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ABSTRACT
We address the problem of extending the querying capabil-
ities of Trajectories Data Warehouses (TDW) for symbolic
trajectories, by introducing Semantic Relatedness (SR) as
part of the formal model. This enables capturing the simi-
larity between different annotations describing Points of In-
terest (POI), locations and activities. We formally define the
inclusion of the relationship between different terms used as
descriptors in symbolic trajectories and present the Seman-
tic Relatedness in Trajectories Data Warehouse (SR-TDW)
model. We introduce newly enabled queries in the SR-TDW
model and illustrate the impacts of the added functionality.
Our experiments demonstrate the benefits of the proposed
approaches in terms of enriching the answer-sets for the com-
mon OLAP-based queries, and the sensitivity in terms of the
various measures of semantic similarity.
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1. INTRODUCTION AND MOTIVATION
The omnipresence of computing and sensing devices, and

advances in networking and communications, enabled the
generation of huge volumes of location-in-time data in
plethora of GIS applications. An O(Peta-Bytes) per year are
generated from the GPS of smart phone users, with up to
400-fold increase if cell-tower locations are included [14]. It
is estimated that by 2020, more than 70% of mobile phones
will have GPS capability – compared to 20% in 2010 – with
similar trends in cars equipped with dashboard GPS devices.

Efficient storage and retrieval of the (location, time) in-
formation is essential for various applications – e.g., navi-
gation, traffic management, recommendation systems, disas-
ter mitigation, etc. traditionally, managed by Moving Ob-
jects Databases (MOD) [11]. Recent research has extended
moving objects analysis with an OLAP (Online Analytical
Processing) kind of functionality for aggregating application-
demanded knowledge, enabling decision-support tasks re-
lated to mobile data. Data Warehousing (DW) models and
tools [25] have been augmented with capabilities for process-
ing complex queries in Spatial OLAP (SOLAP) and Spatio-
Temporal (ST-OLAP) settings [12, 17, 24]. The sequence of
spatiotemporal positions of a moving object, having a cer-
tain start and end, is called the object’s raw trajectory –
useful for querying MOD data (e.g., “When is the next train
to London expected to arrive?”). Mobility analysis, however,
often does not require the full raw trajectory, and replacing
raw data by certain places of interest (POIs) may suffice. For
this, we need to identify POIs where an object stopped for a
certain amount of time – or, the other way around, i.e, a POI
may be discovered through the analysis of the time spent at
a certain position. Thus, trajectories can be segmented into
a sequence of episodes characterized as a sequence of stops
at POIs, and moves in between two stops. This sequence,
having a given start and end, is called a semantic trajectory.
Episodes can be further annotated with contextual informa-
tion, leading to the notion of semantically-annotated trajec-
tories [19]. Figure 1 shows three semantically-annotated tra-
jectories, ST1, ST2, and ST3, along with some POIs (restau-
rants, fast food places, etc), where the trajectories stopped.
The trajectory lines link the different kinds of POIs (e.g.,
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Figure 1: Chicagoland trajectories

street corners, restaurants, etc.).
Trajectory Data Warehouses (TDWs) [8] and Semantic

Trajectory Data Warehouse (STDW) [3,21,26] are aimed at
aggregating and analyzing trajectory data, e.g., using OLAP
and data mining techniques – as exemplified with the query
Q 1 below, over a TDW containing ST1, ST2, and ST3 in
Figure 1:
Q 1: Daily number of trajectories in the first week of June,
that started in the Loop, first stopped at a restaurant, and
then at a coffee house, both within 2 miles from West Loop.

Typical proposals that extend trajectories with annota-
tions [5] and account for spatial data [26], would detect ST1

as the only trajectory satisfying both the semantic and spa-
tial conditions in Q 1, returning “1” as a result of the COUNT

aggregate function. However, a careful observation of Fig-
ure 1 reveals that: (1) ST2 may also be an acceptable answer,
since it did stop at Arby’s (a fast-food place), followed by a
stop at Starbucks; (2) Similarly ST3 stopped first at McDon-
ald’s (a fast-food place), and then at Panera (a pastry), and
thus it may also be an acceptable answer. Both ST2 and
ST3 could satisfy Q 1 depending on the application and/or
user requirements, which must state to what extent we can
consider a fast-food place analogous to a restaurant, a pas-
try similar to a coffee-shop, and so on. As another example,
we may consider that ST3 is “closer” to ST2 than ST1 or
viceversa, depending on the similarity model adopted.

To account for this problem, in this paper we take a first
step towards extending TDWs and STDWs with the notion
of semantic relatedness [2, 7, 18], which enables retrieving
concepts of interest and computing aggregates with a pre-
defined correlation value instead of a strict term matching.
We call this novel model SR-TDW (Semantic Relatedness
in Trajectory Data Warehouses). In our example, given a
threshold Θ, if the similarity measure for the attributes cor-
related to the ones in ST1 in both ST2 and ST3, is ≥ Θ, we
would obtain “3” as an outcome of the COUNT value.

