
Searching Similar Segments over Textual Event Sequences

Liang Tang Tao Li Shu-Ching Chen
School of Computer Science

Florida International University
Miami, Florida, 33199, U.S.A

{ltang002,taoli,chens}@cs.fiu.edu

Shunzhi Zhu
School of Computer & Information Engineering

Xiamen University of Technology
Xiamen, P.R. China

szzhu@xmut.edu.cn

ABSTRACT
Sequential data is prevalent in many scientific and commer-
cial applications such as bioinformatics, system security and
networking. Similarity search has been widely studied for
symbolic and time series data in which each data object is
a symbol or numeric value. Textual event sequences are se-
quences of events, where each object is a message describing
an event. For example, system logs are typical textual even-
t sequences and each event is a textual message recording
internal system operations, statuses, configuration modifica-
tions or execution errors. Similar segments of an event se-
quence reveals similar system behaviors in the past which are
helpful for system administrators to diagnose system prob-
lems. Existing search indexing for textual data only focus
on unordered data. Substring matching methods are able to
efficiently find matched segments over a sequence, however,
their sequences are single values rather than texts. In this
paper, we propose a method, suffix matrix, for efficiently
searching similar segments over textual event sequences. It
provides an integration of two disparate techniques: locality-
sensitive hashing and suffix arrays. This method also sup-
ports the k-dissimilar segment search. A k-dissimilar seg-
ment is a segment that has at most k dissimilar events to
the query sequence. By using random sequence mask pro-
posed in this paper, this method can have a high probability
to reach all k-dissimilar segments without increasing much
search cost. We conduct experiments on real system log data
and the experimental results show that our proposed method
outperforms alternative methods using existing techniques.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505762.

Keywords
Textual Sequence; Similarity Search; Log Event

1. INTRODUCTION
Sequential data is prevalent in many real-world applica-

tions such as bioinformatics, system security and network-
ing. Similarity search is one of the most fundamental tech-
niques in sequential data management. A lot of efficien-
t approaches are designed for searching over symbolic se-
quences or time series data, such as DNA sequences, stock
prices, network packets and video streams. A textual event
sequence is a sequence of events, where each event is a plain
text or message. For example, in system management, most
system logs are textual event sequences which describe the
corresponding system behaviors, such as the starting and
stopping of services, detection of network connections, soft-
ware configuration modifications, and execution errors [24,
22, 29, 30, 36, 37]. System administrators utilize the event
logs to understand system behaviors. Similar system events
reveal potential similar system behaviors in history which
help administrators to diagnose system problems. For ex-
ample, four log messages collected from a supercomputer [4]
in Sandia National Laboratories are listed below:

- 1131564688 2005.11.09 en257 Nov 9 11:31:28 en257/en257

ntpd[1978]: ntpd exiting on signal 15

- 1131564689 2005.11.09 en257 Nov 9 11:31:29 en257/en257

ntpd: failed

- 1131564689 2005.11.09 en257 Nov 9 11:31:29 en257/en257

ntpd: ntpd shutdown failed

- 1131564689 2005.11.09 en257 Nov 9 11:31:29 en257/en257

ntpd: ntpd startup failed

The four log messages describe a failure in restarting of the
ntpd (Network Time Protocol daemon). The system admin-
istrators need to first know the reason why the ntpd could
not restart and then come up with a solution to resolve this
problem. A typical approach is to compare the current four
log messages with the historical ntpd restarting logs and see
what is the difference with them. Then the administrators
can find out which steps or parameters might cause this fail-
ure. To retrieve the relevant historical log messages, the four
log messages can be used as a query to search over the his-
torical event logs. However, the size of the entire historical
logs is usually very large, so it is not efficient to go through
all event messages. For example, IBM Tivoli Monitoring 6.x
[1] usually generates over 100G bytes system events for just
one month from 600 windows servers. Searching over such

329



a large scale event sequence is challenging and the search-
ing index is necessary for speeding up this process. Current
system management tools and software can only search a s-
ingle event by keywords or relational query conditions [1, 3,
2]. However, a system behavior is usually described by sev-
eral continuous event messages not just one single event, as
shown in the above ntpd example. In addition, the number
of event messages for a system behavior is not a fixed num-
ber, so it is hard to decide what is the appropriate segment
length for building the index.
Existing search indexing methods for textual data and

sequential data can be summarized into two different cate-
gories. In our problem, however, each of them has its own
limitation. For the textual data, the locality-sensitive hash-
ing (LSH) [14] with the Min-Hash [10] function is a com-
mon scheme. But these LSH based methods only focus on
unordered data [14, 7, 27]. In a textual event sequence,
the order information cannot be ignored since different or-
ders indicate different execution flows of the system. For
sequential data, the segment search problem is a substring
matching problem. Most existing methods are hash index
based, suffix tree based, suffix arrays based or BOWTIE
based [15, 23, 18, 5, 19, 9]. These methods can keep the or-
der information of elements, but their sequence elements are
single values rather than texts. Their search targets are the
matched substrings. In our problem, the similar segments
are not necessary to be matched substrings.

1.1 Contributions
To combine both advantages of the locality-sensitive hash-

ing (LSH) and suffix arrays, this paper proposes a method,
suffix matrix, to search similar segments over textual se-
quences. This method first creates a set of independent
hash functions and maps the textual sequence into a set
of hash-value sequences. Then, it constructs a suffix matrix
where each row is a suffix array generated from a hash-value
sequence. By using binary search over this suffix matrix,
this method is able to find out similar segments with a high
probability. Meanwhile, it can reduce the collision probabil-
ity with dissimilar segments. This method can also search
k-dissimilar segments. A k-dissimilar segment is a segmen-
t which has at most k dissimilar events to the query se-
quence. By using the random sequence mask proposed in
this paper, suffix matrix is able to maintain a high proba-
bility to reach all k-dissimilar segments without increasing
much search costs. suffix matrix is a systematic integration
of LSH and suffix arrays. We conduct experiments on real
system log data. The experimental results show that suf-
fix matrix outperforms the straightforward combinations of
existing techniques.
The rest of the paper is organized as follows: In Section

2, we formulate the problem of this paper. Then, we discuss
the straightforward potential solutions using existing meth-
ods. Section 3 presents our suffix matrix method and theo-
retically analyzes its performance. In Section 4, we conduct
experiments on real system log data and present the empir-
ical results. Section 5 describes the related work. Finally,
Section 6 concludes this paper.

