5. Discussion and Conclusion

The results of this study indicate distinctive patterns of
speech and non-speech sound discrimination among
autistic subjects with varying moderate to high-
functioning communicative abilities and non-autistic
subjects. As it can be seen from the results, using
Artificial Neural Network as a method to discriminate
autistic subject from nom-autistic subject according to
their EEG response to speech and Non-speech stimulus is
feasible. These results would be statistically meaningful if
more subjects were included.

This study is a pilot project trying to find a novel way to
classify autism. Given the fact that MMN and P3a are two
important features of Autistic ERP, it is expected that
their inclusion into future studies would improve the
classification accuracy.

The present results show that autistic teenagers do have
different EEG response to speech and non-speech sounds
from the non-autistic teenagers, not just presented in
MMN and P3a, but also through the statistic features used
in this ANNs approach.

The results also show that more hidden neurons (24)
increase the accuracy, but at the expense of additional
processing time for the ANNSs to converge.

In these preliminary results, only a small number of
subjects were available for this study, the confusion
matrixes reveal excellent classification results. The merit
of the parameters used (mean, standard deviation ...)
would of course be better assessed once more subjects are
recruited into this study.
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ABSTRACT

Epilepsy is characterized by an unexpected and frequent
malfunction of the brain. Electrical activity in the brain
has been studied for years in an attempt to predict
seizures. This paper processes raw intracranial EEG
recordings from different subjects in the time prior to
seizure.

A set of indicators is extracted from non-overlapping
scrolling windows of 1 sec duration. The objective was to
identify patterns that reveal that a seizure is developing
before it occurs.

While the exhaustive analysis did not detect patterns
appropriate to predict a seizure, some indicators were
observed to behave in time more similar independent of
the subject. Similar time evolution was found for the
activity and the power of the alpha and delta bands. It is
also shown that the behavior of the correlation integral is
somehow similar minutes before the seizure.

KEY WORDS
EEG, Epilepsy, Seizure prediction.

1. Introduction

The National Institute of Neurological Disorders and
Stroke estimates that more than 2 million people in the
United States have experienced an unprovoked seizure or
been diagnosed with epilepsy. For about 80 percent of
those diagnosed with epilepsy, seizures can be controlled
with some medicines.

EEG has been studied for years in an attempt to predict
seizures. Anything that disturbs the normal pattern of
neuron activity can lead to seizures.

In the area of epilepsy, where the most important goal is
to predict seizures, different measures have been used for
years, without much success to produce reliable,
prospective seizure prediction {1, 2]. This outcome is
quite understandable given the challenge imposed by such
a critical research endeavor. In the context of this study,
many of the methods currently available in the specialized
literature have been tested yielding contradictory results.
In an effort to compile all methods and conduct a detailed
investigation on EEG data towards seizure prediction, this
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2. Methods

2.1. Data Collection

EEG recordings of 8 epileptic children were analyzed.
Recording were performed during pre-surgical monitoring
at the Miami’s Children Hospital (MCH) using XLTEK
Neuroworks Ver.3.0.5, an equipment manufactured by
Excel Tech Ltd. Ontario, Canada. This data was collected
at 500 Hz sampling frequency and filtered to remove DC
and high frequency components using a 0.1-70 Hz band-
pass filter. EEG recordings were processed in the time
prior to seizure.
Table 1: Subjects’ information

Subject Age Sex Number | Time range
{years) of for each file
files (mi
1 10 Male 5 10
2 16 Male 2 10
3 3 Female 3 10
4 14 Male 2 10
5 17 Male 2 60
6 9 Male 3 60
7 11 Female 3 60
8 14 Male 6 60

The number of electrodes implanted differed from subject
to subject; therefore, this study was performed on an
intra-patient basis.  Intracranial recordings of eight
subjects were performed by using subdural strip or grid
electrodes. In some cases, 4 contact depth electrodes were
implanted.

2.2. Data Analysis
2.2.1. Data Preprocessing

The primary objective was to analyze all electrodes;
depending on the size of the file, the last ten or sixty
minutes preceding a seizure were analyzed. The size of
some raw data files was higher than one gigabyte
containing more than 1,800,000 samples; to that end, a
software [9] was developed to split the files into readable
pieces easier to handle.

Data sets used are from 8 subjects (six male, two female;
age range, 3—17 years) with epilepsy in whom subdural
strips and/or grid electrodes were implanted. Each
subject has a different number of EEG files; the relevant
information for all patients is given in Table I, including
the time range of the data files. For subjects 1-4, all files
extend from 10 minutes prior to seizure onset. The time
interval for the other subjects was a 60 minute time range,
(60 minutes prior to seizure onset).