Semantic relatedness quantifies the knowledge of “how
close” are two terms used in the annotation of the respec-
tive attributes of the participating trajectories, examples of
which abound. Consider for instance a collection of trajec-
tories segmented according to “stop” and “move” episodes.
Each “move” episode could be annotated with its associ-
ated mean of transportation: the transportation mode of
one episode may be a “car”, whereas an episode in the same
or in another trajectory may be “vehicle”. Both are, intu-
itively, more related to each other than the term “bicycle”.

Similarly, the tags used in activities description (cf. [6]) may
vary from “restaurant”, through “fast-food”, to “eatery”, and
all are semantically closer to each other than the term “bar”.
Note that, even though the notion of relatedness may com-
prise the concept of generalization (like in the car-vehicle
case) – it is clearly more general, e.g., there is no generaliza-
tion between the concepts of restaurant and bar, although
both may be considered as an specialization of the concept of
“food house”. The above example can be straightforwardly
extended to various domains and, to the best of our knowl-
edge, TDWs have not fully exploited the concept of semantic
similarities – the core of our motivation, for which our main
contributions are:
• We present the SR-TDW model, which augments the
TDW models both by capturing extended information about
semantic annotations of trajectories, and the relatedness be-
tween different (classes of) terms.
• We introduce novel queries which incorporate the value of
the semantic relatedness when determining the answer-set
and may enrich (augment) the answer set.
• We present experimental observations evaluating the ef-
fectiveness of the novel SR-TDW model when applied on
a dataset of semantic trajectories from Chicago, illustrating
the impact of the different measures for semantic relatedness
on the answer-sets.

In the remainder of this paper, Section 2 introduces the ba-
sic terminology and background about the formalisms used.
Section 3 introduces the main modelling results – the no-
tion of semantic relatedness and how it is incorporated in
the SR-TDW model. In Section 4 we present examples of
queries and aggregation with semantic relatedness. Section 5
presents our experimental observations, Section 6 compares
our work with relevant literature, and Section 7 concludes
the paper and outlines directions for future work.

2. PRELIMINARIES
We now introduce the basics of Symbolic Trajectories (ST)

and TDWs.

2.1 Semantically Enriched Trajectories
Symbolic(synonymously, Semantic or Enriched) Trajecto-

ries [3, 6, 19] embed contextual and/or situational knowl-
edge into location-in-time data. In a MOD [11] a tra-
jectory is modelled as a structure of the form Tri =
[oID, (xi1, yi1, ti1), . . . , (xik, yik, tik)], where xij and yij (1 ≤
j ≤ k) are the coordinates of the location (lij = (xij , yij))
of the object with a unique identifier oID, obtained at time
instant tij . In-between two consecutive updates, objects are
assumed to move in accordance with some kind of an inter-
polation. STs attempt also to describe the kinds of activities
associated with a particular location and time – e.g., “stop”,
“move”, “walk”, “eat”, etc. Formally (cf. [6, 19]), a semantic
trajectory STi is a sequence of so-called, semantic episodes
sei,m as follows:
STi = [sei1, sei2, sei3, . . . seim], where the j-th semantic
episode of the i-th semantic trajectory is a tuple of the form:
seij = (daij , spij , x

in
ij , yin

ij , tin
ij , xout

ij , yout
ij , tout

ij , tagListij)
where:
• daij = defining annotation; typically expressing an activity
(verb) such as “stop” or “move”.
• spij = semantic location/position of the activity, like a
POI (e.g., a museum, restaurant, zoo), home, work, etc.
• tin

ij and tout
ij = entry/exit times of a semantic position.

2



• xin
ij , yin

ij , xout
ij , yout

ij = entry/exit coordinates of a semantic
position.
• tagListij = any additional semantic information, like trans-
portation mode, additional activity description (e.g., eat),
etc.
As an example, assume that there is a coordinate center
(0,0) located at the bottom-left corner in Figure 1 and
the axes are 100 units in length each. Then, the semantic
trajectories ST1 and ST2 in Figure 1 can be specified as:

ST1 =
[(drive, Adams St, 50, 10, 10:45, 10, 10, 11:00, drive, car, VW)
(stop, “Roditis”, 10, 10, 11:00, 10, 10, 11:45, restaurant, eat,
salad),
(walk, parking lot, 10, 10, 11:45, 11, 10, 11:50, car, VW),
(drive, Randolph St, 11, 10, 11:55, 25, 10, 12:00, car),
(stop, traffic light, 25, 10, 12:00, 25, 10, 12:03, car),
(. . .)
(stop,“Starbucks”, 25, 40, 12:25, 25, 40, 1:30, coffee, eat, dessert)
]

ST2 = [(move, Dearborn St, 60, 60, 11:30, 60, 40, 11:45, walk),

(stop, “Arby’s” , 60, 40, 11:45, 60, 40, 12:30, fast-food, eat, beef),

(move, Dearborn St, 60, 40, 12:30, 60, 35, 13:00, walk),

(move, Chicago Ave, 50, 35, 13:00, 25, 35, 13:25, ride, bus 14),

(stop, “Starbucks”, 25, 35, 13:25, 25, 35, 13:50, coffee, desert),

. . .

