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Abstract. We propose a combined analytical / statistical wetto determine
an efficient threshold on the dispersion of estesaif the point of gaze (POG)
to indicate a user fixation. The experimental datathis study was obtained
with an EyeTech TM3 eye gaze tracker (EGT). Theedxpental protocol to
make the user fixate on pre-determined visual targas implemented using
the C language and OpenCV. Subjects first usedytsem in a training mode,
from which an individualized dispersion thresholdsaobtained. Our approach
was verified by applying the individualized threkhto POG data from a sec-
ond run, in testing mode, with encouraging results.
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1 Introduction

Eye Gaze Tracking has been used for many yeatsituman-Computer In-
teraction field. As the eyes are another gatewagxpress human emotions and
thoughts, one can identify a person’s object cériesgt by determining where the per-
son is directing his / her gaze. Trying to assigraning to a person’s gaze patterns is
not an easy task. Nonetheless, one specific gesfiege movement that we can ex-
tract from eye tracking is fixation. Our point oize (POG) tends to stop at a screen
location when we are interested in something smaebrain needs time to analyze
and make sense of what we are looking at. We halldesture ‘fixation’, and the
method to identify the gesture ‘fixation identifizn’ or ‘fixation detection’.
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The key to identify the fixation gesture is to oh®ethe dispersion of POGs
(Points of Gaze), i.e., the distribution of spatiaordinates indicating the gazing
point in the display. In an ideal case, the POG#ndua fixation should stop at one
point for a time interval (i.e., X- and Y- coordira of the POGs should remain con-
stant for a period of time). In practice, howevaren when a person fixes his/her eyes
at one point, there will be slight movements fradme eye balls. This phenomenon
(“microsaccades”) has an important role in our @isperception but it prevents us
from obtaining the ideal POG constant coordinatesmould expect during a fixation.

Several algorithms have been introduced to dete®&Q@T fixation despite the
microsaccades, with most of them detecting a réaluéh the spatial dispersion of
consecutive POGs. These algorithms have been teddn the EGT analysis general
literature, e.g., [2,3,4], and in papers specificdbvoted to the investigation of EGT
fixation detection algorithms, e.g., [8,9,10]. Sowiher researchers have proposed
modifications to the basic method ([5], [11]) aim&dimproving the fixation detec-
tion performance. A few algorithms also use sommepigral constraints in deciding
whether or not a fixation has occurred.

However, many of the algorithms use thresholdsdfepersion that have been
developed as custom, ad hoc solutions to specififgementations and may be ex-
pressed in a variety of units (pixels, mm, etchisTwork aims at identifying a rec-
ommendable threshold for the POG dispersion thigtety to be effective, and that is
not dependent on the specific units of spatial ldtggment used. Thus the resulting
threshold obtained from the study can be applieantp system regardless of the de-
vices and units it may use. We also propose thett E&T system user should have
his / her own efficient individualized thresholdtelenined because the specific be-
havior of the eye gaze during fixations may vaonirperson to person. So, each user
should go through the process of finding his / est individualized threshold (dur-
ing a training stage) and apply it for system useraards (testing).

2 M ethodology

21 EyeTech TM3eyegazetracker (EGT)

The EyeTech TM3 is a compact and portable eye ¢raitkm EyeTech Digital
Systems, Inc. The system consists of a high definitamera, infrared sources, and
its software environment. It is capable of trackimigh one or both eyes in real time
(providing POG estimates every 26 ms, in our expent) and it can be used with
any Windows-based communication software. In thislyy we used their provided
libraries (OpenCV) [7] to build the visual-basedeiractive software in the designed
experiment. The model specifications are liste@iablel.



Methods Video, dark pupil, infrared illuminatign
Spatial resolution 1 degree (approximate)

Temporal resolution Adjustable, 15-55 samples peosd
Freedom of head movements 25 X 16 X19 cm

Temporal resolution Adjustable, 15-55 samples peosd

Table 1. Technical Specification of EyeTech TM3

2.2  Experimental Design

For the purpose of finding an efficient threshdidttdoes not depend on any
specific units, we created an interactive prograsedl on the EyeTech TM3 eye gaze
tracker (EGT) to record the POGs continuously tgrmut the experimental session.

