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ABSTRACT
Proximity-oriented spatial queries, such as range queries and k-
nearest neighbors (kNNs), are common in many applications, no-

tably in Location Based Services (LBS). However, in many settings,

users may also desire that the returned proximal objects exhibit

(likely) maximal and fine-grained semantic diversity. For instance,

nearby restaurants with different menu items are more interest-

ing than close ones offering similar menus. Towards that goal, we

propose a topic modeling approach based on the Latent Dirichlet
Allocation, a generative statistical model, to effectively model and

exploit a fine-grained notion of diversity, namely based on sets of

keywords (e.g., menu items) instead of a coarser user-given category

(e.g., a restaurant’s cuisine). In addition, and relying on the notion

of Distance Signatures, we propose an index structure that can be

used to effectively extract the k objects that are within a range dis-

tance from a given query location, and which are also semantically

diverse. Our experimental evaluations using real datasets demon-

strate that the proposed methodology is able to provide highly

diversified answers to cardinality-wise constrained range queries

much more efficiently than a straightforward alternative solution.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Loca-
tion based services.
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1 INTRODUCTION
Range and k-Nearest Neighbor (kNN) queries are among the most

popular categories of queries in many applications relying on

Location-Based Services (LBS) [19]. These spatial queries are par-

ticularly useful when users seek Points of Interest (PoIs) in their
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Restaurant Cuisine Menu Items
s1 Japanese {Sushi, Sashimi, Sake}

s2 Japanese {Udon, Tempura, Sake}

s3 Seafood {Fish, Salmon, Wine}

s4 Asian {Dumplings, Sushi, Beer}

s5 Italian {Pizza, Pasta, Wine}

s6 German {Schnitzel, Pasta, Beer}

Figure 1: Searching restaurants by cuisines andmenu items.
vicinity [12], e.g.: closest restaurants or friends.While those types of

queries have been subject to extensive research for over a decade [15,

20], the main motivation for our work is that in many practical

scenarios, in addition to the proximity, the users may be inter-

ested in the semantic diversity in terms of the various descriptors

of nearby entities. For example, in a geo-social network setting, a

user may want to spend time with groups of nearby friends with

varying interests. Similarly, as shown in Fig. 1 (to be used as our

running example), a user located in q may be interested not only

in the the restaurants within a given bounded distance, but also in

experiencing a wider variety of menu items.

Motivated by this, we introduce a novel type of a query called

k-Diversified Range Query (kDRQ), which aims atmaximizing the se-
mantic diversity of the answer set of spatial queries within a bounded
range. Although we focus on LBS-applications in our discussion

and examples, kDRQs are useful in many other settings in which

coupling the notion of semantic diversity with spatio-temporal

attributes (e.g., [9]) is meaningful. Existing works have tackled

problems requiring simultaneous consideration of spatial and non-

spatial properties of data objects. For example, queries pertaining

to similarity of spatio-textually enriched trajectories (i.e., seman-

tic/activity trajectories), e.g., [23, 24], take PoIs and textual tags into

account. Similarly, [22] presents solutions that aim at diversifying

the answer-set in terms of kNN on road networks. However, in

broad terms, spatio-textual kNN query returns the set of k nearest

locations containing a certain keyword, say “restaurant”, not consid-

ering the details of the restaurants in the respective locations. Thus,

keywords are merely used for an additional filtering/selection.

https://doi.org/10.1145/3340964.3340970
https://doi.org/10.1145/3340964.3340970
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One way to improve the query diversification is to use a fine(r)

classification of the PoIs. For example, instead of referring to a PoI

only as a “restaurant,” one can describe its category – e.g., “Chinese",

”German”, “Vegetarian”, etc [6]. While this helps in the sense that a

diversified query would now tend to return restaurants of different

categories, it may be difficult to define the classes and to manually

label them, for several reasons: (1) some PoIs may not belong to only

one clearly defined category; (2) restaurants of the same category

may have sufficiently different menus to be considered “diverse”;

(3) often, a restaurant may provide its menu, but not a particular

type (as it is the case with many restaurants on Yelp).

We postulate that in order to better capture the diversity of PoIs,

these should be described by sets of attributes, e.g., “keywords” such
as menu items in the case of restaurants, and the latent topics de-
fined by those sets. Consider the information in Fig. 1 and assume

that a user requests k = 2 diversified restaurants within a given

range which includes s1, s2 and s3. If only the cuisine type is used

to qualify the restaurants, it is clear that adding s2 to an answer

set that already has s1 (or vice-versa) will not improve the overall

diversity of the answer set. Thus those two restaurants will likely

never appear together in any answer set, whereas the pairs {s1, s3}
and {s2, s3} are equally diverse. Now, if one considers the restau-

rants’ menu items instead of only their cuisine, then the diversity

in {s1, s3} is higher than in {s1, s2} as there are no overlapping

keywords in the former set. In this context, we propose the use of

Latent Dirichlet Allocation (LDA) [3] to extract latent topics for

each PoI and to also annotate the sites network accordingly. As

we shall see, LDA yields meaningful and intuitive topics for result

diversification.

Unfortunately it turns out that maximizing set-based diversity

is not an easy problem. In fact, as we shall see later in this paper,

considering pair-wise diversity is an NP-hard problem ([10, 22]).

In order to mitigate that, we rely on the notion of LDA in order

to obtain a more informed (i.e., LDA-annotated) network, and we

propose a new indexing structure inspired by the concept of dis-

tance signatures [11]. Each node of the annotated network stores

approximate distance information of other nodes in a bounded

spatial neighborhood and also diversity information.

In summary, the main contributions of this work are:

● In Section 3 we formalize a novel type of query, namedkDRQ,
which returns the k most semantically diverse locations that

are within a given range distance from a query point on road

networks.

● We discuss in Section 4 the use of LDA to extract latent topics

for PoIs. We then present our LDA-based topic diversity and

provide a case study to show that it yields meaningful and

intuitive topics for result diversification.

● In Section 5 we present the details of our proposed solution –

index structures and processing algorithms – for calculating

the answer-set to kDRQ.
● In Section 6, we report our detailed experimental evalua-

tions using real datasets, demonstrating the benefits of the

proposed approaches.

We complement our study with an an overview of the related

literature in Section 2, and we conclude this work in Section 7.

2 RELATEDWORK
The concept of incorporating diversity into similarity search has its

origins in information retrieval. The Maximal Marginal Relevance

(MMR) model [5] is one of the earliest proposals to consider diversity

to re-rank documents in the answer set, where at each step, the

element with higher marginal relevance is selected. A document

has high marginal relevance if it is both relevant to the query and

has minimal similarity to previously selected documents.