(move, Jackson St, 10, 20, 14:15, 50, 20, 14:40, ride, bus 151) ]

Note that there is a match between the third and the sec-
ond stop activities in ST1 and ST2, respectively (i.e., both
involve “Starbucks”). However, it is also worth noticing that
the first stop activity of ST2, that is, stopping at“Arby’s”, in-
volves “fast-food”. This activity can be considered, in some
sense, semantically similar to stopping by at the “Roditis”
restaurant, the first stop in ST1, since the latter is labeled
“restaurant”.

2.2 Warehousing Trajectory Data
Due to space limitations, we assume the reader is famil-

iar with the basic notions of traditional OLAP and DWs
(cf. [25]), so we omit details in this sense.

Several works have used OLAP techniques for exploration
of spatial data – named SOLAP (for Spatial OLAP) [1]. The
basic idea of the solutions proposed is to add spatial data
type support to conventional DW dimensions and measures,
yielding the concept of Spatial DW. The next extension was
in the context of spatial objects that may vary across time,
which spurred the field of spatiotemporal data warehousing
(STDW) [24]. Trajectory Data Warehouses (TDW) [17, 24]
are a particular case of STDW, where trajectories (raw or
semantic ones) are part of the DW, either as dimensions or
measures. Typically, trajectories are facts which are seg-
mented into episodes according to associated dimensions,
which can be traditional (i.e., containing alphanumerical
data) or spatial [21,22,25]. Another, simpler approach, con-
sists in dividing the space into a 2- or 3-dimensional grid
(i.e., the dimensions are the x,y,z spatial coordinates). We
may also have additional dimensions representing the mov-
ing objects’ profile, the time dimension, etc. The measures
in this approach are a collection of pre-aggregated values
of the trajectories. For example, a measure could be the
number of trajectories in a cell of the grid in a certain time
interval. That means, trajectories themselves are lost. De-
tails can be found in [22,25]. Finally, some recent work also
make use of the emerging semantic trajectories paradigm, to

model so-called semantic TDWs [8,26].
In this paper we consider semantic episodes as the ba-

sic building blocks for the SR-TDW model, equivalently, a
trajectory segment. Each such fact-episode is linked to the
spatial and temporal hierarchies, and to other dimensions
such as POIs and their geo-coordinates along with other
semantic-based information.

3. SEMANTIC RELATEDNESS AND TRA-
JECTORY DATA WAREHOUSE

We now introduce the concept of semantic relatedness,
apply it to symbolic trajectories, and define the SR-TDW
model.

3.1 Semantic Relatedness
Intuitively, the notion of semantic relatedness quantifies

the“semantic proximity”of two concepts or entities not only
by the similarity between objects, but also via other features,
like their “popularity”or how often those two entities appear
together in text-corpora or are referenced by users [7, 20].
Much work has been done in the field of semantic similar-
ity/relatedness and there are various measures and evalua-
tion techniques [2, 20] based on multiple connections (even
multiple hierarchies) that can exist between entities – e.g.,
common contexts and synonyms, like (car, automobile); hy-
pernymy relationships, e.g., (car, vehicle) (that means, an
isA or subcategory relationship); meronymy (is-part-of) re-
lationship, like in (finger, hand); or other functional asso-
ciation not based on lexical relationships, like in (penguin,
Antartica) [10].

Restaurant
Bar

Chinese restaurant

Theater

Fast food

Italian restaurant

Vehicle

Car

Coffee house

2.5903

2.9557

1.7403

1.743

2.5903
2.0794

1.204

1.291

2.0794

1.8971

1.1239

Tuscany

Francesca
Angelo

3.6889

Burger King
Caribou

Lea’s

3.6889
Starbucks

Arby’s

3.6889

1.1239

Figure 2: Semantic relatedness
One way to model/represent semantic similarity between
terms in a given collection, in addition to a simple matrix
of weights, is via graph in which nodes correspond to terms,
and edges represent (the strengths of) the respective seman-
tic connections. There are different approaches for assign-
ing weights and targeting a different group of semantic con-
nections [2, 4, 20] – e.g., in [7] a graph is constructed by
making five passes over the existing connections, where the
first pass inserts the core nodes (nouns extracted from the
WordNet repository [23]) which are then connected to their
sense, and the weight assigned to the likelihood of transi-
tion from one node to the other captures popularity of that
sense. Subsequently, weights are given to synonymy, hy-
ponymy/hypernymy relationships, and to words appearing
in similar contexts (based on the number of occurrences of
a particular meaning in a given context). There are vari-
ous measures for capturing the semantic similarity between
terms [4,20], and a recent comprehensive comparative survey
is available in [18].

