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Abstract. The advances in the Internet of Things (IoT) paradigm have
enabled generation of large volumes of data from multiple domains, cap-
turing the evolution of various physical and social phenomena of inter-
est. One of the consequences of such enormous data generation is that
it needs to be stored, processed and queried – along with having the
answers presented in an intuitive manner. A number of techniques have
been proposed to alleviate the impact of the sheer volume of the data
on the storage and processing overheads, along with bandwidth con-
sumption – and, among them, the most dominant is compression. In this
paper, we consider a setting in which multiple geographically dispersed
data sources are generating data streams – however, the values from the
discrete locations are used to construct a representation of continuous
(time-evolving) surface. We have used different compression techniques
to reduce the size of the raw measurements in each location, and we
analyzed the impact of the compression on the quality of approximating
the evolution of the shapes corresponding to a particular phenomenon.
Specifically, we use the data from discrete locations to construct a TIN
(triangulated irregular networks), which evolves over time as the mea-
surements in each locations change. To analyze the global impact of the
different compression techniques that are applied locally, we used differ-
ent surface distance functions between raw-data TINs and compressed
data TINs. We provide detailed discussions based on our experimental
observations regarding the corresponding (compression method, distance
function) pairs.

Keywords: Location-aware time series · Triangulated Irregular
Network (TIN) · Surface distance · Time series data

1 Introduction and Motivation

The inter-connectivity and collaboration of multiple heterogeneous smart objects
enabled by the Internet of Things (IoT) [41] have spurred a plethora of novel
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applications – from smart homes [28], through personalized health care [9] and
intelligent transportation system [32], to smart cities [42] and precision agricul-
ture [11]. The multitude of sensors in the devices that define individual smart
objects—be it personal (e.g., smart phone and other wearable devices with GPS
features) [44] or public (e.g., roadside sensors and traffic cameras) [20] – enable
the generation of unprecedented volumes of data which, in turn, provides oppor-
tunities for performing variety of analytics, prediction and recommendation tasks
integrating variety of sources and contexts [10].

Most, if not all, of the data values are associated with a time-stamp indi-
cating the instant of time at which are particular value was detected. This, in
turn, allows for perceiving the data as a time series [40], or even casting it as
multidimensional time series [33].

Part of the motivation for this work stems from the traditional and ever-
present problem when dealing with Big Data: the Volume. The most common
approach to enable storage savings; faster execution time; and saving the band-
width consumption is to rely on some form of data compression [31]. This topic
has been well studied for time-series data [22] and spatio-temporal data [4,37]
and many techniques have been proposed in the literature. However, there is
another part of the motivation for this work – namely, in many practical appli-
cations (e.g., the ones that depend on participatory sensing [17]) – it is often the
case that:

– The data is obtained from discrete sources (e.g., measuring carbon footprint
or measuring precipitation at given locations/stations [29,43]).

– However, the data is used to “generate” a spatial surface that can be used
to represent a continuous distribution of the phenomena of interest over the
entire domain (e.g., geo-space).

Hence, the problem that we studied in this work can be succinctly stated as:
How is a spatial shape representing a continuous phenomenon based on values
from discrete locations, affected by compressing the corresponding time series
with the individually sensed values at each location.

Towards that, we conducted a series of experiments that were aiming at:

1. Using different compression techniques for time series in order to generate a
more compact representation.

2. Using different distance functions to asses the difference between the surfaces
obtained from the raw (i.e., uncompressed) time series.

3. Compare the impact of a particular compression technique on a particular
distance function.

To our knowledge, this is the first work to systematically address the impact
that the compression of location-based time series has on the surface obtained
from the discrete set of values from the corresponding locations.
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1.1 Organization of the Paper

The rest of this paper is organized as follows: Sect. 2 provided the necessary
background and describes the main settings of the problem. Section 3 presents
the details of the methodologies that we used Sect. 4 gives a detailed presentation
of our experimental observations, along with a discussion of the results, and
comparison of advantages and disadvantages of particular involved approach.
We conclude the paper in Sect. 5.