2. PROBLEM FORMULATION
Let S = e1e2...en be a sequence of n event messages, where

ei denotes the i-th event, i = 1, 2, ..., n. |S| denotes the
length of sequence S, which is the number of events in S.

E denotes the universe of events. sim(ei, ej) is a similarity
function which measures the similarity between event ei and
event ej , where ei ∈ E , ej ∈ E . In this paper, Jaccard coef-
ficient [28] with 2-shingling [11] is utilized as the similarity
function sim(·, ·) because each event is a textual message.

Definition 1. (Segment) Given a sequence of events
S = e1...en, a segment of S is a sequence L = em+1em+2...em+l,
where l is the length of L, l ≤ n, and 0 ≤ m ≤ n− l.

The problem of this paper is formally stated as follows.

Problem 1. (Problem Statement) Given an event se-
quence S and a query event sequence Q, find all segments
with length |Q| in S which are similar to Q.

Similar segments are defined based on the event similarity.
Given two segments L1 = e11e12...e1l, L2 = e21e22...e2l, we
consider the number of dissimilar events in L1 and L2. If the
number of dissimilar event pairs is at most k, then L1 and
L2 are similar. This definition is also called k-dissimilar:

Ndissim(L1, L2, δ) =

l∑
i=1

zi ≤ k,

where

zi =

{
1, sim(e1i, e2i) < δ
0, otherwise

,

and δ is a user-defined threshold for the event similarity.
The k-dissimilar corresponds to the well-known k-mismatch
or k-error in the subsequence matching problem [20].

2.1 Potential Solutions by LSH
The locality-sensitive hashing (LSH) [14] with the Min-

Hash [10] function is a common scheme for the similarity
search over texts and documents. LSH is a straightforward
solution for our problem. We can consider each segment as a
small “document” by concatenating its event messages. Fig-
ure 1 shows a textual event sequence S = e1e2...ei+1ei+2...,
where ei is a textual event. In this sequence, every 4 adjacent
event messages are seen as a “document”, such as Li+1, Li+2

and so on. The traditional LSH with the Min-Hash function
can be utilized on these small “documents” to speed up the
similar search. This solution is called LSH-DOC as a base-
line method in this paper. However, this solution ignores
the order information of events, because the similarity score
obtained by the Min-Hash does not consider the order of
elements in each “document”.

Figure 1: An Example of LSH-DOC

To preserve the order information, we can distribute the
hash functions to individual regions of segments. For exam-
ple, the length of the indexed segment is 4, and we have 40
hash functions. We assign every 10 hash functions to every
event in the segment. Then, each hash function can only

330



be used to index the events from one region of the segment.
Figure 2 shows a sequence S with several segments Li+1,...,
Li+4, where p1,..., p4 are 4 regions of each segment and each
region contains one event. Every pj has 10 hash functions to
compute the hash values of the contained event, j = 1, ..., 4.
If the hash signatures of two segments are identical, it is
probably that every region’s events are similar. Thus, the
order information is preserved. This solution is called LSH-
SEP as another baseline method in this paper.

Figure 2: An Example of LSH-SEP

k -dissimilar segments are two segments which contain at
most k dissimilar events inside. To search the k -dissimilar
segments, a common approach is to split the query sequence
Q into k + 1 non-overlapping segments. If a segment L has
at most k dissimilar events to Q, then there must be one seg-
ment of Q which has no dissimilar event with its correspond-
ing region of L. Then, we can use any search method for
exact similar segments to search the k -dissimilar segments.
This idea is applied in many biological sequence matching
algorithms [5]. But there is a drawback for the two previ-
ous potential solutions: they all assume that the length of
indexed segments l is equal to the length of query sequence
|Q|. The query sequence Q is given by the user at runtime,
so |Q| is not fixed. However, if we do not know the length
of the query sequence Q in advance, we cannot determine
the appropriate segment length l for building the index. If
l > |Q|, none of the similar segments could be retrieved
correctly. If l < |Q|, we have to split Q into shorter subseg-
ments of length l, and then query those shorter subsegments
instead of Q. Although all correct similar segments can be
retrieved, the search cost would be large, because the sub-
segments of Q are shorter than Q and the number of retrieve
candidates is thus larger [20]. Figure 3 shows an example

Figure 3: An example of l < |Q|

for the case l < |Q|. Since the length of indexed segments is
l and less than |Q|, LSH-DOC and LSH-SEP have to split
Q into subsegments L1, L2 and L3, |Li| = l, i = 1, .., 3.
Then, LSH-DOC and LSH-SEP use the three subsegments
to query the segment candidates. If a segment candidate is
similar to Q, its corresponding region must be similar to a
subsegment Li, but not vice versa. Therefore, the acquired
candidates for Li must be more than those for Q. Scanning
a large number of candidates is time-consuming. Therefore,
the optimal case is l = |Q|. But |Q| is not fixed at runtime.

3. ALGORITHMS
In this section, we present the suffix matrix method and

discuss its theoretical performance.

3.1 Suffix Matrix

3.1.1 Suffix Matrix Indexing
Let h be a hash function from LSH family. h maps an

event to an integer, h : E → Zh, where E is the universe of
textual events, and Zh is the universe of hash values. In suf-
fix matrix, Min-Hash [10] is the hash function. By taking a
Min-Hash function h, a textual event sequence S = e1...en is
mapped into a sequence of hash values h(S) = h(e1)...h(en).
Suppose we havem independent hash functions, we can have
m distinct hash value sequences. Then, we create m suffix
arrays from the m hash value sequences respectively. The
suffix matrix of S is constructed by the m suffix arrays,
where each row is a suffix array.