We involved 22 participants in the implementatidroor approach. After per-
forming the calibration suggested by the eye gemeker manufacturer, each subject
was instructed to complete 2 experimental stagesining and Testing. The X- and
Y- screen coordinates of the POG were recordeditfrout both complete stages. In
each stage the protocol presents 5 visual targatk €ircles), located randomly in
sequence as shown in Figurel. Prior to the beginoirthe experiment, the subject is
instructed to fixate his/her gaze only on thoseialigargets, when they appear. To
prevent unintended fixations in the intervals betwéarget presentations, a yellow
circle, completely different in appearance from tamets, is shown moving around
the screen, as a distractor.

Our approach continuously stores the current X dioate and the previous 49
X coordinates recorded in a 50-point First-In-Fieatt (FIFO) buffer and uses them
to calculate a standard deviation of the X coondisaevery sampling instant. The
same process is followed for the Y coordinateshef point of gaze. The standard
deviations for both the X and Y axes will be cadtall iteratively. Therefore, in our
approach we have current estimates (N=50) of thadstrd deviation of the POG
coordinates (i.eqg, anda,), at every sampling instant.



Fig. 1. Interactive program used in the experiment with BEyeTech TM3system. The pink
circle at the lower bottom of the screen is a fomtarget.

2.3  Statistical Approach for fixation identification

We propose to use the statistical dispersion oXtlaad Y POG coordinates as
the criteria to determine when a fixation has ogedirIn particular, we seek to identi-
fy a constant threshold, K, for the standard déwiest of the POG coordinates in X

and in Y @, andoy) to determine the occurrence of EGT fixationswes expect
marked and simultaneous decreases,rando, during fixations (as shown in Fig-

ure 2). Note that our proposed threshold K wileréfore, be unaffected by the type
of units in which the EGT system reports coordisatedistances.
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Fig. 2. Plots of the standard deviations of the POG coatdiin X and in Y



Smoothing the standard deviation signals using a one-pole filter. Due to the ab-
rupt, short-term drops that occurdp ando, when a fixation is not taking place
(Fig. 2), the system may report brief erroneoustfon detections. To circumvent
this problem we apply a one-pole filter of the tymed in Gamma memories [Princi-
pe et al., 1993] to,, anday, . The filter will give the current output samplased on
the input sample and the previous output sample.céfe adjust the parameter
(0 < u < 1) to set whether the output should depend moréherctirrent input or on
the previous output. As a result, the filter withgoth the signal that it processes,
while retaining the envelope shape of the origsighal. Its purpose is similar to that
of a running average filter, except that it hasdaperformance and is much easier to
implement, compared to the normal average filtégufe 4 shows the signal before
and after applying the filter.
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Fig. 3. One-pole filter as used in a Gamma Memory (Frormfipe et al., 1993])
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Fig. 4. Standard Deviation of X signalgy, ), before and after applying a one-pole filter



Sweeping Threshold and ROC curve. To identify the most effective K value, the
pre-recorded POG files from the training stage afheparticipant was processed by
an algorithm that indicates a fixation onlydf, < K AND o, < K, where the standard
deviations are calculated on the basis of the ptedB®G and the immediately previ-
ous 49 POGs (i.e., N = 50). The result (Fixation R&Fixation) is assigned to the
present temporal sample and the analysis is repe¢hteughout the complete POG
file. Since the timing of appearance and disappearaf the 5 actual targets through
the experiment is known and recorded, we are abdssess how many of the fixation
indications from the system are correct (“True fpes$”) and how many are incorrect
(“False Positives™). This process is repeated fioréasing values of K (starting at 0),
until every POG is reported as a fixation by thsetesn. For each threshold, K, tried
the “True positive rate” and “False Positive raggiables us to calculate and draw one
point of the Receiver Operating Characteristic (R@©@ve for the fixation detection
process (Figure 5) and, from the whole curve, veeale to select the best K value
(the K value that defines the closest point inR@C curve to the coordinates “False
Positive Rate” = 0 and “True Positive Rate” = Icdted on the top-left corner of the
graph). This will be considered the best individzed K value for that specific partic-
ipant.
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Fig. 5. Receiver Operating Characteristic (ROC) curveQff thresholds