2 Preliminaries

We now provide the background for the two main (and complementary) aspects
of this work, related to time series comparission and spatial surfaces representa-
tion.

2.1 Compressing Time Series Data

A time series typically corresponds to a sequence of values {t1, t2, . . . , tn} where
each ti can be perceived as the i-th measurement of a (value of a) particular
phenomenon. Often times, the values are assumed to be taken at equi-distant
time instants and a time series database is a collection {T1, T2, . . . , Tk} where
each Tj is a time series – Tj = {tj1, tj2, . . . , tjn}.

Time series have attracted a lot of research interest in the past 2–3 decades
due to their relevance for a plethora of application domains: from economy and
business (stock market, trends detection, economic forecasting), through scien-
tific databases (observations and simulations) databases, to medicine (EEG, gene
expressions analysis), environmental data (air quality, hydrology), etc. [15,19].
As a consequence, a large body of works have emerged, targeting problems
broadly related to querying and mining (i.e., clustering, classification, motif-
discovery) of such data [13,23,26]. One typical feature of the time series
databases is that they are very large and, as such, any kind of retrieval may
suffer intolerable delays for practical use. Towards that, one would prefer to use
the traditional filter + refine approach, where the filtering stage uses some kind
of an index to prune as much data as possible, without introducing false nega-
tives. However, individual time series also tend to be large – thus, attempting
to index them as points in n-dimensional space creates problems in the sense of
“dimensionality curse”. Hence, one of the first data reduction objectives in time
series was to reduce the dimensionality and then use spatial access methods to
index the data in the transformed space [30]. The list of desirable properties of
an indexing scheme introduced in [15] are:

– It should be much faster than sequential scanning.
– The method should require little space overhead.
– The method should be able to handle queries of various lengths.
– The method should allow insertions and deletions without requiring the index

to be rebuilt (from the scratch).
– It should be correct, i.e. there should be no false dismissals.
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The list was augmented by two more desiderata in [24]:

– It should be possible to build the index in “reasonable time”.
– The index should be able to handle different distance measures, where appro-

priate.

The notion of data reduction for the purpose of indexing in the context
of querying (e.g., similarity search) and mining time series data falls into the
category of the, so called, representation methods. Essentially, a representation
method attempts to reduce the dimensionality of the data, while not loosing the
essential characteristics of a given “shape” that it represents – and there are two
basic kinds:

– Data Adaptive – where a common representation is chosen for all items in
the database, in a manner that minimizes the global reconstruction error.

– Non-Data Adaptive – which exploit local properties of the data, and construct
an approximate representation accordingly.

As it turned out, an important property of any representation is the one of being
able to have a lower-bound when conducting the search, which would ensure the
absence of false negatives/dismissals induced by the pruning [15]).

However, there is another notion brought about in the time series literature
which has influenced works in clustering, mining and compressing trajectories’
data – namely, the similarity measure (equivalently, distance measure). Similarity
measures aim at formalizing the intuition behind assessing how (diss)similar are
two series. More formally, for two time series T1 and T2, a similarity function Dist
calculates the distance between the two time series, denoted by Dist(T1, T2), and
the desirable properties that Dist(T1, T2) should include (cf. [13]) are:

– Provide a recognition of perceptually similar objects, even though they are
not mathematically identical.

– Be consistent with human intuition.
– Emphasize the most salient features on both local and global scales.
– Be universal in the sense that it allows to identify or distinguish arbitrary

objects, that is, no restrictions on time series are assumed.
– Abstract from distortions and be invariant to a set of transformations.

While some of the desiderata above may be favored over the others for a
particular application domain, another categorization of similarity measures,
based more on the way that they treat the matching points of the two series
(cf. [40]) can be specified as:

– Lock-step measures – the distance measures that compare the i−th point of
one time series to the i−th point of another, such as the Euclidean distance
and the other Lp norms.

– Elastic measures – ones allowing a comparison of one-to-many points (e.g.,
DTW) and one-to-many/one-to-none points (e.g., LCSS).
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To cater to the desirable features of the distance measures, one feature was
to enable time warping in the similarity computation. A well known example –
DTW (Dynamic Time Warping) distance [40] is used to allow a time series to be
“stretched” or “compressed” to provide a better match with another time series
(i.e., a “one-to-many” mapping of the data points is allowed for as long as each
data point from one series is matched to a data points from another).