Definition 2. (Suffix Matrix) Given a sequence of events
S = e1...en and a set of independent hash functions H =
{h1, ..., hm}, let hi(S) be the sequence of hash values, i.e.,
hi(S) = hi(e1)...hi(en). The suffix matrix of S is MS,m =
[AT

1 , ..., A
T
m]T , where AT

i is the suffix array of hi(S) and
i = 1, ...,m.

We illustrate the suffix matrix by an example as follows:

Example 1. Let S be a sequence of events, S = e1e2e3e4.
H is a set of independent hash functions for events, H =
{h1, h2, h3}. For each event and hash function, the computed
the hash value is shown in Table 1.

Table 1: An Example of Hash Value Table
Event e1 e2 e3 e4
h1 0 2 1 0
h2 3 0 3 1
h3 1 2 2 0

Let hi(S) denote the i-th row of Table 1. By sorting the
suffixes in each row of Table 1, we could get the suffix matrix
MS,m below.

MS,m =

 3 0 2 1
1 3 0 2
3 0 2 1

 .

For instance, the first row of MS,m: 3021, is the suffix array
of h1(S) = 0210.

There are a lot of efficient algorithms for constructing the
suffix arrays [15, 23, 18]. The simplest algorithm is sorting
all suffixes of the sequence with a time complexityO(n logn).
Thus, the time complexity of constructing the suffix matrix
MS,m is O(mn logn), where n is the length of the historical
sequence and m is the number of hash functions.

3.1.2 Searching over Suffix Matrix
Similar to the traditional LSH, the search algorithm based

on a suffix matrix consists of two steps. The first step is to
acquire the candidate segments. Those candidates are po-
tential similar segments to the query sequence. The second
step is to filter the candidates by computing their exact sim-
ilarity scores. Since the second step is straightforward and
is the same as the traditional LSH, we only present the first
step of the search algorithm.

Given a set of independent hash functionsH = {h1, ..., hm}
and a query sequenceQ = eq1eq2...eqn, letQH = [hi(eqj)]m×n,
MS,m(i) and QH(i) denote the i-th rows of MS,m and QH

331



respectively, i = 1, ...,m, j = 1, ..., n. Since MS,m(i) is a suf-
fix array, we obtain these entries that matched with QH(i)
by a binary search. MS,m has m rows, we apply m binary
searches to retrieve m entry sets. If one segment appears at
least r times in the m sets, then this segment is considered
to be a candidate. Parameters r and m will be discussed at
a later stage of this section.
Algorithm 1 states the candidates search algorithm. h(i)

is the i-th hash function in H. Qhi is the hash-value se-
quence of Q mapped by hi. SAi is the i-th row of the suffix
matrix MS,m, and SAi[l] is the suffix at position l in SAi.
CompareAt(Qhi , SAi[l]) is a subroutine to compare the or-
der of two suffixes Qhi and SAi[l] for the binary search. If
Qhi is greater than SAi[l], it returns 1; if Qhi is smaller than
SAi[l], it returns −1; otherwise, it returns 0. Extract(Qhi ,
SAi, pos) is a subroutine to extract the segments candidates
from the position pos. Since H has m hash functions, C[L]
records the number of times that the segment L is extract-
ed in the m iterations. The final candidates are only those
segments which are extracted for at least r times. The time
cost of this algorithm will be discussed in Section 3.3.

Algorithm 1 SearchCandidates (Q, δ)

Parameter: Q : query sequence, δ: threshold of event
similarity;
Result: C : segment candidates.

1: Create a counting map C
2: for i = 1 to |H| do
3: Qhi

← hi(Q)
4: SAi ←MS,m(i)
5: left← 0, right← |SAi| − 1
6: if CompareAt(Qhi

, SAi[left]) < 0 then
7: continue
8: end if
9: if CompareAt(Qhi

, SAi[right]) > 0 then
10: continue
11: end if
12: pos← −1
13: // Binary search
14: while right− left > 1 do
15: mid← ⌊(left+ right)/2⌋
16: ret← CompareAt(Qhi

, SAi[mid])
17: if ret < 0 then
18: right← mid
19: else if ret > 0 then
20: left← mid
21: else
22: pos← mid
23: break
24: end if
25: end while
26: if pos = −1 then
27: pos← right
28: end if
29: // Extract segment candidates
30: for L ∈ Extract(Qhi

, SAi, pos) do
31: C[L]← C[L] + 1
32: end for
33: end for
34: for L ∈ C do
35: if C[L] < r then
36: del C[L]
37: end if
38: end for

If a segment L of S is returned by the Algorithm 1, we
call L is reached by this algorithm. We illustrate how the

binary search works for one hash function hi ∈ H by the
following example.

Example 2. Given an event sequence S with a hash func-
tion hi ∈ H, we compute the hash value sequence hi(S)
shown in Table 2. Let the query sequence be Q, and hi(Q) =
31, where each digit represents a hash value. The sorted

Table 2: Hash Value Sequence hi(S)
hi(S) 5 3 1 4 3 1 0

Position 0 1 2 3 4 5 6

Table 3: Sorted Suffixes of hi(S)
Index Position Hashed Suffix

0 6 0
1 5 10
2 2 14310
3 4 310
4 1 314310
5 3 4319
6 0 5314310

suffixes of hi(S) are shown in Table 3. We use hi(Q) = 31
to search all matched suffixes in Table 3. In Algorithm 1, by
using the binary search, we could find the matched suffix :
310. Then, the Extract subroutine probes the neighborhood
of suffix 310, to find all matched suffixes with hi(Q). Final-
ly, the two segments at position 4 and 1 are extracted. If the
two segments are extracted for at least r independent hash
functions, then the two segments are the final candidates re-
turned by the Algorithm 1.

