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Preface

As early as in the era of Lady Ada Loveable and Babbage, scientists seriously
considered the possibility of assigning certain complex activities performed by
human beings to machines. This direction of research has significantly intensified,
with the development of digital computers, through immense contributions by
Turing and von Neumann and the progress in the discipline of artificial intelligence
(AI). Following a period of enthusiasm about the possibility on one hand, and
computer phobia on the other hand, many of the active AI researchers have faced,
and attempted to resolve, an apparent obstacle. The formal philosophical and
mathematical paradigms applied in AI and related research areas seemed to fall
short of the capability to emulate human reasoning. In some sense, the issue was
that the formalisms were very rigid and did not match the fuzzy nature of human
perception of sets and inference.

A pioneer of artificial intelligence, L.A. Zadeh was concerned with the dichot-
omy between human reasoning and classical-logic/mathematical/machine precision.
As early as 1961 (and most likely before) Zadeh attempted to resolve this
dichotomy with a formal, mathematical theory of imprecision, aka Fuzzy Set
Theory and Fuzzy Logic. The first documented reference to the need for this theory
appears in his 1962 paper “From Circuit Theory to System Theory.” The first
formulation of a solution to the dichotomy is proposed in his seminal paper “Fuzzy
Sets” published in Information and Control in 1965. These concepts, as well as
several derivatives of the ideas, such as linguistic variables, Type-2 Fuzzy Logic,
and Z-numbers, introduced by Zadeh, have opened the door to highly fruitful
directions of research, development, and deployment in several areas.

Zadeh’s 1965 paper and subsequent papers have sparked the interest of
numerous researchers and practitioners and resulted in rapid developments in the
fields of Fuzzy Set Theory, Fuzzy Logic, Fuzzy Systems, and related disciplines.
The five decades that followed the 1965 paper and his pioneering work have
produced a multitude of research work and applications related to artificial intel-
ligence, control theory, inference, and reasoning. In recent years, Fuzzy Logic has
been applied in many areas, including neural networks, clustering, data mining, and
software testing.
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The present volume, entitled “Fifty Years of Fuzzy Logic and its Applications,”
was conceived as a way of academic celebration of the fifty years’ anniversary
of the 1965 paper. It includes papers from pioneers and prominent scholars engaged
in research on the theory and applications of fuzzy logic and uncertainty
management. The papers cover a wide range of the spectrum and gamut of
“Fuzziness.”

The volume editors extend sincere gratitude to the distinguished chapter authors
for their invaluable contributions and their kind patience in complying with the
bureaucratic procedures involved in publishing this volume.
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Toward a Restriction-Centered Theory
of Truth and Meaning (RCT)

Lotfi A. Zadeh

Abstract What is truth? The question does not admit a simple, precise answer.
A dictionary-style definition is: The truth value of a proposition, p, is the degree to
which the meaning of p is in agreement with factual information, F. A precise
definition of truth will be formulated at a later point in this paper. The theory
outlined in the following, call it RCT for short, is a departure from tradi-
tional theories of truth and meaning. In RCT, truth values are allowed to be
described in natural language. Examples. Quite true, more or less true, almost true,
largely true, possibly true, probably true, usually true, etc. Such truth values are
referred to as linguistic truth values. Linguistic truth values are not allowed in
traditional logical systems, but are routinely used by humans in everyday reasoning
and everyday discourse. The centerpiece of RCT is a deceptively simple concept—
the concept of a restriction. Informally, a restriction, R(X), on a variable, X, is an
answer to a question of the form: What is the value of X? Possible answers: X = 10,
X is between 3 and 20, X is much larger than 2, X is large, probably X is large,
usually X is large, etc. In RCT, restrictions are preponderantly described in natural
language. An example of a fairly complex description is: It is very unlikely that
there will be a significant increase in the price of oil in the near future. The
canonical form of a restriction, R(X), is X isr R, where X is the restricted variable,
R is the restricting relation, and r is an indexical variable which defines the way in
which R restricts X. X may be an n-ary variable and R may be an n-ary relation.
The canonical form may be interpreted as a generalized assignment statement in
which what is assigned to X is not a value of X, but a restriction on the values
which X can take. A restriction, R(X), is a carrier of information about X.
A restriction is precisiated if X, R and r are mathematically well defined. A key idea
which underlies RCT is referred to as the meaning postulate, MP. MP postulates
that the meaning of a proposition drawn from a natural language, p—or simply p—
may be represented as a restriction, p→X isr R. This expression is referred to as the

L.A. Zadeh (✉)
Department of EECS, University of California, Berkeley, CA94720-1776
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canonical form of p, CF(p). Generally, the variables X, R and r are implicit in
p. Simply stated, MP postulates that a proposition drawn from a natural language
may be interpreted as an implicit assignment statement. MP plays an essential role
in defining the meaning of, and computing with, propositions drawn from natural
language. What should be underscored is that in RCT understanding of meaning is
taken for granted. What really matters is not understanding of meaning but prec-
isiation of meaning. Precisiation of meaning is a prerequisite to reasoning and
computation with information described in natural language. Precisiation of
meaning is a desideratum in robotics, mechanization of decision-making, legal
reasoning, precisiated linguistic summarization with application to data mining, and
other fields. It should be noted that most—but not all—propositions drawn from
natural language are precisiable. In RCT, truth values form a hierarchy. First order
(ground level) truth values are numerical, lying in the unit interval. Linguistic truth
values are second order truth values and are restrictions on first order truth values.
nth order truth values are restrictions on (n-1) order truth values, etc. Another key
idea is embodied in what is referred to as the truth postulate, TP. The truth pos-
tulate, TP, equates the truth value of p to the degree to which X satisfies R. This
definition of truth value plays an essential role in RCT. A distinguishing feature of
RCT is that in RCT a proposition, p, is associated with two distinct truth values—
internal truth value and external truth value. The internal truth value relates to the
meaning of p. The external truth value relates to the degree of agreement of p with
factual information. To compute the degree to which X satisfies R, it is necessary to
precisiate X, R and r. In RCT, what is used for this purpose is the concept of an
explanatory database, ED. Informally, ED is a collection of relations which rep-
resent the information which is needed to precisiate X and R or, equivalently, to
compute the truth value of p. Precisiated X, R and p are denoted as X*, R* and p*,
respectively. X and R are precisiated by expressing them as functions of ED. The
precisiated canonical form, CF*(p), is expressed as X*isr* R*. At this point, the
numerical truth value of p, ntp, may be computed as the degree to which X* satisfies
R*. In RCT, the factual information, F, is assumed to be represented as a restriction
on ED. The restriction on ED induces a restriction, t, on ntp which can be computed
through the use of the extension principle. The computed restriction on ntp is
approximated to by a linguistic truth value, ltp. Precisiation of propositions drawn
from natural language opens the door to construction of mathematical solutions of
computational problems which are stated in natural language.

Keywords Precisiation of meaning ⋅ Computation with restrictions ⋅ Assessment
of truth values ⋅ Formalization of everyday reasoning
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1 Introduction

The concepts of truth and meaning are of fundamental importance in logic, infor-
mation analysis and related fields. The theory outlined in this paper, call it RCT for
short, is a departure from traditional theories of truth and meaning, principally
correspondence theory, coherence theory, Tarski semantics, truth-conditional
semantics and possible-world semantics [1–3, 5–9].

In large measure, traditional theories of truth and meaning are based on bivalent
logic. RCT is based on fuzzy logic. Standing on the foundation of fuzzy logic, RCT
acquires a capability to enter the realm of everyday reasoning and everyday dis-
course—a realm which is avoided by traditional theories of truth and meaning
largely because it is a realm that does not lend itself to formalization in the classical
tradition.

In RCT, truth values are allowed to be described in natural language. Examples.
Quite true, very true, almost true, probably true, possibly true, usually true, etc.
Such truth values are referred to as linguistic truth values. Linguistic truth values
are not allowed in traditional logical systems.

The centerpiece of RCT is the deceptively simple concept—the concept of a
restriction. The concept of a restriction has greater generality than the concept of
interval, set, fuzzy set and probability distribution. An early discussion of the con-
cept of a restriction appears in [12]. Informally, a restriction, R(X), on a variable, X,
is an answer to a question of the form: What is the value of X? Example. Robert is
staying at a hotel in Berkeley. He asks the concierge, “How long will it take me to
drive to SF Airport?” Possible answers: 1 h, one hour plus/minus 15 min, about 1 h,
usually about 1 h, etc. Each of these answers is a restriction on the variable, Driving.
time. Another example. Consider the proposition, p: Most Swedes are tall. What is
the truth value of p? Possible answers: true, 0.8, about 0.8, high, likely high, possibly
true, etc. In RCT, restrictions are preponderantly described as propositions drawn
from a natural language. Typically, a proposition drawn from a natural language is a
fuzzy proposition, that is, a proposition which contains fuzzy predicates, e.g., tall,
fast, heavy, etc., and/or fuzzy quantifiers, e.g., most, many, many more, etc., and/or
fuzzy probabilities, e.g., likely, unlikely, etc. A zero-order fuzzy proposition does
not contain fuzzy quantifiers and/or fuzzy probabilities. A first-order fuzzy propo-
sition contains fuzzy predicates and/or fuzzy quantifiers and/or fuzzy probabilities. It
is important to note that in the realm of natural languages fuzzy propositions are the
norm rather than exception. Traditional theories of truth and meaning provide no
means for reasoning and computation with fuzzy propositions.

Basically, R(X) may be viewed as a limitation on the values which X can take.
Examples.

X = 5
X is between 3 and 7
X is small
X is normally distributed with mean m and variance σ2

It is likely that X is small

Toward a Restriction-Centered Theory of Truth and Meaning (RCT) 3



Summers are usually cold in San Francisco (X is implicit)
Robert is much taller than most of his friends (X is implicit)

As a preview of what lies ahead, it is helpful to draw attention to two key ideas
which underlie RCT. The first idea, referred to as the meaning postulate, MP, is that
of representing a proposition drawn from a natural language, p, as a restriction
expressed as

p→X isr R,

where X is the restricted variable, R is the restricting relation, and r is an indexical
variable which defines the way in which R restricts X. X may be an n-ary variable,
and R may be an n-ary relation. Generally, X and R are implicit in p. Basically, X is
the variable whose value is restricted by p. X is referred to as the focal variable. In
large measure, the choice of X is subjective, reflecting one’s perception of the
variable or variables which are restricted by p. However, usually there is a con-
sensus. It should be noted that a semantic network representation of p may be
viewed as a graphical representation of an n-ary focal variable and an n-ary
restricting relation. The expression on the right-hand side of the arrow is referred
to as the canonical form of p, CF(p). CF(p) may be interpreted as a generalized
assignment statement [17]. The assignment statement is generalized in the sense
that what is assigned to X is not a value of X, but a restriction on the values which
X can take. Representation of p as a restriction is motivated by the need to rep-
resent p in a mathematically well-defined form which lends itself to computation.

The second key idea is embodied in what is referred to as the truth postulate, TP.
The truth postulate equates the truth value of p to the degree to which X satisfies R.
The degree may be numerical or linguistic. As will be seen in the sequel, in RCT
the truth value of p is a byproduct of precisiation of the meaning of p.

Note. To simplify notation in what follows, in some instances no differentiation
is made between the name of a variable and its instantiation. Additionally, in some
instances no differentiation is made between a proposition, p, and the meaning of p.

2 The Concept of a Restriction—A Brief Exposition

The concept of a restriction is the centerpiece of RCT. As was stated earlier, a
restriction, R(X), on a variable, X, may be viewed as an answer to a question of the
form: What is the value of X? The concept of a restriction is closely related to the
concept of a generalized constraint [18].

R(X) may be viewed as information about X. More concretely, R(X) may be
expressed in a canonical form, CF(R(X)),

CF R Xð Þð Þ: X isr R,

4 L.A. Zadeh



where X is the restricted variable, R is the restricting relation, and r is an
indexical variable which defines the modality of R, that is, the way in which R
restricts X. X may be an n-ary variable and R may be an n-ary relation. A restriction
is precisiated if X, R and r are mathematically well defined. Precisiation of
restrictions plays a pivotal role in RCT. Precisiation of restrictions is a prerequisite
to computation with restrictions. Here is an example of a simple problem which
involves computation with restrictions.

Usually Robert leaves his office at about 5 pm.
Usually it takes Robert about an hour to get home from work.
At what time does Robert get home?

Humans have a remarkable capability to deal with problems of this kind using
approximate, everyday reasoning. One of the important contributions of RCT is that
RCT opens the door to construction of mathematical solutions of computational
problems which are stated in a natural language.

2.1 Types of Restrictions

There are many types of restrictions. A restriction is singular if R is a singleton.
Example. X = 5. A restriction is nonsingular if R is not a singleton. Nonsingularity
implies uncertainty. A restriction is direct if the restricted variable is X. A restriction
is indirect if the restricted variable is of the form f(X). Example.

R pð Þ:
Zb

a

μ uð Þp uð Þdu is likely,

is an indirect restriction on p.
Note. In the sequel, the term restriction is sometimes applied to R.
The principal types of restrictions are: possibilistic restrictions, probabilistic

restrictions and Z-restrictions.
Possibilistic restriction (r = blank)

R Xð Þ: X isA,

where A is a fuzzy set in a space, U, with the membership function, µA. A plays the
role of the possibility distribution of X,

Poss X= uð Þ= μA uð Þ.

Toward a Restriction-Centered Theory of Truth and Meaning (RCT) 5



Example.

X is small

restricted variable restricting relation (fuzzy set)

The fuzzy set small plays the role of the possibility distribution of X. (Fig. 1)

Example.

Leslie is taller than Ixel

(Height(Leslie), Height(Ixel)) is taller

restricted variable restricting relation (fuzzy relation)

The fuzzy relation taller is the possibility distribution of ((Height(Leslie), Height
(Ixel)).

Probabilistic restriction (r = p)

R Xð Þ : X is p p,

where p is the probability density function of X,

Probðu≤X≤ u+ duÞ = p uð Þdu.

Example.

Z-restriction (r = z, s is suppressed)
X is a real-valued random variable.
A Z-restriction is expressed as

R Xð Þ: X iz Z,

where Z is a combination of possibilistic and probabilistic restrictions defined as

Z: Prob X is Að Þ is B,

in which A and B are fuzzy numbers. Usually, A and B are labels drawn from a
natural language. The ordered pair, (A,B), is referred to as a Z-number [19]. The
first component, A, is a possibilistic restriction on X. The second component, B, is a

X isp exp(-(X-m)21

2π
/2 2).

√

restricted variable restricting relation (probability density function)
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possibilistic restriction on the certainty (probability) that X is A. A Z-interval is a
fuzzy number in which the first component is a fuzzy interval.

Examples.

Probably Robert is tall→Height Robertð Þ iz tall, probableð Þ
Usually temperature is low→Temperature iz low, usuallyð Þ

Note.
Usually X is A,
is a Z-restriction when A is a fuzzy number.
A Z-valuation is an ordered triple of the form (X,A,B), and (A,B) is a Z-number.

Equivalently, a Z-valuation, (X,A,B), is a Z-restriction on X,

X, A, Bð Þ→X iz A, Bð Þ.

Examples.

(Age(Robert), young, very likely)
(Traffic, heavy, usually).
Note. A natural language may be viewed as a system of restrictions. In the realm

of natural languages, restrictions are predominantly possibilistic. For this reason, in
this paper we focus our attention on possibilistic restrictions. For simplicity, pos-
sibilistic restrictions are assumed to be trapezoidal.

Example. Figure 2 shows a possibilistic trapezoidal restriction which is associated
with the fuzzy set middle-age.

Fig. 1 Possibilistic
restriction on X
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2.2 Computation with Restrictions

Computation with restrictions plays an essential role in RCT. In large measure,
computation with restrictions involves the use of the extension principle [10, 13].
A brief exposition of the extension principle is presented in the following. The
extension principle is not a single principle. The extension principle is a collection
of computational rules in which the objects of computation are various types of
restrictions. More concretely, assume that Y is a function of X, Y = f(X), where X
may be an n-ary variable. Assume that what we have is imperfect information
about X, implying that what we know is a restriction on X, R(X). The restriction on
X, R(X), induces a restriction on Y, R(Y). The extension principle is a computa-
tional rule which relates to computation of R(Y) given R(X). In what follows, we
consider only two basic versions of the extension principle. The simplest version
[10] is one in which the restriction is possibilistic and direct. This version of the
extension principle reduces computation R(Y) to the solution of a variational
problem,

Y = f Xð Þ
R Xð Þ: X is A

R Yð Þ: μY vð Þ= supu μA uð Þð Þ

subject to

v= f uð Þ,

where µA and µY are the membership functions of A and Y, respectively. Simply
stated,

If X isA thenY is f Að Þ,

where f(A) is the image of A under f. A simple example is shown in Fig. 3.
An inverse version of this version of the extension principle is the following.

Fig. 2 Trapezoidal
possibilistic restriction on
Age
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Y= f Xð Þ
R Yð Þ: Y is B

R Xð Þ: μA uð Þ= μB f uð Þð Þð Þ

Simply stated, A is the preimage of B under f. (Fig. 4)
A slightly more general version [13] is one in which R(X) is possibilistic and

indirect.

Y = f Xð Þ
R Xð Þ: g Xð Þ is A
R Yð Þ: μY vð Þ= supu μA g uð Þð Þð Þ

Y/v

X/u

f (A)

A

f

0

Fig. 3 Possibilistic version of the basic extension principle. f(A) is the image of A under f. What
is shown is a trapezoidal approximation to f(A)

Y/Y/v

ff

BB

X/uX/u

preimage of B under f

Fig. 4 Inverse version of the basic possibilistic extension principle. The induced restriction on X
is the preimage of B, the restriction on Y
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subject to

v= f g uð Þð Þ.

Example.

Given, p: Most Swedes are tall.
Question, q: What is the average height of Swedes?

The first step involves precisiation of p and q. For this purpose, it is expedient to
employ the concept of a height density function, h.

h uð Þdu = fraction of Swedes whose height lies in the interval u, u + du½ �.

If hmin and hmax are, respectively, the minimum and maximum heights in the
population, we have

Z hmax

hmin

h uð Þdu= 1.

In terms of the height density function, precisiations of q and p, q* and p*, may
be expressed as

q*: ? have =
Z hmax

hmin

uh uð Þdu,

p*
Z hmin

hmin

μtall uð Þh uð Þdu ismost,

where µtall is the membership function of tall. Applying the basic, indirect, possi-
bilistic version of the extension principle, computation of have is reduced to the
solution of the variational problem

μhave vð Þ= sup
h

μmost

Z hmax

hmin

μtall uð Þh uð Þdu
� �

,

subject to

V=
Z hmax

hmin

uh uð Þdu,
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and

Z hmax

hmin

h uð Þdu= 1.

In RCT, for purposes of reasoning and computation what are needed—in
addition to possibilistic versions of the extension principle—are versions in which
restrictions are probabilistic restrictions and Z-restrictions. These versions of the
extension principle are described in [21].

3 Truth and Meaning

It is helpful to begin with a recapitulation of some of the basic concepts which were
introduced in the Introduction.

There is a close relationship between the concept of truth and the concept of
meaning. To assess the truth value of a proposition, p, it is necessary to understand
the meaning of p. However, understanding the meaning of p is not sufficient. What
is needed, in addition, is precisiation of the meaning of p. Precisiation of the
meaning of p involves representation of p in a form that is mathematically well
defined and lends itself to computation. In RCT, formalization of the concept of
truth is a byproduct of formalization of the concept of meaning. In the following,
unless stated to the contrary, p is assumed to be a proposition drawn from a natural
language. Typically, propositions drawn from a natural language are fuzzy prop-
ositions, that is, propositions which contain fuzzy predicates and/or fuzzy quanti-
fiers and/or fuzzy probabilities.

The point of departure in RCT consists of two key ideas: The meaning postulate,
MP, and the truth postulate, TP. MP relates to precisiation of the meaning of
p. More concretely, a proposition is a carrier of information. Information is a
restriction. Reflecting these observations, MP postulates that the precisiated
meaning of p—or simply precisiated p—may be represented as a restriction. In
symbols, p may be expressed as

p→X isr R,

where X, R and r are implicit in p. The expression X isr R is referred to as the
canonical form of p, CF(p). In general, X is an n-ary variable and R is a function of
X. Basically, X is a variable such that p is a carrier of information about X. X is
referred to as a focal variable of p. In large measure, the choice of X is subjective. It
should be noted that when X is an n-ary variable, a semantic network representation
of p may be viewed as a graphical representation of the canonical form of p.
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Examples.

p: Robert is young Age(Robert) is young

X R

p: Most Swedes are tall

Proportion(tall Swedes/Swedes) is most

X R

p: Robert is much taller than most of his friends Height(Robert) is much taller than 
most of his friends

p: Usually it takes Robert about an hour to get home from work Travel time from
office to home iz (approximately 1 hr., usually).

The truth postulate, TP, relates the truth value of p to its meaning. More con-
cretely, consider the canonical form

CF pð Þ: X isr R.

TP postulates that the truth value of p is the degree to which X satisfies R.
In RCT, truth values form a hierarchy: First-order (ground level), second order,

etc. First order truth values are numerical. For simplicity, numerical truth values are
assumed to be points in the interval. (Fig. 5)

A generic numerical truth value is denoted as nt. Second order truth values are
linguistic. Examples. Quite true, possibly true. A generic linguistic truth value is
denoted as lt. In RCT, linguistic truth values are viewed as restrictions on numerical
truth values. In symbols, lt = R(nt). A generic truth value is denoted as t. t can be nt
or lt.

3.1 Precisiation of X, R and P

Typically, X and R are described in a natural language. To compute the degree to
which X satisfies R it is necessary to precisiate X and R. In RCT, what is used for this
purpose is the concept of an explanatory database, ED [16, 20]. Informally, ED is a
collection of relations which represent the information which is needed to precisiate
X and R or, alternatively, to compute the truth value of p. Example. Consider the
proposition, p: Most Swedes are tall. In this case, the information consists of three
relations, TALL[Height;µ], MOST[Proportion;µ] and POPULATION[Name;
Height]. In TALL, µ is the grade of membership of Height in tall. In MOST, µ is the
grade of membership of Proportion—a point in the unit interval—in most. In POP-
ULATION, Height is the height of Name, where Name is a variable which ranges
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over the names of Swedes in a sample population. Equivalently, and more simply,
ED may be taken to consist of the membership function of tall, µtall, the membership
function of most, µmost, and the height density function, h. h is defined as the fraction,
h(u)du, of Swedes whose height is in the interval [u,u + du].

X and R are precisiated by expressing them as functions of ED. Precisiated X, R
and p are denoted as X*, R* and p*, respectively. Thus,

X* = f EDð Þ, R* = g EDð Þ.

The precisiated canonical form, CF*(p), is expressed as X*isr* R*. At this point,
the numerical truth value of p, ntp, may be computed as the degree to which X*

satisfies R*. In symbols,

ntp = tr EDð Þ

in which tr is referred to as the truth function (Fig. 6).
What this equation means is that an instantiation of ED induces a value of ntp.

Varying instantiations of ED induces what is referred to as the truth distribution of
p, denoted as Tr(p|ED). The truth distribution of p may be interpreted as the
possibility distribution of ED given p, expressed as Poss(ED|p). Thus, we arrive at
an important equality

Tr pjEDð Þ=Poss ED pjð Þ.

In RCT, the precisiated meaning of p is expressed in three equivalent forms. First,
as the precisiated canonical form, CF*(p). Second, as the truth distribution of p, Tr(p|
ED). Third, as the possibility distribution, Poss(ED|p). These representations of the
precisiated meaning of p play an essential role in RCT. The precisiated meaning of p
may be viewed as the computational meaning of p. Of the three equivalent

Fig. 5 Hierarchy of truth values. A numerical truth value is a first-order (ground level) truth value.
A linguistic truth value is a second-order truth value. A linguistic truth value is a restriction on
numerical truth values. Typically, a linguistic truth value is a fuzzy set or, equivalently, a
possibility distribution
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definitions stated above, the definition that is best suited for computational purposes
is that which involves the possibility distribution of ED. Adopting this definition,
what can be stated is the following.

• Definition. The precisiated (computational) meaning of p is the possibility
distribution of ED, Poss(ED|p), which is induced by p.

A simple example. Consider the proposition, p: Robert is tall. In this case, ED
consists of Height(Robert) and the relation TALL[Height; µ] or, equivalently, the
membership function µtall. We have,

X=Height Robertð Þ, R = tall.

The canonical form reads

Height Robertð Þ is tall.

The precisiated X and R are expressed as

X* =Height Robertð Þ, R* = tall,

where tall is a fuzzy set with the membership function, µtall.
The precisiated canonical form reads

Height Robertð Þ is tall.

Note that in this case the unprecisiated and precisiated canonical forms are
identical. The truth distribution is defined by

ntp = μtall hð Þ,

where h is a generic value of Height(Robert).

Fig. 6 A numerical truth
value, nt, is induced by an
instantiation of ED. tr is the
truth function
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The basic equality reads

Tr pjhð Þ = Poss h pjð Þ.

More specifically, if h = 175 cm and µtall(175cm) = 0.9, then 0.9 is the truth value
of p given h = 175 cm, and the possibility that h = 175 cm given p (Fig. 7).

Example. Robert is handsome. In this case, assume that we have a sample popu-
lation of men, Name1, …, Namen with µi being the grade of membership of Namei
in the fuzzy set handsome. The meaning of p is the possibility distribution asso-
ciated with the fuzzy set handsome—the possibility distribution which is induced
by p. The possibility that Namei is handsome is equal to the grade of membership of
Namei in handsome.

A less simple example. Consider the proposition, p: Most Swedes are tall. In this
case, X = Proportion(tall Swedes/Swedes) and R = most. The canonical form of p is

Proportion tall Swedes=Swedesð Þ is most.

The precisiated X and R may be expressed as

X* =
Z hmax

hmin

h uð Þμtall uð Þdu,

R* =most,

where most is a fuzzy set with a specified membership function, µmost.
The precisiated canonical form reads

CF*:
Z hmax

hmin

h uð Þμtall uð Þdu ismost.

Fig. 7 0.9 = truth value of the proposition Robert is tall, given that Robert’s height is 175 cm.
0.9 = possibility that Robert’s height is 175 cm, given the proposition Robert is tall
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The truth distribution, Tr(p|ED), is defined by computing the degree, ntp, to
which X* satisfies R*,

ntp = μmost

Z hmax

hmin

h uð Þμtalldu
� �

Note that an instantiation of ED induces a numerical truth value, ntp.
Another example. Consider the proposition, p: Robert is much taller than most of

his friends. In this case, assume that X = Proportion of friends of Robert in relation
to whom Robert is much taller, and R = most. The explanatory database, ED,
consists of the relations FRIENDS[Name;µ], HEIGHT[Name;Height], MUCH.
TALLER[Height1;Height2;µ], and Height(Robert). Equivalently, ED may be
expressed as µF(Namei), hi, and µMT(h,hi), i = 1, …, n. In this ED, h = Height
(Robert), hi = Height(Namei), µF(Namei) = grade of membership of Namei in the
fuzzy set of friends of Robert, and µMT(h,hi) = grade of membership of (h, hi) and
the fuzzy set much taller. Precisiated X and R are expressed as,

X* =
1
n
∑
i
μMT h, hið Þ∧ μF Nameið Þ

� �
, R* =most,

The precisiated meaning of p is expressed as,

Poss EDjpð Þ= μmost
1
n
∑
i
μMT h, hið Þ∧ μF ið Þ

� �
,

where ∧ denotes conjunction.
Note. The concept of an instantiated ED in RCT is related to the concept of a

possible world in traditional theories. Similarly, the concept of a possibility dis-
tribution of the explanatory database is related to the concept of intension.

Precisiation of meaning is the core of RCT and one of its principal contributions.
A summary may be helpful.

3.2 Summary of Precisiation

The point of departure is a proposition, p, drawn from a natural language. The
objective is precisiation of p.

1. Choose a focal variable, X, by interpreting p as an answer to the question: What
is the value of X? Identify the restricting relation, R. R is a function of X. At
this point, X and R are described in a natural language.

2. Construct the canonical form, CF pð Þ=X isr R.
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3. Construct an explanatory database, ED. To construct ED, ask the question:
What information is needed to express X and R as functions of ED? Alterna-
tively, ask the question: What information is needed to compute the truth value
of p?

4. Precisiate X and R by expressing X and R as functions of ED. Precisiated X and
R are denoted as X* and R*, respectively.

5. Construct the precisiated canonical form,CF* pð Þ: X* isr* R*.
6. Equate precisiated p to CF*(p).
7. CF*(p) defines the possibility distribution of ED given p, Poss ED pjð Þ.
8. CF*(p) defines the truth distribution of the truth value or p given ED, Tr pjEDð Þ.
9. Poss ED pjð Þ=Tr pjEDð Þ.

10. Define the precisiated (computational) meaning of p as the possibility distri-
bution of ED given p, Poss ED pjð Þ. More informatively, the precisiated (com-
putational) meaning of p is the possibility distribution, Poss ED pjð Þ, together
with the procedure which computes Poss ED pjð Þ.

3.3 Truth Qualification. Internal and External Truth Values

A truth-qualified proposition is a proposition of the form t p, where t is the truth
value of p. t may be a numerical truth value, nt, or a linguistic truth value, lt.
Example. It is quite true that Robert is tall. In this case, t = quite true and
p = Robert is tall. A significant fraction of propositions drawn from a natural
language are truth-qualified. An early discussion of truth-qualification is contained
in [14]. Application of truth-qualification to a resolution of Liar’s paradox is
contained in [15].

In a departure from tradition, in RCT a proposition, p, is associated with two
truth values—internal truth value and external truth value. When necessary, internal
and external truth values are expressed as Int(truth value) and Ext(truth value), or
Int(p) and Ext(p).

Informally, the internal numerical truth value is defined as the degree of
agreement of p with an instantiation of ED. Informally, an external numerical truth
value of p is defined as the degree of agreement of p with factual information, F.
More concretely, an internal numerical truth value is defined as follows.

Definition.

Int ntp
� �

= tr EDð Þ.

In this equation, ED is an instantiation of the explanatory database, Int(ntp) is the
internal numerical truth value of p, and tr is the truth function which was defined
earlier.
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More generally, assume that we have a possibilistic restriction on instantiations
of ED, Poss(ED). This restriction induces a possibilistic restriction on ntp which can
be computed through the use of the extension principle. The restriction on ntp may
be expressed as tr(Poss(ED)). The fuzzy set, tr(Poss(ED)), may be approximated by
the membership function of a linguistic truth value. This leads to the following
definition of an internal linguistic truth value of p.

Definition.

Int ltp
� �

≈tr Poss EDð Þð Þ.

In this equation, ≈ should be interpreted as a linguistic approximation. In words,
the internal linguistic truth value, Int(ltp), is the image—modulo linguistic
approximation—of the possibility distribution of ED under the truth function, tr. It
is important to note that the definition of linguistic truth value which was stated in
the previous subsection is, in fact, the definition of internal linguistic truth value of
p (Fig. 8).

Note. Poss(ED), tr(Poss(ED)) and ltp are fuzzy sets. For simplicity, denote these
fuzzy sets as A, B and C, respectively. Using the extension principle, computation
of ltp reduces to the solution of the variational problem,

μB vð Þ = supuμA uð Þ

subject to

v= trðuÞ

μC ≈ μB.

The external truth value of p, Ext(p), relates to the degree of agreement of p with
factual information, F. In RCT, factual information may be assumed to induce a

Fig. 8 A linguistic truth value, ltp, is induced by a possibilistic restriction on instantiations of ED,
Poss(ED). ltp is a linguistic approximation to the image of Poss(ED) under tr
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possibilistic restriction on ED, Poss(ED|F). In particular, if F instantiates ED, then
the external truth value is numerical. This is the basis for the following definition.

Definition. The external numerical truth value of p is defined as

Ext ntp
� �

= tr ED Fjð Þ,

where ED is an instantiation of the explanatory database induced by F.
Simple example. In Fig. 7, if the factual information is that Robert’s height is

175 cm, then the external numerical truth value of p is 0.9.
More generally, if F induces a possibilistic restriction on instantiations of ED,

Poss(ED|F), then the external linguistic truth value of p may be defined as follows.

Definition.

Ext ltp
� �

≈tr Poss ED Fjð Þð Þ.

In this equation, ≈ should be interpreted as a linguistic approximation. In words,
the external linguistic truth value of p is—modulo linguistic approximation—the
image of Poss(ED|F) under tr.

Example. Consider the proposition, p: Most Swedes are tall. Assume that the
factual information is that the average height of Swedes is around 170 cm. Around
170 cm is a fuzzy set defined by its membership function, µar.170cm. In terms of the
height density function, h, the average height of Swedes may be expressed as

have =
Z hmax

hmin

uh uð Þdu.

The explanatory database consists of µtall, µmost and h. Assuming that µtall and
µmost are fixed, the possibilistic restriction on ED is induced by the indirect pos-
sibilistic restriction Z hmax

hmin

uh uð Þdu is around 170cm

which is equivalent to the possibility distribution of h expressed as

Poss h hj ave

� �
= μar. 170 cm

Z hmax

hmin

uh uð Þdu
� �

.

An important observation is in order. An internal truth value modifies the
meaning of p. An external truth value does not modify the meaning of p; it places in
evidence the factual information, with the understanding that factual information is
a possibilistic restriction on the explanatory database.
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How does an internal truth value, t, modify the meaning of p? Assume that the
internal truth value is numerical. The meaning of p is the possibility distribution,
Poss(ED|p). The meaning of nt p is the preimage of nt under the truth function, tr. In
other words, the meaning of p, expressed as the possibility distribution, Poss(ED|p),
is modified to the possibility distribution Poss(ED|ntp). If the internal truth value is
linguistic, ltp, the modified meaning is the preimage of ltp, Poss(ED|ltp), under tr
(Fig. 9). More concretely, using the inverse version of the basic extension principle,
we can write

μPoss EDjltpð Þ(uÞ= μtrðPoss EDjltpð ÞÞ tr(u)ð Þ,

where u is an instantiation of ED, µPoss(ED|ltp) and µtr(Poss(ED|ltp)) are the membership
functions of Poss(ED|ltp) and tr(Poss(ED|ltp)), respectively.

Simple example. In Fig. 7, the preimage of 0.9 is 175 cm. The meaning of p is the
possibility distribution of tall. The truth value 0.9 modifies the possibility distribution
of tall to Height(Robert) = 175 cm.More generally, when the truth value is linguistic,
ltp, the modified meaning of p is the preimage of ltp under tr (Fig. 10).

There is a special case which lends itself to a simple analysis. Assume that lt is of
the form h true, where h is a hedge exemplified by quite, very, almost, etc. Assume
that p is of the form X is A, where A is a fuzzy set. In this case, what can be
postulated is that truth-qualification modifies the meaning of p as follows.

h true X is Að Þ=X is hA.

h A may be computed through the use of techniques described in early papers on
hedges [4, 11].

Example.

usually trueð Þ Snow is white = snow is usually white.

Fig. 9 Modification of meaning of p. Modified meaning of p is the preimage of ltp under tr
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Example. (Fig. 11).

It is very true that Robert is tall = Robert is very tall.

A word of caution is in order. Assume that there is no hedge. In this case, the
equality becomes

true X isAð Þ = X isA.

If truth is bivalent, and true is one of its values, this equality is an agreement with
the school of thought which maintains that propositions p and p is true have the
same meaning. In RCT, p and p is true do not have the same meaning. There is a
subtle difference. More concretely, the meaning of p relates to the agreement of p
with a possibilistic restriction on ED. The meaning of p is true relates to a possi-
bilistic restriction which is induced by factual information.

When ltp is an external truth value, the meaning of p is not modified by ltp.
In RCT, a simplifying assumption which is made regarding the factual informa-
tion, F, is that F may be described as a possibility distribution of instantiations
of ED, Poss(ED|F). The external truth value, ltp, identifies the factual information as
the preimage of ltp under tr,

Fig. 11 Meaning-modification induced by hedged truth-qualification

Fig. 10 An internal linguistic
truth value modifies the
meaning of p
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Ext ltp
� �

= tr Poss ED Fjð Þð Þ
F=Poss EDjExt ltp

� �� �
.

In conclusion, truth-qualification in RCT is paralleled by probability-qualification
in probability theory and by possibility-qualification in possibility theory.
Truth-qualification, probability-qualification and possibility-qualification are
intrinsically important issues in logic, information analysis and related fields.

4 Concluding Remark

The theory outlined in this paper, RCT, may be viewed as a step toward formal-
ization of everyday reasoning and everyday discourse. Unlike traditional theories—
theories which are based on bivalent logic—RCT is based on fuzzy logic. Fuzzy
logic is the logic of classes with unsharp(fuzzy) boundaries. In the realm of
everyday reasoning and everyday discourse, fuzziness of class boundaries is the
rule rather than exception. The conceptual structure of RCT reflects this reality.

The theory which underlies RCT is not easy to understand, largely because it
contains many unfamiliar concepts. However, once it is understood, what is
revealed is that the conceptual structure of RCT is simple and natural.
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Functional Solution of the Knowledge
Level Control Problem: The Principles
of Fuzzy Logic Rules and Linguistic
Variables

Ali M. Abbasov and Shahnaz N. Shahbazova

Abstract This paper addresses the problem of imitating a teacher evaluating the
students’ levels of knowledge. It proposes application of fuzzy logic to construct
and manage a knowledge control system used for generating evaluating questions.
The system contains a knowledge base with relevant information and a set of rules.
Students build the rules based on the analysis of answers and relevant reactions to
questions. The algorithms governing the system allow for an automatic selection of
sequences of appropriate and customized questions. The presented system for
knowledge control and generating questions is comparable in quality and efficiency
with the real teacher’s questioning process.