In addition to the lock-step and elastic measures, other distance functions
have been introduced, motivated by a particular application context. Thus, for
example, a group of measures has been developed based on the edit distance
for strings – e.g., LCSS (longest common subsequence) [39] which introduced
a threshold parameter ε specifying that two points from two time series are
considered to match if their distance is less than ε. Other examples include ERP
distance [7] which combines the features of DTW and EDR, by introducing the
concept of a constant reference point for computing the distance between gaps
of two time series; SpADe [8], which is a pattern-based similarity measure for
time series; etc.

2.2 Triangulated Irregular Networks

The main rationalé behind using TIN is two-fold:

1. They are the most popular method for building a surface from a set of irreg-
ularly spaced points [27].

2. They enable focusing on small details in highly variable input feature [14]

TIN is a representation of choice whenever a surface can be constructed from
a collection of non overlapping surfaces having triangular facets [27]. In addition,
TINs are capable of preserving multiple resolutions [3].

As data structure, they consist of set of vertices (xi, yi, zi) that originate in
2D triangles (the (xi, yi) projection), and have a vertical component zi corre-
sponding to a value measured at (xi, yi). An illustration of the 2D collection of
triangles and the corresponding TIN is provided in Figs. 1 and 2, respectively.

One can also perceive TINs as a special case of Digital Elevation Model which
have the surface of the triangular mesh – i.e., a set of T triangles for the finite
set of points S (cf. [16]), that satisfies the following three conditions:

– S are the set of vertices of T.
– Interior angles of any two triangles cannot intersect.
– If boundaries of triangle are intersected, then it should be common edge or

vertex.

There are several algorithmic solutions for constructing TIN surfaces1 and
the most popular one is based on Delanuay triangulation. A distinct property
of Delaunay triangulation of a given set of planar points S is that for any
triplet of points si, sj , sk(∈ S) that are selected to form a triangle, there will

1 The very first implementation dating back to 1973s, due to W. Randolph Franklin.
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Fig. 1. 2D representation surface in TIN Fig. 2. 3D TIN with precipitation
value

not exist a point sm ∈ S that will be in the interior of the circumscribed circle of
Δ(si, sj , sk) [14]. Equivalently, the Delaunay triangulation maximizes the mini-
mum angle of all the angles of triangles. An illustration of Delaunay triangluation
for constructing TIN is shown in Fig. 3 (cf. [27]).

Fig. 3. Delaunay triangulation for constructing TIN

If S is the number of vertices (in our application domain, corresponding
to locations of the weather stations) and b is the number of vertices on the
boundary of the convex hull of all the points in S, the maximum number of
triangles obtained by Delaunay triangulation would be:

Number of Triangles = 2 × S − b − 2 (1)
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3 Methodology of Comparative Study

We now present the methodology used for the comparative analysis, and discuss
in detail the specific approaches that we used for compression and evaluating
the impact of compressing location-based time series on the global TIN.

Fig. 4. Flowchart of comparative evaluations

The workflow used is illustrated in Fig. 4. We first collected the data set of
locations and measurements in each location from around the globe and cate-
gorized it into 50 different clusters based on their latitude and longitude values.
The raw data was used to generate Delaunay triangulation and subsequently the
TIN – i.e., a collection (or, “time series”) of TINs for the time instants of each
measurement in each location.

Next, we applied a compression to each of the time series containing the
measurement values for the respective location and proceeded with constructing
a new collection of TINs. However, due to the compression, certain points in
the original time series may not be present. For such points we are using linear
interpolation to generate the z-value (i.e., a measurement).

Finally, we compared the TINs at each time instant before the compression
and TINs at each time instant after the compression.

