deriv
origi
main
nvol
ensu
these
deriv
archi
logic
const
const
time-
envir
const
comp
const
mess:
norm.
wide)

3.2. 1
In thi

and
methc

ge
ad

1S
ts,

Incremental modeling and verification of flexible manufacturing systems 489

where each port represents an atomic proposition,
which is true at the moment that a token arrives in the
port. These ports constitute the alphabet (atomic
propositions) of the RTCTL formulas that define the
constraints. All constraints are specified using ports
only, no internal information about the components is
revealed. For example, constraint ¢; limits the time
taken in a request-reply interaction between Al and
with A2, and constraint ¢, specifies the required
processing time of component A3. This arrangement
is critical to achieve the goals of incremental
modeling and analysis described earlier, as it ensures
that the component designs can be treated as black-
boxes in the construction, understanding and analysis
of a system’s architecture. As more detailed system
architecture is constructed by decomposing one of the
system’s components, it becomes possible for us
guarantee the satisfaction of system-wide require-
ments by verifying the new sub-architecture meets its
obligation imposed on its interface.

From the viewpoint of origination, architectural
constraints are divided into two groups, one is original
constraints, which reflect the user’s requirements on
the system under developed, and the other is derived
constraints, which are intermediate constraints
derived from original constraints. Notice that while
original constraints may indeed be few in number,
maintaining functionally correct original values may
involve a large set of interacting components. Thus, to
ensure these original constraints are satisfied, each of
these components will, in turn, be subject to their own
derived constraints. From the viewpoint of function,
architectural constraints in an RAS model can also be
logically divided into three classes: component
constraints, environmental constraints, and path
constraints. A component constraint describes a
time-critical property of a component that its
environment expects from it. An environmental
constraint describes a time-critical property that a
component expects from its environment. A path
constraint describes a time-critical property for
message transmission across components, which
normally describes a system-wide (or subsystem-
wide) timing requirement.

3.2. Underlying formal methods

In this section, we give a brief introduction to TPN
and RTCTL, which are two underlying formal
methods of our RAS model.

A. Time Petri Nets
ATPNis atuple (P, T, B, F, M,, SIM) where:

P is a finite nonempty set of places;

T is a finite nonempty set of transitions;

B is the backward incidence function;

F 1s the forward incidence function;

M, is the initial marking function (P, T, /, O and
M, together define a Petri net);

e S/M is a mapping called static interval,
SIM : T-Q* x (Q* U), where Q% is the set
of positive rational numbers.

Let SIM(1;) = («5, %) for some transition 7,, then
the interval of numbers (of, ;) is called the static
firing interval of transition t;, the left bound o the
static earliest firing time (state EFT for short), and the
right bound f} the static latest firing time (static LFT
for short).

A state S of a TPN is a pair § = (M,) consisting of
a marking M and a firing interval set / which is a
vector of possible firing times. The number of entries
in this vector is given in the number of the transitions
enabled by marking M.

Transition f; is firable from state S = (M,) at time
7 + 0 if and only if:

(1) t; is enabled by marking M at time t;

(2) The relative firing time 6 to the absolute
enabling time 7, is not smaller than the FET of
transition f; and not greater than the smallest of the
LFT’s of all the transitions enabled by marking M,
ie., EFTof 1; < 0 < min{LFT of Zk}, where & ranges
over the set of transitions enabled by M.

Assume that transition 7; be firable at time t + 0
from state S = (M,I). Then the state S’ = (M',I')
reached from S by firing 7, at the relative time 6 can be
computed as follows.

(1) M' is computed, for all places p, as
(Vp)M'(p) = M(p) — I(t;,p) + O(1;, p);

(2) I’ is computed in three steps:

e Remove from the expression of / the intervals
that are related to the transitions disabled when r;
is fired.

e Shift of the value 0 towards the origin of times all
remaining firing intervals, 1.e., the intervals that
remain ‘enabled and so remain in /, and truncate
them, when necessary, to nonnegative values.

e Introduce in the domain the static intervals of
the new transitions enabled.

L]

oo,

490

B. Real-Time Computational Tree Logic
An RTCTL Formula is defined as

e Each atomic proposition P is a formula.

e If p, g are formulae, then so are pAg and

e If p, ¢ are formulae, then so are A(pUg),
E(pUgq), and EX p.

e If p, g are formulae and £ 1s any natural number,
then so are A(pU=*q) and E(pU=*q).

A formula of RTCTL is interpreted with respect to a
temporal structure M = (S,R, L), where S is a set of
states, R is a binary relation on S that is total (so each
state has at least one successor), and L is a labeling
which assigns to each state a set of atomic
propositions, those intended to be true at the state.
Intuitively, this temporal structure X represents the
reachability graph of the architecture. A full-path
X =54,51,8,... In X 1s an infinite sequence of
states such that (s;,s;.,) €R for each i; intuitively, a
full-path captures the notion of an execution
sequence.