Several approaches have been proposed for coupling spatial and

diversity settings. Finding the kNNs to a given query point q such

that the distance between any two points is greater than a prede-

fined minimum diversity is addressed in [13], and selecting the

most diverse set within a predefined radius in Hamming space is

addressed in [1]. A k-similar diversification set which optimizes a

linear functions combining the similarity (i.e., closeness) and diver-

sity for a given trade-off between them is studied in [21]. Monitoring

the most diverse k-sized set over distributed sets is addressed in [2].

The main difference to these previous works is in the definition of

diversity. These existing works aim at maximizing the pair-wise

diversity of categories of points. In our approach, we do not assume

that we have categorization of sites, nor do we assume that know

the pair-wise similarities between these categories. Instead, our

approach learns and models the topics of the data using textual

descriptions, to maximize the topic diversity of whole result sets,

rather than considering only pairs of points.

Our goal is to provide the user with a solution that offers a

different kind of trade-off between spatial proximity and diversity

– namely, topic-based instead of category-based diversity.

Angular diversity has been explored in [17] via Nearest Sur-

rounder Query, which finds the nearest objects from a query point

from different angles, and the angular similarity has been used for

diversified kNN problem in [16].

Relying on the Skyline paradigm [4], finding the set of all optimal

solutions for a given linear combination of two diversity notions,

spatial and categorical, is presented in [6]. The categorical diversity

is modeled by the difference between categories of data points – e.g.,

two restaurants are diverse if they are from different ethnicities.

The idea of using keywords, i.e., a finer granularity in order to

distinguish categories, to find diverse kNNs has been explored

in [22]. In that work the keywords are used for filtering data points,

i.e., only points that contain all query keywords are considered. We,

on the other hand, use the concept of Latent Dirichlet Allocation in

order to consider a more sophisticated notion of diversity based on

the set of keywords that describe each object. Moreover, differently

from the works above, we propose an indexing structure to speedup

the processing of kDRQs.

3 PRELIMINARIES
Definition 3.1 (Site Database). Let ℐ = {i1, ..., i⋃︀ℐ⋃︀} be a set of ⋃︀ℐ⋃︀

items (such as terms or keywords). A site, s , is a pair (L, I), where L
is a spatial location, and I ⊆ ℐ . A site database,𝒟ℬ = {s1, ..., s⋃︀𝒟ℬ⋃︀},
is a collection of sites.

For instance, depending on the application, sites may correspond

to restaurants or individuals, in which cases items could correspond

to menu entries in restaurants or personal skills, respectively.
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Definition 3.2 (Site Network). Let 𝒟ℬ be a collection of sites. A

site network is a directed graph 𝒢 = (V ,E,W ,S), where V is a set

of sites, each consisting of a pair (v .L,v .I); E ⊆ v .L ×v .L is a set of

edges between location-attributes (v .L) of the vertices;W ∶ E ↦ R+
is a function that maps each edge to a positive value representing

the cost of traversing the edge, and S ∶ 𝒟ℬ ↦ V is a function that

maps a site s ∈ 𝒟ℬ, to a vertex in 𝒢.
For the sake of simplicity and ease of exposition we assume that

the site network 𝒢, is properly embedded in a (potentially larger)

road networkG . Note that this allows for the query point Q to be a

vertex in G that does not belong to the site network 𝒢 proper.

Definition 3.3 (Network Range Query). Let 𝒟ℬ be a collection

of sites, 𝒢 = (V ,E,W ,S) be a site network, Q be a location on

an edge from E, and ϵ be a positive real value. A network range

query RQ(𝒟ℬ,𝒢,Q,ϵ) returns all the sites in 𝒟ℬ whose loca-

tions have their shortest distance to Q no greater than ϵ , that is:
RQ(𝒟ℬ,𝒢,Q,ϵ) = {s ∈ 𝒟ℬ ⋃︀ dist(Q, s .L) ≤ ϵ}, where dist(Q, s .L)
is the shortest network distance from Q to s based on 𝒢.W .

A network range query allows us to find all sites within a given

range from a query location. In this work, our goal is to efficiently

reduce this set to a subset with of sites with cardinality ≤ k , while
providing a maximum diversity.

Definition 3.4 (k-Diverse Subset). LetD ⊆ 𝒟ℬ be a set of sites, and

div ∶ D ↦ R+ be a function that maps such set to a positive value

(diversity score). The k-diverse subset of𝒟ℬ, kDSdiv(𝒟ℬ,k), is de-
fined as the subset of𝒟ℬwith cardinality at most k , maximizing the

diversity score, i.e., kDSdiv(𝒟ℬ,k) = argmaxD⊆𝒟ℬ, ⋃︀D ⋃︀≤k div(D).
Based on Definition 3.3 and Definition 3.4, we can finally define

a k-diversified range query as follows:

Definition 3.5. Let 𝒟ℬ be a collection of sites, 𝒢 = (V ,E,W ,S)
be a site network, let Q be a vertex in the embedding road network

G and let ϵ be a positive real value. Further, let div ∶ D ↦ R+
be a function that maps a set of sites onto a positive diversity

score and let k be a positive integer. The k-diversified range query

kDRQ(𝒟ℬ,𝒢,Q,ϵ,k) is defined as:

kDRQ(𝒟ℬ,𝒢,Q,ϵ,k) = kDSdiv(RQ(𝒟ℬ,𝒢,Q,ϵ),k)
In a nutshell, a k-diversified range query returns the k-most

diverse subset from among all the sites that are within distance at

most ϵ from Q . The choice of diversity measure div is an essential

aspect left abstract above. Next, we discuss two choices for this

function. A straightforward manner to compute the diversity of

sets of items is to simply count their number of unique items.

Definition 3.6 (Set-Union-Based Diversity). Let D = {s1, ..., s⋃︀D ⋃︀}
be a set of ⋃︀D⋃︀ sites. Then we define set-union-based diversity as

SUBD(D) = ⋃︀⋃s∈D s .I ⋃︀, i.e., the number of unique items in D.
Going back to the example shown in Fig. 1, the set-union-based

diversity of the set of restaurants D = {s1, s2, s3} is ⋃︀ ⋃s∈D s .I ⋃︀ =
⋃︀{Sushi, Sashimi, Sake, Udon, Tempura, Fish, Salmon, Wine}⋃︀ = 8.

The most diverse set of size k among 𝒟ℬ using set-union-based

diversity is therefore given by argmaxD⊆𝒟ℬ, ⋃︀D ⋃︀≤k SUBD(D)
As simple as this definition appears, finding an optimal k-subset

from a set of candidate sites that maximizes set-union-based diver-

sity is NP-hard. It is an instance of the optimization problem of the

Figure 2: Graphical Model in plate notation of LDA-based
topic modeling. Boxes represent entities (M sites, N key-
words within a site, K latent topics). Nodes correspond to
randomvariables, shaded nodes are observable randomvari-
ables, and arrows indicate stochastic dependencies.

set cover problem, which is at least as hard as the decision problem

(deciding if there exists any k-subset) which is one of Karp’s 21

NP-complete problems [8, 14].