While the distinction between the notions of similarity
and relatedness has often been blurred, more recent works
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consider them as separate descriptors of relationships be-
tween terms. For instance, the measures used in our ex-
periments are referred to as “relatedness” measures in [23],
whereas [18] classifies them as “similarity” measures. Exist-
ing works [2,18] have also pointed out the need for augment-
ing the popular WordNet repository with other Internet-
based sources/dictionaries [13] such as Wiktionary, along
with hybrid-measures. The main reason is that different
measures have been shown to exhibit variable quality (in
terms of certain criteria) in different dictionaries and cor-
pora. These issues, while relevant to our work, are beyond
the scope of this paper.

The concepts that we discussed are illustrated in Figure 2
which shows a portion of a relatedness graph along with the
weights between edges, with the values corresponding to the
Leacock and Chodorow (LC) measure from WordNet [23].
For example, the weight of the edge between Restaurant
and Theatre is based on various relationships between the
two terms (e.g., co-occurrences in sentences). We note that
the bottom portion is separated to illustrate an ontologi-
cal type of a relationship “Is an Instance of”, as opposed
to the traditional IS-A (i.e., Italian restaurant IS-A restau-
rant, whereas Tuscany Is an Instance of Italian restaurant).
The bottom part does not show all the edges between the
instances – instead, we put 3.6889 which is the maximum
value of relatedness in the LC measure. Thus, all of Angelo,
Francesca and Tuscany can be thought of as having pairwise
edges with weight 3.6889, and each of them has a relatedness
of 3.6889 with Italian Restaurant. Similarly for the respective
instances of Coffee House and Fast Food. However, the relat-
edness value between instances of different classes is assumed
to be equal to the one between their classes. Thus, Lea’s
and Arby’s are assumed to have an edge with weight 1.1239.
The relatedness between an instance of a class and another
class has the same value as the two classes. Thus, Caribou
and Fast Food have relatedness of 1.1239 too.

Semantic similarity/relatedness has been extensively stud-
ied and a detailed survey is well beyond the scope of this
work [2–4, 10, 13, 18, 20]. Here, we use the notion of related-
ness to augment the use of the traditional geo-spatial and
activity-based attributes such as POIs, walk, etc., with an
explicit representation of their relatedness. This semantic
enhancement, which, to the best of our knowledge has not
been fully exploited in TDW setting, has a two-fold impact
over the query results: (1) allows to obtain answers which,
otherwise, would remain hidden; (2) it eliminates certain an-
swers which are not related-enough (modulo given measure
and user’s preferences). We provide a generic framework for
comparing specific POIs, as well as other contextual related-
ness linking the nouns (e.g., in da’s and sp’s from a particular
semantic trajectory) with the corresponding nouns and/or
verbs from the tagList (cf. Section 2.1).

3.2 Extending TDWs
We now proceed with introducing a generic SR-TDW

model which extends STDWs with the notion of semantic
relatedness. As we outlined in Section 1, when it comes to
implementing the advanced capabilities for analytical solu-
tions based on trajectory warehousing, there are two founda-
tional approaches: (a) the“raster-like”one [17] where the 2D
geographic space is decomposed into cells of a grid, and, for
each trajectory, only aggregated data within a cell are kept
(e.g., the maximum speed of the trajectory in the cell, or

Figure 3: TDW with Semantic Relatedness

the distance traversed in the cell); and (b) the “vector-like”
one [21,25], where trajectory segments are represented as ge-
ometric types. Extended models incorporate the concept of
continuous fields (cf. [22]), which we do not consider in this
work. We follow the “vector-like” trajectory data warehouse
model, and we extend its traditional functionalities beyond
the currently available geo-spatial properties. More specifi-
cally, we augment the use of semantics by incorporating the
concept of semantic relatedness as a new fact table which, es-
sentially, stores instances of the predicate Relatedness(A, B,
α), where A and B denote two terms, and α is the numerical
value of their relatedness. We note that the ETL (Extract,
Transform, Load) process is an important component of a
DW – and, in particular the SR-TDW [28]. However, that
issue is beyond the scope of this paper, and in the sequel we
assume properly populated tables. We assume that motion
is represented as a finite set of points which are semantically
annotated [3,6,19] (cf. Section 2.1). Each trajectory consists
of sequential episodes defined with actions that:
• Take place at a given geo-location with a timestamp re-
lated to a POI; or
• Have a duration and are taking place in-between two geo-
locations;