2.2.2. Electrode Categorization

Previous studies on related matters [10] reveal that there
is a tendency on the behavior of the electrodes that lead to

seizure which is not given in those not leading to seizure.
A portion of this research was devoted to confirm these
previous findings. For this purpose, each set of electrodes
was divided into three categories; those that led to seizure,
those that contained interictal spikes and did not lead to
seizure and those that did not contain interictal spikes and
did not lead to seizure. To identify the different categories
of electrodes; neurologists performed a visual inspection
of the recorded data.

The analysis of data depending on these categories has
been performed in this study with the only purpose of
confirming observations but not with the intention of
searching for patterns that could be used for seizure
prediction. To make a distinction 1 the context of this
study, we will denote the later as “category” analysis, in
contrast to the “global” point of view where all
measurements will be “averaged” regardless their
electrode categories (as it will be shown next) for further
analysis in the search for seizure advent revealing
patterns.

The following groups are defined for further reference:

- Group All: grand average of feature values
across all electrodes without distinction

- Group I: Group formed by grand average of
feature values of all electrodes leading to seizure

- Group 2: Group formed by grand average of
feature values of all electrodes not leading to
seizure

- Group 3: Group formed by grand average of
feature values of all electrodes not having
interictal behavior

2.2.3. Feature Extraction

Due to the high volume of information contained in the
EEG raw data files, size reduction was necessary. Data
files were segmented in one second time windows and
features were extracted for all windows. The size of the
set was thus reduced to a small number of features that
are representative of the EEG. This set of features was
then used for the study.
The following twelve features were considered:

- Fy: activity

- F,: mobility

- F3: complexity

- F4: Average of auto correlation

- Fs: STD of auto correlation

- Fg spectral power in the delta (less than 4 Hz) band

- F;: spectral power in the theta (4 - 8 Hz) band

- Fy: spectral power in the alpha (8 - 13 Hz) band

- Fo: spectral power in the beta I (13 - 20 Hz) band

- Fyo: spectral power in the beta II (20 - 36 Hz) band

- Fy: spectral power in the gamma (36 - 44 Hz) band

- Fyy: correlation integral.

There are other interesting features used in EEG
processing, such as the Lyapunov exponent which 1s a

complex mathematical quantity in which the amount of
chaos in the brain is measured [11]. But they were not
included in the analysis because they are computationally
intensive. For compensation, the correlation integral was
included in the list, which is a non linear feature related to
the Lyapunov exponent.

Activity, mobility, complexity are known as Hjorth
parameters [12]. Activity A, is simply the variance of the
signal segment x and is defined as:

A,=0} m

Mobility Mx, is computed as the square root of the ratio of
the activity of the first derivative of the signal to the
activity of the (original) signal:
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“where x' represents the first derivative of the signal x.

Mobility gives a measure of deviation of the voltage

changes with respect to deviation of the EEG voltage

amplitude Complexity is defined as the ratio of the

mobility of the first derivative of the signal to the mobility
of the signal itself:
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where x" stands for the second derivative of the signal.

The complexity of a sinusoidal wave is unity; other
waveforms have complexity values increasing with the
extent of varations present in them. Complexity
represents the deviation from the sine shape of the EEG

signal [13].

Spectral analysis was also performed using the five
recognized frequency bands of EEG activity (theta, delta,
alpha, beta, and gamma). The power P, of the frequency
spectrum for these bands was computed as:

beng
B [P @
b,

start

where b represents the specified frequency band and by,
and b, its starting and ending frequencies.

Auto correlation 4 performs analysis in the time domain
and is based on the autocorrelation function of short
epochs of EEG data. The autocorrelation function is
simply the expected value of a product. It is given by:

1 N-m—1

—_ * e
A=— ;xi x;,,, for0<m<N-1 )
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Fig. 2 shows a time plot of mean and standard deviation
of the category features for subject # 8. Group 1, group 2
and group 3 are represented in red, blue and black,
respectively. As it can be observed from the Fig. 2, some
patterns stand out; for instance, there is a constant
increment for the average and STD of the autocorrelation
for all groups. There is also an increment in the Activity,
Delta power, Theta power, Alpha power for groups 2 and
3. And surprisingly, there is a noticeable decrement in the
correlation integral for group 3, which are the electrodes
that do not contain interictal behavior.

Despite the observation made on Fig. 1 and Fig. 2, a close
observation on the remaining subjects revealed that there
are in general no patterns that show consistency in their
behavior.

