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Abstract. We propose a combined analytical / statistical method to determine 
an efficient threshold on the dispersion of estimates of the point of gaze (POG) 
to indicate a user fixation. The experimental data for this study was obtained 
with an EyeTech TM3 eye gaze tracker (EGT). The experimental protocol to 
make the user fixate on pre-determined visual targets was implemented using 
the C language and OpenCV. Subjects first used the system in a training mode, 
from which an individualized dispersion threshold was obtained. Our approach 
was verified by applying the individualized threshold to POG data from a sec-
ond run, in testing mode, with encouraging results.  
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1 Introduction  

Eye Gaze Tracking has been used for many years in the Human-Computer In-
teraction field. As the eyes are another gateway to express human emotions and 
thoughts, one can identify a person’s object of interest by determining where the per-
son is directing his / her gaze. Trying to assign meaning to a person’s gaze patterns is 
not an easy task. Nonetheless, one specific gesture of eye movement that we can ex-
tract from eye tracking is fixation. Our point of gaze (POG) tends to stop at a screen 
location when we are interested in something since our brain needs time to analyze 
and make sense of what we are looking at. We call this gesture ‘fixation’, and the 
method to identify the gesture ‘fixation identification’ or ‘fixation detection’.     

 



The key to identify the fixation gesture is to observe the dispersion of POGs 
(Points of Gaze), i.e., the distribution of spatial coordinates indicating the gazing 
point in the display. In an ideal case, the POGs during a fixation should stop at one 
point for a time interval (i.e., X- and Y- coordinates of the POGs should remain con-
stant for a period of time). In practice, however, even when a person fixes his/her eyes 
at one point, there will be slight movements from the eye balls. This phenomenon 
(“microsaccades”) has an important role in our visual perception but it prevents us 
from obtaining the ideal POG constant coordinates we would expect during a fixation.  

 
Several algorithms have been introduced to detect an EGT fixation despite the 

microsaccades, with most of them detecting a reduction in the spatial dispersion of 
consecutive POGs. These algorithms have been described in the EGT analysis general 
literature, e.g., [2,3,4], and in papers specifically devoted to the investigation of EGT 
fixation detection algorithms, e.g., [8,9,10]. Some other researchers have proposed 
modifications to the basic method ([5], [11]) aimed at improving the fixation detec-
tion performance. A few algorithms also use some temporal constraints in deciding 
whether or not a fixation has occurred.  

 
However, many of the algorithms use thresholds for dispersion that have been 

developed as custom, ad hoc solutions to specific implementations and may be ex-
pressed in a variety of units (pixels, mm, etc.). This work aims at identifying a rec-
ommendable threshold for the POG dispersion that is likely to be effective, and that is 
not dependent on the specific units of spatial displacement used. Thus the resulting 
threshold obtained from the study can be applied to any system regardless of the de-
vices and units it may use. We also propose that each EGT system user should have 
his / her own efficient individualized threshold determined because the specific be-
havior of the eye gaze during fixations may vary from person to person. So, each user 
should go through the process of finding his / her best individualized threshold (dur-
ing a training stage) and apply it for system use afterwards (testing). 

 

2 Methodology 

2.1 EyeTech TM3 eye gaze tracker (EGT) 

The EyeTech TM3 is a compact and portable eye tracker from EyeTech Digital 
Systems, Inc. The system consists of a high definition camera, infrared sources, and 
its software environment. It is capable of tracking with one or both eyes in real time 
(providing POG estimates every 26 ms, in our experiment) and it can be used with 
any Windows-based communication software. In this study, we used their provided 
libraries (OpenCV) [7] to build the visual-based interactive software in the designed 
experiment. The model specifications are listed in Table1. 
 

 



Methods Video, dark pupil, infrared illumination 

Spatial resolution 1 degree (approximate) 

Temporal resolution Adjustable, 15-55 samples per second 

Freedom of head movements 25 X 16 X19 cm 

Temporal resolution Adjustable, 15-55 samples per second 

Table 1. Technical Specification of EyeTech TM3  

 
 

2.2 Experimental Design 

For the purpose of finding an efficient threshold that does not depend on any 
specific units, we created an interactive program based on the EyeTech TM3 eye gaze 
tracker (EGT) to record the POGs continuously throughout the experimental session. 

 
We involved 22 participants in the implementation of our approach.  After per-

forming the calibration suggested by the eye gaze tracker manufacturer, each subject 
was instructed to complete 2 experimental stages: Training and Testing.  The X- and 
Y- screen coordinates of the POG were recorded throughout both complete stages. In 
each stage the protocol presents 5 visual targets (pink circles), located randomly in 
sequence as shown in Figure1. Prior to the beginning of the experiment, the subject is 
instructed to fixate his/her gaze only on those visual targets, when they appear. To 
prevent unintended fixations in the intervals between target presentations, a yellow 
circle, completely different in appearance from the targets, is shown moving around 
the screen, as a distractor.  