Improved result from ROC curve. In processing the POG data from the training
stage from all participants we noticed that thel@ians ofs, anda, prior and dur-
ing the presentation of the first target were exgly inconsistent, seemingly due to
the lack of familiarity of the test subjects wittetsystem at the beginning experiment.
This confounding effect does not persist afterdbeond target presentation. Accord-
ingly, we decided to perform our analysis only édesng the POG evolution during
and after the second target presentation (“adjusteget indications”, Fig. 6). As
expected, this resulted in higher, more considamls of accuracy in fixation detec-
tion (e.qg., Fig. 7).
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Fig. 6. Original target indications and the adjusted tangdications (including only 4 targets)
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Fig. 7. Improved ROC curve after disregarding the firsgéh presentation

3 Results

3.1 Diversity of individualized thresholdsfound

After the individualized thresholds for all the peipants were found, in the
way described above, the histogram of these thlésheas constructed, as shown in
Figure 8. We observe that the thresholds foundrtwige the best performance for
each of the participants are not all equal, andfaot are significantly dispersed
around their mean value. This provides some lel/gkdfication of our expectations
and further confirms that an individualized thrdshehould be obtained for each
EGT user through training for efficient operatidrtlze fixation detection process.
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3.2 Tegtingtheindividualized thresholds

For the purpose of testing the performance of tldévidualized thresholds, we
asked the test subjects to go through the expetimesecond time, in the testing
stage, and recorded the POG data (sequence ofdXY-awoordinates) for the second
time. In this second stage, however, the individeal threshold found for the specific
participant is applied in real-time to thg ando,, calculated continuously as the ex-
periment takes place. Therefore, this time thetebgi a small red dot that appears in
the display to indicate the test subject’'s POG® dbt's color will remain red if the
system detects no fixation, and turn to yellow whdixation is detected.

The instructions to the subject in the testing stage the same as during the
training stage: Whenever the visual target app@easget = 1), we ask the subject to
fix his/her gaze on it so the algorithm is suppogedhdicate a fixation (Result = 1).
On the contrary, whenever the target disappeargyéta 0), we ask the subject to
follow the distractor (moving yellow circle) in ttdisplay to prevent the occurrence
of an unintended fixation. Thus the result is presd to be non-fixation (Result = 0).
This setup allows us to also calculate the comedtincorrect results provided by the
system and, therefore, evaluate the system en@(ta accuracy).

After we apply the individualized best thresholdtadbed from the training
stage to the testing stage recorded data, we @lotdive error rate results as shown in
Figure 9 (bottom trace). Please note that it tad@se time after the target appears
before the test subjects can actually locate itrande their gaze to the visual target.
As a result of that, we set the value in the taugetor in those transition intervals to
zero and call the resulting target indicators ‘loyad target’ indicators (middle trace
of Fig. 9). This adjustment allows the calculatafra more realistic error rate, which
we obtained for all subjects, for both their tramiPOG data and their testing POG
data. These error rates are shown and comparedeFl§u The graph in the continu-
ous line is the error rate from the training stagkile the graph in the dashed line is
the error rate from the testing stage. We can apeethat, for the vast majority of
subjects, the testing and training performancesarsignificantly different.
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Fig. 9. Target indicators and resulting vector calculdtgdhe system (example). On the top
shows the original target vector. In the middlevehithe improved target vector after trimming
the first target and on the bottom shows the riegpltector from our approach.
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Fig. 10. Plots of error rate from the training and tessitages

To verify the hypothesis that there are no staadly significant differences

in mean between the two error rates (from the imgistage and the testing stage) of
each participant, we ran a Paired T-test usingRits®ftware as shown in Figure 11.
We set the null hypothesis to be that the diffeecletween the mean of two data sets
is zero and set the level of significance at 0De p-value resulting from the test
was 0.098 which is greater than 0.05, so we daejett the null hypothesis and con-
clude that the means are not different at 5% lebdignificance. This further sup-
ports our observation on the similarity of boticea in Figure 10.