3.3. Formalization of RAS model

An RAS consists of a set of compositions C (a
composition may correspond to a design level, or the
concept of sub-architecture given in Section 3.1) and a
hierarchical mapping A:

RAS = (C, h)

() C=(C,,Cy,...,C;), and C; = {Cm,Cn,Cs}

for each Ci’ where

107 Cacll

e Cm is a set of components. Each Cm;eC,, is
defined by a TPN. Let

Cm; - PORT IN
= {plpeCm;-P," PNCm;- T = I}

Cm; - PORT_OUT
= {plpeCm;-P,P" NCm;-T = %)

Cm; - PORT
= Cm;+ PORT IN U Cm; - PORT_OUT

Wang and Deng

Cm; - PORT IN is called the set of input ports of
component Cm;, ij.PORT_OUT the set of
output ports of Cm;, and Cm;. PORT the set of
ports of ij. Moreover, for Vij, Cmy e Cm,

Cmi-PNCmy-P=¢J

Cm;-TNCmy-T =

e Cn is connection. Cn = (P,T,1,0,M,, SI) such

that
Cn+PnN [UCm}eCmij\ij-PORT} =g

Cn-T 0 [UcmecnCmiT] = @

Also, in the TPN of composition C;,

Cji-PN [Uleecmcmj- T} UCn-P

Ci-Tn {Ucmjecmij . T} uCn-T

Cj* PORT = Ugp,ec,Cmj* PORT,

Cmj - PORT INT
= {plpeCi-PORT,” PNCi-T
£ PAPNCi-T # T}

Cmj - PORT EXT
= {p|peCi-PORT,* PN C;*T
= VP NCi-T= @)

C, PORT INT is called the set of intrenal ports
of component Cm;, Cmj - PORT -EXT the set of

output ports of C;, and Ci - PORT the set of ports

of C..

e (s is a set of constraints. Each CsjeCs 1S an

RTCTL formula and it only uses ports as its
atomic propositions. The atomic proposition is
true The atomic proposition is true at the
moment T iff:

- marking transition happens at 7, and

- the port contains a token in the new marking.
In the temporal structure X = (S,R,L),S
= (M, ¢,) where M is a TPN marking, and
¢,y 1s the global time when the TPN enters M; R
is a binary relation on S, which is indicated by

leng

s of
- of
t of
Cm,

such

ports
set of
f ports

1S an
as its
tion 1s
at the

wrking.
2,L),S
g, and
sM; R
ited by

Incremental modeling and verification of flexible manufacturing systems 491

firing transitions; and L 1S a mapping:
(M, @) —Ci+- PORT. In addition, the following
condition is enforced:

A\
Cs, I
Csjec, (1)

For VCs; € C;.Cs, denote by Csj - PORT the set of
ports which are used as atomic propositions of
Cs;. I

Csk-PORT N Cmj+ PORT # (&

we say Cs; is defined on Cmj; if

Csk - PORT =Cm; - PORT

we say Cis, is defined only on Cm;. Let

Cmj-Cs = {Cs;|Cs,€Ci+Cs A Csk
- PORT =Cmj- PORT}
(2) VC,eC,YCmeC,.Cm, h: Cmy—C,,j# i,

such that
e Cml - PORT = Cj- PORT_EXT (2)
e Cml-Cs<=C;Cs. (3)

In the above definition, Exp. (1) states that all
constraints should be consistent with each other, and it
gives the horizontal constraint consistency condition.
Equation 2 states that when refining a component into
a sub-architecture which may be composed of several
new components, the sub-architecture must take all
ports of the component as all its external ports.
Equation 3 states that when refining a component into
a sub-architecture, the sub-architecture must conform
to all constraints which the component are subject to.
Such a consistency enforces that the system require-
ments are met in every step of the design process.
Equations 2 and 3 together give the vertical interface
consistency conditions.

[o PTG, SN SR (R0 s ahaws
ror Cdeplc, in the RAS model show

8

in Fig. 1,

C= (Ch CZ)

Cl-Cm = {Al,A2,A3},C,.Cm
= {B1,B2,B3},h(C,-Cm.A3) = C,

Cl-Cn={c;,c2},C,-Cn={c,}
Al-PORT = {portl, port2, port3, port9, port10}

Al-PORT_N = {portl,port3,por9},Al - PORT _OUT

= {porr2, port10}
C1+PORT = {portl,port2, ..., port10}

C1-PORT INT
= {port2,port3, ...,port9},C1 - PORT _EXT
= {portl, port10}

C2+PORT -EXT = {port1, port8}
=Cl-Cm-A3-PORT

Cl 'Cl’l = {Cl,Cz},Cz # CI’I = {C:}
=Cl1-Cm+A3-Cn

4. Incremental modeling of an FMS

In this section, we illustrate the use of RAS to model
an FMS. This will further explain the RAS framework
as well as illustrate the benefits of using the RAS
framework. We focus on the timing properties of an
FMS, which is closely related to the execution delay
of each activity of the system.

4.1. Overview of the system

The manufacturing system is composed of three
subsystems: processing, checking, and repairing
subsystems. These three subsystems run concurrently.
The processing subsystem is composed of 7 machines,
indicated as MI1-7. Two types of workpieces,
indicated as W1 and W2, are processed and then
assembled into a new one, indicated as W3. The
processing flow is shown in Fig. 2. That is, W1 and
W2 are first processed by M1 and M2, which results in
W1 and w20, respectively. Next, \VARST
processed by either M3 or M5, which results in
Wlm, then by either M4 or M6, which results in
W1®; W2 is processed by either M3 or M4, which
results in W2, then by either M5 or M6, which

e . v (3 5 weralEl v
results in W27, Finally, Wi and W2® are further

w wi®
: o

—> M M3, M4
w2 w2® wa2®

Fig. 2. The processing flow of the processing subsystems.