Lemma 1. Given an event sequence S and a query event
sequence Q, L is a segment of S, |L| = |Q|, δ1 and δ2 are
two thresholds for similar events, 0 ≤ δ2 < δ1 ≤ 1, then:

• if Ndissim(L,Q, δ1) = 0, then the probability that L is

reached by Algorithm 1 is at least F (m−r;m, 1−δ
|Q|
1 );

• if Ndissim(L,Q, δ2) ≥ k, 1 ≤ k ≤ |Q|, then the prob-
ability that L is reached by Algorithm 1 is at most
F (m− r;m, 1− δk2 ),

where F (·;n, p) is the cumulative distribution function of Bi-
nomial distribution B(n, p), and r is a parameter for Algo-
rithm 1.

Proof. Let’s first consider the case Ndissim(L,Q, δ1) =
0, which indicates every corresponding events in L and Q
are similar and the similarity is at least δ1. The hash func-
tion hi belongs to the LSH family, so we have Pr(hi(e1) =
hi(e2)) = sim(e1, e2) ≥ δ1. L and Q have |Q| events, so
for one hash function, the probability that hash values of all

those events are identical is at least δ
|Q|
1 . Once those hash

values are identical, L must be found by a binary search
over one suffix array in MS,m. Hence, for one suffix ar-

ray, the probability of L being found is δ
|Q|
1 . MS,m has m

suffix arrays. The number of those suffix arrays that L is

found follows the Binomial distribution B(m, δ
|Q|
1 ). Then,

the probability that there are at least r suffix arrays that L

is reached is 1− F (r;m, δ
|Q|
1 ) = F (m− r;m, 1− δ

|Q|
1 ). The

second case that Ndissim(L,Q, δ2) ≥ k indicates there are at
least dissimilar k events and their similarities are less than
δ2. The probability that hash values of all those events in L
and Q are identical is at most δk2 . The proof for this case is
analogous to that of the first case.

332



Lemma 1 is to ensure that if a segment L is similar to
the query sequence Q, then it is very likely to be reached
by our algorithm; if L is dissimilar to the query sequence
Q, then it is very unlikely to be reached. The probabilities
shown in this lemma are the false negative probability and
the false positive probability. The choice of r controls the
tradeoff between the probabilities. F-measure is a combined
measurement for the two factors [26]. The optimal r is the
one that maximizes the F-measure score. Since r can only
be an integer, we can enumerate all possible values of r from
1 to m to find the optimal r.
However, this algorithm cannot handle the case that if

there are two dissimilar events inside L and Q. The algo-
rithm narrows down the search space step by step according
to each element of Q. A dissimilar event in Q would lead
the algorithm to incorrect following steps.

3.2 Randomly Masked Suffix Matrix
Figure 4 shows an example of a query sequence Q and a

segment L. There is only one dissimilar event pair between
Q “1133” and L “1933”, which is the second one, ’9’ in L
with ’1’ in Q. Clearly, the traditional binary search can-
not find “1933” by using “1133” as the query. To overcome

Figure 4: Dissimilar Events in Segments

this problem, a straightforward idea is to skip the dissimilar
event between Q and L. However, the dissimilar event can
be any event inside L. We do not know which event is the
dissimilar event to skip before knowing Q. If two similar
segments are allowed to have at most k dissimilar events,
the search problem is called the k-dissimilar search. Our
proposed method is summarized as follows:

Offline Step:

1. Apply f min-hash functions on the given textual sequence
to convert it into f hash-valued sequences.

2. Generate f random sequence masks and apply them to the
f hash-valued sequences (one to one).

3. Sort the f masked sequences to f suffix arrays and store
them with the random sequence masks to disk files.

Online Step:

1. Apply the f min-hash functions on the given query sequence
to convert it into f hash-valued sequences.

2. Load the f random sequence masks and apply them to the
f hash-valued query sequences.

3. Invoke f binary searches by using the f masked query se-
quences over the f suffix arrays and find segment candidates
that has been extracted at least r times.

3.2.1 Random Sequence Mask
A sequence mask is a sequence of bits. If these bits are

randomly and independently generated, this sequence mask
is a random sequence mask.

Definition 3. A random sequence mask is a sequence of
random bits in which each bit follows Bernoulli distribution
with parameter θ: P (bit = 1) = θ, P (bit = 0) = 1−θ, where
0.5 ≤ θ < 1.

Figure 5 shows a hash-value sequence h(S) and two ran-
dom sequence masks: M1 and M2. Mi(h(S)) is the masked
sequence by AND operator: h(S) AND Mi, where i = 1, 2.
White cells indicate the events that are kept in Mi(h(S)),
and dark cells indicate those events to skip. The optimal

Figure 5: Random Sequence Mask

mask is the one such that all dissimilar events are located
in the dark cells. In other words, the optimal mask is able
to skip all dissimilar events. We call this kind of random
sequence masks as the perfect sequence masks. In Figure 5,
there are 2 dissimilar events in S: the 4th event and the 8th
event. M1 skips the 4th event and the 8th event in their
masked sequences, so M1 is a perfect sequence mask. Once
we have a perfect sequence mask, previous search algorithms
can be applied on those masked hash value sequences with-
out considering dissimilar events.

Lemma 2. Given an event sequence S, a query sequence
Q, and f independent random sequence masks with param-
eter θ, let L be a segment of S, |Q| = |L|. If the number
of dissimilar event pairs of L and Q is k, then the proba-
bility that there are at least m perfect sequence masks is at
least F (f − m; f, 1 − (1 − θ)k), where F is the cumulative
probability function of Binomial distribution.