 
Our approach continuously stores the current X coordinate and the previous 49 

X coordinates recorded in a 50-point First-In-First-Out (FIFO) buffer and uses them 
to calculate a standard deviation of the X coordinates every sampling instant. The 
same process is followed for the Y coordinates of the point of gaze. The standard 
deviations for both the X and Y axes will be calculated iteratively. Therefore, in our 
approach we have current estimates (N=50) of the standard deviation of the POG 
coordinates (i.e., �� and	��), at every sampling instant. 



 

Fig. 1. Interactive program used in the experiment with the EyeTech TM3system. The pink 
circle at the lower bottom of the screen is a fixation target. 

2.3 Statistical Approach for fixation identification 

We propose to use the statistical dispersion of the X and Y POG coordinates as 
the criteria to determine when a fixation has occurred. In particular, we seek to identi-
fy a constant threshold, K, for the standard deviations of the POG coordinates in X 
and in Y (�� and	��) to determine the occurrence of EGT fixations, as we expect 

marked and simultaneous decreases in �� and	�� during fixations (as shown in Fig-
ure 2). Note that our proposed threshold K will, therefore, be unaffected by the type 
of units in which the EGT system reports coordinates or distances.  

 

 

Fig. 2. Plots of the standard deviations of the POG coordinate in X and in Y 



Smoothing the standard deviation signals using a one-pole filter. Due to the ab-
rupt, short-term drops that occur in ��  and	�� when a fixation is not taking place 
(Fig. 2), the system may report brief erroneous fixation detections.  To circumvent 
this problem we apply a one-pole filter of the type used in Gamma memories [Princi-
pe et al., 1993] to �� and	�� . The filter will give the current output sample based on 
the input sample and the previous output sample. We can adjust the �  parameter 
(0 � � � 1) to set whether the output should depend more on the current input or on 
the previous output. As a result, the filter will smooth the signal that it processes, 
while retaining the envelope shape of the original signal. Its purpose is similar to that 
of a running average filter, except that it has faster performance and is much easier to 
implement, compared to the normal average filter. Figure 4 shows the signal before 
and after applying the filter. 

 
 

 

Fig. 3. One-pole filter as used in a Gamma Memory (From [Principe et al., 1993]) 

 

 

Fig. 4. Standard Deviation of X signal, (�� ), before and after applying a one-pole filter 

 



Sweeping Threshold and ROC curve. To identify the most effective K value, the 
pre-recorded POG files from the training stage of each participant was processed by 
an algorithm that indicates a fixation only if  �� < K AND �� < K, where the standard 
deviations are calculated on the basis of the present POG and the immediately previ-
ous 49 POGs (i.e., N = 50). The result (Fixation OR No-Fixation) is assigned to the 
present temporal sample and the analysis is repeated throughout the complete POG 
file. Since the timing of appearance and disappearance of the 5 actual targets through 
the experiment is known and recorded, we are able to assess how many of the fixation 
indications from the system are correct (“True positives”) and how many are incorrect 
(“False Positives”). This process is repeated for increasing values of K (starting at 0), 
until every POG is reported as a fixation by the system. For each threshold, K, tried 
the “True positive rate” and “False Positive rate” enables us to calculate and draw one 
point of the Receiver Operating Characteristic (ROC) curve for the fixation detection 
process (Figure 5) and, from the whole curve, we are able to select the best K value 
(the K value that defines the closest point in the ROC curve to the coordinates “False 
Positive Rate” = 0 and “True Positive Rate” = 1, located on the top-left corner of the 
graph). This will be considered the best individualized K value for that specific partic-
ipant. 

 

Fig. 5. Receiver Operating Characteristic (ROC) curve of 100 thresholds 

Improved result from ROC curve. In processing the POG data from the training 
stage from all participants we noticed that the evolutions of �� and �� prior and dur-
ing the presentation of the first target were extremely inconsistent, seemingly due to 
the lack of familiarity of the test subjects with the system at the beginning experiment. 
This confounding effect does not persist after the second target presentation. Accord-
ingly, we decided to perform our analysis only considering the POG evolution during 
and after the second target presentation (“adjusted target indications”, Fig. 6). As 
expected, this resulted in higher, more consistent levels of accuracy in fixation detec-
tion (e.g., Fig. 7).  



 

 

Fig. 6. Original target indications and the adjusted target indications (including only 4 targets) 

 

Fig. 7. Improved ROC curve after disregarding the first target presentation 

3 Results 

3.1 Diversity of individualized thresholds found 

After the individualized thresholds for all the participants were found, in the 
way described above, the histogram of these thresholds was constructed, as shown in 
Figure 8. We observe that the thresholds found to provide the best performance for 
each of the participants are not all equal, and, in fact are significantly dispersed 
around their mean value. This provides some level of verification of our expectations 
and further confirms that an individualized threshold should be obtained for each 
EGT user through training for efficient operation of the fixation detection process. 



 

Fig. 8. Histogram of individualized best thresholds found for the participants. 