492
Wi1® of M9 wi1@
w3 w3®
—> M8 Mil —
wa®] MIO T

Fig. 3. The processing flow of the repairing subsystems.

assembled by M7 into W3. W3 is the product of the
processing subsystem.

After receiving a product from the processing
subsystem, the checking subsystem examines whether
the product satisfies quality control conditions. If it
does, then the product will be sealed and output as the
final product of the whole system. If it doesn’t, it will
be sent to the repairing subsystem for repair. When the
repairing activity is finished, it will be returned to the
checking subsystem and sealed.

The repairing subsystem is composed of 4
machines, indicated by M8-MI11, as shown in Fig.
3. An unqualified product W3 of the processing
subsystem 1is first disassembled by M8 into two
workpieces, W1® and W2&. W1® and W2® are
processed by M9 and M10, which results in W1 and
W2%_ respectively. Then, W1 and W2 are
assembled by M11 into W3V, which is then returned
to the checking subsystem.

In addition, there are two vehicles, vehicle 1 and
vehicle 2, responsible for the transfer of products
between processing and checking subsystems and
between checking and repairing subsystems, respec-
tively.

The requirements for timing properties of this FMS
design include:

(1) The processing time of the processing sub-
system for each pair of workpieces is not longer than
25 time units.

(2) The processing time of the checking subsystem
for each product of the processing subsystem is not
longer than 12 time units.

(3) After the checking subsystem sends an unqua-
lified product to the repairing subsystem, it must
receive the repaired product within 10 time units.

~ 4.2. RAS architecture of the system

In order to capture the profile of the operational model
of the manufacturing system, we first present its RAS

Wang and Deng

Processing T: Checking
port) Subsystem Hﬁ) Subsystem) portd
(PS) port2 port3 (CS)
LN
port5 port6
T, i Ts
Pz P.’i
Tj TS
port7 port8
Repairing
Subsystem
(RS)

Fig. 4. RAS architecture of the FMS.

architecture in Fig. 4, where each component is
corresponding to a subsystem, namely the processing
subsystem is viewed as component PS, the checking
subsystem as CS, and the repairing subsystem as RS.
Table 1 and Table 2 show the meanings of all ports
and connection transitions.

4.3. Architectural constraints imposed on the system

In this section, we give the RTCTL formulae for the
three constraints of the FMS design. The first
constraint, ¢, is

cy: portl = AF=®port2

which 1s a component constraint and states that the
processing time of the processing subsystem for each
pair of workpieces is not longer than 25 time units.
The second constraint, ¢,, is

cy: port3—AF<Pport4

which is also a component constraint and states that
the processing time of the checking subsystem for
each product of the processing subsystem is not longer
than 12 time units. The third constraint, c5, is

¢y port5—AF S20p0r16

which is an environmental constraint and states that
after the checking subsystem sends an unqualified
product to the repairing subsystem, it must receive the
repaired product within 20 time units.

The importance of this step is twofold: First, the
global system requirements are transformed into

Inc

Tal
Por

por
por
por!
por.
por.

por.
pori
pori

spe
mo;
tem
Cor
whe
glot
we
of t
as

imp
arct
low
requ
by {
arch
nent
desc
ince
peti

'ng

4

is
ing
ing
RS.
orts

tem

the
first

the
:ach
1its.

that
ified
> the

. the
mnto

Incremental modeling and verification of flexible manufacturing systems 493

Table 1. Legends of ports in Fig. 4

Port Type Description

portl input/external A pair of workpieces are ready for processing

porz2 output/internal The processing of a product at the processing subsystem is finished

port3 input/internal A product of the processing subsystem is ready for quality checking

portd output/external A product of the whole system is available

portS output/internal A unqualified product of the processing subsystem is ready to be transferred to the
repairing subsystem.

port6 input/intermnal A repaired product is ready for processing by the checking subsystem

port7 input/internal A unqualified product of the processing subsystem is ready for repairing

port8 output/internal The repairing of a unqualified product is finished

specific constraints on this particular architecture,
more precisely, constraints imposed on the subsys-
tems and connections between the subsystems.
Consequently, we gain a clear understanding about
what role each subsystem plays in satisfying the
global requirements. This also eases analysis as now
we deal with specific conditions imposed on each part
of the system as oppose to requirement to the system
as a whole. This feature becomes increasingly
important as we approach to more detailed levels of
architectural design where the association between a
low-level system component and a system-wide
requirement becomes much harder to grasp. Second,
by formalizing time-critical requirements in terms of
architectural constraints (based solely on the compo-
nent interfaces), it not only removes ambiguity in the
description, but also makes it easier to detect possible
inconsistency or conflict between different (com-
peting) requirements.

Table 2. Legends of places and transitions in Fig. 4

4.4. Operational model of each component
(subsystem)

In this step, we use TPN as a tool to define the
operational behavior of each component. Using the
Petri net design methodologies, we can synthesize an
ordinary Petri net model for a component based on its
operations relationship among these operations. After
we get such an ordinary Petri net, giving time
requirements for various operation results in a TPN
model, in which every transition is associated with an
appropriate time delay interval.