Proof. Since each bit in each mask follows the Bernoulli
distribution with parameter θ, the probability that the cor-
responding bit of one dissimilar even is 0 is 1 − θ in one
mask. Then, the probability that all corresponding bits of
k dissimilar events are 0 is (1− θ)k in one mask. Hence, the
probability that one random sequence mask is a perfect se-
quence mask is (1−θ)k. Then, F (f−m; f, 1−(1−θ)k) is the
probability for this case happens m times in f independent
random sequence masks.

3.2.2 Randomly Masked Suffix Matrix
A randomly masked suffix matrix is a suffix matrix, where

each suffix array is masked by a random sequence mask.
We use MS,f,θ to denote a randomly masked suffix matrix,
where S is the event sequence to index, f is the number of
independent LSH hash functions, and θ is the parameter for
each random sequence mask. Note that, MS,f,θ still consists
of f rows by n = |S| columns.

Lemma 3. Given an event sequence S, a randomly masked
suffix matrix MS,f,θ of S and a query sequence Q, L is a
segment of S, |L| = |Q|. If the number of dissimilar events
between L and Q is at most k, then the probability that L is

333



reached by Algorithm 1 is at least

Prreach ≥
f∑

m=r

F (f −m; f, 1− (1− θ)k) · F (m− r;m, 1− δ|Q|·θ),

where δ and r are parameters of Algorithm 1.

This probability combines the two previous probabilities
in Lemma 1 and Lemma 2. m becomes a hidden variable,
which is the number of perfect sequence masks. By consider-
ing all possible m, this lemma is proved. Here the expected
number of kept events in every |Q| events by one random
sequence mask is |Q| · θ.

3.3 Analytical Search Cost
Given an event sequence S and its randomly masked suffix

matrix MS,f,θ, n = |S|, the cost of acquiring candidates
mainly depends on the number of binary search on suffixes.
Recall that MS,f,θ is f by n. Each row of it is a suffix array.
f binary searches must be executed. Each binary search cost
is log n. The total cost of acquiring candidates is f logn.
The cost of filtering candidates mainly depends on the

number of candidates acquired. Let Zh denote the universe
of hash values. Given an event sequence S and a set of hash
functions H, ZH,S denotes the set of hash values output by
each hash function in H with each event in S. ZH,S ⊆ Zh,
because some hash value may not appear in the sequence
S. In average, each event in S has Z = |ZH,S | distinct hash
values. Let Q be the query sequence. For each suffix array
in MS,f,θ, the average number of acquired candidates is:

NCandidates =
n

Z|Q|·θ .

The total number of acquired candidates is at most f ·
NCandidate. A hash table is used to merge the f sets of
candidates into one set. Its cost is f · NCandidate. To sum
up the two parts, given an interleaved suffix matrix MS,f,θ

and a query sequence Q, the total search cost is

Costsearch = f · (logn+
n

Z|Q|·θ ).

Why the potential solutions are not efficient?
For potential solutions (i.e., LSH-DOC and LSH-SEP) and
suffix matrix, the second part of cost is the major cost of the
search. Here we only consider the number of acquired can-
didates to compare the analytical search cost. The average
number of acquired candidates by LSH-DOC and LSH-SEP
is at least:

N ′
Candidates =

n

Z|Q|/(k+1)
.

When |Q|·θ ≥ logZ f+|Q|/(k+1), f ·NCandidate ≤ N ′
Candidates.

Z depends on the number of 2-shinglings, which is approxi-
mated to the square of the vocabulary size of log messages.
Hence, Z is a huge number, logZ f can be ignored. Since
θ ≥ 0.5, k ≥ 1, we always have |Q| · θ ≥ |Q|/(k+ 1). There-
fore, the acquired candidates of suffix matrix are less than
or equal to those of LSH-DOC and LSH-SEP.

3.4 Offline Parameter Choice
The parameters f and θ balances the search costs and

search result accuracy. These two parameters are decided
in the offline step before building the suffix matrix. Let
Costmax be the search cost budget, the parameter choos-
ing problem is to maximize Prreach subject to Costsearch ≤

Costmax. A practical issue is that the suffix matrix is con-
structed in the offline phase, but |Q| and δ can only be known
in the online phase. A simple approach to find out the opti-
mal f and θ is looking at the historical queries to estimate
|Q| and δ. This procedure can be seen as a training pro-
cedure. Once the two offline parameters are obtain, other
parameters are found by solving the maximization problem.
The objective function Prreach is not convex, but it can be
solved by the enumeration method since all tuning parame-
ters are small integers.

The next question is how to determine Costmax. We can
choose Costmax according to the average search cost curve.
Figure 6 shows a curve about the analytical search cost and
the probability Prreach, where m = ⌊Costsearch/(logn +

n

|ZH,S ||Q|·θ )⌋. According to this curve, we suggest users to

choose Costmax between 100 and 200, because larger search
costs would not significantly improve the accuracy any more.

Figure 6: Average Search Cost Curve (n =
100K, |ZH,S | = 16, θ = 0.5, |Q| = 10, δ = 0.8, k = 2)

3.5 Scalability
The time complexity of the offline suffix matrix construc-

tion is O(n logn). The online search is O(log n). The only
problem for scaling suffix matrix when the memory cost ex-
ceeds the limitation. In this case, the suffix matrix can be
stored in the external memory or a distributed system.

4. EVALUATION
In this section, we conduct experiments on real system

event logs to evaluate our proposed method.

4.1 Experimental Platform
We implement LSH-DOC, LSH-SEP and our method in

Java 1.6. Table 4 summarizes our experimental machine.