Keywords Decision making ⋅ Uncertainty ⋅ Fuzzy logic ⋅ Neuro-fuzzy expert
systems ⋅ Complex systems ⋅ Expert knowledge

1 Introduction

A system for evaluating learnt knowledge and managing it is one of the main
elements of successful educational or research activities. An efficient and effective
process of appraising gained knowledge – called hereafter a knowledge control
process – influences all aspects of education and research as they rely on the
outcome of learning activities.
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From a practical point of view, procedures of knowledge control should allow for
questioning students with the aim of verifying their knowledge and skills in the field
of study. The effective control of knowledge should be able to mimic a teacher of the
relevant subject. Therefore, a system that is able to simulate the teacher’s behavior is
the most reasonable to develop. The analysis of the teacher’s behavior in performing
an evaluation process leads to construction of a system for an automated knowledge
control. This system is able to conduct evaluation of students’ knowledge, and
determine correctness and incorrectness of provided answers.

2 Implementation of Intelligent System in Educational
Process

The quality of a teaching system depends on the precise definition of the charac-
teristics of several key factors defining the student’s knowledge level and abilities:
results of absorbing material recently presented to her, mastering the material
presented in the past, and current moral and psychological state of the student.

The problem of selecting further actions is solved by the system based on these
key factors. The possible actions may be: continuation of the teaching process,
asking questions related to the previous material, repetition of already asked and
answered questions, or completion of the training process.

The system’s electronic catalog stores all data related to the student’s abilities,
her test schedule, etc. In addition, it contains personal data of the student.

In the process of working with the program, the student is able not only to test
her knowledge, but also to learn. This is achieved by the way questions are asked,
and by the presence of all of the questions, comments, and explanations given by
the teacher. Access to the Internet provides the student with the ability to explore
information anywhere in the world, including the best libraries, archives, etc.

Once the sustainable results are achieved for a certain part of the material, the
student can proceed to the next level of difficulty of questions. This transition will
allow the student to continue her learning process further.

This step-wise training process gives the student the necessary time to fully
master and strengthen the knowledge of a given material, and then to move to a
new, more difficult material. Each transition is accompanied by a small test on the
previous material, and an analysis of its mastery.

To this date, the work has been done on learning and testing of a group of
students at the same time. A teacher creates shared folders on a particular subject or
subjects. Using these shared folders, the teacher can give tasks and exercises to a
group of students, as well as check their solutions and results. The shared folders
are structured in a way that simplifies the work with groups of students. The teacher
has access to the working directories of students, and is allowed to deal individually
with each student. The same thing happens when a re-take of a course is recom-
mended, or a more detailed analysis of errors in the shared directories is required.
The sophistication of the Intelligent Information System of Learning and Control of
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Knowledge (IISLCK) allows the teacher to add and edit her material, and to make
corrections according to the latest achievements of science and culture [1].

One of possible ways to improve the functionality of the systems of technical
control of knowledge is the application of intelligent technologies in particular
methods based on the diverse hybrid Expert Systems (ESs). Hybrid ESs represent
different kinds of knowledge and are equipped with conceptual, expert, and factual
methods of its processing.

The main task of the development of hybrid systems is to combine different
forms of representing knowledge and methods of its processing, and merge them
with decision-making approaches of ES. This means, that the actual problem is to
investigate the possibilities of optimal connection of different mechanisms of
knowledge processing to improve the quality, mobility and efficiency of ES in
solving problems of a knowledge control process in conditions of uncertainty.

The mobility of ES is due to the mobility of the knowledge base (KB) and its
ability to replenish material/facts/data from different information components
(database, bases of expert knowledge (BEK), the base of conceptual knowledge
(BCK), dynamic files, etc.), as well as various procedures of drawing conclusions.
The concretization of knowledge processing in solving problems decomposes them
into accurate and inaccurate, complete and incomplete, static and dynamic, single-
valued and multi-valued, etc. In addition, the expert knowledge is inaccurate due to
their subjective character. The approximation and multiple meanings of knowledge
processing means that the ES has to deal with several alternative areas. Therefore,
the processing of incomplete knowledge can use several sources of knowledge.

The application of a fuzzy logic hybrid ES for knowledge control may have at
least three implementations:

(1) Processing of fuzzy uncertainty of expert expressions, i.e. when the pre-
condition is fuzzy variables, but an inference machine is a data extraction
mechanism from these preconditions.

(2) Using a matrix of fuzzy connections, determining a number of factors and
preconditions. The matrix contains the fuzzy relations between variables,
represented as real numbers [0, 1], and determines the cause of a condition.
The matrix and factors form equations of fuzzy relations. The resulting system
is solved using minimum-maximum fuzzy inference mechanism.

(3) Using fuzzy conclusions. This approach is most often used in the construction
of fuzzy knowledge bases [2].

The application of fuzzy hybrid ES to solve problems and control parameters of
knowledge processing extends the capabilities of this class of intelligent systems, as
well as increases their flexibility and mobility. This allows conducting expert
evaluation of a large number of variants, increasing the credibility and accuracy of
the evaluation of the results.

In this paper, the main principles of construction of a neuro-fuzzy hybrid ES
with diverse knowledge and its analysis in conditions of uncertainty of its
parameters are considered. Additionally, the application of a dynamic knowledge
base combined with neural networks (NN) is being investigated [3].
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In the neuro-fuzzy hybrid ES, standard model (SM) is stored in the knowledge
base containing processed knowledge, and is refined in the process of acquiring new
knowledge. The real model is formed in a database environment, and communica-
tion with the EM is achieved via the user’s requests. Solving the problem of
designing an intelligent system for quality knowledge control built based on a hybrid
ES is done with taking into account the characteristics of the environment of ES.

The hybrid ES consists of the following parts: a database that stores standard and
factual evidence about the process; the results of their comparison, conceptual,
physical and info logical models; knowledge base (KB) – its static part (knowledge
is stored in the form of expert knowledge (of products) as well as formulas, facts,
dependencies, tables, concepts specific subject area), and its dynamic part (the
knowledge is stored in combined models of NN in the form of standard of dynamic
processes taking into account the partial or complete uncertainly parameter of
control); a mechanism of logic inference that is based on an algorithm for gener-
ating cause and effect network of events functional-structural model; adaptation
mechanism to coordinate the work of the database (DB) and KB in the process of
logical inference depending on the situation, explaining the mechanism, which is an
interpretation of the process of logical inference; planner coordinating the process
of solving the problem; solver for finding effective solutions to positive, negative
and mixed statements of problems.

The content, form and algorithms for representing information inside the hybrid
ES are flexible and depend on the complexity of a situation being modeled, and the
specific and individual characteristics of the user.

The expert presents her knowledge in the form of sets of examples. A derivation
tree is used as the internal form of presentation of the knowledge. A set of examples
is described by attributes. All examples of the same structure, as defined by its
attributes, are linked by logical transitions. In this case, the relevant trees of
inference are combined in such a way that at the terminal vertex of one tree another
tree is added.

The Computational Model of the ES and the DB in solving problems under
uncertainty is given in the form:

W = <A, D, B, F, H > , ð2:1Þ

where A – is a set of attributes of DB and KB; D – denotes domains (attribute
values of DB and KB); B – is a set of functional dependencies defined over the
attributes; F – denotes descriptions of all types used in the functional dependencies
B; and H – is a set of fuzzy relations over a set of attributes A [4].

One of the most difficult aspects to achieve in the hybrid ES is the requirement of
dealing with different forms of knowledge representation, such as frames, semantic
networks, databases, the concepts presented in KB, neural networks, fuzzy logic,
genetic algorithms. All of these components have to share a single information
space in the hybrid ES. For example, in the hybrid ES, diverse knowledge is stored
in static components of ES, while dynamic knowledge about the current state of
information is stored in neural networks. The modern information and database
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technology (for example, Object Linking and Embedding paradigm) can easily
share diverse knowledge within a single information space [5].

It should be noted that the approach considered here, i.e., the application of
hybrid ES as the basis for the intelligent system for knowledge control in the
presence of uncertainty allows for:

(1) Actively applying the diverse knowledge (conceptual, structural, procedural,
factual, base rule with membership function, rules and fuzzy rules of DB, KB,
BEK procedures) together with inference mechanisms for finding effective
solutions to the problem of determining the level of student’s knowledge;

(2) Summarizing and improving the conceptual model of representation of diverse
knowledge among relational DB and the managed DBMS; and interacting
with the core of hybrid ES;

(3) Effectively solving the problem of optimizing and distributing information
streams among individual subsystems of the hybrid ES under the conditions of
uncertainty.

The methodology of constructing diverse knowledge storage for hybrid neuro-
fuzzy ES includes the following stages [6]:

(1) The formalization of the domain (the development of a conceptual model);
(2) The description of knowledge model as individual concepts (knowledge) in

the KB;
(3) The formation of KB with the base rule as a managing components of intel-

ligent core;
(4) The description of diverse information to control the student’s knowledge in

the individual sub-systems of the hybrid ES (DB, KB, EKB, a graphical DB,
the computed files);

(5) Selecting a neural-network model and learning rules;
(6) Development of fuzzy logic procedures;
(7) Distribution of information streams between the ES and its individual

subsystems;
(8) Testing individual subsystems of the ES;
(9) Testing the neuro-fuzzy hybrid ES.

3 The Methodology for Knowledge Control

An important element of the learning system is its ability to make decisions
regarding the level of difficulty of questions which should be posed to students.
This should be preformed based on the results of answering previous questions. The
solution to this problem depends on numerous parameters, most of which are
unknown to the system. A fairly accurate answer can be found with the help of the
mathematical apparatus of fuzzy logic [7].
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The analysis of the current situation depends on following:

(1) Questions answered correctly by a student;
(2) Questions answered incorrectly by a student;
(3) Question answered incorrectly to previous questions by a student;
(4) Preliminary analysis of a student’s ability;
(5) The number of correct answers coupled with their difficulty and in respect to

erroneous answers.

This list reflects the real computational tasks. A decision-making process is
carried out in order to select questions, which according to the program, corre-
sponds to student’s ability. An incorrect answer triggers a re-valuation process of
the data about the student and leads to less difficult questions to be asked in the next
time. In the case of a correct answer, the program asks questions with progressive
difficulty. This decision-making method allows an individual to make a progress
during the learning process [8]. Furthermore, it gives the most accurate evaluation
of the student abilities.

At the end of the evaluation process, when both student and teacher want to sum
up the result of the educational session, the program analyses the number of correct
answers and their complexity. It starts with updating the relevant database record of
the student, and then begins the process of analysis that aims at providing updated
and correct information about the student.

This information can include: the current level of mastery of the subject of the
student; comparison with previous results of analysis of the student’s incorrect
responses, the visualization of the correct answers with commentary, as well as
comments provided by the teacher while entering questions into the database [9].

The importance of evaluation of the executed test could be adjusted by the
program and/or by the teacher. This approach allows for performing individual
pretests and tests at different levels of difficulty.

As stated, due to the large number of external parameters a decision-making
process is done with the help of the mathematical apparatus of fuzzy logic. The
responsible subsystem also includes conducting tests that satisfy the following
requirements [10, 11]:

(1) Protecting answers from unauthorized access;
(2) Preventing a student from modification of the number of correct answers to

questions;
(3) Providing equal conditions for the tests.

During the process of testing, the next question is read from the database based
on the inference result obtained from a knowledge base located in the network. The
question is displayed in a form convenient for the student (Fig. 1).
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These expressions can be represented in the form of conditional statements of
complicated structure. As a very simple example is the expression of the form:

If the Previous Answer = Right,
THEN Correct Answers = Correct Answers +1

The next level of complication of the statements is to generate weighted ques-
tions (complexity):

If the Previous Answer = right,
Then Weight Correct Answer=Weight Correct Answer+

TableWeight ðIndexCurrent AnswerÞ

The level of intelligence of the subsystems can be increased by adding records of
the elapsed time and other parameters, and providing complicated logic expres-
sions. In such a case the level of testing provided by subsystems can be compared
with surveys conducted by the real teacher [12]. Additional parameters in mathe-
matical expressions provide the descriptions of the following characteristics: the
ability to remember, attentiveness, reaction speed, decision-making speed, reading
speed, etc.

In the process of working with the program, the student cannot only test her
knowledge, but also learn. This is accomplished when the question is asked, and
also with the access to all of the comments and explanations given by the teacher.

Once stable results are obtained for a certain group of questions, the student can
move on to the questions on the next level of complexity [13]. This transition
enables the student’s further development without being stack at the achieved
results.

The information base 
of the question and 

answer

Selection of 
difficulty the first 

question

Output of the 
question and wait for 
variant of the answer

Block of analysis and decision 
making

Selection of more 
difficult question

Selection of less 
difficult question

Calculation evaulation 
of knowledge

Fig. 1 Simplified block-schema of the control system of knowledge
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A gradual learning process gives the student the necessary time to complete
mastering and strengthening the material, and then transit to a new, more complex
material. Each transition is accompanied by a small test containing questions related
to the previous material, and an analysis of its mastering.

4 Decision Making and the Knowledge Control
in the Managing System

The algorithm of choosing the first and subsequent questions uses the results of
carrying out the following tasks.

• preliminary analysis – used to evaluate the level of student’s knowledge for
making a decision regarding the first question (students lagging in knowledge
assimilation are asked questions from a group of simple questions, while pre-
pared students are given more difficult questions) [1] (Fig. 2).

• The formula below represents one of functions of the decision making block. Its
essence comes down to choosing the next question, which corresponds to the
student’s level of knowledge. If an incorrect answer is chosen during the
evaluation, the student will be given a less difficult question (2). If the correct
answer is selected, the program will choose the more difficult question (1). The
decision process can be described in the following way.

The most common 
questions (Min) 

The most difficult 
questions (Max) 

Questions of average 
difficulty

Questions from 
which begins 

lagging student

Questions from 
which begins 

prepared student

Fig. 2 Strategy for selection of the first question

32 A.M. Abbasov and S.N. Shahbazova



• A student answers the previous question correctly: in such a case the student is
asked a question of increased difficulty (Fig. 3). The formula for selecting the
next question is [6]:

Q =
Max A+ð Þ + Max A−ð Þð Þ

2
± 2% ð4:1Þ

where, Q is the next question, (A+) is the level of difficulty of a correctly answered
question, Max(A+) is the maximum level of difficulty of the questions to which
the student gave the correct answers, (A-) is the level of difficulty of an incorrectly
answered question, and Max(A-) is the maximum level of difficulty of the
question to which the student gave the incorrect answer. In case the student has not
given an incorrect answer yet, the assigned value is the maximum level of diffi-
culty of the questions for this course. ± 2 % is the maximum deviation in the level
of the next asked question, and it represents randomness in a selection process.

• A student answers the previous question incorrectly: in this case the student is
asked a less difficult question (Fig. 4). The selection formula of the next
question is [7]:

Q =
Max A−ð Þ + Min A+ð Þð Þ

2
± 2% ð4:2Þ

where, Min(A+) is the minimum level of difficulty of the correctly answered
question, while Max(A-) is the maximum level of difficulty of the question to
which the student gave the incorrect answer. If the correct answer was not given
by the student, the assigned value is the minimum level of difficulty of the
questions for this course.

The process of testing
a student

Correct
answer  

Next
question 

A+

Q

Decision making after the 
first asked question

Fig. 3 The strategy of selection question after the correct answer
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The deviation included in the formulas ensures that for every student group
there are no be two students that are given the same questions, even if the order
of correct and incorrect answers are the same [2].

• processing the results and making a decision related to the final evaluation or
continuation of testing – the number of correctly answered questions multiplied
by their difficulty in relation to the number of mistakes and sets of correctly and
incorrectly answered questions are the input to the decision-making subpro-
gram; this results in a final evaluation or, if there remains a high probability of
uncertainty, in continuation of testing (according to formula 4).
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∑
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where, Z – evaluation of knowledge, P – uncertainty of evaluation, f – the decision
making subprogramwhich works based on the following characteristics of conducted
testing, (Ai+) – the set of difficulty levels of correctly answered questions, (Aj–) – the
set of difficulty levels of incorrectly answered questions, N – number of questions
with the correct answers, M – number of questions with the incorrect answers [5].

The result of the formula 4 is a complex number. This number represents the
response of the decision making subprogram and indicates a degree of uncertainty
in the students’ knowledge [3]. This uncertainty provides a level of confidence in
the evaluation process. Its value relates to the coverage of questions in the learning
process. Higher the coverage less the uncertainty, which depends on the number of
asked questions (Fig. 5). For example, the student can answer only a few questions

The process of 
testing a student

Correct
answer
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answer 

A+
Q

Decision making after the 
second asked question

A-

Next
question 

Fig. 4 A strategy for selecting the next question after an incorrect answer
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and obtain an excellent score, but the uncertainty in this case would be very high,
due to the fact that only several questions covering a significant amount of extre-
mely difficult course material have been asked.

Thus, the system containing the flexible algorithm of questioning, allows the
teacher to decide about the volume of material covered in the course and the
number of questions that should be asked to students in order to make an accurate
determination of students’ knowledge [4]. The preformed test may be an inter-
mediate exam related to a small amount of learning material (10–20 questions in
20–30 min), or a full-scale exam based on the entire volume of the studied material
(100–150 questions in 3–4 h).

5 Conclusion

The developed decision-making algorithm can determine the level of knowledge of
a tested person on the basis of questioning with the minimum possible number of
questions. This allows providing an evaluation of the students’ knowledge level,
over a short period of time, with a high degree of reliability when compared to the
traditional method of questioning conducted by a teacher. Hence, an ingenious
system of knowledge control has been developed via the application of fuzzy logic.
It is very close to imitating the teacher’s behavior in the process of student’s
questioning. It includes ability and precision that have not been seen before in any
automated system. The proposed system integrates elements of expert systems,
processes of development and populating a database, as well as construction of
powerful and flexible rules. All system’s aspects described above indicate effec-
tiveness and flexibility of algorithms and functions used to build the knowledge
control system. and confirm usefulness of applied newest technologies.
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Learning Systems with FUZZY

Sang Wan Lee and Z. Zenn Bien

Abstract Fuzzy techniques have been proven to effectively tackle the problems of
uncertainty in relationships among variables in systems that learn to adapt to a
changing environment. This paper outlines our challenges for the last 25 years to
design learning systems with fuzzy techniques and their applications to many real
world problems. We then focus on the development of human-in-the-loop systems,
such as a smart home or an assistive robotic environment, that involve different
types of learning strategies. This warrants a full consideration of learning mecha-
nisms in humans that mediate action-selection. We envisage that the principles of
fuzzy theory, when combined with what we know about computational learning
mechanisms in the human brain, will offer a practical guidance on how we design
learning systems to advance user’s experience in real-world scenarios.

Keywords Learning system ⋅ Fuzzy ⋅ Human-in-the-loop system ⋅ System
design ⋅ Human brain ⋅ Smart home ⋅ Multiple learning systems

1 Introduction

Many real-world problems pose daunting challenges for the design of engineering
systems. The crux of them is arguably uncertainty inasmuch as one variable may
not be exclusively dedicated to a single part of a system. There is a grey area where
one variable has multiple roles in a system while there is a black and white area
where contribution of a variable to the system is distinctive. Fuzzy theory directly
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addresses the problem of uncertain nature of the relationship among variables,
affording the fuzzy systems the leverage to model uncertain environments.

One other problem that raises challenges is the fact that a situation changes over
time. This is why a system lacking an ability to cope with it sometimes fails to
deliver credible performance in real-world situations even though the system has
been previously proven to work well in a controlled environment. The system
therefore needs to learn to adapt to a changing environment.

This paper describes our challenges for the last 25 years to design learning
systems with fuzzy techniques as well as their applications to many real world
problems. First, we introduce a few examples of designing fuzzified controllers that
replace conventional control systems. These techniques are also applied to build
human-in-the-loop systems in two different levels – one focusing on action rec-
ognition and the other focusing on intention reading underlying those actions. We
then show how these ideas lead to an invention of integrated systems, such as a
smart home or an assistive robotic environment. Since we have learned that design
of such integrated systems essentially involves a combination of multiple learning
systems, we finally suggest a new direction of system design based on what have
been known about learning mechanisms in the human brain.

2 Reinventing Control Systems

Performance of an inference system depends on how accurately it describes rela-
tionships among variables. Considering that the degree of complexity exponentially
increases with the number of internal variables, designing such systems inevitably
entails the risk of overfitting. This means that the system is vulnerable to noise or
change in an environment. Fuzzy logic remedies this problem by quantifying the
amount of uncertainty in the relationships among internal variables of an inference
system [1, 2]. The fuzzy technique has also been proven to be effective in designing
an adaptive controller for nonlinear systems [3].

The idea of encoding uncertainty by means of fuzzy rule bases has been suc-
cessfully applied to designing a fuzzy controller for many real-world applications.
The technique allows a system to effectively resolve inconsistency in fuzzy rule
bases [4]. This encourages us to deal with more realistic issues, such as multi-
objective or time-delayed system design [5, 6].

Another line of research is to maintain reliable system performance in a dynamic
environment. To meet this need, we attempted to design a nonlinear multi-input-
multi-output system (MIMO) in such a way that incorporates learning capability
[7]. The first challenge was that it is difficult to determine whether we create a new
rule base or modify existing ones when we have a new set of observations. We
solved this problem by borrowing an idea from rough set theory, by which we can
find a minimal set of rules given new examples [8]. The next challenge was that the
learning requires supervision for fine-tuning. The reinforcement learning, a semi-
supervised learning technique based on Markovian decision process [9], have been
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shown to be a necessary component for dealing with system uncertainty [10, 11].
The combination of fuzzy systems and reinforcement learning techniques evolved
into more sophisticated system designs incorporating a various types of neural
networks, demonstrating that the combined system yields dramatic performance
improvement in many real-world applications, such as gesture recognition, facial
expression recognition, and even general-purpose on-line adaptive system, [12–15].

3 Learning in Human-in-the-Loop Systems

There has been a steadily-growing interest in developing service robotic systems
that are capable of serving for human directly. For effective control and manage-
ment, the robots and human are often equally considered as subsystems of the
system: this type of system is called a “human-in-the-loop system”, where the
occurrence of two-way interactions between human and robots is inevitable (for
example, see Fig. 1a). In our studies, we restricted our attention to service robotic
systems that are intended to assist the elderly or the persons with physical disability,
and advocated that one of the major considerations for designing such robotic
systems is “human-friendliness”. In doing so, the robot agents need to exert all the
possible functional capabilities when interaction takes place, including sensing,
recognition, and decision making, to the extent that the system places a minimum-
possible burden to the on-users.

Technical challenge arises when designing each individual robot agents. In order
for the robot agents to function as a viable observer or controller, it is necessary to
learn to recognize various forms of human physical motion. However, difficulty
arises when there is uncertainty either in human motions or in environment. Sub-
stantial progress has been made for the last twenty years toward developing reliable
systems that directly tackle this challenge.

The study focuses on two different levels of recognition. The lower level of
recognition deals with physical motions, such as gesture or footprint, and the higher
level of recognition considers subtle features that underlies such motions, such as
facial expressions, emotional states, or action planning. It is noted that the former
approach enables us to design more reliable and robust system, while the latter
creates an opportunity for more efficient two-way interactions between a human and
robots by making predictions about future actions.

3.1 Learning to Recognize Observable States – Physical
Motions

In many real world applications, an image processing lacking robustness against
variability of color or edge is often doomed to failure of recognition. Our previous
studies have demonstrated that fuzzy technique is an efficient tool for robust image
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Fig. 1 Different types of human-in-the-loop systems. (a) KARES robotic agent [35]. The system
is equipped with a robotic arm, an eye-mouse, and EMG-based control module. (b) Multiple types
of recognition systems. The fuzzy technique has been applied to various recognition problems,
demonstrating its effectiveness in resolving uncertainty in patterns of physical motions, such as
hand gestures (upper-left), walking (upper-right), electromyography (EMG) signals (lower-left).
The fuzzy learning technique has been also shown to be useful for reading-out of human intention,
such as facial expressions (lower-right)
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recognition [16–18]. This is perhaps not a surprising success considering how
efficiently the fuzzy rule deals with uncertainty in these variables.

We then focused on developing a robust gesture recognition system: how does
the system successfully learn to recognize hand commands or a sign language when
faced with subjective and noisy representation of gestures? We tackled this problem
by combining a multi-layered neural network and a fuzzy rule base that translates
dynamic trajectories of gestures into discrete entities [13, 19]. This implementation
has led to more interesting idea that the gesture can be used as a soft remote
controller in service robotic environment [20] (Fig. 1b; upper-left), and later
evolved to design of a beat gesture recognition system that interacts with an
automatic music agent, such as a piano playing robot [21]. This technique has also
been applied to systems with adaptation capability, in which the system can explore
a new type of gestures [22] and automatically learn to recognize a new user’s
gestures [23]. It is noted that our studies on gesture recognition over the 10 years
ensued an integrated sign language recognition system that is capable of recog-
nizing and rendering more than 400 sign word gestures in real-time [13, 19, 24], as
well as a patent on baby sign-language recognition [25] and a spin-off product
which is now manufactured by a company.

The developments for dynamic hand gestures recognition and learning systems
afford insight into how the fuzzy technique and learning mechanisms serve to
resolve uncertainty in human motions in general. It stimulates another type of
studies that focus on person identification based on dynamic patters of walking
(Fig. 1b; upper-right). Specifically, the system recognizes a sequence of footprints
by means of an estimation of foot shapes and a trajectory of center of gravity
[26, 27]. By virtue of the fact that the recognition process requires a minimal effort
but natural walking, it suggests an alternative to conventional identification based
on finger prints or eyes which require extra processes for authentication. It also
opens up a possibility of providing personalized services in a service robotic
environment [28].

Whilst a camera and a pressure sensor have been demonstrated to be an effective
means to learn from gesture and walking patterns, respectively, Electromyography
(EMG) offers us more detailed guidance on what motions they actually plan to
perform (Fig. 1b; lower-left). We have demonstrated that application of fuzzy
techniques surmount a difficulty in counteracting adverse effects, such as fatigue or
class inseparability [18, 29]. It is noted that this type of systems is particularly
useful for the disabled or amputees given that the brain sends a distinctive signal
pertaining to an intended motion to peripheral muscles.

3.2 Learning to Recognize Latent States – Intention Reading

The above mentioned systems are expected to function to learn from observations.
However, perhaps more fundamental challenge to the study of human motions is
how these actions take place in the first place, in other words, what are the hidden
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states underlies these actions. We hypothesized that motivational/emotional states
play a pivotal role in galvanizing us into those actions.

A large amount of literatures assume that facial expression is an embodiment of
emotional states, and this premise indeed helped us work out a practical solution to
many human-robot interaction problems [30, 31]. In particular, wrinkles or stret-
ched shapes of a face are known to be very effective features for recognizing facial
emotions [32]. We have made a series of attempts to take these features into account
(Fig. 1b; lower-right). First off, a system was proposed to establish a solid
knowledge base of human experts, namely “fuzzy observer”, which indirectly
quantifies the amount of uncertainty in linguistic variables of the knowledge base
[33]. This system is built upon a multiplayer neural network to perform parameter
adjustment of the fuzzy observer. The idea has then developed into an adaptive
learning scheme, dubbed as “personalized” facial expression recognition, where an
addition of a new classifier, a modification of an existing classifier, and a feature
selection process are streamlined and guided in an integrated fashion [15, 34].

4 Design of Integrated Learning Systems

4.1 Application to Smart Homes for Aiding the Disables

The “human-in-the-loop” system, in which both service robots and a human are
considered as a part of its control loop, essentially addresses a need for seamless
operation in our living environment, such as a smart home. It is particularly useful
for people with movement disabilities because the system is required to engage in
daily activities of the users with minimal interruption.

Our first effort has been made to design an intelligent robotic agent as a means to
offer various kinds of proactive assistance [35]. The crux of the design was to
balance usability with complexity of functions of a system; a user would be
overwhelmed by the system if it had a complex user interface, regardless of how
versatile the system is. We argued that the remedy to this problem lies in the
psychological implications of how much the users feel comfortable to access a
various functions of the system, called “human-friendly service” [36, 37]. A variety
of human-robot interfaces have been implemented accordingly, including eye-
mouse, head and shoulder user interfaces, and EMG signal interfaces, meeting the
needs of different levels of disability.

From solicited feedbacks on these system from potential end-users with spinal
cord injury, we learned that, in the presence of multiple robotic agents, an inter-
mediate decision maker is required to facilitate effective communication between a
user and individual modules and also to increase accessibility for novice users [37].
This stimulated designing a new type of a service robot, called “Steward robot”
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[38]. The steward robot system has two novel features. First, it learns from user’s
behavioral patterns on a daily basis, providing personalized services. Second, the
user interface is equipped with an emotional interaction module, which is intended
to offer a human-friendly environment, as well as to enable the system to collect
natural behavioral data. Taken together, we have demonstrated that a proper
combination of fuzzy learning techniques is essential for efficient human-machine
interaction in a smart home environment.

4.2 Integrating Multiple Learning Systems

We have undergone a transition from the design of each individual learning agent to
the integration of these learning systems. Our earlier studies have focused on a low-
level communication architecture of the smart home for the disabled, where a single
control unit controls communication among multiple devices and robotic agents
[39]. In a subsequent study, we have proposed higher level functional architecture
to exert control over multiple robotic modules [40]. The proposed integrated system
spanned all levels of control, from user interfaces to action units. The first layer,
functioning as input devices, provides a user with human-machine interactions in
manifold forms, such as a soft remote controller operated by hand gestures, a voice
recognition system, and other types of sensory devices (a joystick or a touch
screen). The second layer, functioning as monitoring devices, consists of a pressure
sensor-based bed that detects body movement and postures and a health monitoring
system that collect bio-signals. This layer also deals with environment parameters
(illumination, humidity, and temperature). The next layer, a central control unit,
receives inputs from the first two layers to execute a command for a variety of
action units. The action units is the last layer of this architecture, which include a
bed-mounted rehabilitation robot, mobile robots, a wheelchair-mounted robot, an
intelligent bed, a robotic hoist, home appliances.

A considerable challenge arises when designing the last action unit layer is how
to organize low-level commands (e.g., “move the robotic hoist”, “turn off the light”,
or “position the wheelchair in front of the hoist”) that is necessary for achieving an
abstract-level goal set by a user (e.g., “I want to go out” or “I want to go to bed”).
Motivated by the way humans draft a plan, the task knowledge organization system
has been proposed by combining a top-down scenario analysis and a bottom-up
commands development [41, 42]. The top-down process develops specific task
structure by configuring task knowledge from the user’s point of view, and then in
the subsequent bottom-up process, the system simulates the user’s scenario to
assess validity of the developed tasks before actually executing a complete task
sequence. This idea has been demonstrated in the KAIST’s intelligent sweet home
(ISH; Fig. 2) scenarios [42].
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4.3 Multiple Learning Systems: Algorithms Versus
Human Brains

The integrated learning system in the last resort needs to be built upon the
understanding of how humans learn and choose different strategies to reinforce
behavior in a coherent manner. This leads to an emergence of an applicability of
neural theory to the design of learning system. A series of seminal studies in
neuroscience, in which dopamine neurons in behaving non-human primates and
those target areas in humans implement a prediction error from a temporal differ-
ence reinforcement learning algorithm [43, 44], encourage us to utilize those types
of learning model for system design. Subsequent studies combining the learning
algorithms and neural data also found that multiple learning systems were imple-
mented in human brains as opposed to just a single system [45]. This remarkable
resemblance between the learning algorithm and the human brains, combined with
our computational proposal of control of multiple learning algorithms to guide
integrated behaviors [46], merits a test to understand how human brains exert
control over these multiple learning systems. Our study recently demonstrated that

Fig. 2 KAIST’s intelligent sweet home scenario. Multiple agents interact to provide a user with
disabled lower-limbs a variety of proactive services, which consists of multiple low-level
commands carried out by a transferring robot (shown in the upper left), a steward robot (shown in
the upper right), a hand gesture-based soft remote control system (shown in the lower left), and an
intelligent bed with a robotic arm (shown in the lower right)
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such control mechanism is indeed implanted in the brain, specifically the allocation
of control is based on the relative degree of “uncertainty” in the estimates from the
two learning systems [47]. We thus envision that fuzzy theory might be useful again
as we begin to understand that human brains use uncertainty information to
implement a control for multiple learning strategies.

5 Outlook

The last three decades is the crucial period in the evolution of fuzzy theory. The
effectiveness in dealing with uncertainty in system variables indeed enables itself to
make a significant contribution to designing learning systems. Our developments
using fuzzy techniques span a wide range of learning systems, demonstrating
effectiveness in handling human users as a component in the control loop. The
techniques also lend themselves well to formulating a design principle of an inte-
grated system for the smart home for the disabled, in which multiple learning agents
effectively interact to provide aids for the user.

On the other hand, we begin to understand how our brain learns from experi-
ences, and more importantly, when and how it exerts control over multiple types of
learning strategies based on uncertainty information. A few recent studies, directly
pitting different types of computational learning models against each other to
understand how the human brain arbitrate multiple learning systems, have provided
us with an insight into how we design an integrated learning systems for real-world
applications.

Taken all together, we envisage that the principles of fuzzy theory, when
combined with what we know about computational learning mechanisms in the
human brain, will not only advance user’s experience in real-world scenarios but
also offer a practical guidance on how we design learning systems.
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Fuzzy Modifiers at the Core of Interpretable
Fuzzy Systems

Bernadette Bouchon-Meunier and Christophe Marsala

Abstract Fuzzy modifiers associated with linguistic hedges have been introduced

by L.A. Zadeh at the early stage of approximate reasoning and they are fundamen-

tal elements in the management of interpretable systems. They can be regarded as

a solution to the construction of fuzzy sets slightly different from original ones. We

first present the main definitions of modifiers based on mathematical transforma-

tions of membership functions, mainly focusing on so-called post-modifiers and pre-

modifiers, as well as definitions based on fuzzy relations. We show that measures of

similarity are useful to evaluate the proximity between the original fuzzy sets and

their modified form and we point out links between modifiers and similarities. We

then propose an overview of application domains which can take advantage of fuzzy

modifiers, for instance analogy-based reasoning, rule-based systems, gradual sys-

tems, databases, machine learning, image processing, and description logic. It can

be observed that fuzzy modifiers are either constructed in a prior way by means of

formal definitions or automatically learnt or tuned, for instance in hybrid systems

involving genetic algorithm-based methods.

Keywords Fuzzy modifiers ⋅ Linguistics hedges ⋅ Similarity

1 Introduction

Human beings are very efficient in coping with real world complexity and human-

like automated systems have been constructed for decades now, with the purpose

of managing large size data, subjective and imperfect information and ill-known
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environments. Concepts managed by human beings are often imprecise, with a core

of easy to classify instances and a shadow of other instances [1].

Fuzzy modeling is well-suited for their representation and their use in automated

systems. It is the reason why fuzzy systems have been a key solution to the man-

agement of complex systems since the introduction of linguistic variables and fuzzy

if-then rules by Lotfi A Zadeh [2–5]. They are based on approximate descriptions of

fuzzy variables by means of fuzzy modalities and relations between such descrip-

tions. Qualities of fuzzy systems such as their expressiveness and their capacity to

manage gradual knowledge have taken a large part in their success in real-world

applications. Similarity, or its brother concepts resemblance, closeness, proximity,

analogy, has been pointed out as fundamental in a number of domains, such as lin-

guistics, semiology, psychology. It is particularly useful in computational intelli-

gence, and especially in fuzzy modeling in which it takes part in the modeling of

imprecision and classes with unsharp boundaries.

We focus in this paper on a particular representation of similarity between con-

cepts by means of the utilization of fuzzy modifiers. In his seminal paper [6], L.A.

Zadeh introduced the concept of modifier to represent linguistic hedges such as very,

more or less, slightly, by means of a mathematical transformation of membership

functions based on power functions. Psychometrical analyses and empirical studies

were then proposed by [7–9]. The concept of modifier was extensively studied from a

psychometrical or an empirical point of view [10–13] and gave rise to various works

on mathematical, algebraic, or logical approaches [14, 15] as well as proposals to

use fuzzy modifiers in soft computing.

In the first section of this paper, we first summarize the main formal definitions of

modifiers, based on mathematical transformations or fuzzy relations. Then we con-

sider modifiers from the point of view of measures of similarity. The main purpose

of fuzzy modifiers being to take a part in the interpretability of fuzzy systems, we

devote the second part to application domains which have made good use of modi-

fiers. We conclude on the importance to preserve the link with fuzzy modifiers and

linguistic hedges.

2 Fuzzy Modifiers

Let U be an ordered universe of discourse and F(U) the set of fuzzy sets of U. For

instance, U could be the set of real numbers ℝ, or a subset of that set. By convention,

we use the same symbol A for a fuzzy set and its membership function. Given the

various forms of linguistic hedges (very, more or less, strongly, at least, extremely,

etc.), we summarize several approaches to their formal definition.

For membership degrees A(x) associated with elements x of U, the general idea

is to construct a new membership function, denoted by m ◦A deduced from “close”

elements of x in U or to consider a proximity between A(x) and m ◦A(x) for every

x. In a more complex approach, it is also possible to consider a proximity between

A(x) and m ◦A(y), for elements y “close” to x.
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2.1 Fuzzy Modifiers Defined by Mathematical
Transformations

To represent these two proximities, one on U and the other one on [0, 1], we consider

the following generic definition of fuzzy modifiers [16].

A fuzzy modifier can be regarded as a pair m = (g, h), where g ∶ [0, 1] ⟶ [0, 1]
and h ∶ U ⟶ U are functions.