This means that the benefit of having found the relvidualized threshold
for each participant through the ROC analysis a@ihing stage POG data is kept even
in subsequent uses of the EGT system. In our axeat, for example, the system
was almost as accurate in detecting fixations éntésting stage as it was during the
training stage.



> # Input Data

> Train = ¢(0.18,0.08,0.09,0.06,0.11,0.05,0.12,0.10,0.06,0.07,0.09

+ ,0.18,0.09,0.09,0.20,0.16,0.13,0.07,0.09,0.06,0.081,0.09);

> Test = ¢(0.09,0.08,0.09,0.16,0.14,0.08,0.09,0.11,0.13

+ ,0.09,0.08,0.09,0.14,0.12,0.25,0.22,0.10,0.068,0.10,0.16,0.10,0.18) ;
> # Test the equality of variance
> var.test (Train, Test);

F test to compare two variances

data: Train and Test
F = 0.79683, num df = 21, denom df = 21, p-value = 0.6075
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:

0.330827 1.919228
sample estimates:
ratio of variances

0.7968263

> # T-test of the difference in means (pair-Testing)
> t.test(Train, Test,var.equal=T,paired=T);

Paired t-test

data: Train and Test
t = -1.73, df = 21, |[p-value = 0.0983]
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.041739879 0.003830788
sample estimates:
mean of the differences
-0.01895455

Fig. 11. Paired T-test result of the difference in mearihef error rate between training and
testing stages using R software

3.3 Adjustablecharacteristics of the algorithm proposed

Another important aspect of the proposed algorithrthat by adjusting the p
parameter used in the one-pole filter employedtiersmoothing of the standard de-
viation sequences the performance characteristitBeoalgorithm can be altered. p
has a range from 0 to 1; a small p value will iaseethe detection accuracy while a
large p may cause more false fixation detectiomsv€rsely, a small y tends to pro-
mote a slower response, compared to a large p.r&&son behind this is that a
smoother standard deviation sequence will have esldewel changes and, therefore,
may take additional time to drop below the K thi@dtto indicate a fixation. On the
other hand, if the strength of the smoothing efisdessened, the filtered standard
deviation signal is more like the unfiltered versiof the signal, still displaying fast
transitions, but also containing spurious dropgnewhen no fixation is taking place.



4 Conclusion

In this work, we aimed at identifying a recommeridahreshold for the POG
dispersion that is likely to be effective, and tisahot directly affected by the specific
units of spatial displacement (pixels, mm, etcgdug any particular device. Further,
we proposed that each EGT system user may nedfeeedt threshold in the fixation
detection algorithm. We showed that such indivitheal threshold can be obtained
from the data gathered during a short trainingestag means of ROC curve analysis.

The histogram of individualized best thresholdsniuloes show diversity for
the different participants, indicated by a notideadispersion around the mean. Using
the individualized threshold in the analysis ofudsequently recorded testing stage
proved that the high performance shown in the imgistage is kept. Both these ob-
servations seem to confirm that it is useful teedmine an efficient threshold for the
fixation algorithm for each user during the briefibing stage.

Moreover, we can adjust the performance balancedset accuracy and re-
sponse time using the p parameter of the smoofhiaegto fit the demands of a spe-
cific fixation detection application. By adjustirigis parameter, the response time of
the fixation detector could be shortened, at theeage of detection accuracy. Con-
versely, a higher accuracy may require a p valaertlight make the detector some-
what slower to respond.
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