Table 4: Experimental Machine
OS CPU JRE JVM Heap

Size
Linux 2.6.18 Intel Xeon(R) @

2.5GHz, 8 core, 64bits
J2SE 1.6 2G

4.2 Data Collection
Our experimental system logs are collected from two dif-

ferent real systems. Apache HTTP error logs are collected
from the server machines in the computer lab of a research
center and have about 236,055 log messages. Logs of Thun-
derBird [4] are collected from a supercomputer in Sandi-
a National Lab. The first 350,000 log messages from the
ThunderBird system logs are used for this evaluation.
Testing Queries
Each query sequence is a segment randomly picked from

334



the event sequence. Table 5 lists detailed information about
the 6 groups, where |Q| indicates the length of the query
sequences. The true results for each query are obtained by
the brute-force method, which scans through every segment
of the sequence one by one to find all true results.

Table 5: Testing Query Groups
Group Num. of Queries |Q| k δ
TG1 100 6 1 0.8
TG2 100 12 3 0.65
TG3 100 18 5 0.6
TG4 100 24 7 0.5
TG5 100 30 9 0.5
TG6 100 36 11 0.5

4.3 Baseline Methods
We compare our method with baseline methods LSH-DOC,

LSH-SEP stated in Section 2.1. The two methods are both
LSH based methods applying to the sequential data. In or-
der to handle the k-dissimilar approximation queries, the
indexed segment length l for LSH-DOC and LSH-SEP can
be at most |Q|/(k + 1) = 3, so we set l = 3.

4.4 Online Searching

4.4.1 Recall and Search Time
Suffix matrix and LSH based methods all consist of two

steps. The first step is to search segment candidates from
its index. The second step is filtering acquired candidates
by computing their exact similarities. Because of the second
step, the precision of the search results is always 1.0. Thus,
the quality of results only depends on the recall. By appro-
priate parameter settings, all the methods can achieve high
recalls, but we also consider the associated time cost. For a
certain recall, if the search time is smaller, the performance
is better. An extreme case is the brute-force method that
always has the 1.0 recall, but it has to visit all segments of
the sequence, so the time cost is huge. We define the recall
ratio as a normalized metric for evaluating the goodness of
the search results:

RecallRatio =

{
Recall

SearchTime
, Recall ≥ recallmin

0, otherwise
,

where recallmin is a user-specified threshold for the mini-
mum acceptable recall. If the recall is less than recallmin,
the search result is then not acceptable by the user. In
our evaluation, recallmin = 0.5, which means any method
should capture at least half of the true results. The unit of
the search time is millisecond. RecallRatio is expressed as
the portion of true results obtained per millisecond. Clearly,
RecallRatio is higher, the performance is better.
LSH-DOC, LSH-SEP and suffix matrix have different pa-

rameters. We vary the value of each parameter in each
method, and then select the best performance of each method
to compare. LSH-DOC and LSH-SEP have two parameters
to set, which are the length of hash vectors b and the num-
ber of hash tables t. b varies from 5 to 35. t varies from 2
to 25. We also consider the different number of buckets for
LSH-DOC and LSH-SEP. Due to the Java heap size limita-
tion, the number of hash buckets is fixed to be 8000. For
suffix matrix, r is chosen according to Section 3.1.2. f and
m vary from 2 to 30. θ varies from 0.5 to 1.
Figure 7 shows the RecallRatios for each testing group.

Overall, suffix matrix achieves the best performance on the
two data sets. However, LSH based methods outperform

suffix matrix on short queries (TG1). Moreover, in Apache
Logs with TG4, LSH-SEP is als better than suffix matrix.
To find out the reason why in TG1 suffix matrix performs

(a) ThunderBird Logs

(b) Apache Logs

Figure 7: RecallRatio comparison

worse than LSH-DOC or LSH-SEP, we record the number
of acquired candidates for each method and the number of
true results. Figure 8 shows the actual acquired candidates
for each testing group with each method. Table 6 shows the
numbers of true results for each testing group. From Figure
8, we can see that suffix matrix acquired much more candi-
dates than other methods in TG1. In other words, suffix ma-
trix has a higher collision probability of dissimilar segments
in its hashing scheme. To overcome this problem, a com-

Table 6: Number of True Results
Dataset TG1 TG2 TG3 TG4 TG5 TG6
ThunderBird
Logs

4.12 2.81 27.46 53.24 57.35 7.21

Apache Logs 378.82 669.58 435.94 1139.15 1337.23 990.63

mon trick in LSH is to make the hash functions be“stricter”.
For example, there are d+ 1 independent hash functions in
LSH family, h1,...,hd and h. We can construct a “stricter”
hash function h′ = h(h1(x), h2(x), ..., hd(x)). If two events
e1 and e2 are not similar, i.e., sim(e1, e2) < δ, the collision
probability of hi is Pr[hi(e1) = hi(e2)] = sim(e1, e2) < δ,
which can be large if δ is large, i = 1, ..., d. But the collision
probability of h′ is

Pr[h′(e1) = h′(e2)] =

n∏
i=1

Pr[hi(e1) = hi(e2))]

= [sim(e1, e2)]
d < sim(e1, e2).

Figure 9 shows the performance of the suffix matrix by using
“stricter” hash functions (denoted as “SuffixMatrix(Strict)”)
in TG1. Each “stricter” hash function is constructed by 20
independent Min-Hash functions. The testing result shows,
“SuffixMatrix(Strict)”outperforms all other methods for both

335



(a) ThunderBird Logs

(b) Apache Logs

Figure 8: Number of Probed Candidates

Figure 9: RecallRatio for TG1

Thunderbird logs and Apache logs in TG1. Table 7 are the
parameters and other performance measures of “SuffixMa-
trix(Strict)”. By using “stricter” hash functions, the suffix
matrix reduces 90% to 95% of previous candidates. As a re-
sult, the search time becomes much smaller than before. The
choice of the number of hash functions for a “stricter” hash
function, d, is a tuning parameter and determined by the
data distribution. Note that the parameters of LSH-DOC
and LSH-SEP in this test are already tuned by varying the
values of b and t.