The operational model of components are shown as
in Figs. 5, 6 and 7, and the legends of places and
transitions involved in these models are listed in
Tables 3, 4, and 5. Here, we use a thin bar to represent
an immediate transition, and we use a thick bar to
mode] timed transition. In Fig. 6, t32 and t33 form a
random switch. We assume that the probabilities for

Place Description

P, Vehicle 2 is available

Py Vehicle 2 is transferring the unqualified product to the repairing system

Py Vehicle 2 is transferring the repaired product back to the checking system

Transition Description Firing Interval
T, Vehicle 1 transfers the product of the processing subsystem to the checking system [1,2]

T, Vehicle 2 begins transferring the unqualified product to the repairing system

Ty Vehicle 2 ends transferring the unqualified product to the repairing system [1,2]

T, Vehicle 2 begins transferring the repaired product back to the checking system —

Ts Vehicle 2 ends transferring the repaired product back to the checking system [1,2]

494

Wang and Deng

portl

Fig. 5. The operational model of the processing subsystem.

these two transitions are 0.9 and 0.1, respectively.
This information is necessary when we verify the
system’s constraints.

So far, we have got a complete, executable and
analyzable formal model that represents the top-level
design of the manufacturing system. Next, we
consider the refinement of the FMS model.

4.5. Support for incremental design of the FMS

In this section, we further discuss the incremental
nature of RAS in the architectural modeling of the
FMS. We illustrate the refinement of component of
checking-subsystem (CS) into a sub-architecture
which 1s composed of four components. Such an

t32 p32 t34

D
31 p3 1 pOIT4
port3

33 p33

t36

t35

|)

port5 portb

Fig. 6. The operational model of the checking subsystem.

ability is necessary to make a modeling approach
scale up.

Figure 8 shows the RAS sub-architecture of the
refined checking subsystem, which is composed of
four components, namely Checking Center, Analysis
Unit I, Analysis Unit II, and Sealing Unit. After
receiving a product from the processing subsystem,
the checking center does some checking operations
and then sends the resulting data to the two analysis
units for analysis (T11 and T13 fire). After the data
analysis, the two analysis units return the analysis
results to the checking center (T12 and T14 fires). The
checking center then fuses the analysis results and
determines if the product satisfies quality control
conditions. If it does (T'15 fires), then the product will
be sealed and output as the final product of the whole
system. If it doesn’t (T16 fires), it will be sent to the
repairing subsystem for repair. When the repairing
activity is finished, it will be returned to the sealing

p61 162 p63
61 t64

port7 1D ports

p62 63 p63

Fig. 7. The operational model of the repairing subsystem.

Inc

Pl

t10
t12
t14
tieé
t18
20

Ta

Plc

t61
t62
t64

ach

of
ysis
fter
em,
ons
ysis
lata
ysis
The
and
itrol
will
1ole
- the
ring
ling

port8

Incremental modeling and verification of flexible manufacturing systems

Table 3. Legends of places and transitions in Fig. 5

495

Place Description

pi,i=1273,4 Mj is available, j =i +2

pS (pb) W1 (W2) is ready for processing at M1 (M2)

p7 (pd) W1 (W2 is ready for processing at either M3 or M5 (M4)

p9 (pl0) W1 is under processing by M3 (M5)

pll (pl2) W2 is under processing by M3 (M4)

pl3 (pl4) wi® (W2m) is ready for processing at either M4 (MS5) or M6

pl5 (pl6) W1 is under processing by M4 (M6)

pl7 (pl18) W2 is under processing by M5 (M6)

p19 (p20) W1 (W2 is ready for processing at either M4 (M5) or M6

Transition Description Firing Interval
tl A pair of workpieces are loaded onto the two machines [1,2]
t2 (t3) M1 (M2) processes W1 (W2) [2,4]
t4 (t5) M3 (M5) begins processing w1 —
t6 (t7) M3 (M4) begins processing W2 —
t8 (19) M3 (MS5) ends processing W1'” 2,4]
t10 (t11) M3 (M4) ends processing W2 [2,4]
t12 (t13) M4 (M6) begins processing wi® —
t14 (t15) M5 (M6) begins processing w2 —
t16 (t17) M4 (M6) ends processing W1 [2,4]
t18 (t19) M5 (M6) ends processing W2 [2,4]
120 M7 assembles W1 and W2 2,4]

Table 4. Legends of places and transitions in Fig. 6

Place Description

p31 Checking result is available

p32 Ready for sealing

p33 Ready for being loaded onto the vehicle

Transition Description Firing Interval
31 Checking the product [2,4]
t32 The product passes the test —
33 The product doesn’t pass the test —
t34 The subsystem seals the product [2,4]
35 The subsystem loads the product onto the vehicle [2,4]
36 The subsystem unloads the product from the vehicle [2,4]

Table 5. Legends of places and transitions in Fig. 7

Place Description

p61 (p62) W1 (W2 is ready for processing at W9 (W10)

po3 (p64) W1 (W2 is ready for processing at W11

Transition Description Firing Interval
t61 M8 disassembles W3 ' [2,4]

62 (163) M9 (M10) processes W1& (W2 [2,4]

164 M11 assembles W1 and W2® 2,4]

496
Analysis
Unit I
£\ .
Checking
T11 Ti2
N\
Checking
port3) Center
Y
%i T13 T4 Ti5
iy} .
4) Sez.lmg D port4
Analysis Unit
Unit IT
T16 J4R)
J

ports port6

Fig. 8. Refinement of the checking subsystem.

unit and sealed. Notice that the connection transitions
T15 and T16 are the same as t32 and t33 in Fig. 6.
As pointed out in Section 3.3, this refined sub-
architecture must satisfy two vertical consistency
conditions. The ports of the old component design
shown in Fig. 6 have been totally inherited by the sub-
architecture; we also need to ask the sub-architecture
conform to all constraints which the old component
design are subject to. Otherwise, we cannot safely
plug the new component into the system’s RAS
model. From the top-level RAS model we know that
component CS 1s subject to a component constraint ¢,
and has a requirement of environmental constraint c;.
Therefore, this sub-architecture must satisfy ¢,
whenever the environmental constraint c; is satisfied.
The next important issue of our RAS model is the
verification of constraints against the system opera-
tional model. We address it in the next section.