To enhance the study, a new measure was established in
order to compute how similar each feature’s behavior was
across all EEG files within the subjects (intrapatient
analysis). This degree of similarity allowed comparing
several time series by assigning a similarity degree to the
entire group. This value represents how similar time
series were to each other. After extracting all features, a
similarity degree was computed in order to select the most
important parameters. The following equation is proposed
to determine the degree of similarity of a feature whose
behavior in time is described by the function f-

1IN 1M
A2 2
—e Nr:x,u,zi:l(f /1)2 (7)

where f; represents the value of the feature for the seizure
i evaluated at time ¢, M is the number of seizures, N is the
number of seconds in a signal and p, is the average of fi.

Equation (8) was designed so as to yield 1.0 when all time
series are identical. It considers very particular similarity
criteria; however it was consistently applied to all data
files thus it served well for comparison purposes.
Additionally, abrupt changes in the features were

analyzed by computing the first derivative of the -

measures and then out-thresholding it to 1.0 STD above
and below mean, with the purpose of detecting
pronounced peaks and valleys.

As a result, the scope of the investigation was expanded
to the following time series:

- Group All (Average of features across all
electrodes)

- Thresholded derivative of group All

- Group 1

- Thresholded derivative of group 1

- Group2

- Thresholded derivative of group 2

- Group3

- Thresholded derivative of group 3

for all features of each subject. This resulted in 16 tables
for a total of 8(groups)*12(features)*2(parameters) = 192
values of similarity per subject. Rather than using the
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similarity for each subject, it was considered more
appropriate to average the similarities for all groups and
features across all subjects. This would allow making
general assessments regarding which indicators behave
more alike.

Tables 2 and 3 show the grand similarity per group and
feature. Values above 0.5 are marked. A qualitative
comparison between the results illustrated in Table 2 and
3 are provided in Table 4, which enhances all cells that
showed values above 0.5 in both tables. From the
comparison it can be concluded that the pair
group/features that behave more alike are the following
ones:

- Fy/Group All (th)

- F¢/Group All (th)

- Fy/Group 1 (th)

- Fg/Group 2 (th)

- Fg/Group 3 (th)

- Fo/Group All (th)

- F»/Group 2 (th)

- Fjo/Group 3 (th)

It can be observed that the Activity and Delta power for
Group All (Thresholded), Alpha power for Groups 1, 2
and 3 (Thresholded) and the Correlation Integral for
Group All, 2 and 3 (Thresholded) behaved more alike
across all subjects.

From the observations it can be stated that features Fe, Fs,
and F;, have a behavior distinct from the remaining
features and therefore needs to be further investigated.
The spectral power in the alpha band behaves very similar
across all subjects for the thresholded derivatives in the
three electrode groups. It is therefore important to keep an
eye on these features when developing scizure prediction
algorithms.

It was also noticed that the thresholded derivative of
Group All has similarity above 50%. It is believed that
refining this indicator will lead to further findings.

It is interesting to note that the results confirm pervious
findings [10] related to the importance of the correlation
integral (Fy;) in discriminating the three groups of
electrodes in real-time classification.

4. Conclusion

In this study, a total of 26 EEG files recorded at least 10
minutes before a seizure were scrutinized from 12
different points of view called features. An extensive
observation did not detect any significant patterns
occurring prior to seizure onset. However, further
examination yielded an interesting outcome about
activity, power of the alpha and beta bands and
correlation integral: these three features have a more
similar behavior across all subjects than the remaining
features. This was proven with the introduction of a new

indicator called similarity that was consequently utilized
to obtain a rough idea of how similar time series develop
in time.

At this stage of the study it was not possible to use the
similarity results for seizure prediction, but the authors
believe that predictive patterns may be found with proper
variations and/or combinations of those features.
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Features vs. Time

Mean vs. Time

Figure 2: Mean and standard deviation of the category features (Groupl, 2, and 3) over time for subject # 8, seizure # 2.

Table 2: Grand similanty of the average parameter per group and feature

Features

F1_| F2

[/

| Fa

F5s [ F6 | F7 | F8 | F9 [Fio [ F11 | F12

0.05

Thresholded derivative 038
of group 1

Group 2 0 0 0 0.07

Thresholded derivative | 0.41 | 0.32 | 0.27 { 0.38
of group 2

Group 3 0 0 0 0.07

Thresholded derivative | 041 | 0.28 | 0.27 | 0.38
of group 3

Table 3: Grand similarity

Features
Scope Fi [F2 [F3 [F4 [F5 |F6 | F7 | F8 | F9 | Flo | Fll | F1Z
Group All 0 0 0 009 [009 [0 o 0 0 0 0 0.1
Thresholded derivative  EioketBazel 027 | 0.39 | 041 EB&E 039 | 0.27 | 043 BB 038
of group All > - 2
Group 1 0 0090 0 0 0 00510 009 [ o 0 0.11
Thresholded derivative | 0.29 025 FaSE 027 | 029 | 0.16 @52 028 025
of group 1
Group 2 0 0 0 0.04]0 0 0 0 0 0 0 0
Thresholded derivative | 0.29 025 =4 027|029 | 016 EB5a 028 025 F
of group 2 - .
Group 3 0 0 0 0.08 | 009 | 0 0 0 0 0 fo 0.11
Thresholded derivative | 0.29 0.25 §68501 027 | 029 0.16 | 0.28 21025
of group 3 :