3.1 Compression Techniques

In this work we used five different compression approaches which belong to two
broad categories of time series compression. They consist of two dimensionality
reduction techniques (Piecewise Aggregate Approximation (PAA) and Discrete
Fourier Transform (DFT)), and three more native-space compression methods.
The details follow
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Piecewise Aggregate Approximation: The main idea of Piecewise Aggre-
gate Approximation (PAA) [21] is to divide the original time series into N equal-
size frames, where N is the desired dimensionality, and use the average value of
all the data in each frame to represent each window. Mathematically, the formula
of using PAA over n-dimensional time series to compress it into N dimensionality
is shown in Eq. 2:

t̄i =
N

n

n
N i∑

j= n
N (i−1)+1

tj , i = 1, 2, ...., N (2)

There is always a trade-off between compression ratio and information preser-
vation – one extreme case would be selecting N = n and the compressed repre-
sentation would be identical to the original time series.

Discrete Fourier Transform: Discrete Fourier Transform (DFT) [2] is a
widely-used method to find the spectrum of the finite domain signal. In the-
ory, any n-length time series can be transformed into the frequency domain with
equal number of sine and cosine waves associated with corresponding ampli-
tudes, which enables us to inverse the transform and reconstruct the original
time series. In such sense, to represent the original time series into N dimension-
ality, only keeping the waves with the largest N amplitudes would be a possible
solution without losing too much significant information.

(Adapted) Douglas-Peucker Algorithm: Douglas-Peucker (DP) [12] algo-
rithm is well-known for its capability of reducing the number of points while
keeping the outline shape of original data. Given tolerance threshold ε, the steps
of DP algorithm are as follows:

1. Construct a line segment by connecting the initiator (first point initially) and
terminus (last point initially)

2. Find the “anchor” having the largest distance from the line segment and use
it as the new terminus of its left part and new initiator of its right part

3. “Anchor” divides the line segment at step.1 into 2 parts and then repeat
step.1 and step.2 until the largest distance in any line segment is less than ε

DP algorithm is a classical polylines compression approach. [36] adapts it
into time series compression technique by considering vertical distance in stead
of perpendicular. Formally, the vertical distance between a point tk and line
segment (ti, tj), i < k < j, is calculated by |t′

k − tk|, where t
′
k is the intersection

of the line segment and the line passing through tk and perpendicular to time-
axis.

Visvalingam-Whyatt Algorithm: “Effective area” is the key concept behind
Visvalingam-Whyatt (VW) [38] algorithm, which represents the area of the tri-
angle constructed by a point with its two neighbors. Given a sequence of time
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series and a error tolerance ε, the algorithm would iteratively drop the middle
point of the triangle with the smallest “effective area” and updating the triangles
related to that removed point until the “effective area” of any triangle is larger
than ε.

(Adapted) Optimal Algorithm: Optimal (OPT) [5] algorithm considers both
direction of every time series points; forward and backward. For a time series
point ti,ti+1, ti+2, ...., tn can be forward points and ti−1, ti−2, ...., t1 is the back-
ward. Here, ith pass of the algorithm draws the circle centered in every forward
and backward points with the radius of ε. When a new point tk in forward is
being touched, such that k is i < k ≤ n. Let ti generates Uk and Lk as the upper
and lower spectrum which defines the wedge that is related to point tk and apex
at ti, while passing through the top and bottom of formed circle centered at
point tk. Highest and lower boundary will be maintained until the intersection
of wedges is not empty and if the intersection is empty, denote the point tk which
makes the intersection empty. And then store ti and tk−1 in result and repeat
the steps from event point tk−1 to forwards and do similar for the backward
part.

3.2 Distance Function

We now discuss the distance functions that we used to assess the |TINraw −
TINcompressed|, for each of the compression methods.

Hausdorff Distance: Haudsorff distance is a min-max distance measure which
defines the property of similarity between two surfaces based on the positions.
Hence, it is widely used as a measure of the degree of resemblance between two
objects [18].