5. Constraint-driven compositional verification

The modular nature of RAS model and its emphasis
on maintaining a strong correlation between design
and requirements provide a natural support for
incremental verification and for enforcing confor-
mance of the design to the requirements. We have
developed a two dimensional incremental verification
technique that helps to achieve these benefits. In this
section, we briefly introduce our verification tech-
nique and illustrate its illustrated its working on the
FMS described in Section 4.

Wang and Deng

A general framework for our RAS verification
technique can be described as follows: The process of
verification is driven by showing that the components
and their composition satisfy their corresponding
constraints at every design level. We cut down the
verification complexity by supporting horizontal as
well as vertical composition-ability. At any given
level, verification proceeds by analyzing the compo-
nents against their corresponding component
constraints one at a time and then composing these
results to deduce system-wide properties as specified
by connection and cross-connection constraints at that
level. Thus, the complexity of analysis is proportional
to the size and number of components, rather than the
size of the entire model. After a design has been
verified at a given level, it is further refined into lower
level design. The high level constraints are propagated
to the lower level. Then the design at the lower level is
checked against the lower level constraints, and the
refinement process continues. At every level, we
make sure that the constraints are consistent with the
constraints at-the parent level so that a verified lower-
level design can be safely plugged into its parent level
architecture without having to reverify the entire
model.

The salient features of our technique are: (1) it
enforces design integrity by maintaining a tight
combination of design and system requirements and
(2) it reduces the verification complexity by introdu-
cing many component-level reduction rules.

We first describe the verification algorithm for a
given level of design. Then we discuss the verification
across design levels. We assume that we have proved
that all constraints are consistent each other.

5.1. Incremental verification at a given design level

Our algorithm works in two stages. In the first stage,
we order the components so that the timing behavior
of any component depends only on the components
which are lower in this order. This stage assumes that

{on‘l Ne port2 portl oy pero
P e U= BN Eite g
(b) N”

(a) N

Fig. 9. Illustration of component-level reduction rule 1.

/=

\

=\

the

the
of

de:

Le.
an
pa.

po
cai

em
Is ¢

Let
arn
pai
por

pas
em

Son

pat

pail

\ /3

Fig.
reacl
follo

eng

101
s of
nts
ing
the
. as
ven
po-
ient
iese
fied
that
nal
the
een
wer
ited
elis
the

the
ver-
evel
itire

) it
ight
and
>du-

or a
ition
wed

level

tage,
wior
ients

that

Incremental modeling and verification of flexible manufacturing systems 497

portl

Yoz port3

port2

@N ®) N

Fig. 10. Ilustration of component-level reduction rule 2.

the underlying dependency-graph of components is
acyclic. In the next stage, we consider components
one at a time in the order computed in the previous
stage. Each component is verified against its
component constraints and then reduced to a simple
TPN of constant size that preserves the ports and all
the externally observable time-dependent properties
of the component.

The following two definitions are needed for the
description of our verification algorithm.

Definition 1

Let PORT IN and PORT _OUT be the input port set
and output port set of a component, respectively. A
pair of ports, <portin portout>, where
portine PORT_IN and port_oute PORT _OUT, is a
calling pair of the component if a reply token from the
environment is expected at port_in whenever a token
is sent to some other component from port_out.

Definition 2

Let PORT _IN and PORT _OUT be the input port set
and output port set of a component, respectively. A
pair of ports, <port_in portout>, where
portine PORT_IN and port_oute PORT _OUT, is a
passing pair if a token is expected to be sent to the
environment from port_out whenever a token from
some other component is received at port_in.

For example, in Fig. 4, <port5, port6 > is a calling
pair, whereas <port3, port4> is a passing pair.

The basic idea of the algorithm is to close passing
pairs by connecting them with timed transitions,

ta.y por2

L) port3

@N ®N

Fig. 11. Ilustration of component-level reduction rule 3. The token
reached port1 will either follows token flow path 1 to reach porr2, or
follow token flow path 2 to reach port3.

N port2 por” "7 por2
) = 300
) il =

P 300
2 port3 portt” fam | por3
@N MmN

Fig. 12. Illustration of component-level reduction rule 4. The
arrival of a token at porr] will result in a token reaches each of pors2
and porr3.

thereby replacing each component by a very simple
net of comstant size that preserves all external
observable time-critical properties of the component
being replaced. In Figs. 9—13, we introduce a set of
component-level reduction rules to support such
closure (The formal description of these rules is
included in Appendix). The reduction rules intro-
duced here work at a much coarser level than the
reduction rules given in (Sloan and Buy, 1996), which
work at individual transition level. Consequently, we
need fewer applications of our rules to reduce the size
of the model being analyzed. In these rules, the static
firing time interval SI(f(; 5)) of transition ¢, 5y is the
same as D_(portl, port2), the time delay interval of
the message transfer between the epoch of portl being
marked and that of port2 being marked, and
SI(t(12)3)) of #(12)3 Is the same as D_((portl,
port2), port3), the time delay interval of the message
transfer between the epoch of both portl and port2
being marked and that of port3 being marked, and so
on. Without the loss of generality, in our reduction
rules, we assume that for any component mode] to be
reduced, no transitions in the model are enabled in the
initial state of the system. Particularly, we assume:

Assumption 1
The TPN model of the system under design is safe.