Figure 3 shows the SR-TDW model: it is based on a
constellation schema, with two fact tables – one pertaining
to semantic episodes and one to relatedness – sharing di-
mension tables, which we explain next. Trajectory episodes
(stored in the fact table factEpisode) are defined by dimen-
sions dimPOIs, dimActivity, dimDateTime, and dimTrajectory.
Thus, a tuple in factEpisode corresponds to a certain tra-
jectory episode occurring in a time interval, between two
(possibly coinciding) POIs, and with a certain activity oc-
curring throughout that interval. Measures in factEpisode
(not shown in the figure) may, for instance, quantify some
activity within each episode, or be precomputed from the as-
sociated trajectory (e.g., the length and/or velocity within
the episode). A more detailed discussion on this issue can
be found in [25]. Note that, in addition to being linked
with each of its episodes in the fact table, dimTrajectory has
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attributes recording its start and end times.
Dimensions dimActivity and dimTerm are both connected

to factEpisode, however, they are also connected with each
other via the dimension dimTerm which, in a sense, is a
bridge-table between them. The rationale is that in a seman-
tic trajectory one needs a coupling between the da (defining
annotation) specifying the main activity and sp (semantic
position) – which can range between nouns and verbs – es-
sentially being respective specializations of dimTerm. This
provides a two-fold genericity in the design of the SR-TDW:
(1) For different couplings between nouns and verbs (e.g.,
(noun, noun), (noun, verb), (verb, noun)) one can lookup
the value of their relatedness from the factRelatedness fact
table; and (2) Such lookup is enabled among broader word-
types, e.g., adverbs, adjectives, etc. which, in turn, enables
one to also incorporate the various additional descriptors of
a given ST – namely, the ones available in the tagList (cf.
Section 2.1). We note that the “ISA” kind of relationship is
not introduced from the perspective of the (values in the) re-
spective entries from factRelatedness, but from a standpoint
of the warehouse design. The factRelatedness fact table con-
tains triplets of the form (Term1ID, Term2ID, Relatedness)
which, as mentioned, list the values of the coefficients of
relatedness for POS’ couplings. This enables comparisons
of similarities between items such as “restaurant” and “eat”,
as well as specific instances – e.g., “Magnum” and “eat”. It
also enables retrieving the relatedness between terms such
as “move” and “bicycle”, or a pairwise relatedness between
“stop”, “eat” and “salad”. We assume the availability of the
typical aggregate operators (COUNT, MAX, etc.) for related-
ness.

POIs are also organized into a geographic hierarchy, and
are described by two level attributes indicating the POI’s
name and type (types follow the ones in Figure 2) – pro-
ceeding further with dimGeoLocation and dimZone. Dimen-
sions dimGeoLocation and dimZone are assumed to have the
corresponding geometric attributes (i.e., L_Geometry and
Z_Geometry) capturing the respective geometric features
such as coordinates, polygonal boundary of a zone, etc.,
along with the traditional operators for evaluating spatial
predicates (e.g., INTERSECT, UNION, etc) [1,25]. LocationID
is a unique key of a given geo-location such as an address
within a city. Note that dimension dimZone is not further
normalized towards the city and state hierarchy, although in
certain practical scenario that may be the case. Lastly, as
shown in Figure 3, the temporal and time period dimensions
allow supporting timestamps and temporal intervals.

4. QUERYING SR-TDW
We now illustrate the novel aspects in the categories of

queries enabled by the SR-TDW model by incorporating
the Relatedness(A, B, α) predicate, the values of which are
readily available from the corresponding fact table (cf. Fig-
ure 3). We note that due to a lack of space, we cannot
present a detailed analysis of conformance with the taxon-
omy of analytics-motivated queries pertaining to the tradi-
tional TDW settings (cf. [24]).

As discussed in Section 3, there are different measures for
semantic similarity/relatedness, and each of them has differ-
ent ranges of values. For uniformity, in the sequel we use
”%” in the queries syntax to indicate the similarity threshold
modulo a particular measure.

We start with a variant of query Q 1 from Section 1, that

takes advantage of the notion of semantic relatedness:
Q’ 1: Daily number of trajectories throughout the first week
of June 2015, that started at the Loop, first stopped at a
location having a semantic relatedness value ≥ 75% with a
restaurant, and then stopped at a location having a semantic
relatedness value ≥ 75% with a coffee house, both within 2
miles from West Loop.
Q’ 1 is an example of a geometrically constrained query
(Loop and West Loop are names of zones in Chicago) coupled
with a sequence-constraint (restaurant visited before coffee
house). However, we augment the answer-set with the count
of trajectories which were not bound to explicitly stop by at
a restaurant and coffee house, but at places having a certain
relatedness with those terms.