If A is a fuzzy set of U, then m ◦A is also a fuzzy set of U defined for every x in U
by: m ◦A(x) = g◦A ◦ h(x). This definition is very general and corresponds to various

transformations of a given fuzzy set, not necessarily related to proximities.

Complementation is one of them, even though the transformation is extreme,

associated with the identity function h and the function defined by g(x) = 1 − x,

representing the linguistic hedge not.
Normalization is another one, not associated with a linguistic hedge, but to a

technical transformation defined by the function h(x) = kx, k being the largest value

of x in U where A attains its maximum and g(x) = x
A(k) in [17]. We can also imagine

the simple normalization based on the identity function h and the function defined

by g(x) = x
a , with a = max

x
A(x).

Sharpeners or contrast intensification operators [18] are also fuzzy modifiers, such

that h is again the identity function and g is a function such that g(x) ≥ x if x ≥
1
2

and g(x) < x if x <

1
2 . The most drastic sharpener corresponds to g(x) = 1 if x ≥

1
2

and g(x) = 0 if x < 1
2 .

We present in the sequel the most important classes of fuzzy modifiers used in

formal or applied research, with a focus on their interpretability, associated with

linguistic hedges.

The following contrast enhancement operator is indicated by [19] for information

fusion in signal and image processing:

g(x) = 2x2 if x < 1
2

and

g(x) = 1 − 2(1 − x)2 otherwise.

2.2 Post-modifiers

If h is the identity function on U, then m is called a post-modifier [20]. Typical post-

modifiers are reinforcing modifiers and weakening modifiers [21, 22] which extend

the seminal forms of modifiers introduced by Zadeh [6], defined by g(x) = x𝛼 , with

respectively 𝛼 ≥ 1 in the case of reinforcing modifiers, and 𝛼 ≤ 1 in the case of

weakening modifiers.
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More generally, reinforcing modifiers are such that m ◦A(x) ≤ A(x) for every x
in U and correspond to linguistic modifiers such as very, really, or strongly with the

idea of a more restrictive view of the underlying concept. The fuzzy set m ◦A is more

specific and/or more precise than A. The category described by m◦A is included in

the category described by A.

Weakening modifiers are such thatm◦A(x) ≥ A(x) for every x inU and correspond

to linguistic modifiers such as approximately, rather or about [21] which yield m ◦A
less specific and/or less precise than A.

Examples of functions g are homotheties applied to membership functions, either

preserving the support of A and decreasing its specificity by extending its kernel

(approximately), or preserving the kernel of A and extending its support to decrease

its precision (rather). A softer form of modifier extends both kernel and support to

decrease the specificity and the precision of A (about). In all these cases, the category

represented by m ◦A is wider than the category represented by A, with less sharp

boundaries.

2.3 Pre-modifiers

It should be remarked that such fuzzy modifiers do not cover all forms of linguistic

hedges. In some cases, a reinforcement or a weakening of the description represented

by A corresponds to a decrease or an increase of the values of U in its kernel or its

support. For instance, if U is a universe of length, it is very common to consider that

the fuzzy set representing very small has a kernel or a support “before” the kernel or

the support of small, with respect to the order on U. Symmetrically, very long will

be represented by a fuzzy set with a kernel or a support “after” the one of long. This

example shows the complexity of linguistic modifiers and the necessity to introduce

another form of fuzzy modifiers, as follows.

If g is the identity function on [0, 1], then m is called a pre-modifier [20]. Typical

forms of pre-modifiers are translatory modifiers [23] associated with functions h
defining translations on U to the right or to the left, h(x) = x+ t for every x in U, for

a positive or negative parameter t, to answer the above remark on the direction of the

necessary modification according to the meaning of the description represented by A.

Such modifiers are neither reinforcing nor weakening. The fuzzy set m ◦A represents

a category which is shifted to the upper zones of U or to the lower ones with respect

to the original category represented by A. Such an approach can be useful in case of

evolving categories, progressively moving on U over time.

2.4 Fuzzy Relation-Based Modifiers

The original concept of modifier was introduced to handle similar categories we

can distinguish by means of subtle differences, for instance expressed by linguistic
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hedges. It is therefore natural to use measures of similarity [24] or fuzzy relations

[25] to introduce and study fuzzy modifiers.

Let us consider a fuzzy relation R on U. [25] introduces families of relation-based

modifiers. Let us focus on the family based on a conjonction operator ⊤, such that:

m ◦A(x) = sup
y∈U

⊤(A(y),R(y, x)), for every x ∈ U. (1)

The particular case where ⊤ is the minimum yields a membership degree of every

x to m ◦A defined as the maximum value of membership degrees assigned to ele-

ments of U in relation R with x.

Some of these relation-based modifiers are expansive or restrictive. In this case,

we can imagine R as a similarity relation, m ◦A being then the maximum member-

ship degree of all elements of U similar to x.

In the case where ⊤ is a t-norm and E a ⊤ − equivalence (reflexive, transitive

and ⊤-transitive), we can consider a fuzzy ordering R such that R(x, y) ≥ E(x, y) and

⊤(R(x, y), R(y, x)) ≤ E(x, y) for every x and y in U [26]. Then Equation (1) yields

a fuzzy modifier expressed as at least A. If we take the inverse ordering defined by

R(−1)(x, y) = R(y, x), then we obtain a representation of the linguistic hedge at most.

3 Similarites and Modifiers

Another manner to take resemblances into account [24] consists in evaluating the

“closeness” of A and m ◦A in order to measure their similarity. We consider a fuzzy

set measure M ∶ F(U) ⟶ ℝ+
such that M(∅) = 0 and M is monotonous with

respect to the classic inclusion of fuzzy sets ⊆. We also consider a difference ⊖

between fuzzy sets, such that A ⊖ B is monotonous with respect to A and A ⊆ B
implies A⊖ B = ∅.

Such a measure can be used to evaluate the similarity between A and m(A) for

a modifier m. We restrict ourselves to so-called (M, 𝜀, 𝜆)-modifiers [27] such that

M(m ◦A ⊖ A) = 1 − 𝜀 and M(A ⊖ m ◦A) = 1 − 𝜆, for two parameters 𝜀 and 𝜆 in

[0, 1].
Particular cases of such (M, 𝜀, 𝜆)-modifiers are (M, 𝜀, 1)-modifiers which are

expansive, (M, 1, 𝜆)-modifiers which are restrictive, and translatory modifiers being

particular cases of (M, 𝜀, 𝜀)-modifiers. (M, 1, 1)-modifiers can be regarded as pro-

viding the closest modified forms of the primitive fuzzy set.

An example is the linguistic hedge approximately represented by

m1 ◦A(x) = min(1, 𝜀 ⋅ A(x)),

for every x in U, for 𝜀 ∈ [0, 1], corresponds to a modifier preserving the support of

A and extending its kernel to decrease its specificity.
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It is easy to see [27] that it can be considered as a (M1, 1, 1)−modifier if we define

M1(A) =
∫x∈U

A(x)dx and the difference between fuzzy sets as A ⊖2 B = A(x) if

B(x) = 0 and A ⊖2 B = 0 if B(x) > 0, It can also be regarded as a (M2,
1
𝜀

, 1)
when we define M2(A) = supx∈U A(x) with the difference A⊖1 B = max(0,A(x) −
B(x)). This points out the role of the perception of “similarity”, strongly dependent

on parameters 𝜀 and 𝜆, as well as chosen operators M and ⊖. Another simple form

of modifier is the representation of uncertainty as follows:

m2 ◦A(x) = max(A(x), 𝜀),

for every x in U, which can be expressed as A with an uncertainty 𝜀. Such modi-

fiers are (M2, 1 − 𝜀, 1)-modifiers with the difference ⊖1, which shows that they are

not far from the original description A.

Going further in the use of similarities between fuzzy descriptions and their

modified forms, we consider a measure of similarity S on U defined as a function

S ∶ F(U) × F(U) ⟶ [0, 1], such that S(A,B) = F(M(A ∩ B),M(A⊖ B),M(B⊖ A))
is non-decreasing with respect to M(A ∩ B) and non-increasing with respect to

M(A⊖ B) and to M(B⊖ A).
Particular measures are defined, according to their specific properties [28]. A

measure of satisfiability is exclusive, which means that S(A,B) = 0 when A∩B = ∅,

and independent of M(A⊖B). A measure of inclusion is also exclusive. In addition,

it is independent of M(B⊖ A). They correspond to the idea that A is a reference to

which B is compared, the measure of inclusion being only interested in the extent

to which B can be considered as a particular case of A. A measure of resemblance

is symmetric in M(A ⊖ B) and M(B ⊖ A), which means that there is no reference

and both A and B have the same status in the research of similarity. It is easy to see

that, if the modifier m is expansive, then A and m ◦A will be compared through a

measure of satisfiability. If m is restrictive, A and m ◦A will be compared through a

measure of inclusion. If m is translatory, A and m ◦A will be compared by means of

a measure of resemblance [24].

4 Application Domains Using Modifiers

4.1 Analogy-Based Reasoning

Evaluations of the proximity or similarity between A and m(A) mentioned previously

can for instance be used in an analogy-based reasoning, or case-based reasoning, to

construct interpretable conclusions from observations [24].

Starting from a rule such as If X is A, then Y is B, for i = 1,… , n, or cases such

that X is A at the same time as Y is B, an observation A′
will be compared to A to

evaluated their similarity S(A,A′). One way to determine the description B′
of Y is
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to assume that S(A,A′) = S(B,B′) and to make a choice among all fuzzy sets B′

satisfying this constraint.

Using modifiers limits the number of solutions and provides an easily inter-

pretable solution. According to the relations between measures of similarity and

modifiers, we use an expansive modifier m to describe B′ = m ◦B if we choose

a measure of satisfiability S.

As an example, let us consider the following measure of satisfiability: S(A,A′) =
1 − M2(A′

⊖ A). If the value of S(A,A′) is 𝜎, then we can use a modifier such as

m1 for the parameter
1
𝜎

interpreted as approximately, or m2 for the parameter 1 − 𝜎 ,

interpreted as A with an uncertainty 1 − 𝜎.

If we use a measure of inclusion S, a restrictive modifier is convenient to express

the difference between the two fuzzy sets. For instance, let us consider the following

measure of inclusion: S(A,A′) = 1 −M2(A⊖ A′). If 𝜎 is the obtained value, we can

think of a modifier m such as m ◦B(x) = min(𝜎,B(x)).
If we use a measure of resemblance, we associate it with a translatory modifier

that we will not describe in detail.

4.2 Rule-Base Systems

Rule-based systems and the particular case of fuzzy control are the first domains

where modifiers help to obtain interpretable results. The interpretability of rule-

based systems is complex and has given rise to various analyses. We can mainly

point out three important factors of this interpretability: the easily understandable

linguistic description of variables, the number of rules and the number of premises

in each rule.

One of the first attempts to manage linguistic labels in a fuzzy knowledge-based

system was the linguistic approximation used in the MILORD system to deal with

both uncertainty and imprecision [29].

With regard to easily understandable descriptions of variables, reasoning with

modifiers provides interpretable conclusions when using generalized modus ponens

[16, 22] with rules of the form : If X is Ai then Y is Bi, for i = 1,… , n.

In particular, if we use restrictive modifiers, we obviously obtain a conclusion

identical with the conclusion of the rule with all classic fuzzy implications [21].

When we use expansive modifiers such as approximately defined by m1 ◦Ai to

describe observations, for instance, such rules provide conclusions of the form

m1 ◦Bi itself, or m2 ◦Bi (representing an uncertainty on Bi), or m3 ◦Bi for some

other expansive modifier m3. These forms of conclusions are easily interpretable,

which is not the case when using general modus ponens with any observation. We

can conclude that, if an observation is similar to a premise Ai through a modifier, the

obtained conclusion is also similar to the conclusion of the rule through a modifier

when using the most classic fuzzy implications.
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Fuzzy modifiers are also useful to adjust the shape of membership functions

dynamically in the design of a fuzzy controller. In [30], the number of premises

is limited to three to simplify the design of fuzzy controllers. A so-called linguistic

hedge module is added to the fuzzy controller to play the role of powered modifiers

and dynamically modify the shape of membership functions to the feedback signal, to

provide additional information without increasing the number of rules. Genetic algo-

rithms are used to tune membership functions by means of modifiers in the design

of the rule base.

In a different approach, [31] proves that modifiers are useful to find a trade-off

between interpretability and accuracy in the construction of rule-based systems. The

authors propose to extend the initial list of linguistic descriptions and to create new

rules of the form: If X1 is mi1 ◦Ai1, and X2 is mi2 ◦Ai2 and … then Y is mi ◦Bi, for

i = 1,… , n. They consider powered, expansive or restrictive modifiers, as well as

translatory ones.

In [32], the authors propose fuzzy modifiers to be learnt to obtain the best fuzzy

rule-based classification system. After a prior rule base is constructed on the basis

of pre-defined linguistic descriptions represented by fuzzy sets, a genetic algorithm-

based method is used to select the best subset of rules and to learn the set of linguistic

modifiers to apply to the linguistic variables for the considered fuzzy logic system.

Gonzalez et al. [33] consider also linguistic hedges included in a genetic algo-

rithm in the framework of the inductive learning algorithm called Structural Learn-

ing Algorithm on Vague Environment. They help the user to learn and tune fuzzy

rules.

In [26], it is proposed to introduce modifiers to reduce the size of a fuzzy rule

base and thus to enhance its interpretability and expressiveness. The proposal is,

first of all, to group rules leading to the same output decision, and to rank them

according to the input parameters they involve. Then, such “neighboring” rules can

be merged and replaced by a rule which summarizes their premises into a single one

constructed by means of a modifier. For instance, in a PD-style fuzzy controller set

of rules, “Negative Big”, “Negative Small” and “Zero” are grouped and these three

fuzzy values are replaced by “at most Zero”. Moreover, the authors highlight the fact

that modifiers could be very useful in interpolative reasoning when the fuzzy rule

base has been constructed incomplete. The proposed work in this paper is based on

the use of a fuzzy ordering (see Sect. 2.4).

4.3 Gradual Systems

Their ability to manage graduality is an important property of fuzzy set-based rep-

resentations. The most basic view of graduality corresponds to the unsharp bound-

aries of a category represented by A, in which we enter progressively with slightly

increasing membership degrees and from which we get out with slightly decreasing

membership degrees when we progress along U. This graduality is handled by the

concept of fuzzy set itself.



Fuzzy Modifiers at the Core of Interpretable Fuzzy Systems 59

A second type of graduality corresponds to a change in the boundaries of a cate-

gory, reducing or extending it according to the context or the observations, and this

graduality is clearly handled by means of weakening or reinforcing post-modifiers.

A third type of graduality corresponds to a progression along U, in the case where

we have a family of fuzzy sets A1, . . . , An, describing a variable defined on U, for

instance classes of a fuzzy partition ofU. This graduality corresponds to values of the

variable smoothly evolving from a category Ai to the next one Ai+1. This graduality

is clearly related to the use of adaptive pre-modifiers.

A deductive management of graduality [22] enables to take into account various

forms of fuzzy rules. One of the most natural forms of gradual knowledge for human

experts is the following: The more (less) X is A, the more (less) Y is B, for which

solutions are not obvious in automated systems.

Generalized modus ponens and the use of modifiers to represent more or less
leads to an automated deductive system translating such rules directly or with con-

sideration of uncertainties, according to the chosen fuzzy implication, in rules of the

form: It is rather certain that the less X is A, the less X is B, or the more certain X
is A, the more certain Y is B. This graduality can be considered as restricted to one

rule and then local.

A global graduality can be managed through a collection of rules such as: The
more (less) X is Ai, the more (less) Y is Bi, for i between 1 and n, the conclusion

moving progressively from Bi to Bi+1 or Bi−1 when the observation varies from Ai
to Ai+1 or Ai−1.

4.4 Other Uses of Modifiers

More generally, modifiers have been introduced in several other kinds of applica-

tions.

Databases is a domain where linguistic hedges are often seen useful (for instance,

in [34, 35]). In [34], modifiers are integrated in SQLf, a fuzzy extension of SQL, the

well-known query language for databases. Here, the “where” part of a select query

is associated with a fuzzy condition that could be defined by means of a modifier.

A modifier is used to define a partition of the tuples from the database that can be

searched for, for instance, “select * from ... where salary is more or less equal to
...”. As a consequence, querying becomes more naturally expressed thanks to inter-

pretable conditions.

An example of use of modifiers in a machine learning task could be found in [36].

In this work, the linguistic hedges (Zadeh’s form) have been introduced in a mining

fuzzy association rules process. Various hedges are generated in order to increase a

fuzzy taxonomy associated with a transaction. The mining of fuzzy association rules

is done with this augmented fuzzy taxonomy in order to find a maximum of rules,

taking into account linguistic descriptions.

In [37], a fuzzy description logic is introduced that handles hedges. Concept mod-

ifiers are introduced as a chain of hedges. The sign of a hedge is used to position the
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hedge with regards to the associated primitive concept. For instance, the sign of very
large is positive with regards to large, and the sign of more or less large is negative.

Modifier Memberships are those of Zadeh (exponentiation). The authors introduce a

semantic based on hedge algebras and propose a decision procedure and an approach

to determine the satisfiability of fuzzy constraints in their fuzzy description logic.

Image processing or image-based retrieval, in which a linguistic description of

images could be very useful to summarize their content, or to enhance their inter-

pretability, are often based on the use of linguistic hedges. Among existing works,

we can cite [38] which introduces linguistic hedges to model the feedback of the

user when the retrieved image is not fully satisfactory. The user proposes a modifier

on the current query to create a new query that could be processed to enhance the

search.

In the acoustics domain, [39] has proposed the used of modifiers in a vocabulary

used to describe noise annoyance expresses by users with different languages. Simi-

larity measures are then used to match foreign terms and find correspondence among

them.

5 Conclusion

We have presented the main solutions to construct fuzzy modifiers associated with

linguistic hedges, in an attempt to expand the vocabulary available to describe

objects, either in a knowledge-base or in the outcomes of a fuzzy system. The purpose

is to provide a flexible way to represent knowledge without increasing the complexity

of the system. The main qualities of fuzzy systems are kept in mind: first their inter-

pretability and their ability to handle easy to understand descriptions of objects, and

second the graduality inherent in their definitions, providing soft transitions between

descriptions and mimicing a very natural facet of human reasoning.

Fuzzy modifiers are defined in a prior way on the basis of expert knowledge or

psychometric analyses. Among the various approaches enabling to provide their def-

initions, we have given priority to those which are involved in the interpretability of

fuzzy systems. We have shown that fuzzy modifiers can also be learnt or tuned auto-

matically, for instance with the help of genetic algorithms in hybrid systems. It is

clear that these ways to obtain linguistic modifiers are similar to those providing

membership functions of fuzzy sets representing linguistic descriptions of variables.

They can be regarded as a kind of standardization of linguistic terms easy to handle

and to share with experts or end users of fuzzy systems.

Future works can focus on the specific methods to use fuzzy modifiers in new

areas, such as fuzzy case-based reasoning, fuzzy inductive learning or fuzzy sum-

marization, to name but a few.
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Human and Machine
Intelligence — Between Fuzzy
Logic and Daoist Thought

Liya Ding and Xiaogan Liu

Abstract The theory of fuzziness, offering an important scientific approach in
building intelligent machines, has been researched and developed in the past fifty
years from various perspectives and applied for real world problem solving in many
areas. Daoist thought, being one of the most influential schools of Chinese phi-
losophy, has been studied for more than two thousand years and its wisdom
exploited from generation to generation. Would a natural echo exist between the
modern fuzzy thinking and the ancient oriental Daoist thought?

Keywords Fuzzy logic ⋅ Precisiation ⋅ Computing with words ⋅ Daoism ⋅
Nonaction

1 Fuzziness in Modeling Reality

Mathematical models are built for human dealing with the real world. However, the
subtle behavior of the natural world (as we perceive it) cannot be modelled by rigid
axioms. Most human concepts lack a rigorous definition for its vagueness and
imprecision as well as its changing meaning reflecting evolving nature and human
societies, the more rigorous the model, the less similar to reality. The great
achievement of the theory of fuzziness is to have succeeded to build models for
entities that lack a rigorous definition.

The famous Turing Test remains a dream of artificial intelligence until today.
Human intelligence has been taken as the gold standard of machine intelligence, but
such gold standard also lacks a rigorous definition. We apprehend the inner and the
outer world by vague feelings, which become progressively more precise. “… the
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machinery of fuzzy logic is needed for mechanization of human reasoning. In this
perspective, fuzzy logic is of direct relevance to achievement of human level
machine intelligence.” (Zadeh) [1]

To further emphasize why and how we can expect that fuzzy logic plays the role
of a bridge from natural to machine intelligence, Professor Zadeh has put forward
the following words:

“Science deals not with reality but with models of reality. In large measure, scientific
progress is driven by a quest for better models of reality. In the real world, imprecision,
uncertainty and complexity have a pervasive presence. In this setting, construction of better
models of reality requires a better understanding of how to deal effectively with impreci-
sion, uncertainty and complexity. To a significant degree, development of fuzzy logic has
been, and continues to be, motivated by this need.” (Zadeh) [2]

What can be read out from the words above are guiding ideas and thought that
are significant both technically and philosophically. From technical perspective, the
development of a good model of reality needs to take into account imprecision,
uncertainty and complexity. From philosophical perspective, humans deal with
reality not directly but through models that are only approximation of the real
world, and the better we handle imprecision, uncertainty and complexity, the better
the model we may be able to build.

It is the philosophized thought of fuzzy logic that inspires us to further discuss
some fundamental questions about human and machine intelligence, and explore a
natural echo between fuzzy logic and Daoist thought, being one of the most
influential schools of Chinese philosophy.

2 Admission of Imperfection

“A concept which has a position of centrality in fuzzy logic is that of a fuzzy set. Informally,
a fuzzy set is a class with a fuzzy boundary, implying a gradual transition from membership
to nonmembership. A fuzzy set is precisiated through graduation, that is, through asso-
ciation with a scale of grades of membership. Thus, membership in a fuzzy set is a matter of
degree. Importantly, in fuzzy logic everything is or is allowed to be graduated, that is, be a
matter of degree. Furthermore, in fuzzy logic everything is or is allowed to be granulated,
with a granule being a clump of attribute-values drawn together by indistinguishability,
equivalence, similarity, proximity or functionality. Graduation and granulation form the
core of fuzzy logic.” (Zadeh) [2]

The concept of “graded membership” applies to a class that lacks a rigorous def-
inition. Such concept is often confused with the concept of probability, which is
caused by an underlying random process or by lack of information. A situation of
lack of information may be improved when more information and data become
available, especially with the growth of big data and information technologies. The
lack of definition, however, relates to a more fundamental limitation in human’s
cognitive ability.
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Although imprecision is a phenomena rooted at the limitation in human’s cog-
nitive ability, the idea of fuzziness is not universally accepted even today. To this
situation, Professor Zadeh says, “there are many misconceptions and misunder-
standings regarding fuzzy set theory and fuzzy logic. To some, I was advocating an
abandonment of the deep-seated tradition of striving for rigor and precision.”1

While most scientists are used to consider that accuracy and certainty are essential
principle for exploring true nature of the world, Daoist2 thinkers believe that the
ultimate source and true nature of the universe is uncertain and obscure.

As many philosophical and religious traditions, Daoism has its reflection and
doctrine about the source and ground of the universe, which is not so certain and
acknowledgeable. One significant piece on this theme, which is found in the Laozi
[3], is not providing merely theory about the beginning of our world and myriad
things in the universe, but also the foundation of all other Daoist teachings and
characters. The unique speculation and reflection about the possible entity and state,
from which the universe comes, is a key for understanding the general attributes
and uniqueness of Daoist philosophy. There are noticeable points of Daoist thought,
and one comes of the most significant points is concerning the true nature of the
universe.

There was something undifferentiated and yet complete,
Which existed before heaven and earth. (Chap. 25)

The word “undifferentiated” in the above quotation is a render of the Chinese
word “hun” which may suggest mixture, unclear, or shapeless etc. The state of the
origin and the formation of the beginning of the world, and the ground that sustains
myriad things are merely ambiguous. In the Laozi, all sentences related to the
ultimate reason and truth share the same style. Thus Daoist statements about the
true nature of the universe are always hesitating; at least they seem to reflect non-
perfect confidence. Thus, the Laozi further states:

It may be considered the mother of the universe.
I do not know its name; I style it “Dao” (Tao, Way).
If forced to give it a name, I shall call it Great. (ibid.)

The author of Laozi frankly admits that he does not know what is the origin or
the mother of the universe. Dao is just a styled symbol or nickname of the source

1Lotfi A. Zadeh has distributed the same message repeatedly, the quotation here is from his
message distributed to BISC online discussion group on Oct 2013.
2The word Daoism suggests complicated thought system (or Daoist philosophy) and Daoist
religious movements. In this essay, the Daoist theories are mainly based on the first Daoist text
Daodejing (Tao-te-ching) or the Laozi (Lao-tzu). This has nothing to do with Daoist religious
teachings. The quotations from the Laozi are based on Liu’s complication and adaptation from
various versions and translations, unless specific citations provided otherwise.
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and ground of the universe. It has no proper name. If being forced to give it a name,
he will call it Great. Obviously, great, similar to good, bad, big, small, etc., cannot
be used as a proper name. What the author repeatedly emphasizes is that no one
knows exactly the foundation and true nature of the world, though the author does
believe there is something functioning as the ultimate source and ground of all
beings in the world.

This makes Daoism different from many religious and philosophical doctrines.
The Bible describes clearly and precisely the processing of God’s creation of the
universe; Plato’s theory sees it specifically and systematically as the relation
between the transcendent kingdom of perfect ideas and the empirical world of
imperfect myriad things. Even in other Chinese or oriental religious and philo-
sophical schools, we find such differences from Daoism. Buddhism confidently
disserts that the truth of world is essentially empty, all existence we can see and feel
are just delusion and untrue; Confucian thinkers strongly believe that the moral
doctrine tian-li (heavenly principle) is the ultimate truth of the world.

Further examining, we find some key concepts in which both the theory of
fuzziness and the thought of Daoism surprisingly coincide. Here we list a few.

A. True and False
In fuzzy logic everything is, or is allowed to be graduated, that is, be a matter of
degree. Fuzzy logic allows no clear distinguishing between true and false, and
introduces a numerical grade or word to indicate the degree of truth of a piece of
knowledge or information. In fuzzy inference systems, a perfect truth is not required
for data, information and knowledge, and the executions of inference are done on
an approximate basis. This greatly extends the ability of precise reasoning in
handling real world problems with imprecision, incompleteness, or partial truth. In
such, fuzzy logic establishes fuzzy reasoning containing precise reasoning as its
special case.

From the Daoist viewpoint, there is nothing absolutely right and true, yet true
and false dose not distinct clearly. The Laozi claims in Chap. 41:

The Dao which is bright appears to be dark.
The Dao which goes forward appears to fall backward.
The Dao which is level like a valley (hollow).
Great purity appears like disgrace.
Far-reaching virtue appears as if insufficient.
True substance appears to be changeable.
Solid virtue appears as if unsteady.
True substance appears to be changeable.
([4]: 160)

B. Good and Bad
The idea that “membership in a fuzzy set is a matter of degree” made a fundamental
revolution to classical set theory, that is membership and non-membership are not
in an absolute distinguishing. This is depicted in Fig. 1.
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In our everyday life, good and bad are often treated as two opposite concepts.
However, when the two are applied to make evaluation with the same criteria, they
both appear to be fuzzy sets with unsharpened boundary and possible overlap in
between. The same spirit applies to many pairs of concepts that are usually con-
sidered opposite, such as long and short, big and small, high and low, fast and slow,
etc. The distinguishing factors between these paired concepts are only relative.
Some well accepted and widely adopted schemes in our life, such as “passing” or
“failure” of school examination, are a binary precisiation of “good-bad” defined as
crisp sets on numerical scores. The theory of fuzzy set provides a mathematical tool
to handle concepts that are not fully distinguishable and differentiable.

The sentences previously quoted from Laozi Chap. 41 reveal Daoist position that
everything appears as containing the opposite elements, which are in contradiction
and mutual transformation. In addition, the uncertainty comes from the transfor-
mation of the oppositional elements in all beings or things. For example, the Laozi
argues in Chap. 58:

Calamity is that upon which happiness depends;
Happiness is that in which calamity is latent. …
Then the correct again becomes the perverse
And the goodness will again become evil.
([4]: 167)

Similar argument stated in Chap. 2 of Laozi:

When the people of the world all know [certain] beauty as beauty,
There arises the recognition of ugliness.
When they all know the good as good,
There arises the recognition of evil.
Therefore:
Being and non-being produce each other;
Difficult and easy complete each other;
Long and short contrast each other;

Fig. 1 The concepts of a set and a fuzzy set are derived from the concept of a class through
precisiation. A fuzzy set has a fuzzy boundary. A fuzzy set is precisiated through graduation
(Fig. 1 from Zadeh in [2])
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High and low distinguish each other;
Front and back follow each other.
Therefore the sage manages affairs without action.
And spreads doctrines without words. ([4]: 140)

According to the Laozi, all seemingly quite different oppositions are actually in
transition and mutually effected. All these oppositional transformations suggest the
difficulty of our knowledge and recognition in reality. It should be noticed that
when mentioning “manages affairs without action” and “spreads doctrines without
words” the Laozi does not mean to do nothing, but special action different from
regular actions by common rulers and people. We shall relate to this point in Sect. 4
with fuzzy decision.

The important finding here is that both Fuzzy Logic and Daoist thought are
aware of the fundamental limitation in human’s cognitive ability in handling the
complexity of real world. While Daoism establishes the philosophical foundation
for the discussion of this limitation, fuzzy logic provides a practical mathematical
tool to describe concepts that are not fully distinguishable and differentiable. In
other words, Daoism explores the limitations and the reasons that they exist, and
fuzzy logic discusses how we can act under such limitations.

3 Precisiation and Description

In order to have a machinery to deal with imprecision in reality, we need precis-
iation for our understanding and description of reality. Informally, precisiation is an
operation which transforms an object, p, into another object, p*, which is more
precisely defined, in some specified sense, than p. [2]. This is depicted in Fig. 2.

The significance of the theory of precisiation may be understood from two
aspects: a technical aspect, and a philosophical aspect. From the technical aspect,
with the utilization of fuzzy sets, fuzzy truths, fuzzy numbers, type-2 or higher order
fuzziness, it allows but not ignores or rejects undifferentiation; it provides a spec-
trum between true and false, know and don’t-know, to more naturally reflect the

Fig. 2 Basic concepts relating to precisiation and cointension. (Fig. 14 from Zadeh in [2])
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human knowledge imperfection; it offers tools for describing highly complex sit-
uation with mixed types of imperfection involved.

From the philosophical aspect, it accepts the limitations in human cognitive
ability, therefore sets up a rational foundation for discussion of machine intelligence
having human intelligence as the gold standard. There are many things in the
universe that we don’t know, and more importantly there are also many things we
don’t know how much we know, or don’t know how to describe or evaluate what
we know. Precisiation is a process through which we describe, and evaluate the
world we perceive with our limited capability and resources. The result of precis-
iation is a simplified model of reality but not the true reality, referring to Fig. 2, we
have p* ≠ p.

The philosophical thinking behind the fuzziness and precisiation finds an echo
from the Daoist admission of the limitation of human’s cognition.

The general feature of Dao combines both being and nonbeing, though not in a
strait forward way. All descriptions of Dao seem to suggest non-being (wu), in the
sense that human beings cannot grasp it because it is not any concrete thing humans
can perfectly capture. The Laozi, in Chap. 14, describes it this way:

We look at it and do not see it,
its name is the invisible.
We listen to it and do not hear it,
its name is the inaudible.
We touch it and do not find it,
its name is the subtle (formless)….
Infinite and boundless,
it cannot be given any name [‘unnameability’]
It reverts to nothingness,
this is called shape without shape,
image without entity…
([4]: 146)

“It cannot be given any name” or it cannot be nameable implies the impossibility
for human beings to cognize Dao, because it is transcendent and out of our
approach. Similar ideas are presented in the Laozi Chap. 25, which reveals the
Daoist conception of the source and ground of the universe. Here it reads:

There was something undifferentiated and yet complete,
Which existed before heaven and earth.
Soundless and formless, it depends on nothing, and does not change.
It may be considered the mother of the universe.
I do not know its name; I style it “Dao” (Tao, Way).
If forced to give it a name, I shall call it Great.
Now being great means functioning everywhere.
Functioning everywhere means far-reaching.
Being far-reaching means returning to the original state.

This is a reflection of Daoist attitude towards human being’s capacity of cog-
nition and understanding. Daoism has little dogmatic assertion; instead, Daoism
intends to faithfully represent the difficulty and limitation of human beings obser-
vation and understanding.
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The words “soundless and formless” in the above-quoted passage is also a kind
of description of Dao in coping with the ambiguity. Without a definition a
“description” leaves a room of tolerance for imprecision and vagueness. The lim-
itation of human beings’ intelligence and cognition is an important concern of
Daoism. We can further examine knowing and unknowing in dealing the reality to
better understand Dao. In Chap. 1, the Laozi argues:

The way can be spoken of,
but it will not be the constant way;
The name can be named,
but is will not be the constant name.
The nameless is the beginning of myriad things,
The named is the mother of myriad things. ([5]: 267)

Here the nameless and the named are two characteristic aspects of Dao, which
refer to the human faculty of recognition of Dao and also its limitation.

Furthermore from the admission of the fundamental limitation in human’s
cognitive ability, another important finding here is that both Fuzzy Logic and
Daoist thought are aware of the gap existing between any description (model) and
the reality being described. While Daoism has this idea supported by its ancient
wisdom, fuzzy logic names precisiation as one of the unique characteristics in
human thinking towards modern machine intelligence.

4 Decision with Imperfection and Action with Nonaction

Fuzzy decision [6], or decision in fuzzy environment, is the confluence of fuzzy
goals and constraints that reflect naturally real world situations. One of the key
features found in fuzzy decision is that the decision maker is not forced to give a
precise formulation, merely for the sake of mathematical reasons. A fuzzy decision
is made with a compromise of the satisfaction of multiple constraints and objectives
that are described with fuzziness. The importance or proportion of contribution of
each constraint or objective may be arranged in appropriate ways.

There are two key ideas here that attract our attention. The first is that one is not
forced to provide a precise formulation, if the original problem comes from a fuzzy
environment; the second is that a decision is made as the confluence of fuzzy goals
and constraints for a compromise.

Let’s examine Daoist perspectives in decision and action. Viewing the inevitable
transformation of everything in the world, the Laozi argues for a distinctive way of
actions, of which the complicated meaning cannot be translated, therefore we take a
compromised way using nonaction as a token for the Chinese term wu-wei. Lit-
erally, it sounds like no action at all, but actually, it implies a special way of action,
a negation of regular ways, for transcendent and better results. That is summed as a
famous saying: “To do nothing yet leave nothing undone.” This way is different or
opposite from common ways to deal with governance, as well as general affairs.
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The spirit of nonaction is to do business for better or distinctive outcomes and
minimum side or bad effects.

Aiming at a confluence of fuzzy goals and constraints allows one to make an
optimal decision with multiple criteria and objectives taken into account. Without
requiring forced precision in modeling fuzzy decision making, one will be able to
keep more information (with imprecision and vagueness) from reality and bring that
to final decision; and will also be able to minimize the extra inaccuracy introduced
through forced precision in early stages. In other words, no forced action for
precision leads to more accuracy to reality. At this point, we find another consis-
tency between the spirits of fuzzy logic and Daoism in their deep roots.

For the Daoist aspects, a typical manner of nonaction is assisting (fu in the
original Laozi literature, which can be translated as to assist, help, or support, etc.)
From the Laozi Chap. 64, we read:

Therefore the sage desires not to desire,
And does not value goods that are hard to come by;
He studies what is not studied,
And makes good of the mistakes of the multitude.
And so the sage is
able to assist the myriad things’ naturalness,
but is unable to act [in the common manner]

As for the meaning of fu or assisting, it is better understood as a spectrum
between two extremes. One extreme is restraint, manipulation, interruption, inter-
ference, exploitation, control, and oppression; the other is pampering, spoiling,
indulgence, permissiveness, and over-protection. Thus, fu or assistance is the
careful and prudent art of sagely leadership; its purpose and objective are com-
pletely aimed at benefiting the myriad things, no aspect of which shows off the
sage’s own importance and intelligence or accrues personal benefits. This fu or
assistance is a typical example of nonaction for better results from unusual actions.
The key point lies in the last sentence: the sage assists the myriad creatures to
realize their natural prosperousness, but dares not to act generally in the manner of
the common people. In this way, the sage seems to do nothing yet reaches the best
result: all things get the right chance to develop themselves in a harmony condition.

In the past fifty years Lotfi A. Zadeh, the founding father of fuzzy logic, has
selflessly provided his support, and assistance to thousands of scientists and
researchers by guiding new directions, encouraging discussions, and listening to
comments and even disagreements. Without his guidance and continuous efforts in
establishing a friendly, an encouraging, and a harmony environment in the fuzzy
logic community, the achievement of fuzzy logic research would never be the same.
The success of fuzzy logic witnesses how the spirit of fu helps our development in
science and technology.

The study of fuzzy decision has made an important foundation of utilizing
human intelligence for decision making in a fuzzy environment. “Humans have
many remarkable capabilities. Among them there are two that stand out in
importance. First, the capability to converse, communicate, reason and make
rational decisions in an environment of imprecision, uncertainty, incompleteness of
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information, partiality of truth and partiality of possibility. …” (Zadeh) [2]. In spite
of the limited cognitive ability in describing the real world with imprecision,
uncertainty, and partial truth, humans are able to approximate the reality for their
problem solving with amazingly simplified models, through observation and intu-
ition, as well as rational analyses. One important evidence is that a fuzzy rule-based
system in general uses a far less number of rules compared to a typical rule-based
expert system for the same application, through appropriate fuzzy granulation.
Computing with words [1, 2] opens the door for further exploring potential utili-
zation of human wisdom toward the development of human level machine
intelligence.