Mathematically [34], for given two set of finite points A and B, such that
A = a1, a2....an and B = b1, b2....bn, Hausdorff’s distance is defined as

H(A,B) = max(h(A,B), h(B,A)), (3)

where

h(A,B) = max
a∈A

(min
b∈B

(d(a, b))) (4)

and

h(B,A) = max
b∈B

(min
a∈A

(d(b, a))) (5)

We are going to compare the interpolated surface with the raw/original sur-
face by finding the Hausdorff distance between them.
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Volume Based Distance: The second distance function that we used is based
on comparing the volumes of the TINs obtained from the original/raw time
series and the TINs constructed for each time instant after compression. Volume
similarity measure has been widely used as one of the standard techniques to
measure the similarity between segments [35].

Each triangle of the TINs are considered as truncated triangular prism having
unequal heights at a particular time. Each height is the precipitation value of
the corresponding vertex in the base (i.e., coordinates of the weather stations).
Figure 5 illustrates a truncated prism as a component of the TIN.

Fig. 5. Truncated triangular prism [25]

Mathematically, for a given four vertices of tetrahedron a, b, c, d, the volume
is defined as:

For a given prism with a base consisting of a triplet of vertices a, b, c, and a
height C, the volume is:

V =
1
2
|(ab × ac)| · C (6)

In our settings, C corresponds to the average value of the precipitation
recorded in the three weather stations (i.e., C = (height(a) + height(b) +
height(c))/3), the locations of which constitute the vertices of the triangle. Vol-
ume based distance function will show how strongly the original volume differs
from interpolated volume after using compression techniques.

Angular Distance: Angular Distance is a metric which corresponds to
an inverse of Cosine Similarity. Cosine similarity is used in 3D surfaces to
measure the similarity between the perpendicular vectors of two correspond-
ing triangles For a given triangle with vertices a, b, c having coordinates
(xa, ya), (xb, yb), (xc, yc), and each with corresponding height (i.e., measurement
value) of za, zb and zc, the normal vector is calculated as:

N = (b − a) × (c − a) (7)
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The cosine similarity for the normal vector N1 and N2 of two triangles is defined
as [6]:

CS(N1, N2) =
N1 · N2

||N1|| · ||N2|| (8)

Based on this, their Angular distance can be measured by cos-inverse of
cosine similarity [6].

AngularDistance(N1, N2) =
cos−1(CS(N1, N2))

π
. (9)

4 Experimental Observations

We now present the details of our experimental observations, based on the
methodology described in Sect. 3.

We note that, for reproducibility, both the source code of all the compression
methods and distance functions used in the experiments, along with the datasets
(before and after compression), are publicly available at https://github.com/
XTRunner/Compression Spatial Surface.

4.1 Dataset Description

For the study, we took precipitation measurements of different weather stations
across the globe [1]. Due to the geographic dispersion – i.e., having subsets of
spatially co-located input points that were significantly far from other subsets of
such points, we grouped the input location data into fifty clusters. The number
of weather stations with precipitation measurements range from 40 to 81 across
the clusters. Each location contains a time series corresponding to 50 years of
monthly precipitation recordings. During the construction of the Delaunay tri-
angulation, we converted the (latitude, longitude) values of the weather stations’
locations into (x, y) (i.e., Cartesian) ones using ECEF (Earth Centered, Earth
Fixed) methodology.

4.2 Setting of Parameters

We used multiple values for the parameters to ensure reliability and validity of
our observations.

For a given dataset D represented by βD bits, let C(D) denote its compressed
version obtained by applying a particular compression function C. Assume that
the size of C(D) is βC(D) bits. Then the compression ratio of C on D is calculated
as RC(D) = βD

βC(D)
.

In the experiments, the compression ratios for both DFT and PAA were set
to [10, 20/3, 5, 4, 10/3, 2]. The rationalé is that: (a) if the compression ratio is

https://github.com/XTRunner/Compression_Spatial_Surface
https://github.com/XTRunner/Compression_Spatial_Surface
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too low, data will not be compressed much; (b) if the compression ratio is very
high, it might lead to an increased loss of fine details (i.e., information).

The native-domain compression techniques (DP, VW and OPT) were imple-
mented in such a way that they could meet a particular error tolerance. Error
tolerance values were defined in a manner that ensures they are most compa-
rable to PAA and DFT in term of compression ratio. The values for the error
tolerances used in DP, VW and OPT were [15, 25, 35, 50, 65, 80].