The second measure (initially proposed in [6]) calculates the

diversity of a set by the minimum pair-wise diversity of its elements.

This definition has the advantage that it can be used for any type

of sites for which pair-wise diversity is defined. In our case, where

a site is represented by a set of items, we can use Jaccard similarity

index as a measure of diversity.

Definition 3.7 (Pairwise Diversity). Let D = {s1, ..., s⋃︀D ⋃︀} be a

set of ⋃︀D⋃︀ > 1 sites. Then we define pairwise diversity PD(D) as
PD(D) = minsi ,sj∈D,si≠sj (1 − J(si , sj)), where J(si , sj) = ⋃︀si∩sj ⋃︀

⋃︀si∪sj ⋃︀
,

i.e., the Jaccard index between two sets.

For example, to get the pairwise diversity of subsetD = {s1, s2, s3},
shown in Fig. 1, this algorithm would compute the Jaccard index for

all three pairs from D, J(s1, s2) = 1

5
, J(s1, s3) = 1

5
and J(s2, s3) = 0,

and then obtain the pairwise diversity of D as PD(D) = 4

5
(yielded

equally by {s1, s2} and {s1, s3}).
Themost diverse set of sizek among𝒟ℬ using pairwise diversity

is thus the set argmaxD⊆𝒟ℬ, ⋃︀D ⋃︀≤k PD(D)
Despite only considering pairwise diversities, the selection of a k-

subset that maximizes the pairwise diversity is an NP-hard problem.

Even if we could guess the value of the maximum pairwise diversity

x , finding a set of k sites that all have a pairwise diversity of x or

greater is an instance of the clique problem, another one of Karp’s 21

NP-complete problems [14]. A detailed proof for the NP-hardness

of maximizing pairwise diversity can be found in [10].

4 TOPIC-BASED DIVERSITY
To reduce the potentially large and redundant space of items, we

next propose to model the latent topics of items at each site. For that,

we employ Latent Dirichlet Allocation (LDA) [3] – a generative

probabilistic model which assumes that each site is a mixture of

underlying (latent) topics, and each topic has a (latent) distribution

of more and less likely keywords; and we present its use on an

empirical case study.

4.1 LDA Based Diversity
A graphical representation of our LDA model is shown in Fig. 2

1
. A

vector α of lengthK is used to parameterize the a priori distribution
of topics. The parameter K corresponds to the number of latent

topics used to model our sites. When a site is created, we assume

1

Source: https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
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that its topics are chosen following a Dirichlet distribution having

parameter α which we use to obtain a topic distribution θ for each

of ourM sites. Thus, the large plate in Fig. 2 corresponds to a set

ofM sites, each having a topic distribution θ drawn randomly (and

Dirichlet distributed) from α .
For each topic, the prior parameter β is used to generate the

distribution of words within a topic. Thus, we assume that a topic

generates words following a Dirichlet distribution having a vector

β of length ⋃︀ℐ⋃︀ as parameter, where (cf. Definition 3.1) ⋃︀ℐ⋃︀ is the
number of words we consider in our dictionary. For each of our

K topics, a resulting vector φ stores, for each word i j ∈ ℐ , the
probability of i j appearing in this topic. Therefore, the smallest

plate in Fig. 2 denotes a set of K vectors φi of length ⋃︀ℐ⋃︀, mapping

each keyword to the probability of appearing within topic i .
To generate the words within a site si , a topic is chosen randomly

from the topic distribution θ and, given this topic, a number of

Ni words are generated randomly from the word distribution φ –

where Ni is assumed to be independent from the chosen topic and

uniformly distributed. This results, for each site, in a set ofNi words

(z,w), wherew is a word, and z is the topic ofw . In Fig. 2, the node

W denotes the set of all N = ∑i Ni words, and Z is a function that

maps each word to the topic that generated it. NodeW is shaded,

as it is the only variables that can be observed, while all other

variables are latent. The reason for choosing a Dirichlet distribution

rather than a more straightforward multinomial distribution for

the topic and word priors is inspired by research showing that the

distribution of words can be better approximated using a Dirichlet

distribution [18].

To infer the topics of our site database, we employ a generative

process for obtaining labels for the site. Given the observed key-

words of sites in our database, LDA optimizes the latent variables

so as to maximize the likelihood matching our observed sites and

their keywords. This generative process works as follows. Sites

are represented as random mixtures over latent topics, where each

topic is characterized by a distribution over all𝒲 keywords from

a chosen dictionary of most common keywords. LDA assumes the

following generative process for database𝒟ℬ consisting ofM sites,

each having a number of Ni keywords.

● For each site si choose a topic distribution θi ∼ Dir(α),
where 1 ≤ i ≤ ⋃︀𝒟ℬ⋃︀, and Dir(α) is a Dirichlet distribution
with prior α . In our experiments, we initially assume each

topic to have uniform prior probabilities, having αi = α j
for 1 ≤ i, j ≤ K . This apriori distribution is adapted using

Bayesian inference [3] to maximize the likelihood of gener-

ating the observed keywords.

● For each topic, choose φi ∼ Dir(β), where 1 ≤ i ≤ K . For our
experiments, we assume each word to have the same low

prior probability, having βi = 0.001 for 1 ≤ i ≤ 𝒲 . These

low prior probabilities are desirable for fast convergence, as

most keywords are very rare.

● For each wordw in site j:
(1) Choose a topic z ∼ Multinomial(θ j) from the topic distri-

bution of j, and

(2) Choose a wordw ∼ Multinomial(φz) from the word dis-

tribution φz of topic z.
Here,Multinomial(x) corresponds to a multinomial distri-

bution drawing from a stochastic vector x .

Next, we propose how to define the diversity of a set of sites based

on their coverage of latent topics. The idea is to describe a set of

sites by the expected number of distinct topics by this set.

Definition 4.1 (Topic-Based Diversity). Let D = {s1, ..., s⋃︀D ⋃︀} be a
set of sites and let θi denote the latent topic distribution of site si
and consequently, let θi, j denotes the probability of site si to belong
to topic j (1 ≤ j ≤ K). Topic-based diversity TBD(D) is defined as

the expected number of unique topics among sites in D. Formally:

TBD(D) =
K
∑
j=1

1 − ∏
si ∈D
(1 − θi, j). (1)

The idea of Equation 1 is to compute, for each topic j, the prob-
ability that at least one site in D covers topic j. This probability
is equal to the counter-probability of having no site in D cover

topic j which is computed as: P(no topic j in D) ∶= ∏si ∈D(1−θi, j).
Thus, 1 − P(no topic j in D) is the probability of having topic j
appear at least once (i.e., topic j being covered), andTBD(D) is the
expectation of the number of topics covered.