5 Between Fuzzy Logic and Daoist Thought

Fuzzy logic as a principal member of soft computing has been considered to be
positioned in a “soft” branch of science among the others. On the other hand,
Chinese philosophy has been considered less strict compared to Western philoso-
phy, and Daoist thought is one of the most influential schools of Chinese philos-
ophy. Inspired by the philosophized thought of fuzzy logic, we have made an
attempt to explore an echo between fuzzy logic and Daoist thought, and compare
similarities of some key concepts from both theories. Table 1 briefly summarizes
our key findings.

Table 1 Similarities of concepts of fuzzy logic and daoism

Similarities Differences

1 Understanding the world: Admission of
ambiguity, complex, and transience of the
world surrounding us.

Daoist philosophy is supported by the
metaphysical concept of Dao, though
Dao’s certain features are the
representatives of our empirical world.
Fuzzy logic makes generalization of
classical mathematical tools to deal with
reality, with tolerance of imprecision.

2 Describing the world: Human’s common
talent or capability is not enough for
recognizing the objective world. In other
words, human being’s cognitive ability is
limited.

Daoism emphasizes the infinite and
transience of myriad things in the world.
Fuzzy Logic aims at practical approach for
human intellectual activities through
precisiation.

3 Acting: Human beings should and can try
to approximate the truth through irregular
way of knowing. This approximation is
more accurate than certain precise
descriptions or claims because many
boundaries in the real world are not clear.

Daoist thought develops its theory through
rational observation and analyses, as well
as intuition to approximate the true nature
of the world.
Fuzzy Logic has graduation and
granulation as keys to approach the infinite
and complex reality.
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In summary, our motivation and the significance of such comparison are sup-
ported by several points.

(1) Finding the mutual support between scientific approaches and philosophical
wisdom, between the modern and antique, and between the West and East
cultures.

(2) Having found more broad and solid theories to correct dogmatic and romantic
belief about infinite human knowledge and capability.

(3) Further exploring human wisdom in rational action with knowledge imper-
fection toward future human level machine intelligence.

(4) The research in Daoism and fuzzy logic can be inspired from each other to
further develop their theories and argumentations.

6 Conclusion

We have argued that important concepts in fuzzy logic and Daoist thought echo each
other from afar. The values of Daoism to modern society have recently been sig-
nificantly recognized in critical issues, such as environment protection, social har-
mony, and management science [7–9]. Would the application of fuzzy thinking make
it more executable in modern society for some of the key ideas of Daoist thought?
Would it be possible to further exploit human wisdom in ancient thoughts through
the channel of fuzzy thinking, to support future development of machine intelli-
gence? We do not yet have concrete answers and our findings are still very pre-
liminary, but we believe such discussion will be beneficial for building a more bright
future of the world, either from system engineering or human society point of view.
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Developing Fuzzy State Models as Markov
Chain Models with Fuzzy Encoding
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Abstract This paper examines the relationship and establishes the equivalence
between a class of dynamic fuzzy models, called Fuzzy State Models (FSM), and
recently introduced Markov Chain models with fuzzy encoding. The equivalence
between the two models leads to a methodology for learning FSMs from data and a
systematic way for model based design of rule-based fuzzy controllers. The pro-
posed approach is demonstrated on a case study of vehicle adaptive cruise control
system in which an FSM is identified from simulation data and a fuzzy feedback
controller is generated by exploiting the Stochastic Dynamic Programming (SDP).
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1 Introduction

Fuzzy systems are widely used in process modeling and control as tools for han-
dling system complexity and accounting for information uncertainty. Most of the
dynamic system applications of the fuzzy systems exploit the following two
interpretations of system dynamics within the If … Then rule framework.

The first approach follows Mamdani’s concept of fuzzy control [1, 2] in which a
family of If … Then rules with fuzzy predicates are used to define a control algo-
rithm realizing nonlinear PI, PD or PID-like control strategies. These are nonlinear
mappings from the state space to the space of control variables that implement
intuitive control strategies with no requirements for an explicit plant model.

The second approach is based on the Takagi-Sugeno (TS) models [3] which
exploit families of rules with fuzzy predicates and functional consequences. The
antecedents of the rules decompose the state space into a set of regions with
corresponding linear deterministic models. The state of the TS model is a nonlinear
combination of the states of the subsystem models. This approach may be viewed as
a generalization of the gain-scheduling technique in which piecewise linear models
that are associated with multiple fuzzily defined regions of the state space are
combined.

Both types of fuzzy models are focused on the deterministic, i.e. the defuzzified
value of the system output. In recent years much progress has been made on
techniques for improving the performance of fuzzy control algorithms, stability
analysis, and systematic design of fuzzy controllers based on TS state and
input-output models of the plant. With the fuzzy decomposition, the non-linear
system is represented by a polytopic nonlinear system of coupled linear models [4,
5]. This polytopic representation leads to sufficient stability conditions for the TS
systems and a systematic design methodology that is based on solving Linear
Matrix Inequalities (LMIs), e.g. [6]. The TS approach, with its strong theoretical
underpinnings, addresses some of the major criticisms regarding the lack of rig-
orous analytical framework of the fuzzy control and places fuzzy control as one of
the tools of modern control theory. However, despite the progress made towards the
development of formal analytical model-based approaches for designing TS fuzzy
control systems, most of the practical fuzzy system applications remain centered
around heuristic rule-based control utilizing If … Then rules. One of the reasons for
this is that the TS approach, although based on the methodology of approximate
reasoning, is mostly focused on linear models with little if any ability to incorporate
subjective information and heuristics. It seems that this observation only confirms
the original assertion of Mamdani who introduced fuzzy logic control as a powerful
tool to “convert heuristic control rules stated by a human operator into an automatic
control strategy” [2].

The progress in Markov Chain models with fuzzy encoding [7–9] suggests that
the If … Then rules that have been mostly used as static mappings or as fuzzy
controllers have the potential for addressing some of the deficiencies of the existing
fuzzy models, especially when they are applied to dynamic systems. This includes
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the ability to represent the system states as possibility distributions, to analytically
describe the evolution of the states, and to formulate and solve general multistage
decision problems in uncertain environment, including optimization problems that
were originally formulated by Bellman and Zadeh in [10].

Specifically, we are interested in determining an optimal control strategy for a
general time invariant finite state dynamic system in which the state variable x takes
values from a finite set of states A= fA1,A2, . . . ,Ang and the control variable
u ranges over a finite set B= fB1,B2, . . . ,Brg. We assume that the states
Ai, i∈ 1, . . . , nf g, and the controls Bj, j∈ 1, . . . , rf g, are fuzzy subsets of the state
and control universes X and U. We also assume that system dynamics are described
by a set of rules expressing the following equation,

x+ = f x, uð Þ,

where f :X ×U→X is a specified random function defining the transition from the
current state x to the next state x+ under the control u. We refer to this special type
of dynamic system models as the Fuzzy State Models (FSMs).

The considered encoding of the state and control variables into fuzzy subsets is
inspired by the ability of the fuzzy partitioning to address the uncertainty in the
coding of the continuous signals [7, 9]. Our interest in dynamic optimization
problems for FSMs is motivated by the growing interest in the applications of the
stochastic dynamic programming and stochastic model predictive control [11–14]
based on Markov Chain Models for on-board applications, especially for the
automotive and aerospace systems exposed to rapid transients and disturbances.

In this paper we address the basics of the FSMs by expanding the recent results
on Markov Chain models with fuzzy encoding [7, 9]. We propose a calculus for
formalizing the FSMs by using concepts and results from the Dempster-Shafer
theory of evidence [15, 16]. By examining the relationship between the possibility
and probability theory [17, 18] we demonstrate the equivalence between the FSMs
and the Markov Chain models with fuzzy encoding [9]. We further investigate the
mechanism of propagating possibility distributions by FSMs and derive a recursive
analytical expression for the possibility distribution that is inferred by a model of
this type. The developments in the paper pertain to the critical question [19]
challenging the ability of the theory of approximate reasoning to deal with prop-
agating the possibility distributions by a fuzzy system. This important theoretical
problem is discussed throughout the paper by utilizing the established relationships
and similarities between fuzzy systems, belief structures, and Markov Chain
models. From that perspective our approach differs from the works on the abstract
dynamic fuzzy system theory, e.g. [20]. Based on the proven equivalence between
the FSMs and the Markov Chain models with fuzzy encoding we propose a sys-
tematic approach to learning FSM from data. We also reveal how the learned FSMs
can be used in conjunction with SDP for model based design of fuzzy controllers.
Results are demonstrated on a case study exploiting a FSM of car following
dynamics and followed by SDP based synthesis of an adaptive cruise controller
implementing rule base type fuzzy control algorithm.
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2 Fuzzy State Models

The conventional fuzzy rule models of the type,

If u is Ai then y is Bi, i= 1, 2, . . . ,mf g, ð1Þ

define mappings from the fuzzy partitioning of the input space (rule antecedents) to
a corresponding partitioning of the output space (rule consequents), and can be
viewed as approximations of static input-output functions of the form, y= TðuÞ.
Many of the fuzzy control applications exploit the Mamdani controller [1, 2]
approach. This approach uses static model (1) representing controller dynamics by
rules mapping the state space (the vector of the error and its derivative) to the space
of control variables:

If x is Ai then u is Bi, i= f1, 2, . . . ,mg,

i.e., models of the form u=GðxÞ. These models generalize the structure of the
widely used industrial look-up table (LUT) controllers [21]. Although highly effi-
cient for designing practical heuristic control strategies, these models cannot be
used for plant modeling, model-based design, and for analysis of the stability and
performance of feedback control systems. Their main drawback is the lack of
efficient mechanism to describe the state dynamics and the interaction between the
system inputs, states, and outputs.

Yet a large number of fuzzy models that are used to approximate system
dynamics belong to the TS type [3]:

If x is Ai then x+ =Fix+Giu, i= f1, 2, . . . ,mg ð2Þ

Such models use nonlinear weighting functions to combine multiple linear state
models, i.e.,

x+ = ∑
n

i=1
νi xð ÞðFix+GiuÞ.

These models result in polytopic representations of the nonlinear dynamics and
have become one of the common tools for modeling and control of piecewise linear
systems. Their main drawback is in their limited interpretability since the entire
model dynamics are captured by the linear subsystems and the role of the fuzziness
is to determine the regions where the linear subsystems are defined. Thus one of the
prospects of introducing the fuzzy system concept – the opportunity of infusing
heuristic information and human knowledge in the control system design – is not
completely utilized in the TS models (2) and the associated control design methods.

Multiple attempts to develop fuzzy system models of Mamdani type (1) that can
be applied to model based design of fuzzy controllers, see e.g. [18, 22–25] have not
resulted in a practical systematic methodology for identification of fuzzy models
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and subsequent synthesis of fuzzy controllers For example, in [18] we examined a
family of fuzzy state models defined by static rules for representing the state space
dynamics,

If u is Bs and x is Ai Then x+ is Aj

If u is Bs and x is Ai Then y is Dt,

where Bs,Ai, Āj and Dt are fuzzy subsets defined in the input, current /next state,
and output domain. Some of the main difficulties with the practical use of this type
of models remained the lack of a well-defined mechanism for determining the two
families of fuzzy subsets Ai and A ̄j that describe the logic of state transitions, the
mappings between the input, state, and output space, and the complexity of dealing
with MIMO fuzzy systems.

In this paper we consider the FSMs of the Mamdani type (1) as a different class
of dynamic fuzzy models which can represent the state dynamics in cases where the
system states are vaguely defined and are formalized as fuzzy subsets. We limit the
discussion to rule-based models that involve families of rules of the form:

If x is Ai Then x+ is A1 with probability pi1
A2 with probability pi2
. . .

An with probability pin, i= 1, 2, . . . , nf g.

ð3Þ

The main reason for considering this kind of models is that they can be viewed
as representing an uncertain dynamic system of the type,

x+ = f ðxÞ,

where x∈X is a state variable taking values from the universe of all states X,
x+ ∈X is a variable representing the next state, and A1,A2,⋯An are fuzzy subsets
of X. The fuzzy subsets are defined by their membership functions, ai xð Þ, on the
universe of x. The probabilities pij are the conditional probabilities satisfying

pij =P x+ ∈Ajjx∈Ai
� �

, ∑
n

i=1
pij =1 for all 1≤ j≤ nð Þ, ð4Þ

and describing the probability of transitions between the current and the next states.
The definition of the probabilities of fuzzy states A1,A2, . . . ,An follows Zadeh’s
definition [26] of the probability PðFÞ of a fuzzy event F as the Lebesgue-Stieltjes
integral of the membership function μFðxÞ of F,

P Fð Þ=
Z
X
μF xð ÞdP.
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We can expect that the possibility distribution inferred by the FSM (3) depends
on the transition probabilities and the fuzzy subsets A1,A2, . . . ,An. One special
case of the FSM (3) is the model with no randomness:

If x is Ai, then x+ is Aj, i, j= 1, 2, . . . , nf g.

This model is obtained from the FSM (3) for the case when only one of the
possible transitions from the state i is 100 % certain, i.e. pij =1 and pis =0 for
s∈ f1, . . . , ng, s≠ j. Thus the assumption of no randomness essentially transforms
the FSM (3) into the conventional fuzzy model (2).

Further generalizations of the FSM concept (3) can include the dependence of
the transition probabilities on time and external control and disturbance inputs;
these generalizations are not addressed in the present paper, but will be pursued in
the future publications.

As an example, consider a FSM which represents the average traffic conditions
on a certain road section during the day [27]. The typical traffic states can be
described as fuzzy variables (Freely Flowing, Slightly Congested, Moderately
Congested, Jammed) defined on the Navteq Jam Factor Scale (this is a 0–10 scale,
similar to the Richter Scale, characterizing the overall traffic conditions with 0 and
10 being, respectively, the best and the worst traffic conditions) See Fig. 1.

The average traffic dynamics can be summarized by the set of rules that capture
all possible combinations between the states while taking into account the infor-
mation about the probabilities of transitioning between states:

If x is Ai , 1≤ i≤ 4, then x+ is A1 with probability pi1;

A2 with probability pi2;

A3 with probability pi3;

A4 with probability pi4.
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Fig. 1 Fuzzy variables:
Freely Flowing (A1), Slightly
Congested (A2), Moderately
Congested (A3), Jammed (A4)
Traffic defined on the Navteq
Jam Factor scale
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The conditional probabilities pij. can be learned from the normalized
sigma-counts cij [7, 9] of observed transitions between the states Ai and Aj,

pij≈
cij
coi

,

over a given time interval, where

c0i = ∑
n

j=1
cij,

is the total number of transitions that are initiated from the state Ai.
For example, a change in the traffic Jam Factor from x=7 to x+ = 2 affects to

different degree the current (A1ð7Þ=0,A2ð7Þ=0. 04,A3ð7Þ=0. 71,A4ð7Þ=0. 14)
and next (A1ð2Þ=0. 41,A2ð2Þ=0. 25,A3ð2Þ=0,A4ð2Þ=0) states and changes the
sigma counts, respectively the probabilities, associated with the transitions between
the states in Fig. 1 as follows:

c11 = c11 + 0; c12 = c12 + 0;

c13 = c13 + 0; c14 = c14 + 0;

c21 = c21 + 0.04*0.41; c22 = c22 + 0.04*0.25;

c23 = c23 + 0; c24 = c24 + 0;

c31 = c31 + 0.71*0.41; c32 = c32 + 0.71*0.25;

c33 = c33 + 0; c34 = c34 + 0;

c41 = c41 + 0.14*0.41; c42 = c42 + 0.14*0.25;

c43 = c43 + 0; c44 = c44 + 0;

c01 = c01 + 0; c02 = c02 + 0;

Models of the type (3) are dynamic models that have not been commonly used in
the literature. In what follows, we apply the Dempster aggregation rule in order to
derive a method for formalizing the FSM dynamic fuzzy model (3) that is consistent
with the theory of approximate reasoning.

In the basic fuzzy model (1), the consequent of each rule consists of a fuzzy
subset Bi. The use of a fuzzy subset implies a special kind of uncertainty associated
with the output of a rule. This kind of uncertainty is called a possibilistic uncer-
tainty, and it is a reflection of a lack of precision in describing the output. The use of
this imprecision allows one to represent a complex nonlinear function in terms of a
collection of simpler fuzzy rules. The consequent of the FSM (3) includes possi-
bilistic uncertainty - a collection of fuzzy subsets A1, . . . ,An. In addition to the
possibilistic uncertainty, the consequent of the FSM features an additional proba-
bilistic uncertainty that is represented by the probability of selecting between
multiple consequent fuzzy subsets. A natural way to deal with both types of
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uncertainty is to consider the consequents to be fuzzy Dempster–Shafer granules
(see, for instance, [18, 27, 28]). Therefore, the output of each rule can be viewed as
a belief structure Mi with focal elements A1, . . . ,An that are fuzzy subsets of the
universe X and have weightsMiðAjÞ. The FSM (3) is then replaced by the following
set of rules and belief structures

If x is Ai then x+ isMi, i= f1, 2, . . . ,ng, ð5Þ

where each of the belief structures Mi includes n focal variables that coincide with
the states Ai and are assigned weights as follows:

M1

A1 M1 A1ð Þ= p11
A2 M1 A2ð Þ= p12
. . .

An M1 Anð Þ= p1n
M2

A1 M2 A1ð Þ= p21
A2 M2 A2ð Þ= p22
. . .

An M2 Anð Þ= p2n
. . .

Mn

A1 Mn A1ð Þ= pn1
A2 Mn A2ð Þ= pn2
. . .

An Mn Anð Þ= pnn.

We note the antecedent portion of the rules in (3) and (5) is unchanged. The
inclusion of a belief structure to model the output of a rule essentially means that
MiðAjÞ is the probability that the output of the ith rule belongs to the set Aj. So
rather than being certain as to in which set the output of the ith rule lies we
introduce some degree of randomness in the determination of the outcome set. As
we mentioned above, the use of a Dempster-Shafer belief structure to model the
consequent of a rule brings with it the option of fusing multiple types of uncertainty.
The first type of uncertainty is the randomness associated with determining which
of the focal elements of the belief structure Mi is in effect if the rule fires. This
selection is essentially determined by a random experiment that uses the corre-
sponding weights, the MiðAjÞ, as the associated probabilities.
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The weights MiðAjÞ correspond to the conditional probabilities defined in (4). In
order to simplify the exposition we consider the case of two states, n=2, and a
model defined by the following rules and belief structures:

If x is A1 then x+ isM1

If x is A2 then x+ isM2
ð6Þ

where

M1

A1 M1 A1ð Þ= p11
A2 M1 A1ð Þ= p12

M2

A1 M1 A1ð Þ= p11
A2 M1 A2ð Þ= p12

and where

p11 + p12 = 1, p21 + p22 = 1.

Suppose that for a given crisp value x0 or a possibility distribution χ0ðxÞ of the
state x, the firing levels of the two rules are τ1 and τ2 where

τi = aiðx0Þ, resp. τi =⋁Xðai xð Þχ0ðxÞÞ. ð8Þ

The output of each rule can now be viewed as a new belief structure bMi = τiMi

defined on X. The focal elements of bMi are

Fi1 = τia1,

Fi2 = τia2,

where F is a fuzzy subset of X. The weights associated with these new focal
elements remain the same as the ones in bMi [28], i.e. bMi Fij

� �
=MiðAjÞ. Then

following [27] we obtain the possibility distribution χ + inferred by the rules
(assuming a summation type of aggregation and a normalizing coefficient q that
scales χ + to the unit interval):

χ + =
1
q

bM1 + bM2

� �
=

1
q
ðτ1M1 + τ2M2Þ
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that can be expressed for each of the focal elements as follows:

bM1

F11 = τ1a1
M1 A1ð Þ= p11
F12 = τ1a2

1 A2ð Þ= p12
bM2

F21 = τ2a1
M2 A1ð Þ= p21
F22 = τ2a2
M2 A2ð Þ= p22

We further obtain summation of these two belief structures. The focal elements
of M are obtained according to the Dempster rule as follows:

E1 = F11 + F21 = τ1a1 + τ2a1 M E1ð Þ= p11*p21
E2 = F11 + F22 = τ1a1 + τ2a2 M E2ð Þ= p11*p22
E3 = F12 + F21 = τ1a2 + τ2a1 M E3ð Þ= p12*p21
E4 = F12 + F22 = τ1a2 + τ2a2 M E4ð Þ= p12*p22

By aggregating the focal elements and taking into account (7) we obtain:

χ + =
1
q
ð τ1a1 + τ2a1ð Þp11p21 + τ1a1 + τ2a2ð Þp11p22 + τ1a2 + τ2a1ð Þp12p21

+ τ1a2 + τ2a2ð Þp12p22Þ
=

1
q
ðτ1a1p11 + τ2a1p21 + τ1a2p12 + τ2a2p22Þ

Apparently,

q= ∑
2

i=1
∑
2

j=1
τjpji = τ1 + τ2

is one possible normalizing coefficient that scales χ + to the unit interval since the
terms

τjpji
q

=
τjpji

τ1 + τ2
, i, j= f1, 2g
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sum to one, i.e. this type of normalization is equivalent to a weighted aggre-
gation of the focal elements.

The extension of this analytical expression for the possibility distribution
inferred by a FSM for n>2 is straightforward:

χ + =
1
q

∑
n

i=1
ai ∑

n

i=1
τjpji

� �
, q= ∑

n

i=1
τj.

Alternatively, the above inferred possibility distribution can be formalized using
an equivalent vector/matrix expression:

χ + =
τΠa

∑n
i=1 τi

=
τΠa
τΠe

= τΠa, ð9Þ

where a= a1 xð Þa12 xð Þ . . . an xð Þ½ �T is a matrix of the uniformly sampled membership
functions of the subsets A1,A2,⋯, and An; τ is a row vector of the firing levels,

τ= τ1τ2 . . . τn½ �,

τ=
τ

∑n
i=1 τi

,

is the vector of the normalized firing levels, Π is the matrix formed by the con-
ditional probabilities pij, and e is the column vector of ones of size n.

3 Markov Chain Models with Fuzzy Encoding and Fuzzy
State Models Are Equivalent Concepts

Markov Chain models with fuzzy encoding were introduced in [7], motivated by
the approximation properties of fuzzy granules. Following the theory of approxi-
mate reasoning [18], we considered the partitioning the universes of x and x+ into
n fuzzy subsets, Aj. Subsets Aj are defined by their membership functions,

aj xð Þ:X→ 0, 1½ �; ∀x∈X,∃j, 1≤ j≤ n, aj xð Þ≠ 0.

As we now discuss, the FSMs that use a set of appropriately defined rules and
belief structures are similar to Markov Chain models with states being defined as
fuzzy subsets See Fig. 2.

More specifically, the Markov Chain models with fuzzy granulation [29] can be
expressed as a collection of n2 rules with fuzzy predicates of the form,
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IF x is Ai Then x+ is Aj with probability pij

where probabilities pij, i, j∈ 1,⋯nf g, , are the elements of the transition probability
matrix, Π. The antecedent and consequent subsets are defined by their membership
functions a xð Þ on the universe of x. Note that each of the cells of the Markov Chain
Model with fuzzy encoding corresponds to a rule expressing the relationship
between the possible antecedents and consequents. In [9] we showed that when the
current state of the Markov Chain with fuzzy encoding is deterministic, the
expressions for the next state (fuzzy or deterministic) are given by:

χ + xð Þ= ∑n
i=1 ai x0ð Þ∑n

i=1 pij ∑
n
i=1 aj xð Þ

∑n
i=1 ai x0ð Þ , ð10Þ

x+0 =
∑n

i=1 ai x0ð Þ∑n
i=1 pijxj̄

∑n
i=1 ai x0ð Þ . ð11Þ

Taking into account that aiðx0Þ essentially corresponds to the degree of firing τi
of the rule with predicate aiðxÞ by (8) we can rewrite (10) into a vector/matrix form:

χ + =
τΠa

∑n
i=1 τj

=
τΠa
τΠe

= τΠa,

that is identical to (9). Furthermore, the deterministic output of the Markov Chain
with fuzzy encoding (11) corresponds to the defuzzified valued of the fuzzy state
model (9).

We summarize this important result in the following proposition.
Proposition: The Fuzzy State Model and the Markov Chain model with fuzzy

encoding are equivalent models.
In [9, 30] we showed that for Markov Chain models with fuzzy encoding there

exists an analytical expression of the mapping between a given possibility distri-
bution χ0ðxÞ and the inferred possibility distribution, χ + :

Fig. 2 Markov Chain Model
with fuzzy granulation; the
states are fuzzy subsets [9]
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χ + = αTΠa=
χaTΠa
χaT0

, ð12Þ

where the membership function of χ0ðxÞ is represented by a row vector χ and
a0 = ∑n

i=1 ai. This result was obtained under the following assumptions:
A1. Uniformly sampled (discrete) membership functions aj and possibility dis-

tributions χ and χ + yielding s –dimensional vectors aj = ½a1ja2j . . . asj�, χ and χ + .
A2. Use of a correlation type measure

χaT = χ½aT1aT2 . . . aTn �,

of compatibility between the vectors χ and aTj instead of the more conventional
max-product or max-min type similarity measures.

The assumption (A1) simplifies the exposition and can be easily relaxed, for
instance, by replacing the inner product of possibilistic vectors by an integral of a
product of two possibilistic distribution functions over a domain. The assumption
(A2), on the correlation measure, is more critical, but it is reasonable in treating
many application problems. In addition to replacing the nonlinear maximum
operation by a linear inner product operation, this correlation measure may in many
problems provide a more complete characterization of the overall similarity
between the vectors χ and aTj (see, for instance, [18, 25]). Under the above
assumptions, the degrees of firing τ and their normalized counterparts τ ̄ in (8) can be
expressed as follows:

τ= τ1 τ2 . . . τn½ �= χ ̄½a ̄T1 a ̄T2 . . . a ̄Tn �= χ ̄ a ̄T

τ ̄=
τ

∑n
i=1 τi

=
χ ̄ aT̄

∑n
i=1 χ ̄ aT̄

=
χ ̄ aT̄

χ ̄ aT̄o

where aō = ∑n
i=1 aī. Henceforth, under those assumptions expression (9) can be

rewritten in a vector form:

χ ̄+ = τ ̄ Π a ̄=
χ ̄aT̄Π a ̄
χ ̄aT̄o

ð13Þ

that is identical to (13).
Therefore, the FSM and the MC with fuzzy encoding are also equivalent under

the assumptions A1 and A2. Consequently, the calculus and conclusions related to
the latter can be applied to the former. The following figure summarizes the result
of this section (Fig. 3).
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4 Generalized Dynamic Fuzzy Models

The demonstrated equivalency between Markov models with fuzzy encoding and
the FSMs has thus far covered only one special class of first order dynamic systems,

x k+1ð Þ= f x kð Þð Þ,

where the scalar variable x denotes the state of the system and f is a nonlinear
mapping. We now discuss an extension to systems with multiple state variables (x is
an n-dimensional vector rather than a scalar).

First, we show that higher order dynamic fuzzy models, e.g.:

If x1 is A1
i and x2 is A2

j Then x+1 is A1
s and x+2 is A2

t , ð14Þ

where n1 subsets A1
i and n2 subsets A2

j partition the universes of the state variables
x1 and x2, and are defined by the respective membership functions,

a1i ðx1Þ:X1 → ½0, 1�; ∀x1 ∈X1,∃i, 1≤ i, s≤ n1, a1i ðx1Þ≠ 0,

a2j ðx2Þ:X2 → ½0, 1�; ∀x2 ∈X2, ∃j, 1≤ j, t≤ n2, a
j
j ðx2Þ≠ 0,

can be transformed to the first order model (9). By aggregating the state variables x1
and x2, and corresponding subsets A1

i , A
2
i , and substituting in (12) we obtain the

following rule,

If z is Ci Then z+ is Cj, ð15Þ

where the new variable z is defined in the two-dimensional Cartesian space X1 ×X2.
Ci and Cj are fuzzy subsets (granules) of X1 ×X2. Numerically, they are represented

x

x

x+

p11       p12 p13

p21 p22 p23

p31 p32 p33

Α
3 

   
   

   
  Α

2 
   

   
   

 Α
1

Α1            Α2           Α3

If x is Ai then x+ is Aj with probability pij,
i, j = 1, 2, 3. 

Fig. 3 Equivalence between Fuzzy State Models and Markov Chain models with fuzzy encoding
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by the vector products of the discretized membership functions a ̄1i1 and a2̄j1 of the
subsets, A1

i1 and A2
j1 ,

Ci = a ̄1Ti1 a
2
j1 . ð16Þ

By rearranging the elements of Ci in a vector ci we obtain a vector representation
for the membership function of the subset Ci that is formally identical to the single
dimensional case and satisfying assumption A1 and A2. We will further denote by
the symbol × the combined operation of vector product followed by a transfor-
mation to a single dimensional vector, i.e.:

c ̄i = a ̄1i1 × a2j1 , ð17Þ

where cī stands for the vector expression of the membership function of the subset
Ci. Therefore, if the granules are considered Markov states and they satisfy the
Markov assumption the system can be modeled as a Markov chain with fuzzy
encoding:

If z is Ci Then z+ is Cj with probability pij. ð18Þ

The probabilities, pij, i, j=1,⋯, n, where n = n1n2, are the elements of the
transition probability matrix Π covering the transitions between the subsets, Ci.
pij =P z+ ∈Cjjz∈Ci

� �
, ∑n

j=1 pij =1. Consequently, expression (11) applies and
determines the possibility distribution inferred by the dynamic fuzzy model (14).

Similarly, the Markov chain theory can also be extended to the case of fuzzy
modeling of stochastic dynamic multiple-state, multiple-input systems:

xðk+1Þ= f xðkÞ, uðkÞð Þ, ð19Þ

where x and u are of dimensions n and r, respectively. In order to simplify the
notations we consider dynamic fuzzy models of the type:

If u1 is B1
l and u2 is B

2
m and x1 is Al

i and x2 is A
2
j

Then x+1 is A1
s and x

+
2 is A2

t ,
ð20Þ

where u1 ∈U1 and u2 ∈U2 and B1
l and B2

m are fuzzy subsets of U1 and U2 with
cardinalities r1 and r2. Based on the discussion about higher order state model we
can assume that the state variables are granulated as in (12). Similar aggregation of
the input variables u1 and u2 into a new variable, w, and corresponding subsets B1

l

and B2
m into a new subset Ds yields:
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If w isDs and z is Ci Then z+ is Cj ð21Þ

Alternatively, this rule can be rewritten in the form:

If w is Ds Then

If z is Ci Then z+ is Cj.
ð22Þ

Such a granulation of the inputs and states defines a partitioning of the com-
pound Cartesian input/state space into rn fuzzy granules, where r= r1r2. Assuming
further that the granules Ci satisfy the Markov assumption, the system can be
modeled as a Markov chain with fuzzy encoding

If w is Ds Then

If z is Ci Then z+ is Cj with probability p
sð Þ
ij

ð23Þ

where the transition probabilities pðsÞij and corresponding transition probability

matrices ΠðsÞ the are defined as the following condition probabilities:

pðsÞij =P z+ ∈Cjjz∈Ci
� �

,w∈Ds, s=1, 2, . . . , r; i, j=1, 2, . . . n. ð24Þ

In order to include the impact of the input w on the inferred possibility distri-
bution by (14) we aggregate the corresponding possibility distributions that are
inferred under different degrees of membership of the input w to the subsets
Ds, s=1, 2, . . . , r, i.e.,

χ ̄+ = ∑
r

s=1

νs
∑r

t=1 νt
τ ̄ ΠðsÞ a ̄= ∑

r

s=1

νs
∑r

t=1 νt

χ ̄aT̄ΠðsÞ a ̄
χ ̄aT̄o

ð25Þ

where νs is the degree of membership of the input w in the subsets
Ds, s=1, 2, . . . , r.

We can visualize the transition probabilities pðsÞij as r transition probability

matrices ΠðsÞ of size n× nð Þ that are associated with the corresponding subsets Ds

proportionally to the degrees of membership of the input w in Ds, s=1, 2, . . . , r.
Figure 2 illustrates the transition probabilities for a system with 2 input and 2

state variables that are defined on continuous universes (Fig. 4).
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5 Learning Generalized Dynamic Fuzzy Models
from Data

In the fuzzy models that were discussed above we considered the case of a second
order system with 2 inputs. The formal extension to the multiple input systems of a
higher order is straightforward and is omitted.

The method and algorithm for learning the transition probabilities for Markov
Chains with fuzzy encoding were discussed in detail in [9]. Leveraging the
equivalence between both models and by applying the learning algorithm from [9]
we get for the transition probability matrix in (18),

ΠðkÞ= diagðF0ðkÞÞ− 1FðkÞ, ð26Þ

where

FðkÞ=Fðk− 1Þ+ βðτðkÞγðkÞT −Fðk− 1ÞÞ, ð27Þ

FoðkÞ=Foðk− 1Þ+ β ðτðkÞγðkÞT1M −Foðk− 1ÞÞ, ð28Þ

β is the learning rate, and τðkÞ and γðkÞ are the vectors of membership of the
aggregated vectors z= z kð Þ and z+ = z k+1ð Þ in the subsets Ci and Cj. The algo-
rithm is initialized as follows:

Fig. 4 Example of a vehicle model with 2 state variables (x1 and x2) and 2 input variables (u1 and u2)
that are defined on continuous universes, e.g. speed and acceleration can be thought as the state
variables and the accelerator and brake pedal positions can be thought of as the inputs. The inputs are
partitioned into 2 and 3 intervals respectively defining 6 input granules, Ds. The ranges of possible
values of the state variables are partitioned into 6 and 3 fuzzy subsets, respectively, defining 18 fuzzy
subsets, Ci. For different input conditions and states, the transition probabilities are described by 6
transition probability matrices ΠðsÞ with the elements, psij =P z+ ∈Cjjz∈Ci,w∈Ds

� �
, i, j∈

1, 2,⋯, 18f g, s∈ 1, 2,⋯, 6f g
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Fð0Þ= ϵE;Foð0Þ=Fð0Þ 1M ð29Þ

with E being a matrix of compatible size and unit elements, and ϵ being a small
nonnegative constant introduced to avoid singularity.

As follows from (24), for the case of multiple inputs, the number of transition
probability matrices corresponds to the number of fuzzy subsets Ds, s=1, 2, . . . , r
of the aggregated input variables. Apparently, all transition probability matrices are
created in the same way since they summarize the transitions between the states.
However, since the input vector can belong to each of the subsets Ds with a
different degree of membership νs we use this membership to weigh the contri-
butions of corresponding transitions.

Assuming a set of observations (w(k), z(k)), k = 1, 2, …, K and fuzzy subsets
Ds, s=1, 2, . . . , r for w, then for each of the r transition probability matrices we get

ΠsðkÞ= diagðFs0ðkÞÞ− 1FsðkÞ, ð30Þ

where

FsðkÞ=Fsðk− 1Þ+ βðνsðkÞτðkÞγðkÞT −Fsðk− 1ÞÞ, ð31Þ

FsoðkÞ=Fsoðk− 1Þ+ βðνsðkÞτðkÞγðkÞT1M −Fsoðk− 1ÞÞ, ð32Þ

β is the learning rate,τðkÞ and γðkÞ are the vectors of membership of the aggregated
vectors z= z kð Þ and z+ = zðk+1Þ in the subsets Ci and Cj, and νs is the degree of
membership of the input w in the subsets Ds, s=1, 2, . . . , r. The algorithm is
initialized as follows:

Fsð0Þ= ϵE;Fsoð0Þ=Fsð0Þ 1M ð33Þ

6 Case Study

We consider an example of adaptive cruise control of a vehicle following another
vehicle in traffic. The model is given by

d t+1ð Þ= d tð Þ+ΔTv tð Þ,
v t+1ð Þ= v tð Þ+ΔT u tð Þ−w tð Þð Þ, ð34Þ

where ΔT =0.25 s is the sampling period, d tð Þ= ρ tð Þ− ρnom is the deviation of the
relative distance, ρ tð Þ, from the nominal safe following distance ρnom (for sim-
plicity, we refer to d tð Þ as the relative distance), v tð Þ is the relative speed, w tð Þ is the
acceleration of the lead vehicle in traffic, and uðtÞ is the acceleration of the follower
vehicle that hosts the control algorithm.
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Our objective is to develop a model-based control algorithm for the host vehicle
acceleration, u tð Þ, that maintains the relative distance and vehicle following. As a
first step, we define a fuzzy state model of the two vehicles. We model the two
states (the relative distance to a vehicle in traffic, dðtÞ, and the relative speed, vðtÞ)
and the control input (the host vehicle acceleration, u tð Þ) by partitioning their
ranges into 3 fuzzy subsets. The rules derived from this partitioning are of the form,

If u is Ds and v is A1
i and s is A2

j

Then v+ is A1
k and s+ is A2

l , , i, j, k, l∈ f1, 2, 3g

where Ds stands for the fuzzy subsets Negative, Zero, and Positive of the Host
Vehicle Acceleration u, A1

i and A1
k stand for the fuzzy subsets Negative, Zero, and

Positive of the Relative velocity v, and A2
j and A2

t stand for the fuzzy subsets
Negative, Zero, and Positive of the Relative Distance d. The fuzzy subsets are
modeled by the membership functions depicted on Fig. 5. A discrete set of control
actions, representing the follower vehicle accelerations,

u∈U = f− 0.5, 0, 0.5g

was considered.