To process Q’ 1, one may proceed with selecting the POIs
inside or within 2 miles from West Loop, and select the tra-
jectories which started in the Loop during the first week
of June in 2014, respectively. The crux of processing Q’ 1
is in retrieving all the places at or near West Loop, hav-
ing semantic relatedness > 75% with the term “restaurant”
as well as the term “coffee house”. Clearly, this is an over-
head which involves accessing extra tables to generate the
respective POIs. However, this provides an enrichment to
the answer-set, as opposed to having only “restaurant” and
“coffee house”. We note that the measure, as well as both the
spatial and temporal dimensions could have varied in Q’ 1
in the sense of e.g., weekly average throughout June, for the
trajectories from the entire Chicagoland.

Examples of other kinds of queries enabled by the seman-
tic relatedness embedded in SR-TDW follow.
Q 2: Weekly average semantic relatedness of any two down-
town locations visited by the same trajectory within 1 hour
from each other, throughout the month of January 2015.

This query exemplifies an analytics-motivated scenario
where one may be interested in quantifying the relatedness
among the places that a particular individual would visit
sequentially within 1 hour (e.g., from theater to a restau-
rant; from ATM to a bar; etc.). In some sense, queries like
Q 2 may be used as another kind of context for exploring a
strength of semantic proximity between terms – e.g., the ”se-
mantic strength” of the relationship between ATM and bar
may be detected to be greater than the average, in the sense
of sequentiality of visits within temporal bounds. In addi-
tion, one may reason about the variations in the relatedness
values based on the temporal hierarchy.
To process Q 2, we first need to identify the pairs (fE1, fE2)
of factEpisode’s, such that: (1) they belong to a same trajec-
tory (fE1.TrajID = fE2.TrajID); (2) the two instances of
the factEpisode’s are of a type“stop” at POIs; the location of
the POIs are within the “downtown” zone; and the value of
the Time attribute of the respective EndDateTimeID of the
first stop-episode is no earlier than 1 hour from the Time of
the respective StartDateTimeID of the second stop-episode.
Note that, depending on the dataset (i.e., if there are many
”historic trajectories”), one would probably first eliminate all
the episodes that are not from the month of January. Sub-
sequently, this temporary result can be projected upon the
respective StartPOI_ID attributes1 for each of the fE1 and
fE2, join the result of this projection with the correspond-
ing pairs of values in the factRelatedness table (via respective
matching values POI_ID in dimPOIs and TermID in dimTerm).

1Since each episode is of a “stop” type, the StartPOI ID and
EndPOI ID coincide.
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The value of the AVG(...) aggregate is then applied to the
Relatedness column of this temporary table, grouped by
the Week.
Q 3: Average duration of the trajectories who have visited
sequentially at least two POIs within the same geographic
zone, and with semantic relatedness greater than the maxi-
mum relatedness between a restaurant and any other POI in
that zone.

Q 3 aims at detecting an average trip of the trajecto-
ries for the individuals who tend to visit semantically “close”
POIs which are also located within same spatial boundaries
(at the level of zone in this case). As an additional condition
– e.g., for the purpose of targeted online advertising, the se-
mantic proximity of the POIs is required to be greater than
the highest one between a restaurant in that zone and any
other POI.
To calculate the answer-set for Q 3, the main observation
is that we first need to obtain the average of all the tuples
from the factRelatedness table, for which one of the TermID1
or TermID2 is bound to “restaurant”, denote it MAX-RestSR.
In addition, we select the TrajID, duration, and the semantic
episodes having a “stop” at some POIs, filtering out the ones
with ≤ 1 such episodes. We can execute a Θ-join over the
last temporary table, retaining only those pairs of tuples for
a given TrajID for which the stops at POIs are consecutive
(i.e., there does not exist any other factEpisode with a stop-
kind of POI at a time that is in-between the ones for the pair
with itself) and their locations are in the same zone. Finally,
we filter out all the tuples for which the pair of POIs has
semantic relatedness < MAX-RestSR, and report the average
duration of the rest of them.

We close this section with a reminder that, while the fea-
tures of the SR-TDW model were illustrated using scenarios
involving eateries and coffee places from Chicagoland, the
applicability is more general (cf. [28]).

5. EXPERIMENTAL EVALUATION
We now present the details of our experimental evaluation,

firstly discussing the dataset and queries, followed by the
quantitative observations.

(a) Trajectories (b) Zones

Figure 4: Data generation

We generated collections having 500, 1000, 2000 and 3000
trajectories using the Chicago road network, and with drive
times of 500, 1000, 2000, 4000, 8000 and 10000 seconds, us-
ing the MNTG (Minnesota Traffic Network Generator) tool,
publicly available at http://mntg.cs.umn.edu/tg/index.php
[15]. The routes of the trajectories are within a rectangu-
lar boundary 5 × 10 miles2 around the downtown area.

