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Abstract. Especially suitable for the modeling and sim-
ulation of technical systems in a wider sense, discrete-
event simulation is one of the most important and most
versatile tools of the craft. Both students and practition-
ers should be familiar with its principles and mechanics,
in particular if they are interested to look beyond their
favorite modeling tool’s GUI.
This paper presents a short tutorial on modeling and
simulation techniques, with a focus on discrete-event
simulation. After an introduction to the subject matter,
some event-oriented modeling fundamentals are dis-
cussed, followed by a description of simulation execu-
tion principles. A slim software framework is introduced
aimed at simplifying model building and evaluation, fol-
lowed by the presentation of a small sample of recently
completed discrete-event simulation studies. The paper
concludes with a short summary of the lessons learned
and some pointers to additional literature.

Introduction

Decades after its inception (see [19]), the discrete-event

modeling and simulation method is still a mainstay of

the trade, with hundreds of discrete-event simulation

models being built, executed, and described (for a small

selection of recently completed studies see section 4).

Discrete-event based methods are especially suit-

able if the examined system’s behavior can be described

as a set of stochastically influenced, connected compo-

nents, changing their states at discrete points in time. A

discrete-event simulation model represents such a sys-

tem as a set of connected, attributed entities, executing,

and communicating by, events and activities.

Common applications range from communications

to transportation, and especially cover the simulation of

technical systems in a wider sense. It is less suitable

in areas like astronomy, meteorology, or materials sci-

ences, while social scientists often prefer agent-based

modeling for their simulation experiments.

While discrete-event simulation is easily under-

stood, it is also very expressive and powerful. Single

researchers, students, or practitioners can create high-

validity models and evaluate their behavior. Discrete-

event simulation includes three worldviews: activity-

oriented, process-oriented, and event-oriented simula-

tion (for detailed information see e.g. [5], pp. 88-

108). While these views each emphasize different

model components to represent the investigated system,

they all use the same basic modeling principles and can

easily be translated into another.

This paper presents an introduction to modeling and

simulation techniques, with a focus on discrete-event

simulation. It is especially addressed to students of the

craft, and to practitioners who might want to look be-

yond their usual modeling tool’s GUI. In addition to de-

scribing the modeling process, the execution of simula-

tion models, and a number of typical academic and real-

world applications, the paper also includes a description

of an open-source Java framework which encapsulates

and hides the event-oriented method’s technical details,

and provides a slim API for modelers to start imple-

menting a model without having to be concerned with

the underlying mechanics. The framework can be used

(and has been used) for both simple experiments and

full blown case studies.

The paper continues with an introduction of basic

modeling methods with a focus on event-oriented con-

cepts (section 1), including entities, events, activities, as

well as input distributions and their modeling, followed

SNE 27(1) – 3/2017



10

Ullrich et al. An Introduction to Discrete-Event Modeling and Simulation

by a description of fundamental techniques of model

execution (section 2), both for traditional event-oriented

simulation and its object-oriented extension. Build-

ing up on this, the paper then introduces a slim event-

oriented simulation framework (section 3) designed to

allow the user to concentrate on modeling aspects and

to isolate them from technical housekeeping work. The

penultimate section (section 4) presents a sample of cur-

rent or recently concluded case studies in a wide variety

of application fields, including communications, disas-

ter mitigation, health care, logistics, supply chain man-

agement, and transportation. The paper concludes with

a short summary of the lessons learned and some rec-

ommendations for further reading (section 5).

1 Event-oriented Modeling

The modeling process starts with the examination and

analysis of the real-world system to be modeled. It

is decomposed into interacting components which per-

form processes, execute and generate events and inter-

act by passing messages. The decision has to be made

what components and processes should be part of the

model, what should be parametrized, and what should

be left out completely. Generally, if an entity or a pro-

cess has a strong influence on the core behavior of the

model, it should be incorporated. If the influence is

weak, it might be wiser to parametrize it to avoid creat-

ing overcomplexity.