Table 4: Qualitative comparison of Tables 2 and 3. Cells with both values greater than or equal to 0.5 are grayed and marked with a cross (X).

Scope

Features

FI_|F2

F3

F4

F5s | F6 | F7_| F8 [ F9 [F10 | Fil | F12

Group All

Thresholded derivative
of group All

Group 1

Thresholded derivative
of group 1

Group 2

Thresholded derivative
of group 2

Group 3

Thresholded denivative

of group 3
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ABSTRACT

In this paper, the security of a fragile digital watermarking
for image tamper detection and recovery proposed in
Reference 1 is analyzed. It is shown that the secret key for

_watermark embedding and detection can be easily

obtained by exhaustive search, while keeping the number
of the necessary exhaustive searches small. Therefore, one
may counterfeit watermarks successfully, resulting in
incorrect authentication. The possible solutions for such
problems are suggested in this paper.

KEY WORDS .
Fragile watermarking, tamper detection, tamper recovery,
security

1. Introduction

Nowadays, digital multimedia are widely used for various
applications. Since digital multimedia can be modified
easily and imperceptibly without any trace of
manipulations [2], the authenticity/integrity becomes an
important issue for digital multimedia. To address this
problem, various digital watermarking based techniques
are proposed [2, 3]. For image authentication, usually a
fragile/semi-fragile watermark is embedded in an image.
Any modifications to the watermarked image can be
detected by the embedded watermark. Fragile watermark
rejects any image manipulations, either incidental or
malicious. Semi-fragile tolerates some pormal image
processing manipulations, such as JPEG compression,
while rejects any other manipulations or malicious attacks
21

A block-based fragile image watermarking scheme
was proposed in Reference 4, where the host image is
partitioned into non-overlapping blocks and a hash based
watermark, calculated from the seven most significant bits
(MSBs) of each block, is embedded into the least
significant bits (LSBs) of the same block. The watermark
detection and image authentication are conducted by
verifying each block individually, ie., the watermark
embedding and detection for each block are independent
from the other blocks within the image [5, 6].

By utilizing the blockwise independent authentication
feature of the block-based fragile image watermarking,
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We are interested in the limiting case

uli_lfxm(oomeED(n) - commyg, o)) =0 12)

For a system that has a very large number of photons, the quantum
commutator behaves like the classical commutator, demonstrating
that the limiting case of QED is Maxwell’s equations. In most
applications the number of photons actually is quite large and so
the system behaves classically. But the quantum nature of the
photon is always present, and is evem evidemt in certain
macroscopic  systems  (like the photoelectric effect), where
Maxwell’s equations cannot begin to explain the phenomenon.
How large is large for the number of photons? In the visible
spectrum, red light has a wavelength A of roughly

L-6x10m
The energy € (in joules J) of a single “red” photon is

€ -19
£=hy =3x10"}
Using a light source with power of 1 watt (1 J/sec), the number n of
photons emitted per second is 1/£, or about 3x10'3. So even in a
dimly lit scene, we expect a conventional (classical) renderer w0
produce accurate. That comes as no surprise; the point here is that
we can quantify why classical illumination is good enough.

In order for the quantum field properties of photons in a rendered
scene to make a difference, we must consider a situation where
there is only a small oumber of photons. This can occur if the time
interval for the light to be collected must be very small; or the light
source is very dim; or the illuminated volume is very large so the
photon density is low; or the rendered volume is a very small
subset of the total space, containing only a few localized photons;
or the wavelength of the light is very short but energetic (which
means rendering a scene illuminated by gamma rays).

5. Conclusion

We rized the e ials of g electrodynamics (QED)
that are needed 1o relate it to classical electrodynamics. In brief,
the photon states form a Fock space and are represented by linear
combinations of kets and are acted on by a quantum field operator
A defined via the least action together with a commutator relation.
‘When the number of photons is large, the effect of the quantum
commutator is negligible, and it asymptotically approaches the
classical commutator for the vector potential A. It is in this sense
that QED approaches classical electrodynamics as presented in
Maxwell’s equations.
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