As mentioned, the ETL phase is beyond the scope
of this paper, however, for the purpose of conduct-
ing the experiments – given that the maps used in
MNTG are based on the Open Street Map (OMS –
http://www.openstreetmap.org), we used sources based on
OMS (http://poidirectory.com/poifiles/united states/) to in-
troduce actual POIs from the underlying map, including
restaurants, coffee houses, fast food places, bars and the-
aters.

Measures: LC Res WP

Intervals of Values 0-3.6889 0-12 0-1

(The Gage, Cadillac Palace) 2.0794 3.9425 0.7778
(Starbucks, BoA Theatre) 2.0926 5.3823 0.8421
(Quartino, Urban Counter) 1.204 0.6144 0.3529
(Urban Counter, Starbucks) 1.1239 0.6444 0.3529
(coffehouse, restaurant) 2.9957 8.3 0.9474
(Starbucks, The Purple Pig) 2.9957 8.3 0.9474

Table 1: Semantic Measures

Since the trajectories generated via MNTG do not
have stop-points, we randomly picked trajectories passing
on a road-segment along a given POI and “induced” a
stay between 5 and 180 minutes, respectively shifting
the time-stamps in the subsequent points. We repeated
the above procedure in order to generate a week-worth
of trajectories data, varying the timings and the POIs.
Lastly, we relied on the map of Chicagoland neighborhoods
(http://en.wikipedia.org/wiki/Community areas in Chicago)
to generate the boundaries of the respective zones. Fig-
ures 4(a) and 4(b) illustrate the data sources’ settings used
in our experiments. The corresponding semantic trajecto-
ries were inserted as UDTs in Microsoft SQL Server 2012,
which enables direct manipulation of (latitude, longitude)
values in the ST_Geography – an added convenience when
translating the trajectories and POIs data. In total, we
had approximately 4.5GB of data. The experiments were
performed on a Windows PC with Intel Quad-core i7-4790
processor (3.6GHz) with 16 GB of RAM.

Figure 5: Relatedness and Answer-sets (Q 1’)

In total, we have 10,000 pairs of terms in the factRelated-
ness table. To provide an extra degree of context, we used
three different sources for the values stored in the “Related-
ness” attribute of the factRelatedness table (cf. Figure 3),
based on three different measures: Leacock & Chodorow
(LC); Resnik (Res); and Wu & Palmer (WP) [4, 20, 23]. As
recognized in the literature, different measures have differ-
ent numeric values and distributions, and we illustrate these
effects with sample-values shown in Table 1. As can be seen,
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the largest range of values is associated with the Resnik

measure, whereas the smallest range is associated with Wu

& Palmer. Looking at the last two rows, we see that in
all the measures, the values for the pair (coffehouse, restau-
rant) coincide with the ones for (Starbucks, The Purple Pig),
which illustrates how we added actual POIs to the concepts
available at WordNet (cf. Section 3): namely, for each in-
stance POI from Chicagoland, we obtained its type and then
added it as a new “link” to the term matching its type, and
with a weight equal to the maximum value for a respective
measure (e.g., 1 for Wu & Palmer), re-iterating that the
distribution of similarity values between pairs of terms ex-
hibits variations among measures. We note that all of our
datasets and scripts used for: conversion; uploading the data
in the tables; and executing queries – are publicly available
(http://www.eecs.northwestern.edu/˜goce/Similarity.html).

Our first set of experimental observations illustrates the
dependency of the size of the answer-set on the size of the
trajectories data, averaged over 3 different values of the se-
mantic relatedness Θ for each of the three measures. Specifi-
cally, we used Θ ∈ {50%, 75%, 90%} of the interval of values
in each of the three measures from Table 1 in Q’ 1 from
Section 4 and averaged the size of the output. What is ap-
parent from Figure 5 is that, as expected, regardless of the
measure, the difference between the size of the answer-sets
with relatedness and without one, increases proportionally
with the number of trajectories. Table 2 shows actual sam-
ples of values of the COUNT aggregate distributed per day of
week for two values of Θ (50% and 75%) obtained as part
of our experiments. The quadruples in each cell show the
values when LC, Res, WP and Base (meaning, no relatedness)
values are the ones for 1000 trajectories.