Following the discussion in the previous section we introduce the Cartesian
product subsets of the state variables,

Ct =A1
i and A

2
j , i, j∈ 1, 2, 3f g, 1≤ t≤ 9,

representing the aggregated states v and s. For example, the fuzzy subset C2 =A1
1

and A2
2 represents the following conjunction,
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Relative Speed is Negative and Relative Distance is Zero.
Therefore, the dynamic fuzzy model describing the relative distance and velocity

of the two vehicles can be written as a set of the following 243 rules:

If u is Ds Then

If z is Ci Then z+ is Cj with probaility p sð Þ
ij ,

ð35Þ

where the transition probabilities pðsÞij and corresponding transition probability

matrices ΠðsÞ the are defined as the following conditional probabilities:

pðsÞij =Pðz+ ∈Cjjz∈Ci, u∈DsÞ, s∈ f1, 2, 3g, i, j∈ f1, 2,⋯, 9g

To determine the transition probabilities, first a speed trajectory of the lead
vehicle was defined varying between 20 and 30 m/s based on a Markov Chain with
−1, 0 and 1 m/s vehicle speed change per time step with respective probabilities of
0.3, 0.4 0.3 except for the lower (upper) boundaries, where staying at the same
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value or transitioning to upper (lower) value was permitted with respective prob-
abilities of 0.5. Then model (34) was simulated for three different values of
u∈U = − 0.5, 0, 0.5f g. To avoid values outside of the range of interest, the relative
distance state was saturated between −20 and 150 m while the relative velocity state
was saturated between −5 and 5 m/s. The transition probability matrices were
learned from the simulated trajectories of lead and host vehicle acceleration, relative
distance, and relative speed (selected sections of state trajectories for u=0. 5 are
shown in Fig. 6) by applying the learning algorithm (30)–(33). These transition
probability matrices are visualized in Fig. 7.

The resulting rules reflect the car following dynamics. As an example, noting
that

C7 =A1
3 and A

2
1 =

Relative Speed isPositive and RelativeDistance isNegative,

C8 =A2
3 and A

2
2 =

Relative Speed isPositive and Relative Distance isZero
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Fig. 7 Transition Probability Matrices, ΠðsÞ, s=1, 2, 3
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the rule

If u is D1 Then

If z is C7 Then z+ is C8 with probability p
ð1Þ
78 ,

is equivalent to the following rule

If Host Vehicle Acceleration is Negative Then
If Relative Speed is Positive and Relative Distance is Negative Then

Next Relative Speed is Positive and
Relative Distance is Zero with probability 0. 41

or

If Host Vehicle Acceleration is Negative and Relative Speed is Positive
Relative Distance is Negative Then
Next Relative Speed is Positive and Next Relative Distance is Zero
with probability 0. 41.

Low rule probability indicates low weight (impact) of a specific rule and allows
it to be eliminated from the model. In this example 71 rules with probabilities less
than 0.01 were eliminated without affecting the model performance.

In the next step we use the model (35) to design a fuzzy controller that maintains
the relative distance and speed.We apply Stochastic Dynamic Programming (SDP) to
determine the control actions corresponding to the aggregated fuzzy subsets, Ct,
t∈ f1, 2,⋯, 9g. The penalty function, L Ctð Þ, corresponding to the fuzzy subsets, Ct,
t∈ f1, 2,⋯, 9g, was chosen to discourage subsets that are further away from the
origin, i.e. away from the state of v=0, d=0. We assign lower penalty to the
“self-correcting states” corresponding to relative distance and velocity with opposite
signs. This leads to the choice of penalty for individual states presented in Table 1.

To generate the control policy, the Value Iteration Algorithm was applied to the
Markov Chain model with fuzzy encoding with transition probability matrices
visualized in Fig. 7 and the penalty function defined in Table 1. The value iterations
take the following form,

Table 1 Penalty selection for
different states of relative
distance and velocity

d/v Negative Zero Positive
Negative 1000 500 0
Zero 200 0 200
Positive 0 500 1000
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Vn Cð Þ= minu∈UfL Cð Þ+ qE½Vn− 1 C +ð Þ�g,

with discount factor q=0.90. Figure 8 shows the value iteration convergence.

The optimal control values for each of the fuzzy subsets Ct, t∈ f1, 2,⋯, 9g, we
determined from SDP are summarized in Table 2.

Thus the optimal controller comprises the following rule base:

If Relative Speed isNegative and Relative Distance isNegative then u= − 0.50

If Relative Speed isNegative and Relative Distance isZero then u= − 0.50

If Relative Speed isNegative and Relative Distance isPositive then u=0

If Relative Speed isZero and RelativeDistance isNegative then u= − 0.50

If Relative Speed isZero and RelativeDistance isZero then u=0

If Relative Speed isZero and RelativeDistance isPositive then u=0.50

If Relative Speed isPositive and RelativeDistance isNegative then u=0

If Relative Speed isPositive and RelativeDistance isZero then u=0.50

If Relative Speed isPositive and RelativeDistance isPositive then u=0.50
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Fig. 8 Maximum difference
between value functions in
two subsequent iterations over
the domain

Table 2 Consequent centroids corresponding to the different states of relative distance and
velocity as calculated from the optimal policy derived by the application of the Value Iteration
Algorithm

d/v Negative Zero Positive

Negative –0.5 –0.5 0
Zero –0.5 0 0.5
Positive 0 0.5 0.5
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By using the Simplified Reasoning Method [18] (weighed average aggregation
of the centers of gravity of rule consequents), the controller rule base produces a
control policy, uSDP v, dð Þ, as a function of the relative speed, v, and relative dis-
tance, d shown in Fig. 9.
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Fig. 9 Control surface
derived from the optimal
controller rule-base under the
Simplified Reasoning Method
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Fig. 10 Relative Speed
(top) and Relative Distance
(bottom) under the application
of the fuzzy controller with
consequents calculated by the
SDP algorithm when
following a randomly
accelerating vehicle with
acceleration varying between
−1 and 1 m/s2
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Figure 10 illustrates that the host vehicle is able to maintain relative speed and
relative distance in a small range while following a randomly accelerating lead
vehicle with acceleration magnitude between −1 and 1 m/s2 exceeding the follower
vehicle acceleration authority.

Figure 11 illustrates the closed-loop response when the lead vehicle is moving at
a constant speed, i.e., w=0. The closed-loop trajectories converge so that v tð Þ→ 0
and d tð Þ→ 0 m as t→∞, where the equilibrium values of the speed and distance
are the roots of uSDP v, dð Þ=0. The response is lightly damped but asymptotically
stable. By linearizing the model (34) with u= uSDP v, dð Þ and w=0 numerically, the
closed-loop eigenvalues are 0.9928± 0.0740j and are inside the unit disk, con-
firming that the closed-loop system is asymptotically stable.

7 Summary and Conclusions

In this paper we analyzed the equivalency between the Fuzzy State Models and the
Markov Chains with fuzzy encoding and demonstrated that these approaches are
identical under certain assumptions. This allowed us to analytically describe the
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Fig. 11 Relative Speed
(top) and Relative Distance
(bottom) under the application
of the fuzzy controller with
consequents calculated by the
SDP algorithm when
following a lead vehicle
moving at constant speed
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propagation of possibility distribution by a dynamic feedback fuzzy system and to
derive an analytical model of the possibility distribution inferred by a Fuzzy State
Model. We also showed that the methodology for developing and learning Markov
Chain models with fuzzy encoding can be extended to FSMs of higher order and
multiple inputs. Results were illustrated on a case study where a FSM for vehicle
following dynamics has been learned from sample trajectory data and Stochastic
Dynamic Programming (SDP) was applied to generate a fuzzy controller stabilizing
the relative speed and distance between two vehicles. We believe that these
developments will lead to a framework for systematically addressing the problems
of model-based design, stability, and optimal control of fuzzy systems.
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Incremental Granular Fuzzy Modeling
Using Imprecise Data Streams

Daniel Leite and Fernando Gomide

Abstract System modeling in dynamic environments needs processing of streams

of sensor data and incremental learning algorithms. This paper suggests an incre-

mental granular fuzzy rule-based modeling approach using streams of fuzzy inter-

val data. Incremental granular modeling is an adaptive modeling framework that uses

fuzzy granular data that originate from unreliable sensors, imprecise perceptions, or

description of imprecise values of a variable in the form fuzzy intervals. The incre-

mental learning algorithm builds the antecedent of functional fuzzy rules and the

rule base of the fuzzy model. A recursive least squares algorithm revises the para-

meters of a state-space representation of the fuzzy rule consequents. Imprecision in

data is accounted for using specificity measures. An illustrative example concerning

the Rossler attractor is given.

1 Introduction

Data produced by real world systems result from nonlinear, uncertain, and time-

varying dynamic processes. The description of the underlying dynamical behavior

using data models derived from first-principles remains unrealistic. Data-driven ori-

entation is becoming increasingly important as a key to complement first-principles

orientation. Modeling from data streams requires adaptive adjustment of models to

the dynamic variation of the data. Stream-based modeling algorithms need to be

developed with emphasis on the evolution of the data. The modeling process should

account for data distribution drifts and shifts triggered by the dynamics and the con-

text of the data. Because the volume of data increases continuously, it is not feasible
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to process the data efficiently using multiple passes. Typically learning procedures

must be designed to operate with one pass of the data.

Granular data emerge as a consequence of the concepts of indistinguishability,

similarity, proximity and functionality [1]. Data granulation can be viewed as a form

of lossy data compression in an environment of imprecision. In many cases, data

streams contain more information than is needed for a particular purpose [2, 3]. For

example, in practice, measurements do not contain more details than the sensors can

distinguish.

A granular mapping is defined on information granules and a quotient structure.

Mapping of granular data consists in associating a set of granules expressed in some

input space to another set of granules draw in an output space. Granular mappings

are frequently encountered in rule-based systems, where the mapping is given by

If-Then type of statements. Computing with granules emphasizes multiple levels of

understanding, analyzing and representing information. Fuzzy granular computing

[4–6] hypothesizes that accepting some level of imprecision may be beneficial and

therefore suggests a balance between precision and uncertainty.

Linguistic and functional rule-based systems are widely known types of fuzzy

systems, which emerged years ago from studies in linguistic modeling and control

systems. Both systems share the same rule antecedent structure, but differ in the way

the consequents are formed. Linguistic fuzzy rules use fuzzy set-based consequents

whereas functional fuzzy rules use functions of the antecedent variables as conse-

quent [7]. Linguistic and functional rule-based systems have been used in granular

data modeling [8, 9].

This chapter addresses system modeling using streams of fuzzy interval data. The

idea is to start with imprecise description of the values of data attributes and represent

them in terms of formal fuzzy objects and functional fuzzy rules whose consequents

are discrete-time state space models. The purpose is to represent nonlinear dynamic

time-varying processes using conceptual entities, such as data granules and associ-

ation rules, with no prior assumption about statistical properties of data. Granular

fuzzy models rely on the concepts of information granule and granular mapping to

encapsulate the imprecision in data streams, and to turn information granules into

knowledge in the form of fuzzy rules.

The chapter is structured as follows. Section 2 addresses an incremental, evolv-

ing modeling approach able to process imprecise data streams. The approach is a

continuous learning algorithm that process pointwise or fuzzy data; does not store

previous samples; does not depend upon prior structural knowledge; self-adapts the

model structure whenever needed; is independent of statistical properties of data;

and does not require ‘prototype’ initialization. A specificity-weighted recursive least

squares algorithm is used to handle imprecise data when updating the parameters of

the rule consequents. Section 3 presents an illustrative application on one-step esti-

mation of the Rossler system. Section 4 concludes the chapter summarizing the ideas

and suggesting issues for further development.
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2 Incremental Granular Modeling

2.1 Fuzzy Modeling

Incremental, evolving modeling concerns the gradual development of the model

structure (the fuzzy rule-base) and its parameters. Because data streams often are

non-stationary, the structure of the underlying data model should also be dynamic.

Model adaptation should continuously learn from the information contained in new

data and integrate new information in the current model.

A functional fuzzy rule-based model built from a stream of data is attractive

whenever the underlying process is unknown or changes over time. Usually, a finite

number of past states x(k), x(k − 1), ..., x(k − m), outputs and other exogenous vari-

ables can be part of the fuzzy rules antecedents. This chapter assumes functional

fuzzy rules of the form

Ri
: IF x1(k) is M i

1 AND ... AND x
𝛹

(k) is M i
𝛹

THEN xi(k + 1) = Aix(k)
where x(k) = [x1(k) ... x

𝜓

(k) ... x
𝛹

(k)]T is the state at k; i = 1, ..., c is the number of

rules. In incremental modeling, Ai
is a matrix of appropriate dimension with variable

entries; M i
𝜓

, 𝜓 = 1, ..., 𝛹 , are membership functions built using the data available.

The number of rules Ri
, i = 1, ..., c, is also variable. Superscript i on the left-hand

side of the consequent equation means a local estimation. We assume that all state

variables x(k) are measurable. State observers are not addressed in this chapter.

Consequent matrices and the state vector can be extended to include affine terms

as follows:

̃Ai =
[
1 0
ai0 Ai

]
, x̃ =

[
1
x
]
, (1)

where ai0 = [ai10 ... ai
𝜓0 ... ai

𝛹0]
T

. Rules Ri
can be rewritten as:

Ri
: IF x1(k) is M i

1 AND ... AND x
𝛹

(k) is M i
𝛹

THEN x̃ i(k + 1) = ̃Ai x̃(k)
In the rest of the paper we omit the tilde from the notation for short, and consider

affine models. For the same reason, the time index k is omitted from the time-varying

membership functions M i
𝜓

and matrices Ai
.

The state estimate from the functional fuzzy model is found as the weighted

average:

x(k + 1) =
c∑

i=1
𝜇

irxi(k + 1), (2)
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where 𝜇

ir
is the rescaled activation degree of the i-th rule,

𝜇

ir = 𝜇

i

c∑
i=1

𝜇
i
, so that 𝜇

ir
≥ 0 and

c∑
i=1

𝜇

ir = 1. (3)

Activation degrees 𝜇
i

are computed using any conjunctive aggregation operator,

typically a t-norm [7, 10]. t-norms are commutative, associative and monotone oper-

ators on the unit hypercube [0, 1]n whose boundary conditions are T(𝜔,𝜔, ..., 0) = 0
and T(𝜔, 1, ..., 1) = 𝜔, 𝜔 ∈ [0, 1]. The neutral element of t-norms is e = 1. In this

work we use the product t-norm. Thus

𝜇

i =
𝛹∏

𝜓=1
𝜇

i
𝜓

. (4)

where𝜇
i
𝜓

is the degree of membership of x
𝜓

(k) inM i
𝜓

. While it is common to assume

that the activation degree 𝜇

i
of at least one rule Ri

is nonzero, this is not the case

in evolving modeling because no fuzzy set exists a priori. Fuzzy sets and rules are

created and developed to gradually cover the input data domain. The number of rules

c increases by a unit if 𝜇
i = 0 ∀i. In this case, 𝜇

c+1 = 1, that is, the fuzzy sets of the

new rule match the input data. Incremental development of fuzzy sets and rules is

taken up in the next sections.

2.2 Fuzzy Data

Fuzzy data may originate from measurements of unreliable sensors, expert judgment,

imprecision introduced in pre-processing steps, and summarization of numeric data

over time periods (time granulation). Fuzzy data modeling generalizes pointwise

data modeling by allowing fuzzy interval granulation [4, 5].

This chapter concerns fuzzy functional rule-based models and trapezoidal fuzzy

data. A trapezoidal fuzzy set N = (l,𝜆,𝛬,L) allows the modeling of a wide class of

granular objects [11]. A triangular fuzzy set is a trapezoid where 𝜆=𝛬; an interval is

a trapezoid where l=𝜆 and 𝛬=L; a singleton is a trapezoid where l=𝜆=𝛬=L. Addi-

tional features that make the trapezoidal representation attractive include: (i) ease

of acquiring the necessary parameters: only four parameters need to be captured. A

trapezoidal fuzzy set can be formed straightforwardly from a trapezoidal datum; and

(ii) many operations on trapezoids can be performed using the endpoints of inter-

vals, which are level sets of trapezoids. The piecewise linearity of the trapezoidal

representation allows calculation of only two level sets (core and support) to obtain

a complete instance.



Incremental Granular Fuzzy Modeling Using Imprecise Data Streams 111

A fuzzy set N ∶ X → [0, 1] is upper semi-continuous if the set {x ∈ X|𝜇(x) > 𝛼}
is closed, that is, if the 𝛼-cuts of N are closed intervals. If the universe X is the

set of real numbers and N is normal, 𝜇(x) = 1 ∀x ∈ [𝜆,𝛬], then N is a model of

a fuzzy interval, with monotone increasing function 𝜁N : [l, 𝜆[→ [0, 1], monotone

decreasing function 𝜄N : ]𝛬,L] → [0, 1], and zero otherwise [7]. A fuzzy interval

N has the following canonical form:

N ∶ x → 𝜇(x) =
⎧⎪⎨⎪⎩

𝜁N , x ∈ [l, 𝜆[
1, x ∈ [𝜆,𝛬]
𝜄N , x ∈ ]𝛬,L]
0, otherwise

, (5)

where x is a real number in X. The fuzzy interval N satisfies the conditions of

normality (𝜇(x) = 1 for at least one x ∈ X) and convexity (𝜇(𝜅x1 + (1 − 𝜅)x2) ≥
min{𝜇(x1), 𝜇(x2)}, x1, x2 ∈ X, 𝜅 ∈ [0, 1]). If

𝜁N = x − l
𝜆 − l

and (6)

𝜄N = L − x
L − 𝛬

, (7)

then the fuzzy interval (5) reduces to the model of a trapezoidal membership func-

tion. Moreover, when 𝜆 = 𝛬, 𝜇(x) = 1 for a single element x in X. In this case, the

corresponding fuzzy entity is a fuzzy number.

Let x = (x, x, x, x) be a trapezoidal datum. The membership degree of x in the

fuzzy set N can be obtained from (5) if x is degenerated into a singleton. Otherwise,

if x is a symmetric object, i.e. if x− x = x− x ≠ 0, its membership degree in N can

be computed using the midpoint of x:

mp(x) =
x + x
2

. (8)

The center of gravity

CoG(x) =
x + 5x + 5x + x

12
(9)

is useful when x is asymmetric. Even though it is apparent that these approximations

of the true value are useful to facilitate computations, they contradict the purpose

of taking into account the data uncertainty into fuzzy models. Additionally, in some

situations, as that shown in Fig. 1, the midpoint (or center of area) approximation

can give zero (or low) membership degree to significantly overlapped fuzzy objects.

A measure of similarity between fuzzy granular data is needed to properly consider

all relevant situations.
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2.3 Similarity Between Fuzzy Sets

Similarity is a fundamental notion to construct rule-based systems from streams of

data. In this work, data are trapezoidal fuzzy sets. A possible similarity measure for

trapezoids, say x and M i
, is:

S(x,M i) = 1 − D(x,M i), (10)

where D(x,M i) is a distance measure computed as follows:

D(x,M i) =
|x − li| + 2|x − 𝜆

i| + 2|x − 𝛬

i| + |x − Li|
6

. (11)

The value of S equals 1 for identical trapezoids and indicates the maximum degree of

matching between them. S decreases linearly as x and M i
depart from each other. In

particular, (11) is a Hamming-like distance where the parameters of the trapezoids

are directly compared. Core parameters have double weight in relation to support

parameters. Although (10) - (11) are simple to compute, involving only basic arith-

metic operations, there are no strong principled reasons to choose this measure. In

fact, there is no generally accepted consensus on a best similarity measure [12].

Let the expansion region of a set M i
be denoted by

Ei = [Li − 𝜌, li + 𝜌], (12)

where 𝜌 is the maximum width that the set M i
is allowed to expand to fit a datum

x; Li − li ≤ 𝜌 at any k. Define the membership degree of the datum x in the fuzzy set

M i
as 𝜇

i
= S(x,M i) if x ∈ Ei

, and 𝜇

i = 0 otherwise.

Fig. 1 Case where the

membership degree of the

fuzzy datum x in the fuzzy

set N obtained by (8)is zero

despite their significant

similarity

The similarity measure (10) can be generalized for vectors of trapezoids, say x =
[x1 ... x

𝜓

... x
𝛹

]T and M i = [M i
1 ... M i

𝜓

... M i
𝛹

]T , as follows

S(x,M i) = 1 − 1
6𝛹

𝛹∑
𝜓=1

(|x
𝜓

− li
𝜓

| + 2|x
𝜓

− 𝜆

i
𝜓

| +
+2|x

𝜓

− 𝛬

i
𝜓

| + |x
𝜓

− Li
𝜓

|), (13)
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then 𝜇

i
= S(x,M i) if x ∈ Ei

. Refer to [12] for a thorough discussion about similarity

measures.

2.4 Incremental Adaptation

The purpose of simultaneously adapting the structure and parameters of dynamic

fuzzy models is to use current information about the process to keep its represen-

tation updated. This section develops model structure identification and antecedent

parameter estimation. An incremental learning method is introduced to avoid time

consuming training common in multiple passes learning methods.

Expansion regionsEi
, see (12), help to verify if new input data belong to a granule

in the input space. Different values of 𝜌 produce different representations of the same

data set in different levels of granularities. For normalized data, 𝜌 assumes values in

[0, 1]. If 𝜌 is equal to 0, then granules are not expanded. Learning creates a new rule

for each sample, which causes overfitting and excessive complexity. If 𝜌 is equal to 1,

then a single granule covers the entire data domain. Evolvability is reached choosing

intermediate values for 𝜌.

A rule is created whenever one or more entries of x are not within the expansion

regions Ei
of M i

, i = 1, ..., c. A new associated granule M c+1
is constructed from

fuzzy sets M c+1
𝜓

, 𝜓 = 1, ..., 𝛹 , whose parameters match x, that is,

M c+1
𝜓

= (lc+1
𝜓

, 𝜆

c+1
𝜓

, 𝛬

c+1
𝜓

,Lc+1
𝜓

) = (x
𝜓

, x
𝜓

, x
𝜓

, x
𝜓

). (14)

Adaptation of an existing granule M i
consists in expanding the support [li

𝜓

,Li
𝜓

]
and updating the core [𝜆i

𝜓

, 𝛬

i
𝜓

] of its fuzzy sets. Among all granules M i
that can

be expanded to include a sample x, the one with highest similarity according to (13)

is chosen. Adaptation proceeds depending on where the datum x
𝜓

is placed. The

conditions to expand the support are:

If x
𝜓

∈ [Li
𝜓

− 𝜌, li
𝜓

] then li
𝜓

(new) = x
𝜓

, and

If x
𝜓

∈ [Li
𝜓

, li
𝜓

+ 𝜌] then Li
𝜓

(new) = x
𝜓

.

The parameters of the core are recursively updated using:

𝜆

i
𝜓

(new) =
(wi − 1)𝜆i

𝜓

+ x
𝜓

wi and (15)

𝛬

i
𝜓

(new) =
(wi − 1)𝛬i

𝜓

+ x
𝜓

wi , (16)
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where wi
is the number of times that the granule M i

was chosen to be adapted.

Figure 2 shows seven possible adaptation situations. In the figure, the datum x =
(x, x, x, x) places either outside, partially inside or inside the fuzzy set M i

. The learn-

ing procedure creates a new granule M c+1
or adapts the parameters of M i

accord-

ingly.

2.5 Specificity-Weighted Recursive Least Squares Algorithm

A recursive least squares-like (RLS) algorithm is used to adapt the parameters of the

rule consequents as follows.

Consider the consequent of rule Ri
:

xi(k + 1) = Aix(k) (17)

where x = [1 x1 ... x𝜓 ... x
𝛹

]T . The elements of Ai
are denoted ai

𝜓1𝜓2
, 𝜓1, 𝜓2 =

0, ..., 𝛹 . Rule Ri
is chosen to be adapted whenever its antecedent part M i

is more

similar to x(k) than the antecedent part of the remaining rules. When instance x(k+1)
becomes known, equation (17) can be solved for Ai

.

Expanding the 𝜓-th row of (17) we have

x
𝜓

(k + 1) = ai
𝜓0 + ai

𝜓1x1(k) + ... + ai
𝜓𝛹

x
𝛹

(k). (18)

The standard RLS algorithm can be used for each row of (17) if we replace the trape-

zoids x
𝜓

by their midpoint (8) or center of gravity (9), depending on their symmetry.

Imprecision in the data can be accounted for by weighing the adjustment of ai
𝜓1𝜓2

using specificity measures. Specificity measures refer to the amount of information

conveyed by a fuzzy datum [13]. A highly imprecise fuzzy datum (lower specificity)

may not be as important as a more precise (higher specificity) datum.

Let ai
𝜓

= [ai
𝜓0 ai

𝜓1 ... ai
𝜓𝛹

]T be the vector of unknown coefficients; 𝔛 = [1
CoG(x1)(k) ... CoG(x

𝛹

)(k)] be the regression vector; and 𝔜 = [CoG(x
𝜓

)(k + 1)].
Then, in matrix form, equation (18) becomes

𝔜 = 𝔛ai
𝜓

. (19)
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Fig. 2 Creation and

recursive adaptation of fuzzy

sets
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To estimate the coefficients ai
𝜓

we let

𝔜 = 𝔛ai
𝜓

+ 𝜩 , (20)

where 𝜩 ∶= [𝜀
𝜓

(k + 1)] and

𝜀
𝜓

(k + 1) = CoG(x
𝜓

)(k + 1) − CoG(x̂
𝜓

)(k + 1) (21)

is the approximation error. While in batch estimation the rows in𝔜,𝔛 and𝜩 increase

with the number of available samples, in recursive mode only two rows are kept and

we reformulate equations (19)-(21) as follows:

𝔜 =
[

CoG(x
𝜓

)(k)
CoG(x

𝜓

)(k + 1)

]
, 𝜩 =

[
𝜀
𝜓

(k)
𝜀
𝜓

(k + 1)

]
and

𝔛=
[
1 CoG(x1)(k − 1) ... CoG(x

𝛹

)(k − 1)
1 CoG(x1)(k) ... CoG(x

𝛹

)(k)

]
. (22)

The rows of the matrices in (22) refer to values before and just after adaptation. The

RLS algorithm chooses ai
𝜓

to minimize the functional

J(ai
𝜓

) = 𝜩
T
𝜩 . (23)

ai
𝜓

is given by

ai
𝜓

= (𝔛T𝔛)−1𝔛T𝔜. (24)

Let Q = (𝔛T𝔛)−1. From the matrix inversion lemma [14] we avoid inverting 𝔛T𝔛
using:

Q(new) = Q(old)

[
I − 𝔛T𝔛Q(old)

1 +𝔛(2)Q(old)𝔛T
(2)

]
, (25)

where I is the identity matrix, and 𝔛(2) is the second row of 𝔛. In practice it is

usual to choose large initial values for the entries of the main diagonal of Q. We use

Q(0) = 103I as the default value.

Performing simple mathematical transformations, the vector of coefficients can

be rearranged recursively as

ai
𝜓

(new) = ai
𝜓

(old) + Q(new)𝔛T (𝔜 −𝔛ai
𝜓

(old)) (26)
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or, similarly,

ai
𝜓

(new) = ai
𝜓

(old) + Q(new)𝔛T
𝜩 . (27)

Yager [11] defines the specificity of a trapezoid x
𝜓

as

sp(x
𝜓

) = 1 − wdt(x
𝜓(0.5)). (28)

This form of specificity measure means one minus the width of the 0.5 level set of

x
𝜓

. In terms of the parameters of x
𝜓

we get

sp(x
𝜓

) = 1 −
(x

𝜓

+ x
𝜓

) − (x
𝜓

+ x
𝜓

)

2
. (29)

Let the specificity of x be the diagonal matrix:

sp(x) = diag([1 sp(x1) ... sp(x
𝛹

)]). (30)

Thus, we may add specificity into equation (27) to account for data uncertainty as

follows:

ai
𝜓

(new) = ai
𝜓

(old) + sp(x)Q(new)𝔛T
𝜩 (31)

Figure 3 gives the idea of the specificity-weighted RLS algorithm. In the figure in

the left, the coefficients ai(old) of the approximation function result from recursive

adaptation based on x(1), x(2) and x(3). Note that the data granules x(1), x(2) and x(3)
are of the same size and thus have the same specificity. When the new datum x(4)
arrives (with the same specificity as that of previous data), the algorithm weights its

contribution equivalently to the contribution of previous data to adapt ai(old) and

yield ai(new). Conversely, on the right side, the specificity of the new datum x(4) is

lower than that of x(1), x(2) and x(3). The higher uncertainty on the value of x(4)
causes a smaller adjustment of the approximation function toward x(4).

Fig. 3 Specificity-weighted RLS algorithm
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The specificity-weighted RLS algorithm described in this section is repeated for

𝜓 = 1, ..., 𝛹 at each step. Detailed derivations of the RLS algorithm can be found in

[15]. A convergence analysis is given in [16].

3 The Rossler Attractor

This section addresses an application example to show the potential of the evolving

fuzzy granular modeling approach. The Rossler attractor [17] is a system of three

nonlinear ordinary differential equations that exhibits chaotic dynamics. The equa-

tions have been commonly used as a model of equilibrium in chemical reactions. An

orbit within the attractor follows an outward spiral around an unstable fixed point,

close to the x1 −x2 plane. Once the orbit spirals out enough, it is influenced by a sec-

ond fixed point that causes a rise and twist in the x3 dimension. In the time domain,

irregular oscillations bounded in a range of values are perceptible.

Here, we use the Rossler equations only to generate a data stream. The objective

is to obtain a fuzzy model of an “unknown” nonlinear dynamical system based on

the data stream. The discrete-time Rossler equations are:

x1(k + 1) = x1(k) + (−x2(k) − x3(k))dt + 𝜂1
x2(k + 1) = x2(k) + (x1(k) + ax2(k))dt + 𝜂2
x3(k + 1) = x3(k) + (b + x1(k)x3(k) − cx3(k))dt + 𝜂3 (32)

The nonlinearity is x1x3. Similar to many articles, we considered a = b = 0.1, and

c = 14. dt is the sampling period; 𝜂i is a random value in [−0.5, 0.5]. The initial state

x(0) is (1; 0; 0). The error introduced by the discretization of the original equations

is negligible for sampling periods dt sufficiently small compared with the significant

time constant of the system. As shown in Fig. 4, the trajectory of the system states

in the phase space settles into an aperiodic oscillation. Trajectories are confined to a

fractal set.

In a first experiment a fuzzy model is evolved to approximate (32). The equa-

tions are perceived through pointwise input ([x1(k) x2(k) x3(k)]) and output ([x1(k +
1) x2(k + 1) x3(k + 1)]) data. Data become available gradually to simulate a data

stream. No data is available before learning starts. In addition, no data is stored dur-

ing the entire learning process. The one-step forecasting given by the evolving fuzzy

model using the maximum width allowed for granules, 𝜌, equal to 2 is shown in

Fig. 5. The sampling period was chosen to be dt = 0.005 in this experiment. The

figure shows the results for k = 10500, ..., 16000. The root mean square error, calcu-

lated as

RMSE = 1
kc

kc∑
k=1

√√√√√ 3∑
j=1

(xj(k + 1) − x̂j(k + 1))2, (33)
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Fig. 4 Rossler chaotic system: phase space trajectory

is RMSE = 0.0372 for kc = 60000. Five rules were developed during the simulation

period. Their parameters are:

Rule 1:

M 1
1 = (−0.9981, 0.0010, 0.0010, 1.0000)

M 1
2 = (0, 0.7781, 0.7781, 1.5562)

M 1
3 = (−0.0178, 0.0066, 0.0066, 0.0310)

A1 =
⎡⎢⎢⎢⎣

1 0 0 0
−0.0494 0.0049 −0.9385 −2.7209
−0.0151 1.0415 0.1366 0.1307
0.1351 0.0073 −0.0709 −14.0967

⎤⎥⎥⎥⎦
Rule 2:

M 2
1 = (−1.1365,−0.1378,−0.1378, 0.8608)

M 2
2 = (−1.2667,−0.3420,−0.3420, 0.5826)

M 2
3 = (−0.0086, 0.0077, 0.0077, 0.0241)

A2 =
⎡⎢⎢⎢⎣

1 0 0 0
−0.0243 −0.0065 −0.9531 3.9008
−0.0994 1.0198 0.0227 2.8007
0.2135 0.0194 0.0153 −22.7749

⎤⎥⎥⎥⎦
Rule 3:

M 3
1 = (0.8690, 1.1200, 1.1200, 1.3710)

M 3
2 = (−0.9937, 0.0061, 0.0061, 1.0058)

M 3
3 = (−0.0141, 0.0073, 0.0073, 0.0287)
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A3 =
⎡⎢⎢⎢⎣

1 0 0 0
−0.1717 0.1292 −1.0691 1.1173
−0.1491 1.1051 0.1056 4.7427
0.7875 −0.5095 0.1014 −17.0389

⎤⎥⎥⎥⎦
Rule 4:

M 4
1 = (−1.6920,−1.3501,−1.3501,−1.0083)

M 4
2 = (−0.7079, 0.2867, 0.2867, 1.2813)

M 4
3 = (−0.0043, 0.0098, 0.0098, 0.0238)

A4 =
⎡⎢⎢⎢⎣

1 0 0 0
0.1070 0.0906 −1.0105 5.5327
0.6310 1.4638 0.1224 1.2655
1.7437 0.8991 −0.3307 −25.7244

⎤⎥⎥⎥⎦
Rule 5:

M 5
1 = (−1.5243,−0.5816,−0.5816, 0.3612)

M 5
2 = (−1.7995,−1.2594,−1.2594,−0.7193)

M 5
3 = (−0.0082, 0.0088, 0.0088, 0.0257)

A5 =
⎡⎢⎢⎢⎣

1 0 0 0
0.6108 0.0624 −0.6953 −8.7299
−0.7245 0.8414 −0.2828 5.8742
−0.4074 −0.2262 −0.2866 −23.5195

⎤⎥⎥⎥⎦

From Fig. 5, the effectiveness of the evolving approach in predicting nonlinear

systems without prior knowledge about the data and system equations can be verified.

The error signals have relatively small amplitudes compared to the amplitudes of

the system states. An important point in this experiment is that due to exponential

divergence of the trajectories for small differences in the measurements, parameters

or initial states, a non-evolving (offline-trained) modeling method is unlike to track

the trajectory of the states. Another point is that the higher the number of granules

and rules, the more accurate the state estimation tends to be. However, the state

estimation depends on the availability of sufficient data for setting local parameters.

A second experiment consisted in evaluating the ability of the modeling approach

in handling fuzzy data, and detecting and reacting to concept drifts and shifts. We

considered the data as perceptions of the values of a variable. Imprecision of the

values of xj is represented by a fuzzy object of the form (xj − 0.5, xj, xj, xj + 0.5). At

k = 11500, the parameters of the Rossler equations are shifted to a = b = 0.2 and

c = 3 to simulate a concept shift. At each step after k = 14000, an offset of 0.02 is
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Fig. 5 One-step estimation of the Rossler map

added to c whereas an offset of −0.02 is added to b and c to produce gradual change

of parameters. Figure 6 shows the results for the state variable x1. The results for the

remaining state variables are essentially the same.

Fig. 6 One-step estimation of the variable x1 of the Rossler system subject to abrupt (k = 11500)

and gradual (k = 14000, ...) changes of parameters

Note from Fig. 6 that the oscillations of the error rate are stronger after the concept

shift, but the quality of state estimates improves after few time steps. To maintain

an acceptable level of prediction performance when the large and unknown change
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occurred, the learning algorithm created an additional fuzzy rule - a 6th rule. Con-

versely, when gradual change of the values of the parameters occurred, the learning

algorithm basically adapted the parameters of existing rules to track the trajectory of

the states. The evolving granular modeling method has shown to be robust to time-

varying parameters and able to handle fuzzy data streams.

The granular incremental modeling was compared with alternative state-of-the-

art evolving modeling approaches. The following models were considered: evolving

Takagi-Sugeno (eTS) [18], Dynamic evolving Neuro-Fuzzy Inference System (DeN-

FIS) [19], extended Takagi-Sugeno (xTS) [20], and the evolving Granular Fuzzy

Model (abbreviated in Table 1 as eGFM) described in this paper. We prioritized

model compactness and estimation performance. The models were developed from

scratch, with no rules nor pre-training. Table 1 summarizes the results of one-step

state forecasting of the Rossler chaos. The RMSE is calculated over non-normalized

data and averaged over 10 runs. The number of samples, kc, see (33), is equal to

60000 in each of the simulations.

Table 1 Rossler Chaos - Prediction Performance

Model Avg. Rules RMSE Best RMSE Avg.

xTS 23.7 0.0727 0.0744 ± 0.0015

eTS 5.5 0.0511 0.0619 ± 0.0096

DENFIS 34.7 0.0485 0.0528 ± 0.0032

eGFM 5.5 0.0303 0.0407 ± 0.0100

The results of Table 1 show that, strictly speaking, eGFM is the most accurate

model from the best and average RMSE point of view. The eGFM produces an aver-

age of 5.5 rules, a rule base as compact as that of eTS. In other words, the granular

modeling approach does not take advantage from a large amount of local processing

units (granules/rules) to achieve the average performance of 0.0407. eGFM benefits

from a combination of ingredients concerning with structural assumptions, peculiar-

ities of the learning algorithm, and fuzzy granular framework to attain that perfor-

mance. The effectiveness of the granular evolving approach in one-step estimation

without prior knowledge about the data is verified in this experiment.