This assumption implies that the system takes the
same statistical property of time to deal with inputs
arriving in different time. This enables us to consider
only one set of inputs to verify the system constraints.

In this case, for any component to be reduced, no

portl port3 portl por3
T Ne La.2.3
o
—h AT o =

por2 portd por2 port4

(2) ®)

Fig. 13. Hlustration of component reduction rule 5.

°ng

on
0~

icy
Ja
st
nts
he
ne,
)se
1er
the

ur

hat

nd

»

nt

the
or

if

the

1ge

hm

2

Lt R

on
we

ore
fe

ed:
ind

we

RS
ple

Incremental modeling and verification of flexible manufacturing systems

e)

por3 O——sf——() pont

)

499

(c) I toy :

Fig. 14. (a) Reduction of component PS. (b) Reduction of component RS. (c) The simple but equivalent model of the system.

reachability analysis (Berthomieu and Diaz, 1991),
we conclude

) =[11,22], and
)

So the constraint c¢;: port 1-AF<® port 2 is
verified. Next, we consider the component CS.
Figure 10(c) shows CS and its interaction with
simplified PS and RS, and we use it to verify other
constraints. Based on Fig. 14(c) and the fact that the
switch probabilities for transition t32 and t33 are 0.9
and 0.1, respectively, we obtain

D (port5, port6) = SI(T3) + SI(1(75)) + SI(Ts)
+[9, 17]

and

D_(port3, port4)

= 0.9 x[SI(t31) + SI(t34)] + 0.1 x [SI(135)
+ D _(port3, port4) + SI(ts5) + SI(t34)]

=[41,9.1].

Based on these wvalues, we have verified
cy 1 port5—>AFSport6 and ¢, : port3—AFS12
port4. Therefore, all constraints have been verified.

5.2. Constraints decomposition and incremental
verification across design levels

Our technique for constraint decomposition and
incremental verification across design levels consists
of three basic elements: (1) We automatically derive
constraints for the lower-level design that is consistent
with the higher-level constraints. (2) The lower-level
design is verified using the technique discussed in the
last section. (3) The sub-architecture is plugged into
the parent-level architecture to form a more detailed
architectural model.

In fact, when we refine an RAS component into a
sub-architecture, the RAS model mandates that it
inherit all the ports from the high-level component to
ensure interface consistency. During the verification
of the high-level design, we compute time delays for
certain port pairs of (input port, output port).
Correctness of the high-level design is contingent on
the values of these time delays. So for the lower level
design, we add these delays as constraints that must be
satisfied. As long as these constraints are satisfied, we
can ensure that the lower-level designs is consistent
with the high-level design. If on all these port-pairs
there are component constraints defined, then the
lower-level design is just required to obey these
component constraints.

Let’s take the analysis of the FMS as an example. In
the last subsection, we finished the verification of its
high-level design. Figure 8 shows ports port3, port4,
port5 and port6 are inherited from Fig. 6, the high-

500

level (top-level in fact) design model for CS. From the
top-level RAS model we know that component CS is
only subject to a component constraint ¢,. Therefore,
¢, : port3 —AF=!2 portd is used as the constraint of

the lower-level design.

6. Conclusion

Based on the requirement of the modeling, design, and
analysis of FMS, we have presented an RAS-based
incremental approach to architectural modeling and
verification of real-time distributed systems, and
illustrated the use of the approach to incrementally
model a given FMS. The contribution of this paper is
twofold: First, it provides a systematic way to link
real-time system constraints to the process of formal
modeling and analysis to ensure that the constraints
are met at any given design level. Second, our
approach is scalable in both modeling and analysis.
We also proposed a two dimensional incremental
verification technique, which further shows the
benefits of our RAS model. To enlarge the applicable
area of the verification technique, we are improving it
by weakening its precondition for application.

Appendix: Formal description of reduction rules

In this appendix we give the formal description of our
component-level reduction rules for TPN’s.

Component-Level Reduction Rule 1

Let N be the TPN model of a system, and N~ the TPN
mode] of a component in the system.
C-PORT_IN = {port}, C-PORT_OUT = {port2}.
The component has no enabled transition under the
initial marking of N. If

(1) whenever portl rteceives a token, porr2 is
guaranteed to receive a token in the future, and

(2) portl cannot receive another token until pors2
has received a token,

then we can reduce N into N’ by replacing N~ with a
simple net which is composed of two places: porrl
and port2, and one transition: 7, »), such that

(1) portl* =" port2 = {1t }," t(12) = {portl},
I"(12) = {port2}, while *portl and porr2* remain
unchanged, and

Wang and Deng

(2) Si(ty4)) = SI(portl,port2), the latter is the
time delay interval for the token transfer from port1 to
port2. (See Fig. 9.)