4.3 Observations

We firstly present a high-level observation regarding the impact of the com-
pression. Namely, Fig. 6 shows the TIN corresponding to a particular cluster
obtained from the raw data at a randomly chosen time instant. For comparison,
in Fig. 7 we show the same cluster and at the same time instant – however, the
values of the time series corresponding to the locations (i.e., vertices of Delau-
nay triangulation) correspond to the ones after interpolation has been applied
to the compressed ones, obtained using DFT compression (z-axis indicates the
precipitation values).

Fig. 6. 3D raw data representation of fif-
teenth cluster

Fig. 7. 3D interpolated data repre-
sentation of fifteenth cluster after
DFT

For each distance measure, we firstly compute the maximum and mean value
of the difference between original TINs and compressed ones in each cluster
and across all the time instants. To present the results in a more general way,
the average of the maximum and mean value among all the geo-clusters are
calculated.

Figure 8 illustrates the effectiveness of different compression techniques in
terms of Hausdorff distance measurement. Note that the x-axis represents the
1/RC(D) and the y-axis represents the logarithm (with base 10) value of Haus-
dorff distance between the original TINs and compressed TINs. From the left
side of Fig. 8, which shows the average of all the maximum Hausdorff distance in
each cluster, we observe that PAA and DFT algorithms are outperformed by the
other three native-domain techniques, especially when the compression ratio is
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Fig. 8. Results of Hausdorff distance

relatively high. The performances of VW and OPT algorithms are very close to
each other. As can be observed, the DP algorithms obtains the best performance
when the compression ratio is higher than 2. The right side illustrates another
different picture. By using the average of the Hausdorff distance in each cluster
as measurement, DP algorithm always achieves the greatest accuracy. Different
as the left side, VW algorithm has a distinguishable edge than OPT algorithm.
But still, PAA and DFT has the worst performances.

Fig. 9. Results of Volume based distance

In addition to the Hausdorff distance, we also introduce the volume based
distance in Sect. 3 to evaluate the performances of different compression tech-
niques. Compared with Figs. 8, 9 presents a different story. From the left figure,
we can observe that DP algorithm is not always the best one anymore. When
the compression ratio is high, DP algorithm is still able to guarantee the closest
result. However, we note that the VW algorithm outperforms the DP algorithm
after 1/RC(D) is higher than 0.6. Thus, when the required compression ratio is
higher than 2, DP algorithm should still be the first choice. But if the accuracy
has a higher priority than the compression ratio, VW algorithm can be con-
sidered as a compression method of choice. Moreover, we observe that on the
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right side, the trend is similar to the left, i.e., the performances of VW algo-
rithm is getting closer to DP algorithm and eventually exceeds DP algorithms
for compression ratios smaller than 1.25.

Fig. 10. Results of Angular distance

The third measurement is angular distance of the norm vectors of original
and compressed TINs. As shown in the left side of Fig. 10, DP, VW and OPT
algorithms have relatively similar results compared with the other two distance
functions, especially when the compression ratio is between 1.5 and 2.5. Besides,
PAA and DFT algorithms still have the worst performance, while the right
side illustrates totally different scenarios. When the compression ratio is higher
than 2.5, both PAA and DFT get much better results, which are comparable
with VW algorithm and even better than OPT algorithm. And for those three
native-domain compression techniques, although the performances are very close
for some values of the compression ratio.

The last observation that we report is a single instance of the experiments –
with a sole purpose to provide an intuitive illustration for the errors induced by
the compression. Specifically, for values of the compression ratio in [0.2, 0.5], we
picked the absolute worst-case scenario in terms of the Hausdorff and Volume-
based distance between TINs obtained from the raw data and the TINs after
the compression has been applied. The results are shown in Fig. 11.