4 Conclusion

This chapter has introduced an incremental fuzzy granular approach for evolving

modeling of nonlinear time-varying systems. The approach is capable to process

and learn from numeric and/or fuzzy data incrementally. Imprecise data is handled

using specificity measures of the input data during learning. Experiments with the

time-varying Rossler attractor show the usefulness of the method developed; mean-

while, comparisons with state-of-the-art evolving approaches show its effectiveness.
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Further research is needed to manage unmeasurable state variables. A systematic

design method for evolving fuzzy observers using input-output data shall be con-

sidered. We will also look into issues related to different kinds of nonstationarities

and uncertainties in data streams. Stability analysis and stabilization of time-varying

nonlinear systems is also an important issue to be investigated.
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Fuzzy Measures and Integrals: Recent
Developments

Michel Grabisch

Abstract This paper surveys the basic notions and most important results around

fuzzy measures and integrals, as proposed independently by Choquet and Sugeno,

as well as recent developments. The latter includes bases and transforms on set func-

tions, fuzzy measures on set systems, the notion of horizontal additivity, basic Cho-

quet calculus on the nonnegative real line introduced by Sugeno, the extension of the

Choquet integral for nonmeasurable functions, and the notion of universal integral.

1 Introduction

This paper gives a survey of the research done on fuzzy measures and integrals

since Sugeno proposed in 1974 the concept of fuzzy measure, with an emphasis

on recent results. This field of research lies at the intersection of several independent

domains, which makes it very active and attractive, namely, measure theory, the-

ory of aggregation functions, cooperative game theory, combinatorial optimization,

pseudo-Boolean functions and more generally theoretical computer sciences. As an

illustration of this fact, the word “fuzzy measure” which was coined by Sugeno,

has many different names according to the field where it is used: nonadditive mea-

sure, capacity, monotone game, pseudo-Boolean function, rank function of a poly-

matroid, etc. Evidently, this short paper cannot make a complete account of all the

research undertaken in this area, a whole book will hardly suffices. Indeed, the author

is preparing a monograph on this topic, with the title: “Set functions, games and

capacities in decision making”, to be published by Springer around the end of 2015.

This paper gives a kind of quick and necessarily simplified summary of selected top-

ics. We recommend the interested reader to consult the main (available) monographs

dealing with fuzzy measures and integrals: Pap [1], Denneberg [2], Wang and Klir

[3], the Handbook of measure theory edited by Pap [4], as well as the edited book [5],
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and the survey paper [6]. The latter focusses on application in multicriteria decision

making, an aspect which is not covered by this paper, restricting to theory.

To avoid intricacies, in the whole paper the universal set X is finite, with |X| = n.

We often use ∨,∧, which collapse to maximum and minimum on finite sets.

2 Fuzzy Measures

Fuzzy measures introduced by Sugeno [7] are generalization of classical measures,

i.e., additive and nonnegative set functions, whose domain is an algebra  on X. As

we will see in Sect. 2.4, the structure of algebra is not needed here, and various struc-

tures can be thought of. For simplicity, we assume  = 2X
in the first subsections,

the general case will be addressed in the last one.

2.1 Definition, Main Families and Properties

A fuzzy measure on X is a set function 𝜇 ∶ 2X → ℝ such that 𝜇(∅) = 0 and

𝜇 obeys monotonicity: A ⊆ B ⊆ X implies 𝜇(A) ⩽ 𝜇(B). Fuzzy measures are

also called capacities (after Choquet [8]), nonadditive measures (Denneberg [2]),

monotone measures (Wang and Klir [3]), etc. If in addition 𝜇(X) = 1, then the fuzzy

measure is said to be normalized.

If monotonicity is dropped from the definition, we obtain nonmonotonic fuzzy

measures, more commonly called games, denoted usually by v.

One of the most important property of fuzzy measures (or games as well) is con-
vexity, a.k.a. supermodularity. A fuzzy measure 𝜇 is convex if for all A,B ∈ 2X

,

𝜇(A ∪ B) + 𝜇(A ∩ B) ⩾ 𝜇(A) + 𝜇(B). If the reverse inequality holds, 𝜇 is said to

be concave or submodular. Convexity is generalized by the so-called k-monotonicity
property: 𝜇 is k-monotone for some fixed 2 ⩽ k ⩽ n if for any family of k sets

A1,… ,Ak ∈ 2X
,

𝜇

( k⋃
i=1

Ai

)
⩾

∑
I⊆{1,…,k}

I≠∅

(−1)|I|+1𝜇
(⋂

i∈I
Ai

)
. (1)

Moreover, 𝜇 is totally monotone if it is k-monotone for every k ⩾ 2 (in fact, 2 ⩽ k ⩽
2n−2 suffices). The k-alternating property is defined similarly, interchanging

⋂
and⋃

and reversing inequality. Lastly, 𝜇 is said to be maxitive if 𝜇(A∪B) = 𝜇(A)∨𝜇(B),
and minitive if 𝜇(A ∩ B) = 𝜇(A) ∧ 𝜇(B).
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The simplest fuzzy measures which can be thought of are 0-1-fuzzy measures:

their range is simply {0, 1}. In game theory, they are called simple games and are

useful in voting theory. Among them, particularly useful are unanimity games (a.k.a.

simple support functions): for any ∅ ≠ A ⊆ X, the unanimity game uA is defined by

uA(B) =

{
1, if B ⊇ A
0, otherwise.

The next remarkable families are possibility and necessity measures: a possibility

(resp., necessity) measure is a normalized maxitive (resp., minitive) fuzzy measure

(Zadeh [9], Dubois and Prade [10]). Necessity measures are particular cases of belief
functions, as proposed by Shafer [11] (similarly, plausibility functions generalize

possibility measures). Mathematically speaking, a belief (resp., plausibility) function

is a normalized totally monotone (resp., alternating) fuzzy measure.

2.2 Transforms and Bases

The set of games, as well as the set of set functions, form a vector space of dimension

2n − 1 (resp., 2n
). This is not the case for the set of fuzzy measures, which is only

a cone, while the set of normalized capacities is a polytope, whose vertices are the

0-1 fuzzy measures (Stanley [12], Radojevic [13]). In the rest if this section, we deal

with the vector space of set functions (the results can be however easily adapted to

the set of games).

A transform is a mapping 𝛹 ∶ ℝ(2N ) → ℝ(2N )
, assigning to any set function 𝜉

the set function 𝛹

𝜉

. If the transform is linear and invertible, then it induces a basis

of the vector space of set functions (and similarly for games). Conversely, any basis

induces a linear invertible transformation. This is explicited in the next lemma.

Lemma 1 (Faigle and Grabisch [14]) For every basis {bS}S∈2X of ℝ2X , there exists
a unique linear invertible transform 𝛹 such that for any 𝜉 ∈ ℝ2X ,

𝜉 =
∑

S∈2X

𝛹

𝜉(S)bS, (2)

whose inverse 𝛹

−1 is given by 𝜉 ↦ (𝛹−1)𝜉 =
∑

T∈2X 𝜉(T)bT .
Conversely, to any transform 𝛹 corresponds a unique basis {bS}S∈2X such that

(2) holds, given by bS = (𝛹−1)𝛿S , where 𝛿S is a 0-1-valued set function defined by
𝛿S(T) = 1 if and only T = S.

It is well known that the set of unanimity games forms a basis of the set of games.

Adding the 0-1-valued set function u∅ defined by u∅(S) = 1 if and only if S = ∅,
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we get a basis for the vector space of set functions. By Lemma 1, the corresponding

transform, denoted by m, satisfies

𝜉(A) =
∑
B⊆A

m𝜉(B) (A ∈ 2X),

which yields

m𝜉(A) =
∑
B⊆A

(−1)|A⧵B| (A ∈ 2X).

This transform is known as the Möbius transform, famous in combinatorics. Among

the many existing transforms, at least two of them have a special interest. The inter-
action transform [15], generalizing the Shapley value [16] and the interaction index

of Murofushi and Soneda [17], has the following expression:

I𝜉(A) ∶=
∑

B⊆X⧵A

(n − b − a)!b!
(n − a + 1)!

𝛥A𝜉(B) =
∑
K⊆X

|X ⧵ (A ∪ K)|!|K ⧵ A|!
(n − a + 1)!

(−1)|A⧵K|
𝜉(K)

for all A ⊆ X, where a, b, k are cardinalities of subsets A,B,K, respectively, and

𝛥A𝜉(B) =
∑

K⊆A(−1)|A⧵K|
𝜉(B∪K). This transform enables the interpretation of fuzzy

measures in a multicriteria decision making context [6, 18]. The inverse transform

is given by

(I−1)𝜉(S) =
∑
K⊆X

𝛽

|K|
|S∩K|𝜉(K),

with coefficients 𝛽
l
k given by

𝛽

l
k =

k∑
j=0

(
k
j

)
Bl−j (k ⩽ l),

where the Bj’s are the Bernoulli numbers. It follows from Lemma 1 that the corre-

sponding basis is

bI
T (S) = 𝛽

|T|
|T∩S| (S,T ∈ 2X).

The interaction transform of 𝜉 can be expressed in a simple way through its Möbius

transform:

I𝜉(A) =
∑
B⊇A

1
b − a + 1

m𝜉(B). (3)
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The second transform of interest is the so-called Fourier transform, well known

in computer sciences (see, e.g., de Wolf [19] and O’Donnell [20]). The Fourier trans-

form of a set function 𝜉 is defined by

F𝜉(S) = 1
2n

∑
K⊆X

(−1)|S∩K|
𝜉(K).

Interestingly enough, it is auto-inverse up to the factor 1∕2n
:

(F−1)𝜉(S) =
∑
K⊆X

(−1)|S∩K|
𝜉(K).

The corresponding basis is therefore

bF
T (S) =

∑
K⊆X

(−1)|S∩K|
𝛿T (K) = (−1)|S∩T| (S,T ∈ 2X).

The vectors of this basis (not that these are not games) are called parity functions
in the literature of computer sciences. They are up to a recoding equal to the Walsh
functions wS(T) = (−1)|S⧵T|

(indeed, bF
T (S) = wS(X ⧵ T)). These are a finite version

of the original functions proposed by Walsh (see Hurst et al. [21]), who form a orho-

normal basis of the set of square integrable functions on [0, 1]. The major advantage

of the Fourier (or Walsh) basis is that it is orthonormal, in the sense that ⟨bF
T , b

F
S ⟩ = 1

if S = T , and 0 otherwise, where the inner product is defined by

⟨𝜉, 𝜉′⟩ = 1
2n

∑
S∈2X

𝜉(S)𝜉′(S).

Another remarkable property is that the Fourier transform turns the convolution

product into an ordinary product (like with the original definition of the Fourier

transform):

F𝜉∗𝜉′ = F𝜉F𝜉

′

where the convolution product of two set functions is defined by

(𝜉 ∗ 𝜉

′)(S) = 1
2n

∑
T∈2X

𝜉(S𝛥T)𝜉′(T)

(S𝛥T is the symmetric difference, i.e., (S ∪ T) ⧵ (S ∩ T)).
We finish this section by giving the bounds of the Möbius transform for a normal-

ized fuzzy measure. Surprisingly, the interval in which the Möbius transform of a

normalized fuzzy measure can vary is not [−1, 1], but its bounds grow rapidly with n,

approximately in
4

n
2√
𝜋n
2

, as shown in [22] (corrected version of an earlier publication

[23]). The precise result is as follows.
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Theorem 1 For any normalized fuzzy measure 𝜇, its Möbius transform satisfies for
any A ⊆ N, |A| > 1:

−
(|A| − 1

l′|A|

)
⩽ m𝜇(A) ⩽

(|A| − 1
l|A|

)
,

with

l|A| = 2
⌊|A|

4

⌋
, l′|A| = 2

⌊|A| − 1
4

⌋
+ 1 (4)

and for |A| = 1 < n:
0 ⩽ m𝜇(A) ⩽ 1,

and m𝜇(A) = 1 if |A| = n = 1. These upper and lower bounds are attained by the
normalized fuzzy measures 𝜇∗

A, 𝜇A∗, respectively:

𝜇

∗
A(B) =

{
1, if |A| − l|A| ⩽ |B ∩ A| ⩽ |A|
0, otherwise

,

𝜇A∗(B) =

{
1, if |A| − l′|A| ⩽ |B ∩ A| ⩽ |A|
0, otherwise

for any B ⊆ N.
We give in Table 1 the first values of the bounds.

Table 1 Lower and upper bounds for the Möbius transform of a normalized fuzzy measure

|A| 1 2 3 4 5 6 7 8 9 10 11 12

u.b. of m𝜇(A) 1 1 1 3 6 10 15 35 70 126 210 462

l.b. of m𝜇(A) 1(0) −1 −2 −3 −4 −10 −20 −35 −56 −126 −252 −462

2.3 k-additive and p-symmetric Fuzzy Measures

A fuzzy measure 𝜇 is additive if 𝜇(A ∪ B) = 𝜇(A) + 𝜇(B) for every disjoint

A,B ∈ 2X
. Normalized additive fuzzy measures therefore coincide with probabil-

ity measures. Observing that the Möbius transform of an additive fuzzy measure 𝜇

satisfies m𝜇(A) = 0 for all A ∈ 2X
such that |A| > 1, a natural generalization of

additivity is k-additivity: a fuzzy measure 𝜇 is k-additive (1 ≤ k ≤ n) if m𝜇(A) = 0
for all A ∈ 2X

such that |A| > k, and there exists at least one A ∈ 2X
such that

m𝜇(A) ≠ 0 (Grabisch [15]). It follows that a k-additive fuzzy measure needs only(n
1

)
+
(n
2

)
+⋯ +

(n
k

)
coefficients to be defined, instead of 2n − 1.
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Due to (3), an equivalent definition is: 𝜇 is k-additive if its interaction transform

I𝜇 vanishes for subsets of more than k elements, and there exists a subset A of k ele-

ments such that I𝜇(A) ≠ 0. Since the interaction transform has a clear interpretation

in the context of multicriteria decision making, k-additive fuzzy measures are of par-

ticular interest. Especially, 2-additive fuzzy measure have the advantage of being the

simplest fuzzy measures (in terms of number of free coefficients) able to represent

interaction between two elements.

k-additive fuzzy measures are families of fuzzy measures which are of poly-

nomial complexity instead of the exponential complexity of general fuzzy mea-

sures. Another set of such families is provided by the concept of p-symmetric

fuzzy measure (Miranda and Grabisch [24, 25]). A fuzzy measure 𝜇 is symmetric if

𝜇(A) = 𝜇(B) whenever |A| = |B|. Furthermore, two distinct elements i, j ∈ X are

symmetric w.r.t. a fuzzy measure 𝜇 (denoted by i ∼
𝜇

j) if 𝜇(A ∪ i) = 𝜇(A ∪ j) for

every A ⊆ X ⧵ {i, j}. Note that ∼
𝜇

is an equivalence relation, and let us consider its

equivalence classes, which forms a partition of X. Clearly, a symmetric fuzzy mea-

sure has only one such equivalence class, which is X. A natural generalization is:

a fuzzy measure is p-symmetric if ∼
𝜇

has p equivalence classes. It follows that any

fuzzy measure is p-symmetric for some 1 ≤ p ≤ n (by the way, also k-additive for

some 1 ≤ k ≤ n).

Consider a p-symmetric fuzzy measure 𝜇, with set of equivalence classes {A1,
… ,Ap}, and a subset B ⊆ X. Clearly, the value 𝜇(B) depends uniquely on the num-

bers b1,… , bp, with bi ∶= |Ai ∩ B|. Since 0 ⩽ bi ⩽ |Ai|, it follows that 𝜇 needs∏p
i=1(|Ai| + 1) coefficients to be defined.

2.4 Fuzzy Measures on Set Systems

A set system  on X is a subcollection of 2X
containing ∅ and covering X, that is,⋃

A∈ A = X. We consider in this section fuzzy measures whose domain is a set

system.

We begin by introducing the main families of set systems of interest. The most

classical example borrowed from measure theory is algebra. An algebra is a set sys-

tem closed under finite union and complementation. Although complementation is

fundamental in classical measure theory, this is no more the case for fuzzy measures

and games, so that other algebraic structures arise:

(i) Set systems closed under union and intersection: (Faigle and Kern [26]) It

follows that such set systems contain X and are distributive lattices. Under the

additional condition that there is no macro-element (i.e., a subset M ⊂ X with|M| > 1 such that for any A ∈  , either M ⊆ A or A∩M = ∅), from Birkhoff’s

representation theorem, the set of all such set systems is in bijection with the set

of partial orders on X. In other words, any such  is generated by a partial order

on X, which can be interpreted as a kind of hierarchy of the elements in X. This

is particularly meaningful when X is a set of players, agents, etc., or criteria.
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(ii) Weakly union-closed set systems: (Algaba [27], Faigle and Grabisch [28, 29])

 is weakly union-closed if A,B ∈  , A∩B ≠ ∅ imply A∪B ∈  . This larger

family is motivated by communication graphs. Suppose that a graph (X,E) is

defined on X, with X being the set of nodes, and E being the set of edges, i.e.,

pairs {i, j} with i, j ∈ X and i ≠ j. Say that a subset A ⊆ X is connected if for any

distinct i, j ∈ A, there exists a sequence i = i1, i2,… , iq = j of elements of X
such that {ik, ik+1} ∈ E for k = 1,… , q−1. Defining  as the set of connected

subsets of X, it follows that  is weakly union-closed (this is however not a

characterizing property).

(iii) Regular set systems: [30, 31] a set system  is regular if it contains X and

any maximal chain
1

from ∅ to X has length n. Every distributive lattice is a

regular set system. The motivation for such sets systems is more mathemati-

cal: it happens that many concepts around games and fuzzy measures are based

on maximal chains of length n (Shapley value, marginal vectors, Choquet inte-

grals, etc.).

If  is a lattice (in particular, if  is closed under union and intersection), the

definition of k-monotonicity is easily adapted by substituting ∪,∩ in (1) by ∨,∧ of

the lattice. It is well-known that when  = 2X
, there is an equivalence between

total monotonicity and the nonnegativity of the Möbius transform. It has been for a

long time an unsolved issue whether this equivalence still holds if  is a lattice, only

recently solved:

Theorem 2 Let 𝜇 be fuzzy measure on a lattice  . Then 𝜇 is totally monotone if and
only if it has a nonnegative Möbius transform.

The “only if” part was shown by Barthélemy [32], and the “if part” recently by

Zhou [33].

3 The Choquet and Sugeno Integrals

The term “fuzzy integral” has been introduced by Sugeno [7] in 1974, and is now

most commonly called the Sugeno integral. However, Choquet already in 1954 pro-

posed a functional w.r.t. a fuzzy measure (or capacity), referred now as the Choquet

integral. As we will see in Sect. 3.8, other integrals w.r.t. fuzzy measures have been

proposed. We study in detail the Choquet and Sugeno integrals, which can be con-

sidered as the most representative (and still very different) fuzzy integrals. Except

for Sect. 3.7, we assume that fuzzy measures are defined on  = 2X
.

1
A chain from ∅ to X is a sequence ∅ = A0,A1,… ,Aq = X of sets in  such that A0 ⊂ A1 ⊂ ⋯ ⊂

Aq. Its length is q, and the chain is maximal if no other chain from ∅ to X contains it.
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3.1 Definitions and Basic Properties

We begin by introducing the general definition, which is valid for arbitrary spaces.

For this, we need decumulative distribution functions. Let 𝜇 be a fuzzy measure and

f ∶ X → ℝ. The decumulative distribution of f w.r.t. 𝜇 is

G
𝜇,f (t) = 𝜇({x ∈ X ∣ f (x) ⩾ t} (t ∈ ℝ).

We consider first nonnegative functions. Let f ∶ X → ℝ+ and 𝜇 be a fuzzy

measure. The Choquet integral of f w.r.t. 𝜇 is defined by

∫
f d𝜇 =

∫

∞

0
G
𝜇,f (t) dt, (5)

where the right hand-side integral is the Riemann integral. The Sugeno integral of

f w.r.t. 𝜇 is defined by

−
∫

f d𝜇 =
⋁
t⩾0

(G
𝜇,f (t) ∧ t) =

⋀
t⩾0

(G
𝜇,f (t) ∨ t).

In words, the Sugeno integral is the abscissa of the intersection point between the

diagonal and the decumulative function, while the Choquet integral is the area below

the decumulative function. It can be proven that it is equivalent to consider a strict

inequality in the definition of G
𝜇,f . Another equivalent formula for the Sugeno inte-

gral is

−
∫

f d𝜇 =
⋁
A∈

(⋀
x∈A

f (x) ∧ 𝜇(A)
)
.

Note that the Choquet integral can be defined w.r.t. games as well. However, since

the decumulative function is no more monotone with games, the definition of the

Sugeno integral is restricted to fuzzy measures. An elementary property is that for

every A ⊆ X, ∫ 1A d𝜇 = 𝜇(A), where 1A is the characteristic function of A. The latter

property holds also for the Sugeno integral, provided 𝜇 is normalized. In view of this

property, the Choquet and Sugeno integrals can be considered as extensions of fuzzy

measures.

When X = {x1,… , xn}, the formulas can be made more explicit. For a function

f ∶ X → ℝ+, let fi denotes f (xi) for simplicity, and take a permutation 𝜎 on {1,… , n}
such that f

𝜎(1) ⩽ ⋯ ⩽ f
𝜎(n). Define A↑

𝜎

(i) = {x
𝜎(i), x𝜎(i+1),… , x

𝜎(n)}, i = 1,… , n. The

Choquet integral is given by
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∫
f d𝜇 =

n∑
i=1

(f
𝜎(i) − f

𝜎(i−1))𝜇(A↑
𝜎

(i)) (6)

=
n∑

i=1
f
𝜎(i)
(
𝜇(A↑

𝜎

(i)) − 𝜇(A↑
𝜎

(i + 1))
)
, (7)

with the conventions f
𝜎(0) = 0 and A↑

𝜎

(n + 1) = ∅.

For the Sugeno integral, we obtain:

−
∫

f d𝜇 =
n⋁

i=1

(
f
𝜎(i) ∧ 𝜇(A↑

𝜎

(i))
)

(8)

=
n⋀

i=0

(
f
𝜎(i) ∨ 𝜇(A↑

𝜎

(i + 1))
)

(9)

with the same conventions.

We consider now the case of real-valued integrands. For any f ∶ X → ℝ, we write

f = f+ − f−, with f+ = 0 ∨ f , f− = (−f )+.

Then the symmetric Choquet integral (a.k.a. Šipoš integral [34]) is defined by

̌

∫
f d𝜇 =

∫
f+ d𝜇 −

∫
f− d𝜇. (10)

The asymmetric Choquet integral, which is the usual definition, is defined by

∫
f d𝜇 =

∫
f+ d𝜇 −

∫
f− d𝜇, (11)

where 𝜇 is the conjugate fuzzy measure, defined by 𝜇(A) = 𝜇(X) − 𝜇(X ⧵ A) for

any A ∈ 2X
. The asymmetric Choquet integral is translation invariant (it is the only

extension having this property), while the symmetric integral satisfies

̌

∫
(−f ) d𝜇 = −

̌

∫
f d𝜇.

The case of the Sugeno integral is more cumbersome, essentially due to the fol-

lowing problem. The Sugeno integral is defined through the ∨,∧ operators, playing

the rôle of addition and product respectively (compare (6) with (8)). Remembering

that on the ring of real numbers, a − b is shorthand for a + (−b), a transposition of

formula (10) for the Sugeno integral would read
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̌

−
∫

f d𝜇 = −
∫

f+ d𝜇�

(
− −
∫

f− d𝜇
)

(12)

where � is an extension of ∨ for real numbers (i.e., a � b = a∨b whenever a, b ⩾ 0)

such that a �(−a) = 0. Surprisingly, such an operator � would be necessarily nonas-

sociative. Indeed,

((−3)� 3)� 2) = 0� 2 = 0 ∨ 2 = 2
(−3)�(3� 2) = (−3)�(3 ∨ 2) = (−3)� 3 = 0.

The lack of associativity forbids to infer the so-called rule of sign, i.e., (−a)�(−b) =
−(a � b), which is necessary for the symmetry of the integral:

̌

−
∫

(−f ) d𝜇 =−
∫

f − d𝜇�

(
− −
∫

f + d𝜇
)

= −
((

− −
∫

f − d𝜇
)

�−
∫

f + d𝜇
)

= −
̌

−
∫

f d𝜇. (13)

It can be shown [35] that the best operator (in the sense that it is associative on the

largest domain) satisfying the above requirements (including the rule of sign) is the

symmetric maximum, defined by

a � b =
⎧⎪⎨⎪⎩

−(|a| ∨ |b|), if b ≠ −a and either |a| ∨ |b| = −a or = −b
0, if b = −a
|a| ∨ |b|, otherwise.

(14)

The symmetric Sugeno integral [36] is therefore defined by (12) and �. Up to now,

there is no adequate definition of an asymmetric Sugeno integral.

3.2 The Choquet Integral as a Linear Interpolator

Consider the following problem: a function I ∶ [0, 1]n → [0, 1] is known only on the

vertices of the hypercube [0, 1]n (in particular I(𝟎) = 0, where 𝟎 is the 0 vector), and

has to be determined everywhere in the hypercube. This is an interpolation problem,

and there exists many ways to make the interpolation. Noting that the vertices of the

hypercube correspond bijectively to the subsets of X (with |X| = n), it follows that

I is necessarily an extension of a game v: I(1A) = v(A) for every A ∈ 2X
. Hence the

Choquet and Sugeno integrals could be candidate.

Even if we restrict to a linear interpolation, there are still many ways of doing the

interpolation, depending on which vertices are chosen, but there exist two extreme
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ways. If all vertices are used for each point f ∈ [0, 1]n, we get the multilinear model
(owen, citeowe88), given by:

I(f ) =
∑

A⊆X,A≠varnothing
mv(A)

∏
i∈A

fi

where mv
is the Möbius transform of v, defined by v(A) = I(1A) for every A ∈

2X
. The other extreme case would be to take the minimum number of vertices so

that the considered vector x is contained in the convex hull of the selected vertices

(parsimonious interpolation). Then this number is n + 1, the number of vertices of

a n-dimensional simplex, and the problem of choosing the right simplices for each

f amounts to the triangulation problem of the hypercube. There is one triangulation

of particular interest since it leads to an interpolation where all constant terms are 0,

the triangulation in the n! canonical simplices, where each simplex is induced by a

permutation 𝜎 on {1,… , n}:

S
𝜎

= {f ∈ [0, 1]n ∣ f
𝜎(1) ⩽ f

𝜎(2) ⩽ ⋯ ⩽ f
𝜎(n)}.

Then it can be shown that the parsimonious linear interpolation based on the canon-

ical simplices is the Choquet integral. This fact was remarked by Singer [37], and

also Marichal [38].

3.3 Expression W.r.t Transforms

The Choquet integral being linear w.r.t. the game, it is easy to get its expression when

the game is expressed by some linear invertible transform (equivalently, in some

other basis). Let 𝛹 be a linear invertible transform, and {b𝛹A }A∈2X the corresponding

basis of set functions given by Lemma 1. Since these set functions are not necessarily

games, and the Choquet integral needs games to be well defined, we build a basis of

games {b′𝛹A }A∈2X⧵{∅} as follows:

b′S(T) =

{
bS(T), if T ≠ ∅
0, otherwise

(S ∈ 2X ⧵ {∅}). (15)

Then for every f ∈ ℝX
and every game v,

∫
f dv =

∫
f d
( ∑

∅≠A⊆X
𝛹

v(A)b′𝛹A

)
=

∑
∅≠A⊆X

𝛹

v(A)
∫

f db′𝛹A . (16)

It is therefore sufficient to compute ∫ f db′𝛹A for every A ⊆ X, A ≠ ∅.
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Applying this to the Möbius transform immedaitely yields the following well-

known formula:

∫
f dv =

∑
A⊆X

mv(A)
⋀
i∈A

fi. (17)

The same methodology is not applicable to the Sugeno integral since it is not

linear w.r.t. the fuzzy measure. It is possible however to obtain a formula similar to

(17), by means of the ordinal Möbius transform. The ordinal Möbius transform of a

fuzzy measure 𝜇 is the interval [m] ∶= [m∗,m∗], with m∗ = 𝜇, and

m∗(A) =

{
𝜇(A), if 𝜇(A) > 𝜇(A ⧵ i),∀i ∈ A
0, otherwise

(A ⊆ X). (18)

The above formula has been first proposed in [39, 40], then developed in [35]. Then,

it can be proved that the Sugeno integral takes the form:

−
∫

f d𝜇 =
⋁
A⊆X

(⋀
i∈A

fi ∧ m(A)
)

(19)

where m is any function in [m∗,m∗].

3.4 Properties

The next propositions summarize the main elementary properties of Choquet and

Sugeno integrals. In the whole section, X is supposed to be finite, and  = 2X
.

Theorem 3 Let f ∶ X → ℝ be a function and a game v. The following properties
hold for the Choquet integral.

(i) Positive homogeneity:

∫
𝛼f dv = 𝛼

∫
f dv (𝛼 ⩾ 0)

(ii) Homogeneity of the symmetric Choquet integral:

̌

∫
𝛼f dv = 𝛼

̌

∫
f dv (𝛼 ∈ ℝ)

(iii) Translation invariance:

∫
(f + 𝛼1X) dv =

∫
f dv + 𝛼v(X) (𝛼 ∈ ℝ)
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(iv) Asymmetry:

∫
(−f ) dv = −

∫
f dv

where v is the conjugate game;
(v) Scale inversion:

∫
(𝛼1X − f ) dv = 𝛼v(X) −

∫
f dv (𝛼 ∈ ℝ)

(vi) Monotonicity w.r.t. the integrand: for any fuzzy measure 𝜇,

f ⩽ f ′ ⇒
∫

f d𝜇 ⩽
∫

f ′ d𝜇

(vii) Monotonicity w.r.t. the game for nonnegative integrands: if f ⩾ 0,

v ⩽ v′ ⇒
∫

f dv ≤
∫

f dv′

(viii) Linearity w.r.t. the game:

∫
f d(v + 𝛼v′) =

∫
f dv + 𝛼

∫
f dv′, (𝛼 ∈ ℝ)

(ix) Boundaries: inf f and sup f are attained:

inf f =
∫

f d𝜇min, sup f =
∫

f d𝜇max,

with 𝜇min(A) = 0 for all A ⊂ X, and 𝜇max(A) = 1 for all nonempty A ⊆ X;
(x) Continuity.

Theorem 4 Let f ∶ X → ℝ+, and 𝜇 a fuzzy measure on X. The following properties
hold for the Sugeno integral.

(i) Positive ∧-homogeneity:

−
∫

(𝛼1X ∧ f ) d𝜇 = 𝛼 ∧ −
∫

f d𝜇 (𝛼 ⩾ 0)

(ii) Positive ∨-homogeneity if sup f ⩽ 𝜇(X):

−
∫

(𝛼1X ∨ f ) d𝜇 = 𝛼 ∨ −
∫

f d𝜇 (𝛼 ∈ [0, sup f ]).
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(iii) Hat function: for every 𝛼 ⩾ 0 and for every A ∈  ,

−
∫

𝛼1A d𝜇 = 𝛼 ∧ 𝜇(A)

(iv) Scale inversion: if sup f ⩽ 𝜇(X),

−
∫

(𝜇(X)1X − f ) d𝜇 = 𝜇(X) − −
∫

f d𝜇,

where 𝜇 is the conjugate fuzzy measure;
(v) Scale translation:

−
∫

(f + 𝛼1X) d𝜇 ⩽ −
∫

f d𝜇 + −
∫

𝛼 d𝜇 = −
∫

f d𝜇 + 𝛼 ∧ 𝜇(X) (𝛼 ⩾ 0)

(vi) Monotonicity w.r.t. the integrand:

f ⩽ f ′ ⇒ −
∫

f d𝜇 ⩽ −
∫

f ′ d𝜇 (f , f ′ ∈ B+( ))

(vii) Monotonicity w.r.t. the fuzzy measure:

𝜇 ⩽ 𝜇

′ ⇒ −
∫

f d𝜇 ≤ −
∫

f d𝜇′

(viii) Max-min linearity w.r.t. the fuzzy measure:

−
∫

f d(𝜇 ∨ (𝛼 ∧ 𝜇

′)) = −
∫

f d𝜇 ∨
(
𝛼 ∧

∫
f d𝜇′

)
(𝛼 ⩾ 0)

(ix) Boundaries: inf f and sup f are attained:

inf f = −
∫

f d𝜇min, sup f = −
∫

f d𝜇max,

with 𝜇min, 𝜇max defined as in Theorem 3;
(x) Lipschitz continuity:

||||−∫ f d𝜇 − −
∫

g d𝜇
|||| ⩽ 𝜇(X) ∧ ‖f − g‖ (f , g ∈ B+( ))

with ‖f‖ = supx∈X |f (x)| (Chebyshev norm). Hence, if 𝜇 is normalized and
f , g are valued on [0, 1], we obtain that the Sugeno integral is 1-Lipschitzian
for the Chebyshev norm.
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A fundamental feature of both Choquet and Sugeno integrals is their relation with

comonotonic functions. Two functions f , g ∶ X → ℝ are comonotonic if there is no

x, x′ ∈ X such that f (x) < f (x′) and g(x) > g(x′) (equivalently, in the case of a

finite universe, if there exists a permutation 𝜎 on X such that f
𝜎(1) ⩽ ⋯ ⩽ f

𝜎(n) and

g
𝜎(1) ⩽ ⋯ ⩽ g

𝜎(n)).

Theorem 5 Let f , g be comonotonic functions on X (finite). Then for any game v, the
Choquet integral is comonotonically additive, and the Sugeno integral is comonoton-
ically maxitive and minitive for any fuzzy measure 𝜇:

∫
(f + g) dv =

∫
f dv +

∫
g dv

−
∫

(f ∨ g) d𝜇 = −
∫

f d𝜇 ∨ −
∫

g d𝜇

−
∫

(f ∧ g) d𝜇 = −
∫

f d𝜇 ∧ −
∫

g d𝜇.

A more recently introduced type of additivity is called horizontal additivity (see

Šipoš [34], and Benvenuti et al. [41]). Given a function f ∶ X → ℝ and a constant

c ∈ ℝ, the horizontal min-additive decomposition of f is:

f = (f ∧ c1X) + (f − (f ∧ c1X)).

This amounts to “cut” horizontally the function at level c. Similarly, the horizontal
max-additive decomposition of f is:

f = (f ∨ c1X) + (f − (f ∨ c1X)).

A functional I ∶ ℝX → ℝ is horizontally min-additive if for every f ∶ X → ℝ and

c ∈ ℝ,

I(f ) = I(f ∧ c1X) + I(f − (f ∧ c1X)).

Horizontal max-additivity is defined similarly. It turns out that these notions are

equivalent to comonotonic additivity, as shown by Couceiro and Marichal [42]. A

related notion is horizontal median-additivity, introduced by Couceiro and Marichal

[42]. Lastly, we introduce comonotonic modularity. A functional I ∶ ℝX → ℝ is

modular if for every f , g ∶ X → ℝ,

I(f ∨ g) + I(f ∧ g) = I(f ) + I(g).

It can be easily shown that the Choquet integral is comonotonically modular, i.e., for

any comonotonic functions f , g it holds
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∫
(f ∨ g) dv +

∫
(f ∧ g) dv =

∫
f dv +

∫
g dv.

This also holds for the Sugeno integral.

The next theorem clarifies the important case of supermodular fuzzy measures

for the Choquet integral.

Theorem 6 For any game v, the following conditions are equivalent:

(i) v is supermodular;
(ii) The Choquet integral is superadditive, that is,

∫
(f + g) dv ⩾

∫
f dv +

∫
g dv

for all f , g ∶ X → ℝ
(iii) The Choquet integral is supermodular, that is,

∫
(f ∨ g) dv +

∫
(f ∧ g) dv ⩾

∫
f dv +

∫
g dv

for all f , g ∶ X → ℝ;
(iv) The Choquet integral is concave, that is,

∫
(𝜆f + (1 − 𝜆)g) dv ⩾

∫
𝜆f dv + (1 − 𝜆)

∫
g dv

for all 𝜆 ∈ [0, 1], f , g ∶ X → ℝ.
(v) The Choquet integral yields the lower expected value onthe core of v:

∫
f dv = min

𝜙∈𝖼𝗈𝗋𝖾(v)∫
f d𝜙, (20)

where 𝖼𝗈𝗋𝖾(v) is the set of additive games 𝜙 on X such that 𝜙(X) = v(X) and
𝜙(S) ⩾ v(S) for all S ∈ 2X.

Lastly, we give the properties of the Sugeno integral concerning maxitivity and

minitivity.

Theorem 7 The following holds:

(i) −∫ (f ∨ g) d𝜇 = −∫ f d𝜇 ∨ −∫ g d𝜇 for all f , g ∈ B+( ) if and only if 𝜇 is maxitive;
(ii) −∫ (f ∧ g) d𝜇 = −∫ f d𝜇 ∧ −∫ g d𝜇 for all f , g ∈ B+( ) if and only if 𝜇 is minitive.
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3.5 Characterizations

The most famous characterization of the Choquet integral is due to Schmeider [43],

whose adaptation to the finite case (|X| = n) and  = 2X
is as follows.

Theorem 8 Let I ∶ ℝX → ℝ be a functional. Define the set function v(A) = I(1A)
on 2X. The following propositions are equivalent:

(i) I is monotone and comonotonically additive;
(ii) v is a fuzzy measure, and for all f ∈ ℝN, I(f ) = ∫ f dv.

The discrete version (with a redundant axiom) was shown by de Campos and Bolaños

[44]. A similar characterization for the Choquet integral w.r.t. games was obtained

by Murofushi et al. [45].

In the discrete case, a characterization using comonotonic modularity was

obtained by Couceiro and Marichal [46, 47].