Example 4.2. Consider the set of D = {s1, s3, s5} sites shown in

Fig. 1, and assume that LDA returns the following distributions

among K = 3 latent topics: θ1 = (0.8, 0.1, 0.1), θ3 = (0.6, 0.1, 0.3),
and θ5 = (0.0, 1.0, 0.0). This means that site s1 has a high chance

(80%) to belong to Topic 1 (which may correspond to a latent topic

“Japanese Food”), s3 is also likely to belong to the same topic, but

also has a higher chance to belong to Topic 3, whereas s5 is certain
to belong to Topic 2 (which could correspond to “Italian Food”).

To compute the topic-based diversity ofD, we employ Equation 1.

For the first topic, we obtain 1 −∏si ∈D(1 − θi,1) = 1 − (1 − 0.8) ∗
(1 − 0.6) ∗ (1 − 0) = 0.92. Thus, we have a 92% likelihood that at

least one of the three sites has Topic 1. For Topic 2, we see that s5 is
guaranteed to have this topic. Consequently we get 1 −∏si ∈S (1 −
θi,2) = 1 − (1 − 0.1) ∗ (1 − 0.1) ∗ (1 − 1) = 1. For Topic 3, we

obtain a probability of 1 − (1 − 0.1) ∗ (1 − 0.3) ∗ (1 − 0) = 0.37 of
being covered. Summation of these three values yields TBD(D) =
0.92 + 1.00 + 0.37 = 2.29. Thus, we expect 2.29 out of these three
topics to be covered.

Intuitively, our notion of topic-based diversity provides a more

practical definition of diversity that assigns a lower diversity to

(different) keywords having a high probability to belong to the same

topic. Yet, in terms of computational complexity, the problem of

maximizing topic-based diversity remains NP-hard, as shown in

the following.

Lemma 4.3. Given a set of ⋃︀D⋃︀ sites. The problem TOPIC-kDIV

of finding the k-Diverse Subset (c.f. Definition 3.4) using topic-based
diversity is NP-hard.

Proof. Let K be the number of latent topics used in Defini-

tion 4.1 and assume a special case where each site covers exactly

m (m < k) topics with uniform probability. Further, assume that

K >mk . In this case, topic-based diversity is achieved by selecting

sites that maximize the number of topics covered with non-zero

probability. This problem of finding a set of sites, each havingm
topics, that maximizes the cover of topics, is an instance of MAX-

COVER, another one of Karp’s 21 NP-complete problems [14]. Since

the constructed case, which is NP-complete, is a special case of

TOPIC-kDIV, we conclude that TOPIC-kDIV is NP-hard. □
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Table 1: Top-10 most probably keywords for K = 10 latent topics (from Yelp, with Natural Language Tookit).
Topic Keywords (Probabilities in %)

1 ‘chicken’(9.2), ‘curri’(8.9), ‘indian’(6.4), ‘masala’(2.7), ‘spice’(1.9), ‘lamb’(1.9), ‘biryani’(1.7), ‘tandoori’(1.7), ‘rice’(1.7), ‘lentil’(1.5)

2 ‘chicken’(6.5), ‘enchilada’(5.5), ‘mexican’(5.0), ‘taco’(4.0), ‘bean’(2.8), ‘salsa’(2.6), ‘black’(1.8), ‘soup’(1.7), ‘casserol’(1.6), ‘chipotl’(1.5)

3 ‘chines’(9.2), ‘chicken’(7.7), ‘fri’(4.3), ‘pork’(3.5), ‘rice’(2.7), ‘noodl’(2.6), ‘beef’(2.4), ‘stir’(2.4), ‘soup’(2.3), ‘sauc’(1.6)

4 ‘thai’(19.8), ‘chicken’(7.9), ‘curri’(6.8), ‘soup’(3.8), ‘coconut’(3.5), ‘salad’(3.0), ‘shrimp’(2.7), ‘noodl’(2.6), ‘green’(2.0), ‘sauc’(1.8)

5 ‘chicken’(5.4), ‘chocol’(3.7), ‘cooki’(3.6), ‘butter’(3.3), ‘peanut’(3.0), ‘bake’(2.5), ‘chees’(1.9), ‘burger’(1.9), ‘chip’(1.6), ‘casserol’(1.5)

6 ‘french’(6.9), ‘soup’(4.4), ‘onion’(3.9), ‘chocol’(2.6), ‘creme’(2.5), ‘chicken’(2.1),‘bread’(2.0), ‘sauc’(1.5), ‘clafouti’(1.5), ‘toast’(1.5)

7 ‘grill’(6.6), ‘chicken’(5.4), ‘shrimp’(2.6), ‘fri’(1.7), ‘steak’(1.6), ‘southern’(1.6), ‘cajun’(1.5), ‘grit’(1.5),‘pork’(1.4), ‘sauc’(1.4)

8 ‘italian’(6.7), ‘lasagna’(3.3), ‘pasta’(2.6), ‘chicken’(2.5), ‘sauc’(2.3), ‘tomato’(2.2), ‘pizza’(2.1), ‘spaghetti’(1.9),‘sausag’(1.9), ‘soup’(1.8)

9 ‘miso’(5.8), ‘japanes’(4.7), ‘teriyaki’(2.7), ‘bowl’(2.6), ‘salmon’(2.6), ‘glaze’(2.4), ‘scallop’(1.2), ‘eggplant’(1.0), ‘crispi’(0.8), ‘appet’(0.7)

10 ‘salad’(4.5), ‘potato’(2.0), ‘roast’(2.0), ‘chicken’(1.9), ‘sauc’(1.5), ‘bean’(1.4), ‘grill’(1.3), ‘green’(1.2), ‘cake’(1.1), ‘pie’(1.1)

Table 2: Most diverse set of sites with k = 3.
Measure Site Information

LDA-based

Oregano’s Pizza Bistro: (Italian, Restaurants, Pizza)

Wienerschnitzel: (Sandwiches, Fast Food, Food, Hot Dogs, Ice Cream & Frozen Yogurt, Restaurants, Desserts)

Umami: (Restaurants, Asian Fusion, Japanese, Soup, Ramen)

Set-Union-Based

Genghis Grill: (Restaurants, Chinese, Vegan, Buffets, Mongolian, Vegetarian, Thai, Korean, Asian Fusion)