Discrete-event modeling is suitable for systems that

can be described as a set of interrelated entities which

only change their state (and subsequently the system’s

state) at discrete points in time as a result of their own

behavior or of the behavior of other entities. Enti-

ties describe components of the system under investi-

gation which have to be modeled explicitly in order to

represent the system behavior relevant to the simula-

tion study. Each entity possesses individual attributes

whose values describe their current state and which af-

fect their behavior. The potential behavior of an entity

is modeled as a set of activities, i.e. a sequence of ac-

tions during some time period which may result in state

changes of the acting entity as well as other entities of

the model. The point in simulation time at which such

a state change occurs is called an event. Subsequently,

activities are always framed by events. The precise rela-

tionship between specific events and activities has to be

defined by the modeler based on the goals of the simu-

lation study. In particular, this includes the specification

of the durations of activities, which can be modeled as

deterministic as well as based on stochastically influ-

enced parameters. The latter case is usually modeled

using drawings from random distributions, whose type

and parameters are acquired by analyzing relevant input

data (e.g. using Microsoft Excel).

In discrete modeling some distribution types (see

figure 1) are especially useful: Independent machine

processing times, e.g. for the tooling of a component,

can often be approximated by applying a normal dis-

tribution ℵ(μ,σ2) with an average of μ and a stan-

dard deviation σ , or by using a log-normal distribution

lnℵ(μ,σ2). Arrival rates, e.g. of cars entering a free-

way segment, are usually modeled using a discrete Pois-

son distribution pois(λ ) with an average number λ of

events per interval. The time between two independent

arrival events is often approximated with an exponential

distribution exp(μ) with an average interarrival time of

μ = 1/λ , λ again being the average number of events

per interval (see [5], pg. 248).

Figure 1: Distribution types.
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If the available data is insufficient to determine a dis-

tribution’s type and parameters, insight might be gained

by interviewing local domain experts. If an expert is

confident that a stochastically influenced process takes

a time “usually in the vicinity of mode units, never less

that min, never more than max units,” the process dura-

tion can be modeled as a drawing from a triangular dis-

tribution tri(mode, min, max) with the parameters min,

max, and mode. If available expert knowledge is as

imprecise as “somewhere between min and max,” the

modeler has to make due with a uniform distribution

U(min, max) with the parameters min and max.

Because the model state only changes at the occur-

rence of events, it follows that it stays unchanged be-

tween two subsequent events and that in general an ac-

tivity can’t be influenced by an event which occurred af-

ter the activity has already started.1 The event-oriented

worldview takes advantage of this by representing the

passage of time in the real-world system using variable

time steps for the incrementation of simulation time, i.e.

the simulation time jumps from the occurrence of one

event to the occurrence of the next event. The event-

oriented simulation process can thus be understood as a

sequence of snapshots of the model state, starting with

the earliest snapshot (e.g. at simulation time ts = 0) and

ending once no more snapshots are generated. The first

snapshot in the sequence has a special status: It has to

be defined by the modeler and is used to initialize the

states of all model entities. Furthermore, it is used to

schedule exogenous events, i.e. events whose origins

lie outside the boundaries of the model (in contrast to

endogenous events, whose origins lie inside the bound-

aries of the model). Often, the practitioner’s goal is not

to examine a model’s regular behavior, but to evaluate

its reaction to specific disruptions or disturbances (e.g.

the blockade of a track segment or a machine failure).

In such a case one does not want to rely on a disrup-

tion occurring randomly, especially if these are very

rare. Therefore, disruptions are systematically injected

into the model as exogenous events with a specific time

stamp during the first simulation snapshot. When the

simulation is started, it executes the routine events, un-

til it reaches the exogenous event. The model’s state is

changed accordingly and the model logic designed to

cope with a disruption springs into action; its effective-

ness can now be examined systematically.

1It is possible to deviate from this assumption in individual cases, if the

simulation framework used to implement the model provides meth-

ods and data structures for the rescheduling of already scheduled

events, thus possibly aborting an activity that has already started.

A commonly used tool to plan and visualize event-

oriented models is the event activity chain (see figure

2). Here, events are represented as hexagons, framing

activities which are represented as round cornered rect-

angles. Conditions to be fulfilled, or a decision on what

path to follow, can be represented by or (∨), exclusive
or (xor), or and (∧) connections. The chain’s elements

can further be attributed by distributions and other pa-

rameters.

2 Event-oriented Model
Execution

Once the components of a simulation model are identi-

fied, including their attributes, relations, activities, and

events, the model is implemented as software and sub-

sequently executed. Using object-oriented program-

ming languages, model entities can be implemented one

to one as objects, with entity types being realized as

classes.

The data structure used to represent events

has to include fields for: the event type, e.g.