3.2 Testing the individualized thresholds 

For the purpose of testing the performance of the individualized thresholds, we 
asked the test subjects to go through the experiment a second time, in the testing 
stage, and recorded the POG data (sequence of X- and Y-coordinates)  for the second 
time. In this second stage, however, the individualized threshold found for the specific 
participant is applied in real-time to the �� and �� calculated continuously as the ex-
periment takes place. Therefore, this time there will be a small red dot that appears in 
the display to indicate the test subject’s POGs. The dot’s color will remain red if the 
system detects no fixation, and turn to yellow when a fixation is detected.  

 
The instructions to the subject in the testing stage are the same as during the 

training stage: Whenever the visual target appears (Target = 1), we ask the subject to 
fix his/her gaze on it so the algorithm is supposed to indicate a fixation (Result = 1). 
On the contrary, whenever the target disappears (Target = 0), we ask the subject to 
follow the distractor (moving yellow circle) in the display to prevent the occurrence 
of an unintended fixation. Thus the result is presumed to be non-fixation (Result = 0).  
This setup allows us to also calculate the correct and incorrect results provided by the 
system and, therefore, evaluate the system error rate (1 – accuracy). 

 
After we apply the individualized best threshold obtained from the training 

stage to the testing stage recorded data, we obtained the error rate results as shown in 
Figure 9 (bottom trace). Please note that it takes some time after the target appears 
before the test subjects can actually locate it and move their gaze to the visual target. 
As a result of that, we set the value in the target vector in those transition intervals to 
zero and call the resulting target indicators ‘Improved target’ indicators (middle trace 
of Fig. 9). This adjustment allows the calculation of a more realistic error rate, which 
we obtained for all subjects, for both their training POG data and their testing POG 
data. These error rates are shown and compared Figure 10. The graph in the continu-
ous line is the error rate from the training stage, while the graph in the dashed line is 
the error rate from the testing stage. We can appreciate that, for the vast majority of 
subjects, the testing and training performances are not significantly different.  



 

Fig. 9. Target indicators and resulting vector calculated by the system (example). On the top 
shows the original target vector. In the middle shows the improved target vector after trimming 
the first target and on the bottom shows the resulting vector from our approach. 

 

Fig. 10. Plots of error rate from the training and testing stages 

To verify the hypothesis that there are no statistically significant differences 
in mean between the two error rates (from the training stage and the testing stage) of 
each participant, we ran a Paired T-test using the R-software as shown in Figure 11. 
We set the null hypothesis to be that the difference between the mean of two data sets 
is zero and set the level of significance at 0.05. The p-value resulting from the test 
was 0.098 which is greater than 0.05, so we do not reject the null hypothesis and con-
clude that the means are not different at 5% level of significance. This further sup-
ports our observation on the similarity of both traces in Figure 10.  

 
This means that the benefit of having found the best individualized threshold 

for each participant through the ROC analysis of training stage POG data is kept even 
in subsequent uses of the EGT system. In our experiment, for example, the system 
was almost as accurate in detecting fixations in the testing stage as it was during the 
training stage. 



 

Fig. 11. Paired T-test result of the difference in mean of the error rate between training and 
testing stages using R software 

3.3 Adjustable characteristics of the algorithm proposed 

Another important aspect of the proposed algorithm is that by adjusting the µ 
parameter used in the one-pole filter employed for the smoothing of the standard de-
viation sequences the performance characteristics of the algorithm can be altered. µ 
has a range from 0 to 1; a small µ value will increase the detection accuracy while a 
large µ may cause more false fixation detections. Conversely, a small µ tends to pro-
mote a slower response, compared to a large µ. The reason behind this is that a 
smoother standard deviation sequence will have slower level changes and, therefore, 
may take additional time to drop below the K threshold to indicate a fixation. On the 
other hand, if the strength of the smoothing effect is lessened, the filtered standard 
deviation signal is more like the unfiltered version of the signal, still displaying fast 
transitions, but also containing spurious drops, even when no fixation is taking place.  

 



4 Conclusion 

In this work, we aimed at identifying a recommendable threshold for the POG 
dispersion that is likely to be effective, and that is not directly affected by the specific 
units of spatial displacement (pixels, mm, etc.) used in any particular device. Further, 
we proposed that each EGT system user may need a different threshold in the fixation 
detection algorithm. We showed that such individualized threshold can be obtained 
from the data gathered during a short training stage, by means of ROC curve analysis.  

 
The histogram of individualized best thresholds found does show diversity for 

the different participants, indicated by a noticeable dispersion around the mean. Using 
the individualized threshold in the analysis of a subsequently recorded testing stage 
proved that the high performance shown in the training stage is kept. Both these ob-
servations seem to confirm that it is useful to determine an efficient threshold for the 
fixation algorithm for each user during the brief training stage. 

 
Moreover, we can adjust the performance balance between accuracy and re-

sponse time using the µ parameter of the smoothing filter to fit the demands of a spe-
cific fixation detection application. By adjusting this parameter, the response time of 
the fixation detector could be shortened, at the expense of detection accuracy. Con-
versely, a higher accuracy may require a µ value that might make the detector some-
what slower to respond. 
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