Noodles & Company: (Specialty Food, Food, Chinese, Noodles, Soup, Asian Fusion, Italian, Salad, Comfort Food,

Restaurants, Japanese, Sandwiches, Fast Food, Pasta Shop)

Pier 54: (Mediterranean, Lounges, Beer,Wine & Spirits, American (New), Breakfast & Brunch, Italian, Food, Restaurants,

Nightlife, Arts & Entertainment, Music Venues, Bars, Cocktail Bars, Wine Bars, Burgers)

Pair-wise-Based

Final Round Sports Bar & Grill: (Sports Bars, Restaurants, Pizza, Bars, American (Traditional), Nightlife)

Sweet Dessert Cafe: (Creperies, Cafes, Restaurants, Coffee & Tea, Breakfast & Brunch, Sandwiches, Desserts, Food)

McDonald’s: (Fast Food, Restaurants, Burgers, Food)

To provide an intuition of our algorithms to efficiently find a

set of sites that have a high topic-based diversity score, reconsider

the example above. If we were to add an additional site to this

set, what type of site be most beneficial to increase the diversity?

Clearly, Topic 2 is already fully covered, such that adding more

sites that have a high probability of having Topic 2 is futile. At the

same time, adding more of Topic 1 has low utility, as this topic is
already covered with a probability of 92%. However, adding another

site having a high probability of having Topic 3 would boost the

topic-based diversity score close to 3.0 in this example.

Before we show how this observation can be exploited into a

locally optimizing heuristic to efficiently find a set of high topic-

based diversity, we will first show a qualitative evaluation that

shows that our latent topics are indeed able to describe real-world

data in a meaningful way, using cooking recipes and restaurant

menus as a sample (yet representative) scenario.

4.2 Case Study: LDA for Restaurant Sites
We now present an empirical evaluation of our LDA-based diversity

measure. The semantically useful and humanly intuitive outcomes

are shown using a dataset crawled from Yummly, a recipe recom-

mendation website. We extracted the K = 10 latent topics from a

set of M = 27, 638 recipes, considering the set of V = 1, 000 most

frequent keywords. Table 1 shows the result of LDA to model this

dataset. For each i-th topic, this table shows the vector φi , which
corresponds to a multinomial distribution over all words in our

dictionary. Thus, for each topic i , the probabilities of a wordw cor-

respond to the probability that wordw will be generated by topic i .
For each topic, the ten largest probability values are shown in this

table (although many more words may have a non-zero probability

to be produced by this topic).

Intuitively, we see that the topics found by LDA make sense.

We see that the ten topics corresponds to Indian, Mexican, Chi-

nese, Thai, American, French, Cajun, Italian, Japanese and Healthy

cuisines. LDA understands that some keywords appear in most

topics at different frequencies. For example, the term “Chicken”

appears as one of the Top-10 keywords in all topics except Japanese.

We also see that keywords such as “Curry” (tokenized to “Curri”

in Table 1) appears with high probability in Topic 2 (Indian) and

Topic 5 (Thai). We also see that words such as “Thai”, “Lasagna” and

“Miso” are very discriminative, appearing with very high probability

in one topic only.

To show that our LDA-based approach to define diversity (Def. 4.1)

yields intuitive sets of diverse sites, we compare our approach to

traditional diversity measures in Table 2 by performing trained

LDA model on test dataset from Yelp.

For each of the three diversity measures proposed in Section 3,

this table shows the set of k = 3 most diverse sites among 150

randomly selected candidate sites. To find this set, we employ the

Swap Algorithm that has been proposed in [21] to heuristically

find k subsets having high diversity. This algorithm is shown in

Algorithm 1.

We see that the Set-Union-Based approach (Def. 3.6) yields se-

mantically non-diverse results. The problem of this approach, which

maximizes the number of unique keywords among the result sites,

is that sites having a large number of keywords get an unfair ad-

vantage. In addition, the semantic of words is not considered, as all

words are treated as equally in-equal categories.
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Algorithm 1: The Swap Algorithm [21]

Input: Set of sites D, Integer k
1 ResultSet← ∅
2 foreach s ∈ D do
3 if ⋃︀ResultSet⋃︀ < k then
4 ResultSet← ResultSet ∪ s
5 else
6 C← ResultSet ∪ s
7 worstSite← argmaxs ′∈C Div(C ∖ s′)
8 ResultSet← C ∖worstSite

9 return ResultSet

In contrast, the pair-wise diversity approach (c.f. Definition 3.7),

which maximizes the pairwise diversity between sites, suffers from

similar problems, as many pairs of sites have a Jaccard similarity

of zero (no overlapping keywords). But without the ability to find

the semantic topics that connect keywords, this approach also falls

into the trap of returning sites that have different, but semantically

similar keywords.

To summarize, we observe that our LDA-based definition of di-

versity is capable to understand which keywords correspond to

the same topic, thus maximizing the semantic overlap between

returned sites. We also note the advantage of an LDA-based ap-

proach to probabilistically map between topics and keywords. This

is an example, for example, comparing to a purely ontology-based

approach, where each keyword would belong to exactly one topic.

Such an ontology approach would be forced to map common terms

such as “chicken” deterministcally to one topic.

Finally, we note that the Swap algorithm (Algorithm 1) only

yields a heuristic approximation of the optimal set that optimizes

topic-based diversity. We emphasize that the methodologies that

we elaborate upon in the remainder of this work do not propose any

new heuristics to select k diverse sites from a set of n candidates.

For solutions to this problem we refer the interested reader to

algorithms surveyed and proposed by Vieira et. al. [21]. Instead,

our goal is to efficiently find high-diversity candidates by traversing

the spatial network in an effective manner. Thus, wewant to quickly

lead our algorithm to sites that are likely to contribute to the final

result without having to explore the entire collection of sites along

the network within the query range.

5 PROCESSING KDRQ QUERIES
We now present our query processing approach, starting with the

novel index structure, followed by the algorithmic processing.

5.1 DivMap: A Topic-Based Diversity
Maximizing Index Structure

To efficiently support k-diversified range queries on spatial net-

works, we propose a specialized index structure, which is inspired

by the concept of distance signatures [11].

5.1.1 General Idea. At each node of the network, a distance sig-

nature stores approximate distance information of nodes in the

spatial neighborhood. In detail, for different distance ranges (such

DivMap
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Figure 3: Schematic Sketch of our Diversity Map Index.

as (︀0m, 500m⌋︀,(︀500m, 1000m⌋︀, ...), the set of other nodes having a
shortest-path distance within each range is memorized. For exam-

ple, one node v may contain the information that the distance to

nodeu is bounded by 1500−2000 units. Having such information at

each node in the network, allows to find a shortest paths between

v and u more efficiently than a blind search such as Dijkstra’s

algorithm or an A∗ search would provide.