Theorem 9 Let |X| = n and  = 2X, and let I ∶ ℝX → ℝ be a functional. Define
the set function v(A) = I(1A), A ⊆ X. The following propositions are equivalent:

(i) I is comonotonically modular and satisfies I(𝛼1S) = |𝛼|I(sign (𝛼)1S) for all
𝛼 ∈ ℝ and S ⊆ X, and I(1X⧵S) = I(1X) + I(−1S);

(ii) v is a game and I(f ) = ∫ f dv.

The Sugeno integral was characterized in the discrete case by de Campos and

Bolaños [44]. Here follows a simplified and more general version.

Theorem 10 Let |X| = n,  = 2X, and let I ∶ (ℝ+)X → ℝ+ be a functional. Define
the set function 𝜇(A) = I(1A), A ⊆ X. The following propositions are equivalent:

(i) I is comonotonically maxitive, satisfies I(𝛼1A) = 𝛼 ∧ I(1A) for every 𝛼 ⩾ 0 and
A ⊆ X, and I(1X) = 1;

(ii) 𝜇 is a normalized fuzzy measure on X and I(f ) = −∫ f d𝜇.

The next characterization is due to Marichal [48]. Still others can be found in this

reference.

Theorem 11 Let |X| = n,  = 2X, and let I ∶ [0, 1]X → [0, 1] be a functional.
Define the set function 𝜇(A) = I(1A), A ⊆ X. The following propositions are equiva-
lent:

(i) I is nondecreasing, ∨-homogeneous and ∧-homogeneous;
(ii) 𝜇 is a normalized fuzzy measure on X and I(f ) = −∫ f d𝜇.

3.6 The Choquet Integral on the Nonnegative Real Line

As remarked by Sugeno in two recent papers [49, 50], so far there is no “Choquet

integral calculus”, similar to classical integral calculus, even if one restricts to func-

tions and measures on the real line. By means of the Laplace transform, Sugeno
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established in these two papers the basis of Choquet integral calculus. For this, the

Choquet integral on a restricted domain is used:

∫A
f d𝜇 =

∫

∞

0
𝜇({x ⩾ t} ∩ A) dt

for some A ⊆ X. We give now the fundamental theorem.

Theorem 12 Let f ∶ ℝ+ → ℝ+ be nondecreasing and continuously differentiable,
and let 𝜇 be a continuous fuzzy measure on ℝ+, such that 𝜇([𝜏, t]) is differentiable
w.r.t. 𝜏 on [0, t] for every t > 0, and 𝜇({t}) = 0 for every t ⩾ 0. Then

∫[0,t]
f d𝜇 = −

∫

t

0

𝜕𝜇

𝜕𝜏

([𝜏, t])f (𝜏) d𝜏 (t > 0),

where the righthand side integral is the Riemann integral. In particular, for a dis-
torted Lebesgue measure 𝜇h with h being continuously differentiable, we obtain

∫[0,t]
f d𝜇h =

∫

t

0

𝜕h
𝜕𝜏

(t − 𝜏)f (𝜏) d𝜏. (21)

Equation (21) can be computed very easily through the Laplace transform. Denoting

by −1
the inverse Laplace transform, and by H(s) and F(s) the Laplace transforms

of h and f , we have:

∫[0,t]
f d𝜇h = 

−1(sH(s)F(s)).

3.7 The Choquet Integral of Nonmeasurable Functions

So far we have considered that  = 2X
, so that every subset is measurable and con-

sequently any function is measurable too (i.e., its level sets belong to  ). In the case

where  ⊂ 2X
, what about the integral of a nonmeasurable function? The question

may appear quite odd, but makes sense in practical situations, for example in multi-

criteria decision making. In this field, X is the set of criteria and 𝜇(A) for some A ⊆ X
is interpreted as the overall evaluation of an alternative being satisfactory on criteria

in A, and unsatisfactory or neutral on the others. It may be the case that such an alter-

native is not conceivable, and so no value can be assigned to 𝜇(A). However, when

computing the overall score of an alternative, knowing the vector f of its scores on

every criterion, the set A may be a level set of f (i.e., A = {x ∈ X ∣ f (x) ⩾ t} for some

t), so that f is not measurable and its Choquet integral cannot be computed. In this

section we indicate how to extend the Choquet integral to nonmeasurable functions.

This work is based on [28].
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Let  be a fixed set system. We decompose any game v on  as v = v+ + v−,

where v+, v− are two totally monotone fuzzy measures:

v+ =
∑

A∈ ∣mv(A)>0
mv(A)uA, v− =

∑
A∈ ∣mv(A)<0

(−mv(A))uA. (22)

We first define the Choquet integral w.r.t. a totally monotone fuzzy measure b on 

as follows (f is assumed to be nonnegative):

∫


f db = max

{∑
A∈

𝛼Ab(A) ∣
∑
A∈

𝛼A1A ⩽ f , 𝛼A ⩾ 0,∀A ∈ 

}
(23)

= min

{∑
i∈X

Pifi ∣
∑
i∈A

Pi ⩾ b(A),∀A ∈  ,Pi ⩾ 0,∀i ∈ X

}
. (24)

It can be proved that this is the smallest functional I satisfying positive homogeneity,

superadditivity and I(1A) ⩾ b(A) for all A ∈  . Now, the Choquet integral for any

function f ∶ X → ℝ w.r.t. a game v is defined by

∫


f dv =
∫


f dv+ −
∫


f dv−. (25)

We summarize the main properties of this integral.

Theorem 13 Let f ∶ X → ℝ+ be a function and v be a game on (X, ), where  is
any set system. The following properties hold.

(i) Positive homogeneity:

∫


𝛼f dv = 𝛼

∫


f dv (𝛼 ⩾ 0)

(ii) For any S ∈  ,

∫


f duS = min
i∈S

fi

where uS is the unanimity game w.r.t. S;
(iii) If  is weakly union-closed,

∫


f dv =
∑
S∈

mv(S)min
i∈S

fi

where mv is the Möbius transform of v;
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(iv) If  is weakly union-closed,

∫


f dv =
∫

f dv̂

where the right-hand side integral is the ordinary Choquet integral, and v̂ is a
game on (X, 2X) defined by

v̂(S) =
∫


1S dv =
∑

F maximum in  (S)
v(F) (S ∈ 2X),

with  (S) = {F ∈  ∣ F ⊆ S}.
(v) If  is weakly union-closed, ∫


⋅ dv is superadditive if and only if it is concave

if and only if v̂ is supermodular.

From (iv) we see that this integral is essentially the Choquet integral w.r.t. a modified

game v̂, and therefore inherits all of its properties. Moreover, v̂ is an extension of v in

the sense that it coincides with v on . It turns out that this integral yields the Choquet

integral for measurable functions, and is indeed an extension of the Choquet integral.

Note however that if v is monotone, v̂ is not necessarily so.

More results can be obtained if  is closed under union. In this case, it can be

shown that a fuzzy measure 𝜇 on  is supermodular if and only if �̂� is, where super-

modularity for 𝜇 is defined as follows: for any S,T ∈  ,

𝜇(S ∪ T) + 𝜇((S ∩ T)′) ⩾ 𝜇(S) + 𝜇(T),

where (S ∩ T)′ is the largest subset of S ∩ T in  . Moreover, the following holds.

Theorem 14 Let  be a set system closed under union, and 𝜇 be a fuzzy measure
on (X, ). The following are equivalent:

(i) For every function f ∶ X → ℝ+,

∫


f d𝜇 = max
{∑

S∈
𝜆S𝜇(S) ∣

∑
S∈

𝜆S1S ⩽ f , 𝜆 ⩾ 𝟎
}

= min
{∑

i∈X
Pifi ∣ P(S) ⩾ 𝜇(S),∀S ∈  ,P ⩾ 𝟎

}
,

where 𝟎 indicates the 0 vector.
(ii) ∫


⋅ d𝜇 is superadditive;

(iii) 𝜇 is supermodular.
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3.8 Other Integrals

We describe briefly other kinds of integrals defined with respect to fuzzy measures.

Pseudo-additive integrals and fuzzy t-conorm integrals It is possible to define other

integrals by simply replacing the operations used in the definitions of Choquet and

Sugeno integrals (sum, product, max, min) by other ones, generally speaking, by

pseudo-additions and pseudo-multiplications. There has been many studies in this

direction, starting from Weber [51] and Kruse [52], then later Sugeno and Murofushi

[53], Murofushi and Sugeno (fuzzy t-conorm integral) [54], Klement, Mesiar and

Pap ((S,U)-integral) [55], Benvenuti et al. [41], and more recently the impressive

study by Sander and Siedekum [56–58].

Basically, the (S,U)-integral uses as basis operators a continuous t-conorm S and

a uninorm U which is distributive w.r.t. S in the following sense:

U(x, S(y, z)) = S(U(x, y),U(x, z))

for all x, y, z ∈ [0, 1] such that S(y, z) < 1.

The fuzzy t-conorm integral proposed by Murofushi and Sugeno uses three con-

tinuous t-conorms S1, S2, S3 which are either the maximum or Archimedean, plus a

pseudo-multiplication ⊙, being nondecreasing in each place, continuous on ]0, 1]2,

and satisfying a ⊙ x = 0 implies either a = 0 or x = 0, and two distributivity

properties:

(D1) S1(a, b) < 1 implies (S1(a, b))⊙ x = S3((a ⊙ x), (b ⊙ x))
(D2) S2(x, y) < 1 implies a ⊙ (S2(x, y)) = S3((a ⊙ x), (a ⊙ y)).

The definition of the fuzzy t-conorm integral is then:

(S1, S2, S3, ⊙)
∫

f d𝜇 ∶=
n
S3
i=1

(f
𝜎(i)

S1− f
𝜎(i−1))⊙ 𝜇(A

𝜎(i))

with same notation as above, and
S1− is the residuated difference w.r.t. S1, defined by

a S1− b ∶= inf{c ∣ S1(b, c) ⩾ a}

for any (a, b) in [0, 1]2. The Choquet integral is recovered with S1, S−2, S3 being the

Łukasiewicz t-conorm, and ⊙ the usual product. The Sugeno integral is recovered

with S1 = S2 = S3 = max and ⊙ = min, and the Shilkret [59] integral is obtained

when ⊙ is the ordinary product.

The integral proposed by Benvenuti et al. is similar.

Universal integrals Universal integrals, proposed by Klement et al. [60] (see also

a more recent work [61]), try to answer the following question: What is an inte-
gral w.r.t. a fuzzy measure?. The answer given by Klement et al. is axiomatic: they

propose a list of axioms a functional should satisfy to be considered as a integral.
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The name “universal” comes from the fact that the integral should be defined for any

measurable space (X,) where  is a 𝜎-algebra.

They first define a pseudo-multiplication as an operator ⊗ ∶ [0,∞]2 → [0,∞]
satisfying the following properties: it is nondecreasing in each place, 0 is an anni-

hilator of ⊗, i.e., a ⊗ 0 = 0 ⊗ a = 0, and ⊗ has a neutral element e ≠ 0, i.e.,

a ⊗ e = e ⊗ a = a.

Let us denote by  the set of all Cartesian products (X,)× (X,) for every

measurable space (X,), where (X,) is the set of fuzzy measures on (X,),
and  (X,) is the set of -measurable functions. A functional I ∶  → [0,∞] is

called a universal integral of it satisfies the three following axioms:

(i) For any measurable space (X,), its restriction to (X,) × (X,) is non-

decreasing in each place

(ii) There exists a pseudo-multiplication ⊗ such that for all (𝜇, c ⋅ 1A) ∈ , I(𝜇, c ⋅
1A) = c ⊗ 𝜇(A)

(iii) I(𝜇, f ) = I(𝜇′
, f ′) if G

𝜇,f = G
𝜇
′
,f ′ .

Obviously, the Choquet integral and the Sugeno integrals are universal integrals.

It is not difficult to see that a universal integral is a distortion of the decumulative

function by a function J begin nondecreasing and satisfying J(d ⋅ 1]0,c] = c⊗ d. The

Sugeno and Shilkret integrals belong to the set of smallest universal integrals (in the

sense of the usual partial order on functions), given by

I
⊗

(𝜇, f ) = sup
t∈]0,infty]

(t ⊗ G
𝜇,f (t)).

It can be shown that all integrals of the form (5), with product and addition being

replaced by a pseudo-multiplication ⊗ and a pseudo-addition ⊕ being continuous,

associative, nondecreasing, having 0 as neutral element and being left-distributive

w.r.t. ⊗, are universal integrals.

The concave integral and decomposition integral Recenty, in a series of papers

Lehrer presented the concave integral [62–64], and a more general concept called

the decomposition integral [65], encompassing both the concave integral and the

Choquet integral, as well as the Shilkret integral.

We first introduce the concave integral. Let f ∶ X → ℝ+ and𝜇 be a fuzzy measure.

The concave integral of f w.r.t. 𝜇 is given by:

∫

cav
f d𝜇 = sup

{∑
S⊆X

𝛼S𝜇(S) ∣
∑
S⊆X

𝛼S1S = f , 𝛼S ⩾ 0,∀S ⊆ X

}
. (26)

In words, the concave integral is the value achieved by the best decomposition of

the integrand into hat functions. Note that for totally monotone fuzzy measures, the

concave integral and the integral proposed by Faigle and Grabisch coincide (see

Sect. 3.7).

Its main properties are given below.
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Theorem 15 The following properties hold for the concave integral:

(i) For every fuzzy measure 𝜇, the concave integral ∫ cav ⋅ d𝜇 is a concave and
positively homogeneous functional, and satisfies ∫ cav 1S d𝜇 ⩾ 𝜇(S) for all S ∈
2X;

(ii) For every f ∈ ℝX
+ and fuzzy measure 𝜇,

∫

cav
f d𝜇 = min

{
I(f ) ∣ I ∶ ℝX

+ → ℝ concave, positively homogeneous,

and such that I(1S) ⩾ 𝜇(S),∀S ⊆ X
}

(iii) For every f ∈ ℝX
+ and fuzzy measure 𝜇,

∫

cav
f d𝜇 = min

P additive ,P⩾𝜇 ∫
f dP

(iv) For every f ∈ ℝX
+ and fuzzy measure 𝜇,

∫
f d𝜇 ⩽

∫

cav
f d𝜇,

and equality holds for every f ∈ ℝX
+ if and only if 𝜇 is supermodular.

Property (iv) clearly shows that unless the fuzzy measure is supermodular, the Cho-

quet integral and the concave integral differ.

As for the decomposition integral, the idea is simply to fix a “vocabulary” for the

decompositions. If only chains are allowed for the decomposition of a function, then

the Choquet integral obtains as the best achievable value for such decompositions.

If no restriction applies, then the concave integral is obtained. Also, the Shilkret

integral can also be recovered. We refer the reader to [65] for full details on this

complex notion.
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Important New Terms and Classifications
in Uncertainty and Fuzzy Logic
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Abstract Human cognitive and perception processes have a great tolerance for
imprecision or uncertainty. For this reason, the notions of perception and cognition
have great importance in solving many decision making problems in engineering,
medicine, science, and social science as there are innumerable uncertainties in
real-world phenomena. These uncertainties can be broadly classified as either type
one uncertainty arising from the random behavior of physical processes or type two
uncertainty arising from human perception and cognition processes. Statistical
theory can be used to model the former, but lacks the sophistication to process the
latter. The theory of fuzzy logic has proven to be very effective in processing type
two uncertainty. New computing methods based on fuzzy logic can lead to greater
adaptability, tractability, robustness, a lower cost solution, and better rapport with
reality in the development of intelligent systems. Fuzzy logic is needed to properly
pose and answer queries about quantitatively defining imprecise linguistic terms
like middle class, poor, low inflation, medium inflation, and high inflation.
Imprecise terms like these in natural languages should be considered to have
qualitative definitions, quantitative definitions, crisp quantitative definitions, fuzzy
quantitative definitions, type-one fuzzy quantitative definitions, and interval type-
two fuzzy quantitative definitions. There can be crisp queries, crisp answers, type-
one fuzzy queries, type-one fuzzy answers, interval type-two fuzzy queries, and
interval type-two fuzzy answers.
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1 Introduction

For a long time, engineers and scientists have learned from nature and tried to
mimic some of the capabilities observed in humans and animals in electrical and
mechanical machines. The Wright brothers started their work on the first airplane
by studying the flight of birds. Most scientists of the time thought that it was the
flapping of wings that was the principle component of flying. However, the Wright
brothers realized that wings were required to increase the buoyancy in air.

In biomedical engineering, the principles of natural science and engineering are
applied to the benefit of the health sciences. The opposite approach, reverse bio-
logical engineering, is used to apply biological principles to the solution of engi-
neering and scientific problems. In particular, engineers and scientists use this
reverse engineering approach on humans and animals in developing intelligent
systems.

The principle attributes of a human being can be classified in three categories
(3 Hs): hands, head, and heart. The hands category refers to the physical attributes
of humans. These physical attributes have been somewhat mimicked and somewhat
improved on to surpass the restrictive physical limitations of humans through such
mighty machines as the tractor, assembly line, and aircraft. The head category refers
to the perception and cognition abilities of the brain. The restrictive reasoning
limitations of humans have been supplemented through the ongoing development
of microprocessors. However, the challenge of creating an intelligent system is still
in its incipient stages. Finally, the heart category refers to emotions. Machines can
display simple emotional behavior, but they can’t really feel.

One of the most exciting engineering endeavors involves the effort to mimic
human intelligence. Intelligence implies the ability to comprehend, reason, mem-
orize, learn, adapt, and create. It is often said that everybody makes mistakes, but an
intelligent person learns from his mistakes and avoids repeating them. This fact of
life emphasizes the importance of comprehension, reasoning, learning, and the
ability to improve one’s performance autonomously in the definition of intelligence.

There are essentially two computational systems: carbon-based organic brains,
which have existed in humans and animals since their inception, and
electronics-based computers, which have rapidly evolved over the latter half of the
twentieth century and beyond. Technological advances in recent decades have
made it possible to develop computers that are extremely fast and efficient for
numerical computations. However, these computers lack the abilities of humans
and animals in processing cognitive information acquired by natural sensors. For
example, the human brain routinely performs tasks like recognizing a face in an
unfamiliar crowd in 100–200 ms whereas a computer can take days to perform a
task of lesser complexity. While the information perceived through natural sensors
in humans is not numerical, the brain can process such cognitive information
efficiently and cause the human to act on it accordingly. Modern day computers fail
miserably in processing such cognitive information.
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This leads engineers to wonder if some of the functions and attributes of the
human sensory system, cognitive processor, and motor neurons can be emulated in
an intelligent system. For such an emulation process, it is necessary to understand
the biological and physiological functions of the brain. Hardware can be developed
to model aspects of neurons, the principle element of the brain. Similarly, new
theories and methodologies can be developed to model the human thinking process.

Many advances have been made in mimicking human cognitive abilities. These
advances were mostly inspired by certain biological aspects of the human brain. One
of the intriguing aspects of human perception and cognition is its tolerance for
imprecision and uncertainty [1–10], which characterize most real-world phenomena.

2 Certainty and Precision

The excess of precision and certainty in engineering and scientific research and
development is often providing unrealizable solutions. Certainty and precision have
much too often become an absolute standard in design, decision making, and
control problems. One of the fundamental aims in science and engineering has been
to move from perceptions to measurements in observations, analysis, and decision
making.

Through the methodology of precise measurements, engineers and scientists
have had many remarkable accomplishments. These include putting people on the
moon and returning them safely to Earth, sending spacecraft to the far reaches of the
solar system, sending rovers to explore the surface of Mars, exploring the oceans
depths, designing computers that can perform billions of computations per second,
developing the nuclear bomb, mapping the human genome, and constructing a
scanning tunneling microscope that can move individual atoms. However, the path
of precision, as manifested in the theories of determinism and stochasticism, has
often caused engineers to be ineffectual and powerless as well as lose scientific
creativity.

3 Uncertainty and Imprecision in Perception
and Cognition

The attribute of certainty or precision does not exist in human perception and cog-
nition. Alongside many startling achievements using the methodology of precise
measurements, there have been many abysmal failures that include modeling the
behavior of economic, political, social, physical, and biological systems. Engineers
have been unable to develop technology that can decipher sloppy handwriting,
recognize oral speech as well as a human can, translate between languages as well as
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a human interpreter can, drive a motorcycle in heavy traffic, walk with the agility of a
human or animal, replace the combat infantry soldier, determine the veracity of a
statement by a human subject with an acceptable degree of accuracy, replace judges
and juries, summarize a complicated document, and explain poetry or song lyrics.
Underlying these failures is the inability to manipulate imprecise perceptions instead
of precise measurements in computing methodologies.

Albert Einstein wrote, “So far as the laws of mathematics refer to reality, they
are not certain. And so far as they are certain, they do not refer to reality [11].”

There are various types of uncertainty. However, they can be classified under
two broad categories: type one uncertainty and type two uncertainty [8–10].

3.1 Type One Uncertainty

Type one uncertainty deals with information that arises from the random behavior
of physical systems. The pervasiveness of this type of uncertainty can be witnessed
in random vibrations of a machine, random fluctuations of electrons in a magnetic
field, diffusion of gases in a thermal field, random electrical activities of cardiac
muscles, uncertain fluctuations in the weather pattern, and turbulent blood flow
through a damaged cardiac valve. Type one uncertainty has been studied for cen-
turies. Complex statistical mathematics has evolved for the characterization and
analysis of such random phenomena.

3.2 Type Two Uncertainty

Type two uncertainty deals with information or phenomena that arise from human
perception and cognitive processes or from cognitive information in general. This
subject has received relatively little attention. Perception and cognition through
biological sensors (eyes, ears, nose, etc.), perception of pain, and other similar
biological events throughout our nervous system and neural networks deserve
special attention. The perception and cognition phenomena associated with these
processes are characterized by many great uncertainties and cannot be described by
conventional statistical theory. A person can linguistically express perceptions
experienced through the senses, but these perceptions cannot be described using
conventional statistical theory.

Type two uncertainty and the associated cognitive information involve the
activities of neural networks. It may seem strange that such familiar notions have
recently become the focus of intense research. However, it is the relative unfa-
miliarity of these notions and their technological applications in intelligent systems
that have led engineers and scientists to conduct research in the field of type two
uncertainty and its associated cognitive information.
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4 Fuzzy Logic

Fuzzy logic [12–37] has proven to be a very promising tool for dealing with type
two uncertainty. Stochastic theory is only effective in dealing with type one
uncertainty. The theory of fuzzy logic is based on the notion of relative graded
membership, as inspired by the processes of human perception and cognition.
Lotfi A. Zadeh published his first famous paper on fuzzy sets [12] in 1965.

Fuzzy logic can deal with information arising from computational perception
and cognition that is uncertain, imprecise, vague, partially true, or without sharp
boundaries. Fuzzy logic allows for the inclusion of vague human assessments in
computing problems. Also, it provides an effective means for conflict resolution of
multiple criteria and better assessment of options. New computing methods based
on fuzzy logic can be used in the development of intelligent systems for decision
making, identification, recognition, optimization, and control.

Measurements are crisp numbers, but perceptions are fuzzy numbers or fuzzy
granules, which are groups of objects in which there can be partial membership and
the transition of a membership function is gradual, not abrupt. A granule is a group of
objects put together by similarity, proximity, functionality, or indistinguishability.

Fuzzy logic is extremely useful for many people involved in research and devel-
opment including engineers (electrical, mechanical, civil, chemical, aerospace,
agricultural, biomedical, computer, environmental, geological, industrial, mecha-
tronics), mathematicians, computer software developers and researchers, natural
scientists (biology, chemistry, earth science, physics), medical researchers, social
scientists (economics, management, political science, psychology), public policy
analysts, business analysts, jurists, etc. Indeed, the applications of fuzzy logic, once
thought to be an obscure mathematical curiosity, can be found in many engineering
and scientific works. Fuzzy logic has been used in numerous applications such as
facial pattern recognition, washing machines, vacuum cleaners, antiskid braking
systems, transmission systems, control of subway systems and unmanned helicopters,
knowledge-based systems for multiobjective optimization of power systems, weather
forecasting systems, models for new product pricing or project risk assessment,
medical diagnosis and treatment plans, and stock trading. This branch of mathematics
has instilled new life into scientific disciplines that have been dormant for a long time.

5 Qualitative Definitions, Crisp Quantitative Definitions,
Type-One Fuzzy Quantitative Definitions, and Interval
Type-Two Fuzzy Quantitative Definitions of Imprecise
Words

Type-one fuzzy logic or interval type-two fuzzy logic [38–40] can be used to
properly quantitatively define many imprecise linguistic terms including tempera-
ture, speed, unemployment levels, and inflation. Fuzzy logic is needed to
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quantitatively define imprecise linguistic terms like high unemployment, moderate
unemployment, low unemployment, very high unemployment, high inflation,
medium inflation, low inflation, extremely low inflation, fast speed, low speed, etc.
Type-one fuzzy sets and interval type-two fuzzy sets have been used for imprecise
linguistic terms in many intelligent systems applications, but this research chapter
proposes the use of type-one fuzzy sets and interval type-two fuzzy sets for the
application of posing and answering queries about quantitatively defining imprecise
linguistic terms in natural languages.

An imprecise word should be considered to have qualitative definitions and
quantitative definitions [41–44].

There are multiple qualitative definitions because a word can have multiple
meanings and because different ways of defining a word can be employed. That is,
different dictionaries use different descriptions to convey the meaning of the same
word.

An imprecise word should be considered to have two types of quantitative
definitions: crisp quantitative definitions and fuzzy quantitative definitions [41–44].

Crisp quantitative definitions are those made with crisp sets. There are multiple
crisp quantitative definitions because different individuals have different percep-
tions of the crisp set for imprecise words. A crisp quantitative definition of annual
inflation levels is in Fig. 1.

Fuzzy quantitative definitions are those made with fuzzy sets. There are multiple
fuzzy quantitative definitions because different individuals have different percep-
tions of the fuzzy set for imprecise words. Fuzzy quantitative definitions of annual
inflation levels are in Fig. 2 and Fig. 3.

It should be realized that while quantitative definitions of imprecise words can be
made with crisp sets or fuzzy sets, only fuzzy sets can model the imprecision of
words, so crisp sets have extremely limited value in modeling imprecise words.

An imprecise word should be considered to have two types of fuzzy quantitative
definitions: type-one fuzzy quantitative definitions and interval type-two fuzzy
quantitative definitions [44].

Type-one fuzzy quantitative definitions are those made with type-one fuzzy sets.
Figure 2 shows type-one fuzzy quantitative definitions.

Interval type-two fuzzy quantitative definitions are those made with interval
type-two fuzzy sets. Figure 3 shows interval type-two fuzzy quantitative definitions.

It is important to distinguish between qualitative definitions and quantitative
definitions, crisp quantitative definitions and fuzzy quantitative definitions, and
type-one fuzzy quantitative definitions and interval type-two fuzzy quantitative
definitions.
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6 Crisp Quantitative Definitions of Inflation Levels

6.1 Inflation Levels as Crisp Sets

Crisp sets can be arbitrarily defined for low inflation, medium inflation, and high
inflation. These crisp sets are as illustrated in Fig. 1 and are the crisp quantitative
definitions for low inflation, medium inflation, and high inflation.

For annual inflation rates less than 2.5 %, there is a membership of 1 in the low
inflation crisp set and a membership of 0 in the other crisp sets. For annual inflation
rates between 2.5 % and 5.5 %, there is a membership of 1 in the medium inflation
crisp set and a membership of 0 in the other crisp sets. For annual inflation rates
greater than 5.5 %, there is a membership of 1 in the high inflation crisp set and a
membership of 0 in the other crisp sets. These crisp sets could be defined with
different parameters.

With these crisp sets, an annual inflation rate of 2.4999 % is considered low
inflation whereas an annual inflation rate of 2.5001 is considered medium inflation.
This extremely sudden transition from low inflation to medium inflation for
extremely small differences in annual inflation doesn’t make sense and can be
rectified using type-one fuzzy sets or interval type-two fuzzy sets, as can be seen in
the next sections.

6.2 Crisp Query About Quantitatively Defining Inflation
Levels with Crisp Sets

A single crisp query for quantitatively defining annual inflation rates with fuzzy sets
could be articulated as follows: “Using historical data on annual inflation rates,
classify different annual inflation rates into low inflation, medium inflation, or high
inflation.”

Fig. 1 Crisp sets for annual
inflation levels.

Important New Terms and Classifications in Uncertainty … 159



6.3 Crisp Answer in Quantitatively Defining Inflation Levels
with Crisp Sets

A crisp answer could be articulated as follows: “An annual inflation rate less than
2.5 % is low inflation. An annual inflation rate between 2.5 % and 5.5 % is medium
inflation. An annual inflation rate greater than 5.5 % is high inflation.”

7 Type-One Fuzzy Quantitative Definitions
of Inflation Levels

7.1 Inflation Levels as Type-One Fuzzy Sets

A type-one fuzzy set uses a membership function to assign a degree of membership
from 0 to 1 to each domain value. Type-one fuzzy sets can be arbitrarily defined for
low inflation, medium inflation, and high inflation. These type-one fuzzy sets are as
illustrated in Fig. 2 and are the type-one fuzzy quantitative definitions for low
inflation, medium inflation, and high inflation.

For annual inflation rates less than 2 %, there is a membership of 1 in the low
inflation fuzzy set. As annual inflation increases from 2 % to 3 %, its membership in
the low inflation fuzzy set steadily decreases from 1 to 0 with constant slope and its
membership in the medium inflation fuzzy set steadily increases from 0 to 1 with
constant slope. For annual inflation rates between 3 % and 5 %, there is a mem-
bership of 1 in the medium inflation fuzzy set. As annual inflation increases from
5 % to 6 %, its membership in the medium inflation fuzzy set steadily decreases
from 1 to 0 with constant slope and its membership in the high inflation fuzzy set
steadily increases from 0 to 1 with constant slope. For annual inflation rates greater
than 6 %, there is a membership of 1 in the high inflation fuzzy set. These fuzzy sets
could be defined with different parameters.

Fig. 2 Type-one fuzzy sets
for annual inflation levels.
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7.2 Type-One Fuzzy Query About Quantitatively Defining
Inflation Levels with Type-One Fuzzy Sets

A type-one fuzzy query for quantitatively defining annual inflation rates with fuzzy
sets could be articulated as follows: “Give me a range of inflation rates that are
definitely low inflation. Give me a range of inflation rates that are partially low
inflation and partially medium inflation. Give me a range of inflation rates that are
definitely medium inflation. Give me a range of inflation rates that are partially
medium inflation and partially high inflation. Give me a range of inflation rates that
are definitely high inflation.”

7.3 Type-One Fuzzy Answer About Quantitatively Defining
Inflation Levels with Type-One Fuzzy Sets

A type-one fuzzy answer could be articulated as follows: “An annual inflation rate
less than 2 % is low inflation. An annual inflation rate between 2 % and 3 % is
partially low inflation and partially medium inflation. As annual inflation increases
from 2 % to 3 %, its degree of being low inflation steadily decreases and its degree
of being medium inflation steadily increases. An annual inflation rate between 3 %
and 5 % is medium inflation. An annual inflation rate between 5 % and 6 % is
partially medium inflation and partially high inflation. As annual inflation increases
from 5 % to 6 %, its degree of being medium inflation steadily decreases and its
degree of being high inflation steadily increases. An annual inflation rate greater
than 6 % is high inflation.”

8 Interval Type-Two Fuzzy Quantitative Definitions
of Inflation Levels

8.1 Type-Two Fuzzy Sets and Interval Type-Two Fuzzy Sets

A type-two fuzzy set allows the inclusion of uncertainty into the parameters of a
membership function. The membership function of a type-two fuzzy set is in itself a
fuzzy set. A type-two fuzzy set is three-dimensional where the third dimension
indicates the degree of membership of the two-dimensional membership function at
each point in its two-dimensional domain.

In a type-two fuzzy set, a footprint of uncertainty indicates the upper and lower
bounds in the two-dimensional domain of a type-two fuzzy set. A footprint of
uncertainty in a type-two fuzzy set is a region bounded by an upper membership
function and lower membership function.
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An interval type-two fuzzy set is a type-two fuzzy set in which the third
dimension is constant in value meaning the degree of membership is constant for
the two-dimensional membership function at each point in its two-dimensional
domain. Therefore, the third dimension is ignored.

It would be extremely difficult to linguistically describe an imprecise linguistic
term with a type-two fuzzy set because there is a third dimension that indicates the
degree of membership of the two-dimensional membership function at each point in
its two-dimensional domain. It is much less difficult to linguistically describe an
imprecise linguistic term with an interval type-two fuzzy set because the third
dimension is constant in value and can be ignored. Because it is impractical to
attempt to linguistically describe a type-two fuzzy set for an imprecise linguistic
term, this research chapter only covers the usage of interval type-two fuzzy sets for
describing imprecise linguistic terms.

8.2 Inflation Levels as Interval Type-Two Fuzzy Sets

Interval type-two fuzzy sets can be arbitrarily defined for low inflation, medium
inflation, and high inflation. These interval type-two fuzzy sets are as illustrated in
Fig. 3 and are the interval type-two fuzzy quantitative definitions for low inflation,
medium inflation, and high inflation.

For annual inflation rates less than an inflation rate between 1.75 % and 2.25 %,
there is a membership of 1 in the low inflation fuzzy set. As annual inflation
increases from an inflation rate between 1.75 % and 2.25 % to an inflation rate
between 2.75 % and 3.25 %, its membership in the low inflation fuzzy set steadily
decreases from 1 to 0 with a constant slope and its membership in the medium
inflation fuzzy set steadily increases from 0 to 1 with a constant slope. For annual
inflation rates from an inflation rate between 2.75 % and 3.25 % to an inflation rate
between 4.75 % and 5.25 %., there is a membership of 1 in the medium inflation
fuzzy set. As annual inflation increases from an inflation rate between 4.75 % and
5.25 % to an inflation rate between 5.75 % and 6.25 %, its membership in the
medium inflation fuzzy set steadily decreases from 1 to 0 with a constant slope and
its membership in the high inflation fuzzy set steadily increases from 0 to 1 with a
constant slope. For annual inflation rates greater than an inflation rate between
5.75 % and 6.25 %, there is a membership of 1 in the high inflation fuzzy set. These
interval type-two fuzzy sets are as illustrated in Fig. 3 and are the interval type-two
fuzzy quantitative definitions for low inflation, medium inflation, and high inflation.
These interval type-two fuzzy sets could be defined with different parameters.
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8.3 Interval Type-Two Fuzzy Query About Quantitatively
Defining Inflation Levels with Interval
Type-Two Fuzzy Sets

An interval type-two fuzzy query for quantitatively defining annual inflation rates
with fuzzy sets could be articulated as follows: “Give me a range of annual inflation
rates below which there is definitely low inflation. Give me a range of annual
inflation rates between which there is partially low inflation and partially medium
inflation. Give me a starting range and ending range of annual inflation rates
between which there is definitely medium inflation. Give me a range of annual
inflation rates between which there is partially medium inflation and partially high
inflation. Give me a range of annual inflation rates above which there is definitely
high inflation.”

8.4 Interval Type-Two Fuzzy Answers About Quantitatively
Defining Inflation Levels with Interval
Type-Two Fuzzy Sets

An interval type-two fuzzy answer could be articulated as follows: “An annual
inflation less than an inflation rate between 1.75 % and 2.25 % is low inflation. As
annual inflation increases from an inflation rate between 1.75 % and 2.25 % to an
inflation rate between 2.75 % and 3.25 %, there is partially low inflation and
partially medium inflation. As annual inflation increases from an inflation rate
between 1.75 % and 2.25 % to an inflation rate between 2.75 % and 3.25 %, its
degree of being low inflation steadily decreases and its degree of being medium
inflation steadily increases. An annual inflation rate between an inflation rate
between 2.75 % and 3.25 % to an inflation rate between 4.75 % and 5.25 % is

Fig. 3 Interval type-two
fuzzy sets for annual inflation
levels.
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medium inflation. An annual inflation from an inflation rate between 4.75 % and
5.25 % to an inflation rate between 5.75 % and 6.25 % is partially medium inflation
and partially high inflation. As annual inflation increases from an inflation rate
between 4.75 % and 5.25 % to an inflation rate between 5.75 % and 6.25 %, its
degree of being medium inflation steadily decreases and its degree of being high
inflation steadily increases. An annual inflation rate greater than an inflation rate
between 5.75 % and 6.25 % is high inflation.”

9 Conclusion

Uncertainty is an inherent phenomenon in the universe and in peoples’ lives. To
some, it may become a cause of anxiety, but to engineers and scientists it becomes a
frontier full of challenges. Engineers and scientists attempt to comprehend the
language of this uncertainty through mathematical tools, but these mathematical
tools are still incomplete. In the past, studies of cognitive uncertainty and cognitive
information were hindered by the lack of suitable tools for modeling such infor-
mation. However, fuzzy logic, neural networks, and other methods have made it
possible to expand studies in this field. Whereas stochastic theory is effective in
dealing with type one uncertainty, fuzzy logic is needed for type two uncertainty.

Humans think in imprecise and vague terms. Consequently, human language is
inherently imprecise and vague. A major problem arises when people try to bring
precision into situations where it doesn’t apply, such as defining human linguistic
terms like high inflation as being greater than a single precise annual income. An
understanding of the basic principles of type-one fuzzy logic and interval type-two
fuzzy logic can be extremely useful in posing proper questions and giving proper
answers about quantitatively defining imprecise linguistic terms. Imprecise lin-
guistic terms in natural languages should be considered to have qualitative defi-
nitions, crisp quantitative definitions, fuzzy quantitative definitions, type-one fuzzy
quantitative definitions, and interval type-two fuzzy quantitative definitions.