Table 7: “SuffixMatrix(Strict)” for TG1
Dataset Parameters Recall SearchT ime Num. of Probed
ThunderBird
Logs

m = 2, θ =
0.9

0.9776 1.23 ms 5.04

Apache Logs m = 2, θ =
0.8

0.7279 2.24ms 152.75

4.4.2 Parameter and Model Validation
To verify Lemma 3, we vary each parameter of suffix ma-

trix and test the recall of search results. We randomly sam-
ple 100,000 log messages from the ThunderBird logs and
randomly pick 100 event segments as the query sequences.

The length of each query sequence is 16. Other querying
criteria are k = 5 and δ = 0.5. Figure 10 shows the recalls
by varying each parameter. Figure 10(a) shows that the in-
crease of m will improve the recall. Figure 10(c) verifies that
if r becomes larger, the recall will decrease. As for Figure
10(b), since the random sequence masks are randomly gener-
ated, the trends of the recall are not stable and a few jumps
are in the curves. But generally, the recall curves drop down
when we enlarge the θ for the random sequence mask. To
sum up, the results shown by Figure 10 can partially verify
Lemma 3 proposed in Section 3.

4.5 Offline Indexing

4.5.1 Space Cost
Space cost is an important factor for evaluating these

methods [9] [15] [13] [20]. If the space cost is too large,
the index cannot be loaded into the main memory. To ex-
clude the disk I/O cost for the online searching, we load all
event messages and index data into the main memory. The
total space cost can be directly measured by the allocated
heap memory size in JVM. Note that the allocated memory
does not only contain the index, it also includes the original
log event messages, 2-shinglings of each event message and
the corresponding Java objects information maintained by
JVM. We use Java object serialization to compute the exact
size of the allocated memory. Figure 11 shows the total used
memory size for each testing group. The parameters of each
method are the same as in Figure 7. The total space costs
for LSH-SEP and suffix matrix are almost the same because
they both build the hash index for each event message only
once. But LSH-DOC builds the hash indices for each event l
times since each event is contained by l continuous segments,
where l is the length of the indexed segment and l = 3.

(a) ThunderBird Logs

(b) Apache Logs

Figure 11: Peak Memory Cost

336



(a) Varying m (b) Varying θ (c) Varying r

Figure 10: Varying Parameters

4.5.2 Indexing Time
Indexing time is the time cost for building the index. Fig-

ure 12 shows the indexing time for each method that has
the same parameters for Figure 7. The time complexities
of LSH-DOC and LSH-SEP are O(nlbt · ch) and O(nbt · ch),
where n is the number of event messages, l is the indexed
segment length, b is the length of the hash vector, t is the
number of hash tables, and ch is the cost of Min-Hash func-
tion for one event message. Although for each testing group,
the selected LSH-DOC and LSH-SEP may have different b
and t, in general LSH-SEP is more efficient than LSH-DOC.
The time complexity of suffix matrix for building the index
is O(mn logn + mn · ch), where m is the number of rows
of the suffix matrix. It seems that the time complexity of
suffix matrix is bigger than LSH based methods if we only
consider n as a variable. However, as shown in Figure 12,
suffix matrix is actually the most efficient method in build-
ing index. The main reason is m ≪ b · t. In addition, the
time cost of Min-Hash function, ch, is not small since it has
to randomly permute the 2-shinglings of an event message.

(a) ThunderBird Logs

(b) Apache Logs

Figure 12: Indexing Time

5. RELATED WORK
The similarity search problem in low-dimensional data s-

paces has been studied extensively. A number of tree struc-
ture based algorithms are devised to support the similarity
queries and nearest neighbors queries, such as R-Tree [16],
KD-Tree [8] and SR-Tree [17]. These previous algorithm-
s are known to work well in low-dimensional data spaces.
But for high-dimensional data spaces, their search time cost
or indexing space cost grows to an exponential number of
the dimensionality. In textual information retrieval and im-
age processing domains, the descriptor of a data object is
usually a high-dimensional vector. Hence, those tree struc-
tured based algorithms are not appropriate in these domains.
Locality-Sensitive Hashing (LSH) is a randomized approx-
imate algorithm for the similar search in high-dimensional
data space [14, 6]. It is applicable for high dimensional da-
ta and has been successfully used in image data or textual
data. Min-Hash is a widely used hash function for textual
data [10], which can quickly estimate the sim(x, y) of x and
y. In natural language processing, a w-shingling is a set of
unique contiguous subsequences of words/terms in a docu-
ment. The similarity function sim(x, y) is usually chosen as
the Jaccard similarity over the w-shinglings of x and y.

Substring search in sequential data has been studied for
years. Suffix tree and suffix array are two typical method-
s for on-line searching matched substrings over a sequence
[35, 23]. By using a binary search over the suffix array,
the method can find matched substring in O(logn), where
n is the length of the string. Compressed suffix arrays and
BWT-based compressed full-text indices make further effort-
s to reduce the search time and space cost based on suffix
arrays [15, 12]. Time series data is real-valued sequence da-
ta. A lot of efficient similarity search methods are proposed
and studied for time series data [25, 21]. But their target
is a set of data points, rather than a set of segments of the
sequence. Moreover, each data point in time series is a real-
valued vector, not a textual message or document.

In system management, log and system event analysis is
a fundamental method to maintain, diagnose and optimize
large production systems [36, 37, 33, 31, 34, 32]. Log event
search as a basic functionality is embedded in many system
management, log analysis and system monitoring products
[1, 3, 2]. Users can input relational query conditions or a set
of keywords to query related system event logs in history.
This kind of log search has no difference with a traditional
database query or a keywords search. Their search target is
single events, not continuous subsequence of events.

337



6. CONCLUSION
This paper proposes suffix matrix to search similar seg-

ments over large textual sequences. It combines ideas of lo-
cality sensitive hashing and suffix arrays to reduce the search
space. By using random sequence mask proposed in this pa-
per, this method can have a high probability to reach all
k-dissimilar segments without increasing much search costs.
We conduct experiments on real system log data and exper-
imental results show that our proposed method outperforms
alternative methods using existing techniques.