In our setting, we are not interested in finding shortest paths,

but we are interested in finding high-diversity sites within a given

range to return to our user. Thus, we propose to store at each node

and for each adjacent edge, an approximation of topics that can be

found by following the corresponding direction. Since our intent

is to maximize diversity, it suffices to store upper-bounds to topic

diversity for each direction and each distance range.

An overview of our proposed Diversity Map Index (DivMap) is
depicted in Fig. 3. At each node v of the network, the algorithm

places a virtual “signpost”. Pointing in each direction that can be

taken fromv , this signpost gives a distance-approximated summary

of the topics can be found by following this direction. In particular,

this information includes the maximum topic values of sites found

in each direction, and for each distance bucket defined by the dis-

tance signature. The following describes our algorithm to build this

index structure.

5.1.2 Index Construction. Our index construction algorithm shown

in Algorithm 2 requires a site network 𝒢 as defined in Definition 3.2

and a boundary set B to discretize the distance space, for example,

B = {(︀0m, 500m⌋︀,(︀500m, 1000m⌋︀, ...}. The algorithm iteratively pro-

cesses each vertex and adjacent node independently, which allows

for great parallelizability. For each vertex v and adjacent edge e , a
breadth-first search is used to find build the virtual signpost. For

this purpose, Line 4 removes other adjacent edges of v to ensure

that only paths crossing e are explored. Forcing the algorithm to

use edge e , we invoke Dijkstra’s single-source shortest-path algo-

rithm [7] in Line 5, to explore all sites reachable by using edge e
from vertex v . Whenever Dijkstra’s algorithm completes a node

having a site s , we checks if this site is useful to change the vir-

tual signpost of node v . For this purpose, we use the shortest path
distance between Q and s (returned from Dijkstra’s algorithm), to

find distance bucket the current site falls into to in Lines 7-8. The

index_o f function of Line 8 simply returns the index of the bucket

that contains distance d . For example, if the distance signature
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Algorithm 2: DivMap Index Construction

Input: Site network 𝒢 = (V ,E,W ,S), boundary set B
1 foreach node v ∈ V do
2 foreach edge e adjacent to v do
3 DivMape ← matrix(⋃︀B⋃︀,K )

//All zeroes ⋃︀B⋃︀ ×K matrix

4 Remove all edges adjacent to v other than e

5 Invoke Dijkstra algorithm starting at v

6 foreach site s found do
7 d ← dist(v, s)

//shortest path distance between v and s
8 index ← index_o f (d,B)

//Distance “Bucket” s falls into
9 for topic in 1:K do

10 DivMape (︀index , topic⌋︀ ←
max(DivMape (︀index , topic⌋︀,θs,topic)

11 Restore all edges adjacent to v

12 return DivMap

buckets are (︀0, 500m⌋︀, (︀500m, 1000m⌋︀, (︀1000m, 1500m⌋︀, ..., then this

function would return index 3 for d = 1200m. Next, we process the

topic vector θ of site s . Our goal is to see if there is any topic i such
that s has a higher topic value θs,i than all the sites seen in the

same distance bucket so far. This check is performed in Line 10,

the heart of the algorithm. Here, the maximum diversity values of

current signpost in the corresponding distance signature bucket

are increased, if θs,i is larger than the currently largest value.

Finally, the edges that were ignored in this round are restored

in Line 11. Once all nodes and adjacent nodes are processed, the

complete index is returned.

5.2 Efficient kDRQ Processing
This section describes how our index structure proposed in Section

5.1 can be used to efficiently answer k-diversified range queries.

The general idea of this algorithm is as follows. Instead of using a

naïve Dijkstra search to find all the sites inside the query range, we

exploit the DivMap index to greedily direct the search to sites that

locally complement the diversity of the k-most diverse sites that

we have already found so far. For example, if the most diverse set of

k sites found so far is completely covering Topic 1 and 2, but is only

partially covering Topic 3, and is not covering Topic 4 at all, then the

algorithm will will be guided to take directions that are extremely

likely to lead to sites having Topic 4, and somewhat likely to lead to

sites having Topic 3. However, our algorithm has to find a balance

between two aspect to optimize: distance and diversity. Following

a purely “distance-first” approach, the algorithm would degenerate

to Dijkstra algorithm. The advantage is that this algorithm may

quickly find some sites, which may already yield a high diversity

value “by chance”. Following a purely “diversity-first” approach,

our algorithm would head straight for the best sites (in terms of

diversity given the current set of sites seen so far), while ignoring

sites that are close to already explored parts of the network, and

which could be added to the result at little cost.

Algorithm 3: DivMap Based Diverse Range Query

Input: Site network 𝒢 = (V ,E,W ,S), Query Q ∈ V , integer k ,
range ϵ , Diversity Index DivMap

1 initialization: D← ∅, MaxHeap H ← {((Q,Q),∞)},
distList ← {(Q, 0)}

// H is a heap sorted by Utility (Definition 5.1)

2 while H ≠ ∅ do
3 e ← H .extractMax //Remove (pop) the max-Utility

4 etail .label ← “Green” //Mark tail node of e visited

5 D← Swap(D ∪ S(etail ),k)
//Swap sites S(etail ) at etail into D (See Alg. 1)

6 if D has changed then
7 Update utility u

(D,ϵ−distList(︀e taili ⌋︀,DivMap)(ei) for
each ei in H

8 foreach edge ead j adjacent to e
tail do

9 if etailad j .label=“Green” then
10 continue

11 else if etailad j in distList then
12 if distList(︀etailad j ⌋︀ ≤ distList(︀e

tail ⌋︀ +w(ead j)
then

13 continue

14 else
15 H .remove(edrop) if etaildrop = e

tail
ad j for edrop in

H

16 distList(︀etailad j ⌋︀ ← distList(︀etail ⌋︀ +w(ead j)
17 H.insert(ead j ,u(D,ϵ−distList(︀e tailad j ⌋︀,DivMap)(ead j))

18 return D

Intuitively, a balanced algorithm should prefer directions that

lead to interesting sites (in terms of diversity given the current set

of sites) which are not too far away. Our DivMap index proposed

in Section 5.1 allows to do that: Not only does it tell the algorithm

with direction to follow to find interesting sites, but it also gives

the algorithm an approximation of how far it will have to travel to

find these sites.

Similar to Dijkstra’s algorithm, we maintain a priority queue of

“active” edges adjacent to vertices that have already been explored

and processed. In each iteration, we greedily select an active edge

which maximizes the utility given the currently best k-set of sites.
Whenever a site s is found, we use a greedy swap algorithm [21],

to see if swapping s with any of the up to k currently selected sites

improves the topic-based diversity (c.f. Definition 4.1). Note that

this swap operation requiresO(k2)-time, as k topic diversity values

need to be computed, each for a set of no more than k sites.