Day: Θ = 50% Θ = 75%
Monday [49,20,49,5] [20,5,37,5]
Tuesday: [83,69,83,5] [69,5,81,5]
Wednesday: [42,17,43,1,] [17,1,35,1]
Thursday: [54,21,52,5] [25,5,51,5]
Friday: [23,10,23,2] [10,2,15,2]

Table 2: Examples of COUNT values

Two observations from Table 2 reveal the impact of the re-
latedness: (1) As expected, the smaller the threshold value,
the larger the increase of the size of the answer-sets; (2) Un-
like LC and WP, the Res measure has a sharp decline in the
increase of the dataset with the increase of Θ. The reason
for it is that most of the values in Res are distributed close
to the middle of the range, in a much denser manner than
the ones in LC and WP. This, in turn, has a practical conse-
quence that one needs to be cautious about, when selecting
a particular measure, a context-based topic which we plan
to investigate in the future.

Although we did not explicitly address the issue of effi-
ciency of queries processing, for an intuitive idea of the trade-
offs, our last set of experiments measured the computational
overhead induced by including semantic relatedness in the
queries. As shown in Table 3, incorporating the relatedness
does affect the overall time to process a particular query – a
trade-off to be considered as part of business policies. Again
we show the averaged values of the execution times for the
different ranges of the parameter Θ (∈ {50%, 75%, 90%}) for
Q 1’ and we observe that the execution overheads increase
with the size of the input trajectories data. Given the in-

tended analytics use of the SR-TDW, coupling the values of
Θ with the more traditional optimization techniques and/or
indexing, might balance the richness of the answer-set and
the time-efficiency.

Dataset Size: 500 1000 2000 3000

With Semantic Similarity 108 204 390 820
Without Semantic Similarity 49 99 182 296

Table 3: Execution Times (seconds)

Summarizing, our experiments have demonstrated the
benefits of adding the semantic awareness in TDWs in terms
of enriching the answer-sets based on similarity preferences
when query parameters are bound or free over a given do-
main. The observations were consistent across different mea-
sures although, as noted, the selection of measures may have
impact on the quantitative values in the answers to particu-
lar queries.

6. RELATED WORK
Traditional Data Warehouses [25] have demonstrated their

applicability with transaction-level data and computing its
various aggregates. However, recent expansion of user-needs
for data with contexts beyond the standard dimensions –
specifically: location/geography, time and semantic descrip-
tion of the activities – have brought various novelties to the
DW models. A taxonomy of different spatial, temporal and
spatio-temporal DWs is presented in [24] and, building upon
those formalisms, several works have addressed problems re-
lated to our proposal. A framework for modeling Trajectory
Data Warehouse (TDW) was presented in [12] providing key
insight about OLAP operations for moving objects. Related
problems were investigated in [9] from the perspective of
formalizing the process of the design and querying a TDW,
and [17] addressing the computation of aggregate functions
in TDW. We leveraged upon the TDW model and OLAP
operations tackled in these works, augmenting the scope of
applicability of these approaches by seamlessly incorporat-
ing the notion of semantic relatedness both in the modelling
and the querying aspects of TDWs. The work by Parent et
al. [19], which incorporates fundamental definitions for the
notion of semantic trajectories, was enriched by Wagner et
al. [26] via a data model capturing the Why, Who, When,
Where, What and How (5W1H) aspects, focusing around a
central fact connected to dimensions that source the seman-
tic information on the transaction level. The addition of on-
tologies to the data models [16] enabled semantically mean-
ingful hierarchies. With a great level of detail [3] presented
a geo-spatial semantic data model which encapsulates most
of the semantic annotation, tags, actions and definitions pre-
viously mentioned. The work enabled answering questions
related to the trajectory behaviour, goal and transportation
means. Extending the semantics behind the trajectories [8]
implemented movement segment hierarchies, distinguishing
concepts from instances or objects. While introducing on-
tologies to represent the semantics of the movement seg-
ments and their categories, the work does not go beyond
these concepts to represent the semantics of the trajectories
and their activities. Additional works stemming from the
semantic representation of trajectories [27,28] advanced the
semantic trajectories approach with ontologies, cross-scale
analysis and a semantic computing platform, respectively.
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All these approaches introduce a certain level of semantics-
based description to augment the raw spatio-temporal data
– however, none of them addresses the inferences for a given
answer set based on semantic similarity enabled by the ap-
proaches and measures that we used in this work [2,4].

7. CONCLUSIONS AND FUTURE WORK
We addressed the problem of adding semantic-awareness

to TDWs of symbolic trajectories by augmenting them with
semantic relatedness data, for the purpose of increasing their
flexibility when generating answers to users’ queries. We
gave the corresponding constellation schema and described
novel queries enabled by the SR-TDW model. Our ex-
periments demonstrated the effectiveness of the proposed
methodologies in terms of yielding richer answer-sets, the
extent of which, as we discussed, may vary based on the
measure used. As part of our future work, we plan a de-
tailed formal classification of the SR-TDW enabled queries
along the existing TDW taxonomies [24]. We will also ad-
dress efficiency-related tasks from the perspectives of the
design of warehouse schemata, queries optimization and the
impact of the relatedness measures.
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