Component-Level Reduction Rule 2

Let N be the TPN model of system S, and N the TPN
model of component C of S. C.PORTIN =
{port1,port2}, ~ C.PORT.OUT = {port3}, and
portl* = port2*. The component has no enabled
transition under the initial marking of N. If

(1) whenever both port1 and porz2 receive a token,
port3 is guaranteed to receive a token in the future, and

(2) at least one of portl and port2 cannot receive
another token until porz3 has received a token,

then we can reduce N into N' by replacing N with a
simple net which 1s composed of three places: porrl,
port2 and pori3, and one (ransition: f((,3), such
that

(1) portl* = port2* =" port3 = {1123},
1(12)3) = {portl, porr2}, Tz = {por13}, while
“portl, *port2 and port3* remain unchanged, and

(2) SI(t12)3)) = SI((port1,por2), port3), the
latter is the time delay interval from two tokens
arriving in portl and port2, respectively, to a token
reaching por3. (See Fig. 10.)

Component-Level Reduction Rule 3:

Let N be the TPN model of a system S, and N the
TPN model of component C of S. C.PORT_IN =
{portl}, C.PORT .OUT = {port2, port3}. The com-
ponent has no enabled transition under the initial
marking of N. If

(1) whenever portl receives a token, one and only
one of port2 and port3 1s guaranteed to receive a token

in the future, and
(2) portl cannot receive another token until one of

then we can reduce N into N’ by replacing N with a
simple net which is composed of three places: portl,
port2 and port3, and two transition: f(; 5y and f 3,
such that

(1) portl* = {115y, 113 }," port2 = {115},
port3 = {13}, "t = taz) = {portl}, ') =
{port2},1* 1 5y = {por13}, while *portl, port2" and
port3” remain unchanged, and

(2) SI(t(2)) = SI_(portl,port2), -and SI(t3)) =
SI (portl, port3). (See Fig. 11.)

=

PEP R Tl

ar

fu

Pl

th
S

[(]

{1
{r

e

SI

Cc
Le
Tt
{r
po
tra

tol
Te(

an
TeC

the
sin
po
suc

deng

the
t1to

PN

and

bled

ken,
,and
eive

ith a
ortl,
such

vhile

the
kens
oken

IN =
com-
nitial

tonly
token

me of

vith a
rortl,

o
“(1,3)°

127

Incremental modeling and verification of flexible manufacturing systems

Component-Level Reduction Rule 4:

Let N be the TPN model of a system S, and N the
TPN model of component C of .
C.PORT IN = {portl},

C.PORT_OUT = {port2, port3}. The component has
no enabled transition under the initial marking of N. If

(1) whenever portl receives a token, both of porz2
and port3 are guaranteed to receive a token in the
future, and

(2) portl cannot receive another token until both of
port2 and port3 have received a token,

then we can reduce N into N’ by replacing N with a
simple net which is composed of four places: port11,
port12, port2 and port3, and two transition: f(y, 5y and
!(123)> such that

(1) *portll =* port12 =" portl, portl1™ =
{f(n,z)}»l’frﬂz* ={tenh (o =
{port11}," 14y 3y = {port12}, 1 1 5) =
{port2},t* 123 = {pori3}, while porr2* and port3*
remain unchanged, and

(2) SI(t17)) = SI-(portl,port2), and SI(tj55)) =
SI _(portl,port3). (See Fig. 12.)

Component-level Reduction Rule 5:

Let N be the TPN model of a system S, and N the
TPN model of component C of S. C.PORT_IN =
{portl,port2}, C.PORT OUT = {port3,port4}, and
portl* = port2*. The component has no enabled
transition under the initial marking of M. If

(1) whenever both portl and porr2 receives a
token, both of port3 and port4 are guaranteed to
receive a token in the future, and

(2) at least one of portl and porr2 cannot receive
another token until both of port3 and port4 have
received a token,

then we can reduce N into N’ by replacing N with a
simple net which is composed of four places: portl,
port2, port3 and port4, and one transition: #((; 5 (3 4)),

such that

(1) portl* = porr2* =* port3 =* port4 =
{t12),640 15" L1234 = {portl, port2} and
" (12),3.4)) = {port3, portd}, while “portl, *port2,
port3* and port4* remain unchanged, and

(2) S[(l((l;z),(l‘*)) = S[-((pOl'[l,pO/'[Z),

(port3, port4)). (See Fig. 13.)

501

Refereces

Baldasssri, M. and Bruno, G. (1991) Protob: An object-
oriented methodology for developing discrete event
dynamic systems. Computer Language, 16(1), 39-63.

Bastide, R., Blanc, C. and Palanque, P. (1993) Cooperative
objects: A concurrent Petri-net based, objected-
oriented language, in Proceedings of the IEEE
International Conference on System, Man and
Cybernetics, 3, 286-291.

Battiston, E., Cindio, F. and Mauri, G. (1988) Objsa nets: A
class of high-level nets having objects as domains, in
Advances in Petri Nets, Lecture Notes on Computer
Science, 340, 20-43.

Berthomieu, B. and Diaz, M. (1991) Modeling and
verification of time dependent systems using time
Petri nets. [EEE Transactions on Software
Engineering, 17(3), 259-273.

Brussel, H. V., Peng, Y. and Vallckenaers, P. (1993)
Modeling flexible manufacturing systems based on
Petni nets. Annals of the CIRP, 42(1), 479-484.