Starting at the query point Q , all adjacent unvisited edges are

stored in a candidate list, sorted in ascending order by their utility.

To balance between spatial proximity to unvisited direction and

diversity, we define a distance-weighted utility uD,ϵ,DivMap(e =
(vhead ,vtail )), where vhead and vtail are the head and tail end

of e . This function estimates the utility of v exploring an direction

through e as the expected gain of diversity, given the current set
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of selected sites D, the range query parameter ϵ , and exploiting

information stored in our index DivMap, formally:

Definition 5.1 (Utility). Let 𝒢 be a site network and let DivMap
be a diversity map index as described in Section 5.1.2. Further, let D
be the current set of at most k sites selected as result, v be a visited

node and v′ be one of the unvisited adjacent nodes to v through

e . λ ∈ (︀0, 1⌋︀ and ϵ be real values. The utility u
(D,ϵ,DivMap)(e) of

exploring vertex v via edge e is defined as:

u
(D,ϵ,DivMap)(e) = (2)

m
∑

siд=1
λsiд−1

K
∑
j=1

DivMape((︀siд, j⌋︀) ⋅ ∏
si ∈D
(1 − θi, j)

wherem is the index of distance buckets that ϵ falls into

In a nutshell, Equation 2 uses, for each topic j, the probability

∏si ∈D(1 − θi, j) that topic j is not covered by the current site set

D. The remaining utility of topic j is multiplied with the upper

bound value of topic j in the first bucket of distance signature

bucket DivMape((︀1, j⌋︀), i.e., the maximum value that we can reach

for topic j in the first bucket. This procedure is repeated for each

distance signature bucket, but the utility of each bucket after the

first is penalized by a cumulative factor of λ. For example, for λ = 0.5,
the diversity of the fourth bucket will be reduced by a factor of

0.53 = 0.125.
The factor λ allows to select the trade-off between distance-greed

and diversity-greed. In the extreme case where λ = 1, all buckets
will be weighted equally, allowing the algorithm to chase a site in

the outer buckets before finding any other sites. On the contrary, the

other extreme of λ = 0 will completely ignore any bucket beyond

the first, thus allowing the algorithm only to consider sites within

the first bucket. Depending on the size of the buckets in the distance

signature, this setting will force the algorithm to explore parts of

the network close to Q first. The choice of λ is not trivial, and as

our experimental evaluation in Section 6 shows, a good trade-off

requires 0 < λ < 1.
Once a node is visited (initially, the query node Q), all adjacent

edges are added to the priority queue if the distance betweenQ and

tail of each edge does not exceed the range query parameter ϵ .
A formal algorithm for this index-supported search is found in

Algorithm 3. This algorithm maintains a max-heap that stores all

active network edges sorted by their utility. In each iteration, the

edge e having the highest utility is processed as follows: The tail

node of e , denoted as etail , is marked as visited (Line 4). Then, all

sites located at etail are processed using the Swap algorithm (c.f.

Algorithm 1) in Line 5. If any site at etail is added to the current

result set D in this way, all utility values have to be recomputed in

Line 7, as the utility (c.f. Definition 5.1) depends on the current set

of sites. Computing the utility of a edge requiresO(k ⋅K ⋅m), where
k is the number of results, K is the number of topics, andm is the

number of distance signature buckets. Doing this for each of the

C currently active candidates nodes yields a total time complexity

of O(C ⋅ loд(C) ⋅ k ⋅ K ⋅m), as the insertion into a heap of size C
requires O(loд(C)) time.

Once etail has been processed, all neighbors edges, denoted as

ead j , of e
tail

are handled in three cases. In Case I (Lines 9 - 10),

the adjacent edge whose tail node have already been visited are

ignored, as site at this node have already been processed. Case II

considers vertices etailad j which have not been processed, but which

are already in the candidate heap H . For these scenario, we check

the distance betweenQ and etailad j (Lines 11-15). Note that according

to Definition 2, higher ϵ means higher utility. Since our algorithm

does not necessarily process vertices by their distance (like Dijkstra

algorithm would) and may visit a node before it’s shortest path

has been found, this step ensures that we always store the shortest

distance between Q and each visited node in distList , which as

well guarantees that the highest utility of each visited node is kept

in H . Thus, if previous path to etailad j is shorter than current found

path, then we can simply skip ead j (Line 13). Otherwise, we need to

remove all the previous path to etailad j (Line 15). And the algorithm

in Lines 16 - 17 will be executed to store/update the distance in-

formation of etailad j in distList , and insert ead j and corresponding

utility into H if etailad j has never been met or already met but not

processed yet while keeping the shortest path to Q , which we treat

as Case III.

The algorithm terminates when H is empty, or when an maxi-

mum budget of iterations (not denoted in Algorithm 3 for brevity)

is reached. The later termination criterion is to ensure that high-

utility results can be returned to the user, without the requiring all

sites to be explored first.

6 EXPERIMENTS
The datasets used for constructing site network consist of two

main components: (1) the walkway network from part of Arizona,

U.S., obtained from OpenStreetMap, is used as road network; it

includes 18,773 nodes and 48,548 edges. (2) to construct the site

database, sites are obtained from Yelp in the same area, contain-

ing both spatial locations and an average of 4.067 keywords tex-

tual information for 882 restaurants in this region. The experi-

ments are conducted on a PC with Intel(R) Xeon(R) CPU E3-1240

v6 @3.70GHz, 32 GB RAM and 512 GB disk storage. Windows

10 Enterprise 64-bit is the operating system, and all algorithms

are implemented by Python 2.7. The source code can be found at

https://github.com/XTRunner/KDRQ_2019. The distance range, ϵ ,
is by default set to 2000m for all the following experiments, as-

suming which is the maximum distance a user would walk. For

each experiment, 200 vertices are randomly selected from the site

network as query points and the average results are presented.

Evaluation of Parameter λ: In order to maximize the efficiency of

the DivMap index, the parameter λ, which balances between “spa-

tial greed” and “diversity greed”, must be chosen wisely. Recall (cf.