START_SIMULATION, BEGIN_PASSENGER_EX-

CHANGE, RELEASE_WORKSTATION; the time

stamp, usually stored as an integer value, with one in-

crement constituting the smallest representable time in-

crement, e.g. one second or one millisecond; and addi-

tional information depending on the model.

These simulation events are managed by the Future

Event List (FEL). This data structure is usually imple-

mented as a priority queue, an abstract data type which

orders elements according to a key, in this case to the

time stamp. Amongst other functions, the FEL pro-

vides interfaces to find and remove the element with the

smallest key, insert new elements at the right position in

the FEL, and test for emptiness. Usually, the dequeuing

order of events with identical time stamps is not guar-

anteed, therefore making it more difficult to represent

concurrent access to shared resources. If such function-

ality is desired, the events have to include an additional

attribute, e.g. a general index, which can be used as

secondary sorting key.

During the simulation run the simulation engine

repeatedly retrieves (and thus removes) the event

with the minimum time time stamp value from the

FEL and executes it. In the course of the execu-

tion the simulation time is set to the currently ex-

ecuted event’s time stamp, the model’s state vari-

ables are updated, and follow-up events are generated
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Figure 2: Example for event-activity-chain notation depicting a simplified model of a transit vehicle executing a service trip.

and inserted into the FEL (e.g. during the execu-

tion of BEGIN_PASSENGER_EXCHANGE an event

END_PASSENGER_EXCHANGE might be scheduled

23 seconds into the model’s future). The simulation

therefore jumps from time stamp to time stamp, and

ignores the time in between two subsequent events.

Stochastic elements, e.g. processing durations or in-

terarrival times, are drawn from random distributions,

usually by utilizing a library providing a large number

of distribution types. How to efficiently generate these

distributions, and how to ensure their unpredictability

and randomness, is a research area by itself (see [10]),

and is well beyond the scope of this introduction.

Using the described data structures and concepts,

the simulation run is executed by iterating through a

simple loop (see figure 3): (1) Start the run, set the

simulation time to zero, send a START_SIMULATION
event when appropriate; (2) get the event ei with the

minimum time stamp from the FEL, set the simulation

time to ei’s time stamp; (3) execute event ei according

to its type, thereby updating the model state and en-

queuing follow-up events; (4) check the stop conditions,

which usually include at least a check whether the FEL

is empty. If the stop conditions are fulfilled, end the

simulation run by continuing with step (5). If not, re-

peat the loop from step (2) by dequeueing the next event

ei+1. (5) Prepare statistics and evaluate results.

In the object-oriented extension (see figure 4) the

event data structure additionally contains a reference

to the source entity and a list of entities which are the

event’s addressees. The central event handling routine

is replaced by a dispatcher which calls the addressees’

event handling routines. If one event includes more than

one addressee, the order of these calls usually cannot be

guaranteed.

With potentially hundreds or thousands of events in

the queue at the same time, it is obvious that the perfor-

mance of the priority queue implementation is an im-

portant factor in the method’s overall performance. A

number of data structure is commonly used to imple-

ment the priority queue, including hashing structures,

heaps, binary trees, or (in small models) linked lists.

For a more detailed discussion of priority queue data

structures see [16].

3 An Event-oriented Simulation
Framework

Surfside2 is a slim Java framework for event-oriented

simulation. It has been used in a number of applications

(see [12], [13], [15], [25]), mainly in the area of compu-

tational transportation science. Surfside is designed to

2available under an open source license at www.oullr.de/surfside
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Figure 3: Basic event-oriented simulation loop.

Figure 4: Object-oriented extension of the event-oriented
simulation loop.

be easily understood, and to help modelers to concen-

trate on the actual modeling task by isolating them from

technicalities.

Simulation events are represented by instances of

the class Event. Each instance includes an event type

value, a time stamp, a reference to the event’s gener-

ating entity, and a list of event listeners or addressees,

i.e. objects implementing the interface EventHandler.

The class Event can be extended to include further

application-specific data.

Event types are administrated by the class Event-
TypeManager, which prevents dublicated event type

values and provides centralized access to all registered

event types. A set of standard event types, defined in

the class EventType, is added to the EventTypeManager
by default. To use custom event types the user has to

create her own event types and add them to the Event-
TypeManager.

Entity types are realized as classes implementing

the interface EventHandler. This interface demands

a method handleEvent(Event) which consumes simu-

lation events addressed to the entity, evaluates event

data, changes the model state, and generates follow-up

events by calling Simulation.addEvent(Event). The in-

terface also demands a method reset() to reset the en-

tity’s state in between simulation runs, and some other

minor methods.