Bucci, G. and Vicario, E. (1995) Compositional validation
of time-critical systems using communicating time
Petri nets. JEEE Transactions on Software
Engineering, 21(12), 969-992.

Camummn, A., Franchi, P., Gandolfo, F. and Zaccana, R.
(1993) Petr1 net based process scheduling: a model of
the control system of flexible manufacturing systems.
Journal of intelligent and Robotic Systems, 8, 99—123.

Deng, Y. and Yang, C. (1999) Architecture-driven modeling
of real-time concurrent systems with application in
EMS. Journal of Systems and Software 45, 61-78.

Deng, Y., Wang, J. and Sinha, R. K. (1997) Integrated
Architectural Modeling of Real-Time Concurrent
Systems with Applications in FMS, Technical Report,
School of Computer Science, Florida International
University.

D’souza, K. A. and Khator, S. K. (1994) A survey of Petri
net applications in modeling controls for automated
manufacturing systems. Computers in Industry, 24,
5-16.

Elmaraghy, H. A. and Ravi, T. (1992) Modern tools for the
design, modeling and evaluation of flexible manufac-
turing systems. Robotics & Computer-Integrated
Manufacturing, 9(4), 335-340.

Emerson, E. A., Mok, A. K., Sistia, A. P. and Srimivasian, I
(1992) Quantitative temporal reasoning. Real-Time
Systems, 4, 331-352.

Huang, H. P. and Chang, P. C. (1992) Specification,
modeling and control of a flexible manufacturing
cell. International Journal of Production Research,
30(11), 2515-2543.

Knapp, G. M. and Wang, H. P. (1992) Modeling

502

of automated storage/retrieval systems using Petri
nets. Journal of Manufacturing Systems, 11(1),
20-29.

Lee, Y. and Park, S. (1993) Opnets: An object-oriented high-
level Petr1 net model for real-time systems. Journal of
Systems & Software, SE-13(3), 69-86.

Lin, J. T. and Lee, C. C. (1995) A CTPN-based scheduler for
a flexible manufacturing cell. Journal of the Chinese
Institute of Engineers, 18(5), 655-672.

Luckham, D. C., Kenny, J. J., Augustin, L. M., Vera, J.,
Bryan, D. and Mann, W. (1995) Specification and
analysis of system architecture using Rapide. /JEEE
Transactions on Software Engineering, 21(4), 336-355.

Luckham, D. C., Vera, J. and Meldal, S. (1995) Three
concepts of system architecture, Technical Report,
Stanford University.

Mandrioli, D., Morzenti, A., Pezze, M., Pietro P. S. and
Silva, S. (1995) A Petri net and logic approach to the
specification and verification of real time systems, in
Formal Methods for Real rime Computing, Heitmeyer,
C. and Mandnol,, D. (eds.), John Wiley & Sons
Ltd.

Meng, J., Soh, Y. C. and Wang, Y. (1995) A TCPN model
and deadlock avoidance for FMS jobshop scheduling
and control system. /EEE International Workshop on
Emerging Technologies and Factory Automation, Paris
France, 521-532.

Murata, T. Petri nets: Properties, analysis and applications.
Proceedings of IEEE, 77(4).

Pnueli, A. (1977) The temporal logic of programs.
Proceedings of 18th Annual IEEE Symposium on
Foundations of Computer Science, 46-57.

Wang and Deng

Qadri, E and Robbi, A. (1994) Timed Petri nets for flexible
manufacturing cell design. [EEE International
Conference on Systems, Man and Cybernetics, Texas,
1695-1699.

Shukla, C. S. and Chen, E E (1996) The state-of-the-art in
intelligent real-time FMS control: a comprehensive
survey. Journal of Intelligent Manufacturing 7(6),
441-456.

Sloan, R. and Buy, U. (1996) Reduction rules for time Petri
nets. Acta Informatica, 33, 687-706.

Solot, P. and Vliet, M. V. (1994) Analytical models for FMS
design optimization: A survey. International Journal of
Flexible Manufacturing Systems, 6(3), 209-233.

Wang, L.-C. (1996) The development of an object-oriented
Petri net cell control model. International Journal on
Advanced Manufacturing Technology, 11, 59-69.

Zhou, M. C., Dicesare, E and Rudolph, D. L. (1992) Design
and implementation of a Petri net based supervisor for a
flexible manufacturing system. Automatica, 28(6),
1199-1208. '

Zhou, M. C., McDemmott, K. and Patel, P. A. (1993) Petri net
synthesis and analysis of a flexible manufacturing
system cell. [EEE Transactions on System, Man and
Cybernetics, 23(2), 523-531.

Zhou, Q., Wang, M. and Dutta, S. P. (1995) Generation of
optimal control policy for flexible manufacturing cells:
a Petri net approach. International Journal of Advanced
Manufacturing technology, 10, 59-65.

Zuberek, W. M. (1995) Schedules of flexible manufacturing
cells and their timed colored Petri net models. IEEE
International Conference on Systems, Man and
Cybernetics, New York, 2142-2147.

Dej

Rec

Int

resy
ace
ope
to a

Key

Rob
of tl
Eng

Eng
beer
Reg
Ceny

095

rER TYM>. I8y,

£

J OU.I‘na] of

Intelligent

 Volume 10 Number 6 December 1999 ISSN 0956-5515

CODEN JIMNEM