Alg. 3 and Def. 2) that we choose the direction with highest utility

and λ controls the weight of each bucket while calculating it. The

boundary set is set to be (︀0, 500m⌋︀, (︀500m, 1000m⌋︀, (︀1000m, 1500m⌋︀
and (︀1500m, 2000m⌋︀ for this part. Our experimental results, shown

in Fig. 4, evaluates the impacts of λ in terms of three different mea-

surements – time efficiency (computation time to approach certain

diversity), site efficiency (visited sites), and edge efficiency (visited

edge). Specifically, Figure 4(a) shows that the algorithms run con-

sistently fast (less than 0.2 seconds run-time) for all settings of λ.
In addition to run-times, we also measure platform independent

https://github.com/XTRunner/KDRQ_2019
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(a) Time efficiency (b) Site efficiency (c) Edge efficiency

Figure 4: Efficiency Evaluation for different values of λ

(a) λ = 0 (b) λ = 1 (c) λ = 0.25

Figure 5: Effect of different boundary sets

measure to understand how different values of λ explore the net-

work differently. In Figure 4(b), we see that, for all λ values, the

gain in diversity per site is approximately the same. This may seem

counter-intuitive at first, as λ = 1 may walk far away to visit the

(diversity-wise) best sites first, while λ = 1 has to first explore the

sites in the first distance signature bucket. Yet, in order to achieve

diversity close to the maximum of 3 (for k = 3), the sites in the first

bucket seem to be sufficiently diverse. Furthermore, an important

observation of Figure 4(c) is that extreme λ values, i.e., λ = 0 or

λ = 1, yield worse results in terms of edge efficiency. Thus, a pure

“spatial first” or “diversity first” approach is not recommended, ei-

ther exploring the network too locally, or chasing too far away sites.

In our dataset, it appears that λ = 0.25 provides a good trade-off,

but this choice depends on characteristics of the dataset, such as

the density of sites, the number of latent features, and the number

of distance buckets. We note that finding heuristics to quickly esti-

mate this hyper-parameter for a new dataset is part of our future

work. The following evaluation experiments utilize the extreme

cases (i.e., λ = 0 and 1) to compare with the result of the trade-off

scenario (i.e., λ = 0.25).

Evaluation of the boundary sets B: Besides of λ, boundary set

(parameter B in Algorithm 2) is as well an influential factor of

efficiency. In our experiments, four different boundary sets are

considered:

● Boundary 1: [0-1000, 1000-2000]

● Boundary 2: [0-500, 500-1000, 1000-1500, 1500-2000]

● Boundary 3: [0-250, 250-500, 500-750, ..., 1750-2000]

● Boundary 4: [0-1000, 1000-1414, 1414-1732, 1732-2000]

Boundaries 1, 2 and 3 have equally sized distance intervals but

with different number of buckets, while Boundary 4 has the length

of the intervals implying an equal area allocated for each bucket,

e.g., the disk with radius 1000m and the annulus between it and

the concentric disk with radius 1414m have equal areas. Moreover,

without loss of generality, besides of two extreme λ values (i.e.,

λ = 0 and λ = 1), we also present the result when λ = 0.25 in

Fig. 5(c) which is shown to the best λ option for our dataset from

above.

We can observe from Fig. 5(a) (λ = 0) that the result using Bound-

ary 4 is identical to using Boundary 1, since only the first bucket

influences the result, allowing the algorithm to quickly find high-

diversity results. The diversity increases slowly for Boundary 2,

but eventually catch up with Boundary 1 and 4. Thus, it appears

that Boundary 2 groups sites inefficiently into distance signature

buckets for this study region. Using Boundary 3 (the black dot

line), we obtain significantly less diversity in general. The reason

is that in the case of λ = 0, the algorithm is forced to stay very

close to explored areas, being constrained in its freedom to chase

high-diversity sites, and thus becoming more of a distance-first

algorithm.

For λ = 1 (i.e., all buckets within given distance range are con-

sidered equally at each step), shown in the right of Fig. 5(b), bucket

range influences the results in a different way. First, we see that the

differences between Boundary 3 and Boundary 1 and 4 are smaller,

comparing to when λ = 0. This is because the case of λ = 1 ignores
the distance of buckets, going purely “diversity-first”. Thus, having

more buckets simply gives this algorithm more details where to

find the currently highest utility sites. The reason for the separation

of Boundary 1 and 4 is that the outer rings are now further away,

and the λ = 1 algorithm chases sites in these rings oblivious of the

distance requires to get there, thus incurring a potentially large de-

tour. Having these additional details allows it to chase the best sites,

thus finding higher diversity sites, but taking more time (number

of edges explored) to find them. Finally, the case λ = 0.25 (Fig. 5(c))
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(a) k = 3 (b) k = 5 (c) k = 7

Figure 6: DivMap index evaluation

is considered as a trade-off decision between distance-first (λ = 0)
and diversity-first (λ = 1), showing much different trends for all

four boundary sets. The smaller Boundary 2 surpassed Boundary 1

and 4, allowing the algorithm to more quickly detect high-diversity

results. The result for Boundary 3, compares to the previous, start-

ing to merge into the trend of Boundary 1 and 4. We conclude that

a balanced value 0 < λ < 1 is preferable, to avoid inefficiencies by

either ignoring spatial distance or diversity.

Evaluation of parameter k . In the next experiment, we evaluate

the parameter k , while also comparing our approach to distance-

breath first Dijkstra search through the network. The resulting

diversities for k values of 3, 5 and 7 are very similar to each other, as

shown in Fig. 6 – demonstrating that (the performance of)DivMap-
based kDRQ dominates Dijkstra algorithm in terms of diversity

and computation time. We observe that λ = 0.25 offers slightly

better result when k = 3, and an additional observation from Fig. 6

is that λ = 0 initially has a better performance, but is eventually

surpassed by λ = 1. This experiment supports the intuition that

our DivMap index is able to obtain high-diversity much quicker

especially when λ = 0.25 (in terms of computation time) than a

traditional Dijkstra search which ignores topic information. We

also conclude that the overall run-times using different settings for

parameter λ do not drastically affect run-times, but as we see in

Figure 4(c), the network space explored is tremendously different,

suggesting that a balanced value of λ, which neglects neither the

spatial nor the diversity dimension, should be preferred.

7 CONCLUSIONS AND FUTUREWORK
We introduced the kDRQ – a novel query aiming at determining

the set of k objects on a road network with highest diversity in

terms of the set of their descriptive keywords, and are within a

given distance from the user’s location. We proposed an efficient

processing approach for kDRQ, relying on a novel index structure

and an LDA-based heuristic for diversity measure. Our experiments

demonstrated that the proposed approach can adjust to find the

right balance between diversity-first and distance-first to determine

high-diversity results.

As part of our future work, we plan to investigate: (a) heuristics

to automatically choose the search parameter λ sensitive to both

the terms dataset and the area around the query point, (b) extend

kDRQ to incorporate continuous variants that consider the changes
of the answer-set both due to objects (i.e., users) motion, as well as

due to changes in the description items (e.g., a restaurant updates

part of its menu at certain hour) and (c) the broader impact of the

properties of the diversification function [10] on the quality of the

results of the heuristics.
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