Acknowledgement
The work is supported in part by US National Science Foun-
dation under grants HRD-0833093, CNS-1126619, and IIS-
1213026, by Army Research Office under grant number
W911NF-12-1-0431, and by the National Natural Science
Foundation of China under Grant No. 61070151.

7. REFERENCES
[1] IBM Tivoli : Integrated Service Management software.

http://www-01.ibm.com/software/tivoli/.
[2] LogLogic: A real-time log analysis and report generation

system. http://www.splunk.com/.
[3] Splunk: A commerical machine data managment engine.

http://www.splunk.com/.

[4] ThunderBird: A supercomputer in Sandia National
Laboratories. http://www.cs.sandia.gov/~jrstear/logs/.

[5] S. Altschul, W. Gish, W. Miller, E. Myers, and D. J.
Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403–410, 1990.

[6] A. Andoni and P. Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In
Proceedings of FOCS, pages 459–468, Berkeley, CA, USA,
September 2006.

[7] M. Bawa, T. Condie, and P. Ganesan. LSH Forest:
self-tuning indexes for similarity search. In Proceedings of
WWW, pages 651–660, 2005.

[8] J. L. Bentley. K-d trees for semidynamic point sets. In
Proceedings of the Sixth Annual Symposium on
Computational Geometry (SoCG), pages 187–197, Berkeley,
California, USA, June 1990.

[9] P. Bieganski, J. Riedl, J. V. Carlis, and E. F. Retzel.
Generalized suffix trees for biological sequence data:
Applications and implementation. In Proceedings of
HICSS, pages 35–44, Dallas, Texas, USA, May 1994.

[10] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations. In
Proceedings of STOC, pages 327–336, Dallas, Texas, USA,
May 1998.

[11] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Computer
Networks (CN), 29(8-13):1157–1166, March 1997.

[12] M. Burrows and D. Wheeler. A block sorting lossless data
compression algorithm. Technical report, Digital
Equipment Corporation, 1994.

[13] M. Ghodsi and M. Pop. Inexact local alignment search over
suffix arrays. In Proceedings of BIBM, pages 83–87,
Washington, DC, USA, September 2009.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of VLDB,
pages 518–529, Edinburgh, Scotland, UK, September 1999.

[15] R. Grossi and J. S. Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string
matching. SIAM J. Comput., 35(2):378–407, 2005.

[16] A. Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of ACM SIGMOD conference,
pages 47–57, Boston, Massachusetts, USA, June 1984.

[17] N. Katayama and S. Satoh. The SR-tree: An index
structure for high-dimensional nearest neighbor queries. In
Proceedings of ACM SIGMOD conference, pages 369–380,
Tucson, Arizona, USA, May 1997.

[18] P. Ko and S. Aluru. Space efficient linear time construction
of suffix arrays. J. Discrete Algorithms, 3(2-4):143–156,
2005.

[19] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg.
Ultrafast and memory-efficient alignment of short dna
sequences to the human genome. Genome Biology, 10, 2009.

[20] Y. Li, A. Terrell, and J. M. Patel. Wham: A
high-throughput sequence alignment method. In
Proceedings of SIGMOD, 2011.

[21] X. Lian and L. Chen. Efficient similarity search over future
stream time series. TKDE, 20(1):40–54, 2008.

[22] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios.
Clustering event logs using iterative partitioning. In
Proceedings of ACM KDD, pages 1255–1264, Paris, France,
June 2009.

[23] U. Manber and E. W. Myers. Suffix arrays: A new method
for on-line string searches. SIAM J. Comput.,
22(5):935–948, 1993.

[24] A. J. Oliner, A. Aiken, and J. Stearley. Alert detection in
system logs. In Proccedings of ICDM, pages 959–964, Pisa,
Italy, December 2008.

[25] I. Popivanov. Similarity search over time series data using
wavelets. In Proceedings of ICDE, pages 212–221, 2002.

[26] G. Salton and M. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1984.

[27] B. Stein. Principles of hash-based text retrieval. In
Proceedings of SIGIR, pages 527–534, 2007.

[28] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining. Addison Wesley, 2005.

[29] L. Tang and T. Li. LogTree: A framework for generating
system events from raw textual logs. In Proceedings of
ICDM, pages 491–500, Sydney, Australia, December 2010.

[30] L. Tang, T. Li, and C.-S. Perng. LogSig: generating system
events from raw textual logs. In Proceedings of CIKM,
pages 785–794, 2011.

[31] L. Tang, T. Li, F. Pinel, L. Shwartz, and G. Grabarnik.
Optimizing system monitoring configurations for
non-actionable alerts. In Proceedings of IEEE/IFIP
NOMS, pages 34–42, 2012.

[32] L. Tang, T. Li, F. Pinel, L. Shwartz, and G. Grabarnik. An
integrated framework for optimizing automatic monitoring
systems in large it infrastructures. In Proceedings of ACM
KDD, 2013.

[33] L. Tang, T. Li, and L. Shwartz. Discovering lag intervals
for temporal dependencies. In Proceedings of ACM KDD,
pages 633–641, 2012.

[34] L. Tang, T. Li, L. Shwartz, and G. Grabarnik.
Recommending resolutions for problems identified by
monitoring. In Proceedings of IEEE/IFIP International
Symposium on Integrated Network Management, pages
134–142, 2013.

[35] P. Weiner. Linear pattern matching algorithms. In
Proceedings of FOCS, pages 1–11, Iowa City, Iowa, USA,
September 1973.

[36] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I.
Jordan. Mining console logs for large-scale system problem
detection. In Proceedins of SysML, San Diego, CA, USA,
December 2008.

[37] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I.
Jordan. Large-scale system problem detection by mining
console logs. In Proceedings of ACM SOSP, Big Sky,
Montana, USA, October 2009.

338