The abstract class Simulation encapsulates the func-

tionality to prepare, execute, and evaluate a number of

simulation runs and is usually extended to be the sim-

ulation application’s main class. It is implemented as

a Singleton and itself implements the EventHandler in-

terface, and can thus function as a conceptual model

entity. If all simulation events are handled by the class

extending Simulation, the model followed the classic

event-oriented paradigm without its object-oriented ex-

tension.

The user’s code takes control in an extended con-

structor, utilizing calls to addEntity(EventHandler ...)
to add one or more entities to the model. The num-

ber of simulation runs to be executed is set via set-
NumberOfRuns(int). The user’s code then calls start(),
thereby commencing the execution of the given number

of simulation runs. The user also has to implement the

abstract methods prepareNextRun(), eventPostProcess-
ing(Event) and evaluateRun(), which are used to reset

the model in between simulation runs, evaluate and col-

lect data after processing a single event, and to eval-

uate data collected after finishing a run, respectively.

At the start of each simulation run, an event of type

SIMULATION_START is automatically generated and

sent to the class extending Simulation, at the conclu-

sion of each run, if the user did not stop the simulation

herself, an event of type SIMULATION_END is auto-

matically sent. The class also manages the FEL, to

which events can be added by using addEvent(Event).
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Specific events can be removed from the list by call-

ing removeEvent(Event). The framework automatically

manages the FEL mechanics encapsulated in the class

FutureEventList. This class can be extended, thereby

allowing experiments with FEL data structures them-

selves.

Surfside provides a number of helper classes for in-

put distribution generation, output logging, etc: The

class Distribution encapsulates parametrized random

distributions for single time periods with homogeneous

parameters, supporting uniform, triangular, normal,

lognormal, exponential, and poisson distributions. The

class CompositeDistribution encapsulates functionality

to model processes whose distributions and parameters

change over time, by allowing the assemblage of mut-

lipe Distribution instances with inhomogeneous param-

eters and different time periods. The class Properties-
Manager administrates the simulation parameters and

offers functionality to read parameters from the com-

mand line as well as from XML files. The classes Col-
umn and Exporter help to collect and write output data.

The latter is an interface defining the minimum func-

tionality for storing simulation data, e.g. add(Column)
and log(), which should be implemented by custom data

export classes. A simple implementation for writing

data to a Microsoft Excel spreadsheet based on a user

defined template using the JExcelAPI libary is already

provided by the class JExcelAPIExporter.

4 Current Applications

Presented here is a small sample of current or recently

concluded discrete-event simulation case studies in a

wide variety of application fields, collected to give an

impression of the method’s flexibility and utility. Some

applications show small, very specific models, con-

structed and implemented by single practitioners or a

small team, while others consist of large multi-person

projects.

Communications: Artuso and Christiansen (see [3])

examine inter-cell interferences in long term evolu-

tion (LTE) cellular networks. As it is very costly to

assess possible solutions in the field, network opera-

tors are interested in the evaluation of potential reme-

dies in simulated scenarios. Artuso and Christiansen

find that, by applying certain techniques, improvements

from 25% to 40% in relation to the baseline scenario

can be achieved. Cetinkaya et al. (see [6]) analyze

the effects of perturbations on resilient communication

networks. They use discrete-event simulation to inject

disturbances into a representation of the USA’s Sprint

backbone network, thus assessing impacts on perfor-

mance and dependability.

Disaster mitigation: Kuchel (see [11]) examines the

impacts of civil unrest and violence on large-scale evac-

uation operations. He provides a model to analyze and

evaluate scenarios with the goal of reducing evacuation

time, and to identify limiting factors and choke points

for given local transportation networks. Suk Na and

Banerjee (see [23]) combine agent-based and discrete-

event simulation to provide a decision support system

for network evacuation strategies in case of natural dis-

asters. Their model includes an embedded geographic

information system, and allows to evaluate possible

shelter positions, vehicle types, and evacuation priori-

ties. They examine a number of scenarios based on an

assumed natural disaster in Galveston, Texas.

Health care: Allen et al. (see [2]) examine the

rescheduling of medical surgery schedules as a con-

sequence of disruptions during the operational day.

Their discrete-event model focuses on the impacts of

rescheduling measures on hospital personnel, especially

on further delays resulting from delayed communica-

tions regarding the updated schedule. Mayorga et al.