Fig. 11. Worst-case scenarios
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5 Concluding Remarks and Future Work

We provided a detailed experimental comparison of the impact that compressing
time series data can have when interpreted in a broader context. Specifically, we
considered the settings in which each time series data is associated with a discrete
location and the instantaneous values in each location were used to generate a
TIN-based representation of the continuous surface representing a particular
phenomenon of interest. When compressing the original/raw data, some of the
original measurement values will not be present in the compressed version – and
those are obtained by interpolation. However, using the interpolated data in the
corresponding locations to generate the TIN, may yield a surface which differs
from the one constructed from the raw time series. In this work, we investigated
the impact that a particular compression method may have on the “distortion”
of the surface, with respect to a particular distance function.

We used five different compression approaches (Discrete Fourier Trans-
form, Piece-wise Aggregrate Approximation, Douglas-Peucker Algorithm,
Visvalingam-Whyat Algorithm and Adaptive optimal Algorithm) and two dif-
ferent distance functions (Hausdorff and Volume-based). From among all the
combinations of pairs (compression method, distance function) we made obser-
vations regarding the similarity/difference between the original TIN surfaces
and post-compression ones. Our observations indicate, for example, that when it
comes to volume-based distances, Douglas Peucker yielded the highest similar-
ity and PAA showed the least similarity. Similarly, when Hausdorff distance was
used to calculate the (dis)similarity, we also observed that DP was performing
better than the rest. OPT and VW were showing more similarity to raw TINs
inc comparison to PAA and DFT, PAA being worst.

As part of our future work, we are expanding the types of compression meth-
ods and distance functions used, for the purpose of a more complete classification
of the impacts. Another one of our goals is to include applying spatial compres-
sion and combining it with the time series data compression, and evaluating the
impacts on more heterogeneous datasets (e.g., time series of traffic data). Lastly,
we would like to investigate the impact that the compression has on the quality
of prediction in time series.

References

1. GPCC: Global Precipitation Climatology Centre. https://climatedataguide.ucar.
edu/climate-data/gpcc-global-precipitation-climatology-centre

2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1 5

3. Bertilsson, E., Goswami, P.: Dynamic creation of multi-resolution triangulated
irregular network. In: Proceedings of SIGRAD (2016)

4. Cao, H., Wolfson, O., Trajcevski, G.: Spatio-temporal data reduction with deter-
ministic error bounds. VLDB J. 15(3), 211–228 (2006)

5. Chan, W.S., Chin, F.: Approximation of polygonal curves with minimum number
of line segments. Int. J. Comput. Geom. Appl. 6, 59–77 (1992)

https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://doi.org/10.1007/3-540-57301-1_5


Local Temporal Compression for (Globally) Evolving Spatial Surfaces 339

6. Chanwimalueang, T., Mandic, D.: Cosine similarity entropy: self-correlation-based
complexity analysis of dynamical systems. Entropy 19, 652 (2017). https://doi.
org/10.3390/e19120652

7. Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Proceedings
of the Thirtieth International Conference on Very Large Data Bases (VLDB),
Toronto, Canada, 31 August– 3 September 2004, pp. 792–803 (2004)

8. Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H.: SpADe: on shape-based
pattern detection in streaming time series. In: IEEE International Conference on
Data Engineering (ICDE) (2007)

9. Cheng, X., Fang, L., Yang, L., Cui, S.: Mobile big data: the fuel for data-driven
wireless. IEEE Internet Things J. 4(5), 1489–1516 (2017)

10. Chudzicki, C., Pritchard, D.E., Chen, Z.: Geosoca: exploiting geographical, social
and categorical correlations for point-of-interest recommendations. In: Proceed-
ings of the International Conference On Research and Development in Information
Retrieval (SIGIR), pp. 443–452. ACM (2015)

11. Deepika, G., Rajapirian, P.: Wireless sensor network in precision agriculture: a sur-
vey. In: 2016 International Conference on Emerging Trends in Engineering, Tech-
nology and Science (ICETETS) (2016)

12. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: Int. J. Geo-
graph. Inf. Geovisualization 10, 112–122 (1973)

13. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45, 1 (2012)
14. ESRI: Arcgis desktop help 9.2 - about TIN surfaces (2019)
15. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in

time-series databases. In: SIGMOD Conference, pp. 419–429 (1994)
16. Floriani, L.D., Magillo, P.: Triangulated irregular network. In: Liu, L., Özsu, M.T.
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