(see [18]) construct a simulation model to assess the

health and economic impacts of various smoking cessa-

tion techniques. Their model represents 100,000 smok-

ers receiving one of five alternative smoking cessations

interventions, including several medications, nicotine

replacement therapy, and counseling. The results in-

dicate that while all treatments have a positive average

effect on the participants’ quality of life, a small long-

term preference for a certain pharmaceutical treatment

can be identified. Pooya et al. (see [20]) use discrete-

event simulation to analyze and assess the reliability

and safety of the radiation therapy care delivery pro-

cess, focusing on possible optimization by quality as-

surance protocols. They find that “incidents” caused by

mistakes in the organ delineation and dose calculation

steps are most costly, and can be reduced by improved

quality assurance procedures.

Logistics and supply chain management: Abbot and

Marinov (see [1]) examine alternative designs for rail-

road interchange yards, which facilitate the exchange

of rolling stock between Britain’s planned “High Speed

Two” railway and conventional networks. Their model

consists of a number of sub-models, representing e.g.

locomotive change, brake inspection, and the train ar-
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rival process. They find that under the given yards de-

signs high-speed and conventional rolling stock can be

operated together, but at a speed penalty. Iannone et

al. (see [9]) assess the impact of complex management

decisions on planning and operations of inter-modal lo-

gistical terminals. Based on data from Italian terminals,

they model both scheduling and loading/unloading pro-

cesses of cargo on large marine vessels, finding that

by adopting a different scheduling method a two digit

percentage of monetary cost can be saved. Leonard et

al. (see [14]) analyze the launch process of the NASA

Space Launch System, focusing on the supply of the

four main liquid launch commodities: hydrogen, oxy-

gen, nitrogen, and helium. Their study confirms that,

applying a new refilling strategy, the turnaround time

could be reduced from over seven days to 48 hours.

Schroer et al. (see [22]) model a number of terminals

of the port of Rotterdam, Netherlands. They investigate

options for the transport of cargo containers between

these sub-systems, and consider several discussed con-

figurations of the port’s future extensions.

Transit: Ullrich et al. (see [24]) use a discrete-

event simulation model of light-rail transit to exam-

ine the conditions under which the application of reg-

ular timetables reduces service delays resulting from

inevitable small disturbances. They find that for reg-

ular timetables to have an impact, the light-rail system

has to adhere to three conditions: resources like tracks

and splits have to be shared, the traversal time variance

has to be comparatively low, and resources cannot be

redundant. Wales and Marinov (see [26]) describe de-

layed service issues in the British Tyne and Wear Metro

light-rail system. They develop a simulation model to

analyze the origins of these delays, and to assess a num-

ber of potential mitigation techniques. They find that

by applying these techniques, the system’s punctuality

could be improved by 15% to 17% in relation to the

current state.

A collection of further recent use cases, especially in

the areas of automotive and manufacturing simulation,

can be found in [4].

5 Conclusions

This paper presented an introduction to discrete-event

modeling and simulation, in particular to the event-

oriented worldview. It shared some fundamental mod-

eling techniques, described the execution of simulation

models, and introduced Surfside, a slim framework for

event-oriented simulation. An overview of some cur-

rent case studies showed the relevance of the paradigm

for researchers and practitioners.

Discrete-event modeling and simulation is a very

simple, easy to understand, but also very powerful ap-

proach. It is especially useful for modeling techni-

cal systems in the wider sense, including communica-

tions, disaster mitigation, health care, logistics, sup-

ply management, and transportation. With the help

of slim frameworks a single researcher or practitioner

can build, execute, and evaluate a small but meaningful

discrete-event model.

For further, more detailed research a number of

books and articles can be recommended: Banks et al.

(see [5]) is a seminal work on discrete-event modeling

and simulation. Fishman (see [7]) is an excellent alter-

native, especially for readers with an interest in opera-

tions research. Model verification and validation are the

single most important tasks in any simulation project.

Sargent (see [21]) describes a set of paradigms and tech-

niques to ensure a model’s high validity and credibil-

ity. Even 15 years after its release, Fujimoto (see [8]) is

still the weapon of choice for those who want to under-

stand the fundamentals of parallel and distributed sim-

ulation. For modelers who desire to take a step beyond

discrete event mechanics, Macal and North’s introduc-

tion to agent-based modeling and simulation (see [17])

can be recommended.
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