Crisp queries, crisp answers, and crisp quantitative definitions are simpler than
type-one fuzzy queries, type-one fuzzy answers, and type-one fuzzy quantitative
definitions. It’s easier to define an imprecise linguistic term with a crisp set than
with a type-one fuzzy set, but a type-one fuzzy set allows for the inclusion of
uncertainty in a membership function. If one wants to include uncertainty in a
membership function, then a type-one fuzzy set should be used.

Type-one fuzzy queries, type-one fuzzy answers, and type-one fuzzy quantita-
tive definitions are simpler than interval type-two fuzzy queries, interval type-two
fuzzy answers, and interval type-two fuzzy quantitative definitions. It’s easier to
define an imprecise linguistic term with a type-one fuzzy set than with an interval
type-two fuzzy set, but an interval type-two fuzzy set allows for the inclusion of
uncertainty about the bounds of the membership function. If one wants to include
uncertainty about the bounds of the membership function in a quantitative definition
of an imprecise linguistic term, then an interval type-two fuzzy set should be used.
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Formalization and Visualization of Kansei
Information Based on Fuzzy Set Approach

Fangyan Dong and Kaoru Hirota

Abstract Kansei or affective-computing related information is easy to express in
terms of fuzzy sets. Three examples of Kansei information, e.g., emotion, atmo-
sphere, and Kansei texture, are formalized by using fuzzy set concept on [−1,1]3

space. They are also visualized by using shape-brightness-size, shape-color-size,
and contour-shape-gradation models, respectively. Their applications to agent to
agent communication, multiagent communication, and online shopping are also
introduced.

1 Introduction

Kansei engineering has been studied originally in Japan and nowadays in worldwide,
and is sometimes referred to affective computing. Its main purpose is to introduce
information processing capability related to human ambiguity or subjectivity in the
computer science/engineering field, accordingly it has a good matching with fuzzy
set approach. The authors’ group has been studying Kansei information processing
in various IT fields. In this article, three topics are introduced, i.e., emotion under-
standing in man-machine interaction, atmosphere analysis/understanding in humans-
robots interaction, and Kansei texture in online shopping.
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2 Emotion Understanding in Man-Machine Interaction

Emotion understanding has been studied in man-machine, human-robot, or gener-
ally agent-agent interaction using different type of devices. The ones that are more
close to human way of understand the emotions are those which are based on voice,
face, and gesture information [1, 2]. But the part missing with these approaches is a
lack of experience [3]; learning from the interaction and creating knowledge is what
gives humans the power to understand deeply the emotions of other person.
Humans emotions are complex, and in many situations the emotion displayed in the
face, voice or body gesture sometimes may not indicate the real or absolute emotion
of the individuals [2], making the necessity to create an algorithm to model this
human ability to improve human-robot interaction [4]. To address and to make a
model of this problem, understanding by using information from face, voice,
gesture, and others is called surface level emotion understanding, whereas a deep
level emotion understanding is also proposed [5], where customized learning
knowledge from communication history and a basic knowledge base about the
observed agent are utilized with the observed visual/acoustic/gesture information
input (Fig. 1).

Fig. 1 Concept of deep level emotion understanding
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There are many proposals to represent the emotion in so called emotion space.
The resulting emotions are displayed in the arousal pleasure-affinity space [6] as
shown in Fig. 2 to understand where the emotion and the intension is placed, which
is defined as

E= e affinity, e pleasure, e arousal
� �

e affinity, e pleasure, e arousal∈ − 1, 1½ �, ð1Þ

where E is the emotion state vector, e_affinity, e_pleasure, and e_arousal are the values
for “Affinity- No-affinity”, “Pleasure-Displeasure”, and “Arousal-Sleep” axes,
respectively. The E is a 3D vector in [-1,1]3 as shown in the emotion centroid in
Fig. 2. But the human emotion is complex and sometimes varies according to the
situation. So it maybe natural to represent the emotion by a fuzzy set as shown by
the cone (generally a distorted cone) in Fig. 2. The emotion represented as a fuzzy
set has generally a complex shaped membership function, but it may be possible to
approximate the complex shaped membership function by an emotion centroid, i.e.,
an average vector, and emotion standard deviation, i.e., a standard deviation vector
in [0,1]3 whose component indicates the standard deviation of the distorted cone
along each axis.

The most important information is indicated by the average vector in [-1,1]3 and
is illustrated by a visualization method using shape-brightness-size model as shown
in Fig. 3. For the pleasure-displeasure axis [-1, 1], some meaningful shapes are
accepted. Based on the culture in Japan where the authors’ group are studying,

Fig. 2 Affinity Pleasure - Arousal space [6]
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circle represents a positive or good answer, while the X-shape represents a negative
or bad answer. That makes the shape a suitable way to represent the pleasure (= 1)
or displeasure (= -1). In between displeasure and pleasure, continuous deformed
shape from X to circle is used as shown in the upside of Fig. 3.

Brightness inside of the shape is accepted to represent the arousal–sleep axis [-1,
1]. White is the brightest color that denotes vivid, activeness, and arousal (= 1),
while black is the darkest color that denotes gloom, passiveness, and sleep (= -1).
The degree from sleep to arousal is expressed by gray level degree as shown in the
middle of Fig. 3. For the affinity- no-affinity axis [-1, 1], the size of the shape is
used from the smallest in the case of no-affinity (= -1) to the full size in affinity (=
1) as indicated in the bottom of Fig. 3.

A scenario is created to demonstrate the concept of the proposed method, where
the communication is done between a human employee (observed agent) and a
robot secretary (emotion observer) in a company as shown in Fig. 4. The topic is a
meeting room reservation requested by the employee to the secretary followed by
the reservation change because of the employee’s mistake. The employee’s face/
voice/body-gesture are captured by Kinect attached to the robot secretary. They
provide the surface level emotion of the employee to the secretary robot by using
three neural networks, and the deep level emotion is inferred by the secretary robot
using fuzzy inference with the customized knowledge about the employee. The
result is shown in both a vector in [-1,1]3 (bottom left in Fig. 4) and the visuali-
zation method (bottom right in Fig. 4).

Fig. 3 Visualization of emotion
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3 Atmosphere Analysis/Understanding
in Humans-Robots Interaction

To make a smooth communication in human-robot/machine or generally agent to agent
interaction, understanding the emotion of others is important. In the case of many to
many agents communication, however, the atmosphere of the society may provide more
important information than the emotion of each agent. Although many studies have
been done on the emotion from viewpoints of cognitive science or human-machine
interface, the atmosphere generated by the communication society/field by many agents
has not been studied enough. The authors’ group at Tokyo Institute of Technology has
been studied on many robots and many humans communication through internet, where
the atmosphere of the communication field/society by many (huge number of) indi-
viduals plays an important role for the smooth communication [7].

The concept of Fuzzy Atmosfield (FA), is proposed to express the atmosphere in
such humans-robots communication field/society [8]. The “Atmosfield” is a new
word from “atmosphere” and “field”, and is created by the authors’ group. It is
characterized by a 3D fuzzy cubic space [-1,1]3 as shown in Fig. 5 with “friendly-
hostile”, “lively-calm”, and “casual-formal” axes by doing a cognitive science
experiments and applying principle component analysis.

Fig. 4 Communication between employee and secretary robot
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The atmosphere in the communication field/society is expressed by a point in the
3D fuzzy cubic space [-1,1]3 and maybe varying/moving in the space time by time.
To understand easily such movement of the atmosphere, a graphical representation
method is also proposed as shown in Fig. 6 by using a shape-color-size model,
where “friendly-hostile” information is represented by “shape”, “lively-calm” by
“color”, and “casual-formal” by “size”.

To illustrate the FA and its visualization method, a demonstration scenario
“enjoying home party by using a Mascot Robot System is introduced/performed.
The Mascot Robot System consists of 5 robots, i.e., 4 fixed robots (placed on a TV,
a darts game machine, an information terminal, and a mini-bar) and 1 mobile robot
(Fig. 7). Each of them includes an eye robot, a speech recognition module, and a
notebook PC that controls the robot and the speech recognition module. These
robots are connected together with a server through the internet by RTM (Robot
Technology Middleware developed by AIST, Japan), thus constituting the Robot
System. The Mascot Robot System’s functioning is demonstrated in an ordinary
living room, where casual communication between 5 robots and 4 human beings
(1 host, 2 guests, and 1 walk-in) is conducted based on speech recognition and
mentality expression of eye robots.

Fig. 5 Fuzzy atmosfield
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An example scene of Demonstration Video “Enjoying Home Party” is shown in
Fig. 8, where the atmosphere information is indicated in the top center (3D vector
value) and top right (visualized illustration by a shape-color-size model).

4 Kansei Texture in Online Shopping

The online shopping market size becomes doubled in the last 10 years, because
customers can easily purchase various kinds of products anytime and anywhere. In
the online shopping, however, the customers have to imagine the sensation of the
product from a few photos, price, specification, reviews, and so on. Therefore, the
quality of the delivered product is sometimes different from imaged one. On the
other hand, when customers purchase a product in the shop, they actually can
observe and take it in their hand, and they can select suitable one based on their
feeling about the value, the tactile sensation, the textures, and so on. It means that
there exists information gap between real shop and online shop. In order to com-
pensate the information gap in online shopping, Kansei Texture which adds new
information on the present net shopping is proposed [9].

Fig. 6 Visualization of fuzzy atmosfield vector
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The Kansei Texture (“Shokushitsu-kan” in Japanese language) is defined as the
quality index of the feeling information on the tactile or vision sense when people
see the photo/movie image of a product or a real object.

Firstly, many kinds of expression terms which contains the amount of feelings
like onomatopoeia are gathering from the photos of the products. The expression
terms are changed in the amount of feelings which are characterized by 5 tactile
sensations in [-1, 1] scale, i.e., roughness, hardness, dryness, warmness, and
glossiness, based on the result of the subjectivity evaluation questionnaire. The
Kansei Texture is finally represented in 3-dimensional [-1,1]3 space condensed
from 5-dimensional [-1,1]5 space, and Kansei Texture of a product is shown by the
combination of each value of new defined 3 axes, i.e., “PuruPuru - GotsuGotsu”,
“KachiKachi - FuwaFuwa”, and “ButsuButsu - PikaPika” as shown in Fig. 9.

Fig. 7 Mascot robot system
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Fig. 8 An example of “enjoying home party”

Fig. 9 Kansei texture space
[-1,1]3
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Again, it maybe not easy for general customers in online shopping to understand
3D vectors in [-1,1]3, instead an easily understandable visualization method is
developed [10]. For this purpose a contour-shape-gradation model is used as shown
in Fig. 10. A program has been developed to generate the visualization illustration
by inputting the 3D vector information in the Kansei texture space [-1,1]3 as shown
in Fig. 11. Several illustration examples generated by the program are shown in
Fig. 12.

Fig. 10 Visualization of Kansei texture by CSG model

Fig. 11 Visualization program of Kansei texture
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The Kansei texture information is visualized in the online shopping screen as
shown in Fig. 13 (bottom right). The customers are able to understand the Kanse
texture about the good from the visualized Kansei texture information and to
imagine the tactile quality of the good with the photo and the text data.

Fig. 13 Online shopping screen with Kansei texture information

Fig. 12 Examples of visualization

Formalization and Visualization of Kansei Information … 179



5 Conclusions

Formalization procedures of Kansei information are introduced in terms of fuzzy set
approach. Three examples of Kansei information are shown, i.e., emotion, atmo-
sphere, and Kansei texture for the application purposes of man-machine interaction,
humans-robots interaction, and online shopping, respectively. The visualization
methods of the Kansei information are also presented.
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Cognitive Informatics: A Proper Framework
for the Use of Fuzzy Dynamic Programming
for the Modeling of Regional Development?

Janusz Kacprzyk

Abstract We advocate Wang’s cognitive informatics as a potentially powerful gen-

eral approach and paradigm to formulate, analyze and solve human centric sys-

tems modeling,decision and control problems. We show the use of fuzzy dynamic

programming for solving a regional development problem in which many crucial

aspects, in particular life quality indicators, are subject to objective and subjective,

by the humans, judgments and evaluations which are closely related to human per-

ceptions and cognitive abilities. We consider how a best (optimal) investment policy

can be obtained under different development scenarios.

1 Introduction

The main purpose of this paper is to indicate a potential of Wang’s [26, 27] (cf.

also Wang et al. [29–33] cognitive informatics for providing a novel perspective

through which some decision making and control applications can be viewed. To

be more specific, we consider the use of multistage decision making (control) under

fuzzy constraints and goals, notably by employing fuzzy dynamic programming (cf.

Kacprzyk [10]) to regional development planning. That new perspective, should

considerably enhanced other human centric and perception oriented perspectives

proposed for solving the problem in question by Kacprzyk [8, 12, 14], Kacprzyk

Francelin and Gomide [18], etc.

The main “pre-inspiration” of this paper, which is meant to show and empha-

size some impprtant research directions that have occured over the last five decades

of fuzzy sets/logic, may be what the founder of fuzzy sets theory and fuzzy logic,

Professor Lotfi A. Zadeh, has been sating since the very baginning. Namely, namely
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that – in his opinion – the very esence of fuzzy sets and fuzzy logic would make them

particularly suited for all kinds of applications in broadly perceived human centric

systems, that is, those in which the human being plays a crucial role, or – in a slightly

broader mening - which are meant to analyze and solve problems that are important to

the individuals or soail groups, organizations, etc. Unfortunately, that Zadeh’s early

belief has not been totally fulfilled as, for a strange reason, in the first breakthrough

in the real world applications of fuzzy logic starting from the early 1980 s with the

so called fuzzy boom in Japan, most applications have been in technology, notably

in relatively simple control of various home appliances, cranes, etc.

However, even in that initial period some other application, more related to

what might be called human centric, have also appeared and have been imple-

mented to solve important real world problems. This paper is about such an applica-

tion, to sustainable regional planning, which has been initiated by the author and

his collaborators, cf. notably Kacprzyk and Straszak [20–23], in the end of the

1970s and beginning of the 1980 s at the International Institute for Applied Systems

Analysis (IIASA) in Laxenburg, Asutria (www.iiasa.at). The models developed have

been widely used by the author and his collaborators in many regional planning

projects in various countries, exemplified by the Upper Noteć Region in Poland,

Tisza Region in Hungary, Kinki region in Japan, to name a few. Those works have

resulted in many research publications, among which the following ones can be

quoted: Kacprzyk [8, 14], Kacprzyk, Francelin and Gomide [18], Kacprzyk and

Straszak [20–23], etc. The models proposed have been not only widely used in prac-

tice, documented also in project reports of limited circulation, but they have also

been mentioned as one of the most successful examples of fuzzy systems modeling

in a Special Volume on the Fiftieth Anniversary opf the Britis Operational Research

Society published in 1987 by Pergamon Press – cf Thomas [25]. This has been the

second inspiration of this paper.

The third inspiration is a recent growth of interest in various types of more human

centric and human consistent modeling, notably cognitive informatics and its related

cognitive modeling, a new area which has been conceptualized and proposed by

Wang [26, 27], and then considerably advanced over the next years by Wang and

his numerous collaborators and followers. For our purposes, which are related to

bradly perceived decision making and control, the work by Wang and Ruhe [32] is

presumably the most relevant.

Briefly speaking, cognitive informatics is a multidisciplinary field within infor-

matics, or computer science, that is based on results of cognitive and informa-

tion sciences, and which deals with human information processing mechanisms and

processes and their decision theoretic, engineering, etc. applications in broadly per-

ceived computing, including multistage decision making processes which are of our

interest. The agenda of ccgnitive informatics is to develop and implement mod-

els, tools and techniques, and technologies to facilitate and extend the information

acquisition, comprehension and processing capacity of humans to overcome some

cognitive difficulties related to the presence of the human being as a crucial part

of the system. In our case, the system will be highly related to human judgments,

and search for best (optimal) solutions. A limited comprehension, memorizing,

www.iiasa.at
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learning, choice and decision making abilities, satisfaction with partial truth, allow-

ing for not perfect solutions, etc. will be or relevance. Those issues are considered

and solved using tools and techniques derived from many areas like psychology,

behavioral science, neuroscience, artificial intelligence, linguistics, etc. In our case,

we will concentrate on some cognitive informatics type elements that mostly have

been inspired by psychology and behavioral sciences, as our problem is inherently

related to human judgments and perceptions. Some relation to neuroeconomics can

also be pursued, cf. Kacprzyk [15].

The first idea of such a cognitive informatics related perspective for mmore gen-

eral dynamic modeling issues, notably related to dynamic programming under fuzzy

constraints and goals, have been proposed in Kacprzyk’s plenary talk at WCCI-

2014 in Beijing, China (cf. http://www.ieee-wcci2014.org/files/Janusz.Kacprzyk.

pdf). The very purpose of that talk was to propose of what might be called cognitive
fuzzy dynamic programming. The purpose of this paper is more general, namely to

propose some new perspective in fuzzy systems modeling which might be called cog-
nitive fuzzy modeling. The new fuzzy dynamic programming models presented, in

which the above human specific aspects will be shown and analyzed and a cognitive

informatics perspective will be indicated, will be shown on a sustainable regional

development considered in terms of expenditures, subsidies, life qualities, etc. For a

slightly different approach within the cognitive modeling context, cf. Hotaling and

Busemeyer [4].

2 Fuzzy Dynamic Programming as a Step Towards
Perception Based and Cognitive Multistage Decision
Making and Control

As a point of departure we take the famous Bellman and Zadeh’s [1] model of deci-

sion making under fuzziness in which if X = {x} is some set of possible options
(alternatives, variants, choices, decisions, . . . ), then the fuzzy goal is defined as a

fuzzy set G in X, characterized by its membership function 𝜇G ∶ X ⟶ [0, 1] such

that 𝜇G(x) ∈ [0, 1] specifies the grade of membership of a particular option x ∈ X in

the fuzzy goal G, and the fuzzy constraint is similarly defined as a fuzzy set C in the

set of options X, characterized by 𝜇C ∶ X ⟶ [0, 1] such that 𝜇C(x) ∈ [0, 1] specifies

the grade of membership of a particular option x ∈ X in the fuzzy constraint C.

The general problem formulation is: “Attain G and satisfy C” which leads to the

fuzzy decision

𝜇D(x) = 𝜇G(x) ∧ 𝜇C(x), for each x ∈ X (1)

where “∧” stands for the minimum that may be replaced, for instance, a t-norm.

The maximizing decision is defined as an x∗ ∈ X such that

𝜇D(x∗) = max
x∈X

𝜇D(x) (2)

http://www.ieee-wcci2014.org/files/Janusz.Kacprzyk.pdf
http://www.ieee-wcci2014.org/files/Janusz.Kacprzyk.pdf


186 J. Kacprzyk

The human cognition related aspect is that, first, the strict optimization in (2) may

be viewed to strict and unnecessary and some sort of a satisfactory, good enough

solution could be accepted. Second, in reality the satisfaction of constraints and

attainment of goals have both an objective and subjective aspect. We will mainly

deal with that second aspect.

The Bellman and Zadeh’s [1] framework can therefore be extended by introduc-

ing: an objective fuzzy goal 𝜇Go
(x), a subjective fuzzy goal 𝜇Gs

(x), an objective fuzzy
constraint 𝜇Co

(x), and a subjective fuzzy constraint 𝜇Cs
(x).

We wish therefore to “Attain [Go and Gs] and satisfy [Co and Cs]” which leads to

the fuzzy decision

𝜇D(x) = [𝜇Go
(x) ∧ 𝜇Gs

(x)] ∧ [𝜇Co
(x) ∧ 𝜇Cs

(x)], for each x ∈ X (3)

and the maximizing, or optimal decision is defined as in (2); clearly, remarks on

a relaxation of that condition of a strict optimality are valid here too, as well as

throughout the paper.

This framework can be extended to handle multiple fuzzy constraints and fuzzy

goals, and also fuzzy constraints and fuzzy goals defined in different spaces, cf.

Kacprzyk’s [10] book. Namely, if we have: no > 1 objective fuzzy goals – G1
o,… ,Gno

o
defined in Y , ns > 1 subjective fuzzy goals – G1

s ,… ,Gns
s defined in Y , mo > 1 objec-

tive fuzzy constraints – C1
o,… ,Cmo

o defined in X, ms > 1 subjective fuzzy constraints

– C1
s ,… ,Cms

s defined in X, and a function f ∶ X ⟶ Y , y = f (x), then

𝜇D(x) =
= (𝜇G1

o
[f (x)] ∧⋯ ∧ 𝜇Gno

o
[f (x)]) ∧ (𝜇G1

s
[f (x)] ∧⋯ ∧ 𝜇Gns

s
[f (x)]) ∧

∧[𝜇C1
o
(x) ∧⋯ ∧ 𝜇Cmo

o
(x)] ∧ [𝜇C1

s
(x) ∧⋯ ∧ 𝜇Cms

s
(x)] ∧

∧[𝜇C1
s
(x) ∧⋯ ∧ 𝜇Cms

s
(x)], for each x ∈ X (4)

and the maximizing decision is defined as (2), i.e. 𝜇D(x∗) = maxx∈X 𝜇D(x).
In the control process dealt with the decision (control) space is U = {u} =

{c1,… , cm}, the state (output) space is X = {x} = {s1,… , sn}, and both are finite.

We start from an initial state x0 ∈ X, apply a decision (control) u0 ∈ U, which is

subjected to a fuzzy constraint 𝜇C0 (u0), and attain a state x1 ∈ X via a known state

transition equation of the system under control S; a fuzzy goal 𝜇G1 (x1) is imposed on

x1. Next, we apply u1, subjected to 𝜇C1 (u1), and attain x2, subjected to 𝜇G2 (x2), etc.

The (deterministic) system under control is described by a state transition
equation

xt+1 = f (xt,ut), t = 0, 1,… (5)

where xt, xt+1 ∈ X = {s1,… , sn} are the states at t and t + 1, respectively, and

ut ∈ U = {c1,… , cm} is the decision (control) at t.
At t, t = 0, 1,…, ut ∈ U is subjected to a fuzzy constraint 𝜇Ct (ut), and on xt+1 ∈ X

a fuzzy goal is imposed, 𝜇Gt+1(xt+1). The fixed and specified in advance initial state
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is x0 ∈ X, and the termination time (planning horizon), N ∈ {1, 2,…}, is finite, and

fixed and specified in advance.

The performance of the particular decision making (control) stage t, t = 0, 1,… ,

N − 1, is evaluated by

vt = 𝜇Ct (ut) ∧ 𝜇Gt+1(xt+1) = 𝜇Ct (ut) ∧ 𝜇Gt+1[f (xt,ut)] (6)

while the performance of the whole multistage decision making (control) process is

given by the fuzzy decision

𝜇D(u0,… ,uN−1 ∣ x0) = v0 ∧ v1 ∧… ∧ vN−1 =
= [𝜇C0 (u0) ∧ 𝜇G1 (x1)] ∧… ∧ [𝜇CN−1(uN−1) ∧ 𝜇GN (xN)] (7)

The problem is to find an optimal sequence of decisions (controls) u∗0,… ,u∗N−1
such that

𝜇D(u∗0,… ,u∗N−1 ∣ x0) = max
u0,…,uN−1∈U

𝜇D(u0,… ,uN−1 ∣ x0) (8)

Kacprzyk’s [10] book provides and wide coverage of various aspects and exten-

sions to this basic formulation.

In the case of an extention proposed in this paper and outlined in Sect. 2 in

which the objective and subjective fuzzy constraints and fuzzy goals are assumed,

which are inherently related to human judgment and cognition, we have, at each

t = 0, 1,… ,N − 1: an objective fuzzy constraint 𝜇C1
t
(ut) and a subjective fuzzy

constraint 𝜇Ct
s
(ut), and an objective fuzzy goal 𝜇Gt+1

o
(ut+1) and a subjective fuzzy

constraint 𝜇Gt+1
s
(ut+1).

The (extended) performance of the particular stage t, t = 0, 1,… ,N − 1, is then

given by

vt = [𝜇Ct
o
(ut) ∧ 𝜇Ct

s
(ut)] ∧ [𝜇Gt

o
(xt) ∧ 𝜇Gt

s
(xt)] (9)

which can be schematically shown as in Fig. 1.

Fig. 1 Evaluation of

(extended) performance of

decision making (control)

stage t
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The (extended) performance of the whole multistage decision making (control)

process is then given by the fuzzy decision

𝜇D(u0,… ,uN−1 ∣ tx0) = v0 ∧ v1 ∧… ∧ vN−1 =
= {[𝜇C0

o
(u0) ∧ 𝜇C0

s
(u0)] ∧ [𝜇G1

o
(x1) ∧ 𝜇G1

s
(x1)]} ∧…

= ∧ {[𝜇CN−1
o

(uN−1) ∧ 𝜇CN−1
s

(uN−1)] ∧ [𝜇GN
o
(xN) ∧ 𝜇GN

s
(xN)]} (10)

and we seek again an u∗0,… ,u∗N−1 such that

𝜇D(u
∗
0,… ,u∗N−1 ∣ x0) = max

u0,…,uN−1∈U
𝜇D(u0,… ,uN−1 ∣ x0) (11)

There is an extremely relevant aspect related to the subjective fuzzy constraints

and fuzzy goals. We will consider the subjective fuzzy goals in which this is pre-

sumably much more pronounced than in the subjective fuzzy constraints. Namely,

it often happens that the (subjective) human satisfaction resulting from the attain-

ment of some level of xt+1, a value of a life quality index, depends not only on the

“objectively attained” value but on how this value is perceived, how it looks like

in comparision with the past, what are future prospects, etc. For simplicity, let us

concentrate in these perceptions and jidgments on the past only.

The trajectory of the multistage decision making (control) process from t = 0 to

a current stage t = k is

Hk = (x0,u0,C0
o,C

0
s , x1,G

1
o,G

1
s ,… ,uk−1,Ck−1

o ,Ck−1
s , xk,Gk

o,G
k
s ) (12)

that is, it involves all aspects of what has happened in terms of decisions applied,

states attained, and objective and subjective opinions of how well the fuzzy con-

straints have been satisfied and fuzzy goals attained. However, it is often sufficient

to take into account the reduced trajectory

hk = (xk−2,uk−2,Ck−2
o ,Ck−2

s , xk−1,Gk−1
o ,Gk−1

s ,uk−1,Ck−1
o ,Ck−1

s , xk,Gk
o,G

k
s ) (13)

which only takes into account the current, t = k, and previous stage, t = k − 1. Let

us assume this reduced trajectory. Such an approach has a long tradition, e.g. in all

kinds of the Markov decision processes, and has proved to be effective and efficient.

A further simplification is that with a trajectory, or reduced trajectory, an evalua-

tion function is associated, E ∶ S(Hk) ⟶ [0, 1] or e ∶ S(hk) ⟶ [0, 1], where S(Hk)
and S(hk) are the sets of trajectories and reduced trajectories, respectively, such that

E(Hk) ∈ [0, 1] and e(hk) ∈ [0, 1] denote the satisfaction of the past development,

from 1 for full satisfaction to 0 for full dissatisfaction, through all intermediate val-

ues. This is again consistent with the human perception.
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The subjective fuzzy constraints and huzzy goals are now:

∙ when the (reduced) trajectory is accounted for

{
𝜇Ck

o
(uk ∣ hk) and 𝜇Ck

s
(uk ∣ hk)

𝜇Gk+1
o

(xk+1 ∣ hk) and 𝜇Gk+1
s

(xk+1 ∣ hk)
(14)

∙ when the evaluation of the (reduced) trajectory is accounted for

{
𝜇Ck

o
[uk ∣ E(hk)] and 𝜇Ck

s
[uk ∣ E(hk)]

𝜇Gk+1
o

[xk+1 ∣ E(hk)] and 𝜇Gk+1
s

[xk+1 ∣ E(hk)]
(15)

Problem (8) can be solved using the following two basic traditional techniques:

dynamic programming (cf. Bellman and Zadeh [1], Kacprzyk [7, 10]), and branch-

and-bound (Kacprzyk [5], and also using the two new ones: a neural network (cf.

Francelin, Gomide and Kacprzyk [2, 3], and a genetic algorithm (cf. Kacprzyk [11,

12]. We will only briefly show the use of dynamic programming, and refer the reader

for an extensive coverage on this and other solution techniques to Kacprzyk’s [10]

book.

First, we rewrite (8) as to find u∗0,… ,u∗N−1 such that

𝜇D(u∗0,… ,uN−1 ∣ x0) =
= max

u0,…,uN−1
[𝜇C0 (u0) ∧ 𝜇G1 (x1) ∧…

… ∧ 𝜇CN−1(uN−1) ∧ 𝜇GN (f (xN−1,uN−1))] (16)

and then, since

𝜇CN−1(uN−1) ∧ 𝜇GN (f (xN−1,uN−1))

depends only on uN−1, then the maximization with respect to u0,… ,uN−1 in (16)

can be split into:

∙ the maximization with respect to u0,… ,uN−2, and

∙ the maximization with respect to uN−1,

written as

𝜇D(u∗0,… ,u∗N−1 ∣ x0) =
= max

u0,…,uN−2
{𝜇C0 (u0) ∧ 𝜇G1 (x1) ∧…

…∧ 𝜇CN−2(uN−2) ∧ 𝜇GN−1(xN−1) ∧
∧ max

uN−1
[𝜇CN−1(uN−1) ∧ 𝜇GN (f (xN−1,uN−1))]} (17)

which may be continued for uN−2, uN−3, etc.
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This backward iteration leads to the following set of fuzzy dynamic programming

recurrence equations:

⎧⎪⎨⎪⎩

𝜇

G
N−i(xN−i) =

= maxuN−i
[𝜇CN−i(uN−i) ∧ 𝜇GN−i (xN−i) ∧ 𝜇

G
N−i+1(xN−i+1)]

xN−i+1 = f (xN−i,uN−i); i = 0, 1,… ,N
(18)

where 𝜇

G
N−i (xN−i) is viewed as a fuzzy goal at control stage t = N − i induced by

the fuzzy goal at t = N − i + 1, i = 0, 1,… ,N; 𝜇
G

N (xN) = 𝜇GN (xN).
The u0,… ,uN−1 sought is given by the successive maximizing values of uN−i,

i = 1,… ,N in (18) which are obtained as functions of xN−i, i.e. as an optimal policy,

aN−i ∶ X ⟶ U, such that uN−i = aN−i(xN−i).
It easy to notice that if we use the subjective fuzzy constraints and fuzzy goals to

extend the above fuzzy dynamic programming model, then the very idea of dynamic

programming, i.e. the use of backward iteration represented by the recurrence equa-

tions (18), prohibits the use of subjective fuzzy constraints and subjective fuzzy goals

defined as functions of the trajectory, or any evaluation of the trajectory, as both of

them are somehow calculated on the basis of outcomes of control stages prior to

those which have been accounted for so far since we proceed via backward iteration.

Therefore, if we intend to employ fuzzy dynamic programming, as in this paper, we

can only use the subjective fuzzy constraints and goals depending on the current

value of decision (control) applied and state attained. The involvement of subjec-

tive fuzzy constraints and goals depending on the trajectory or its evaluation needs

another approach as, e.g., the use of a genetic algorithm (cf. Kacprzyk [6, 9, 12,

17]) or a neural network based approach by Francelin, Gomide and Kacprzyk [2] or

Francelin, Kacprzyk and Gomide [3].

Therefore, by involving the line of reasoning (16)–(18), using the objective and

subjective fuzzy constraints and fuzzy goals: 𝜇CN−i
o

(uN−i) and 𝜇CN−i
s

(uN−i), and

𝜇GN−i+1
o

(xN−i+1) and 𝜇GN−i+1
s

(xN−i+1), for i = 1, 2,… ,N, we arrive at the following

set of (extended) dynamic programming recurrent equations:

⎧⎪⎪⎨⎪⎪⎩

𝜇

G
N−i(xN−i) =

= maxuN−i
{[𝜇CN−i

o
(uN−i) ∧ 𝜇CN−i

s
(uN−i)]∧

[𝜇GN−i
o

(xN−i) ∧ 𝜇GN−i
s

(xN−i) ∧ 𝜇

G
N−i+1(xN−i+1)]}

xN−i+1 = f (xN−i,uN−i); i = 0, 1,… ,N

(19)

3 Sustainable Socioeconomic Regional Development
Planning Under Fuzziness

Regional development planning is a problem of crucial relevance in virtually all

countries but is difficult to formalize and solve as it involves various aspects (politi-

cal, economic, social, environmental, technological, etc.), different parties and agents
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(inhabitants, authorities of different levels, formal and informal groups, etc.), and

many entities and aspects that are difficult to precisely single out, define and quan-

tify. Needless to say that the sustainable regional development planning is even more

complex but for a lack of space we will not discuss its specifics in more detail. To

overcome these difficulties, the use of a fuzzy model was Kacprzyk and Straszak [21,

23], and then extended by Kacprzyk [10], and Kacprzyk, Francelin and Gomide [18].

Basically, they consider a (rural) region plagued by severe difficulties mainly

related to a poor life quality perceived. Hence, life quality (or, in fact, a perception

therof) should be improved, by some (mostly external) funds (investments) whose

amount and their temporal distribution should be found. We will show now how

the extended, cognitive type and perception based model developed above can be

employed.

For our purposes the essence of socioeconomic regional development may be

depicted as in Fig. 2.

Fig. 2 Essential elements of socioeconomic regional development

The region is represented by a socioeconomic dynamic system under control the

state of which at the development (planning) stage t−1, Xt−1, is characterized by a set

of relevant socioeconomic life quality indicators. Then, the decision (investment), at

t − 1, ut−1, changes Xt−1 to Xt; t = 1,… ,N, and N is a finite, fixed and specified

planning horizon.

The evaluation of a planning stage t, t = 1,… ,N, is performed by accounting

for both the “goodness” of the ut−1 applied (i.e. costs), and the “goodness” of the

Xt attained (i.e. benefits); the former has to do with how well some constraints are

satisfied, and the latter with how well some goals are attained. We will involve, for

simplicty, a subjective assessment for the attainment of fuzzy goals only.

First, the socioeconomic system is represented as in Fig. 3. Its state (output) Xt is

equated with a life quality index that consists

of the following seven life quality indicators (i.e. Xt = [x1t ,… , x7t ]):

∙ x1t – economic quality (e.g., wages, salaries, income, . . . ),

∙ x2t – environmental quality,

∙ x3t – housing quality,

∙ x4t – health service quality,
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Fig. 3 Basic elements of the socioeconomic system under control

∙ x5t – infrastructure quality,

∙ x6t – work opportunity,

∙ x7t – leisure time opportunity,

The decision at t−1, ut−1 is investment, and we impose on ut−1 a fuzzy constraint

𝜇Ct−1(ut−1) in a piecewise linear form as shown in Fig. 4 to be read as follows.

Fig. 4 Fuzzy constraints on

investment ut−1 1
m
C tt u- -1 1( )

ut
p
- 1 ut

c
- 1 ut - 1

The investment may be fully utilized up to u
p
t−1, hence 𝜇Ct−1(ut−1) = 1 for 0 <

ut−1 < u
p
t−1. However, this is usually insufficient and some additional contingency

investment is needed, maximally up to uc
t−1 (the more the worse, of course). The

fuzzy constraints are often as shown in the dotted line in Fig. 4 in that too low a

use of available investments should also be avoided, for “political” reasons, as in all

public funding related cases.

The t−1, ut−1 is partitioned into u1t−1,… ,u7t−1, devoted to improve the respective

life quality indicators, but we will assume here that this rule is fixed.

The temporal evolution of the particular life quality indicators is governed by the

state transition equation



Cognitive Informatics: A Proper Framework . . . 193

xi
t = f i

t−1(x
i
t−1,u

i
t−1), i = 1,… , 7; t = 1,… ,N (20)

which may be derived by, e.g., using experts’ opinions, past experience, mathemat-

ical models, etc.

The evaluation of development takes into account how well some predetermined

goals are fulfilled, i.e. effectiveness, then be related to the investment spent, i.e. effi-
ciency – cf. Kacprzyk’s [10] book.

The effectiveness of regional development involves two aspects: the effectiveness

of a particular development stage, and the effectiveness of the whole development.

The effectiveness of a particular development stage has both an objective and sub-

jective aspect. The objective evaluation is basically the determination of how well the

fuzzy constraints are fulfilled, and fuzzy goals are attained. The objective fuzzy goals

concern desired values of the life quality indicators, i.e. concern objective entities;

however, goal attainment is not clear-cut, and a fuzzy goal should rather be used.

For each life quality indicator at t = 1,… ,N, xi
t, we define an objective fuzzy

subgoal Gt,i
o characterized by 𝜇Gt,i

o
(xi

t) as shown in Fig. 5

Fig. 5 Objective fuzzy

subgoal 1
m
G t

i
t i x
0
, ( )

xt
i xt

i
xt
i

to be read as follows: Gt,i
o is fully satisfied for xi

t ≥ xut , where xi
o is some aspiration

level for the indicator xi
t; therefore, 𝜇Gt,i

o
(xi

t) = 1, for xi
t ≥ xi

t. Less preferable are

xi
t < xi

t < xi
t for which 0 < 𝜇Gt,i

o
(xi

t) < 1, and xi
t ≤ xi

t are assumed to be impossible,

hence 𝜇Gt,i
o
(xi

t) = 0. Notice that an objective fuzzy (sub)goal may be relatively easily

determined by experts by specifying two values only, xtit and xi
t.

The objective evaluation of the life quality index at t, Xt = [x1t ,… , x7t ], is obtained

by the aggregation of partial assessments of the particular life quality indicators, i.e.

𝜇Gt
o
(Xt) = 𝜇Gt,1

o
(x1t ) ∧ … ∧ 𝜇Gt,7

o
(x7t ) (21)

and “∧” may be replaced here and later on by another suitable operation as, e.g., a

t-norm [cf. Kacprzyk (1997a)] but this will not be considered here.

Basically, the use of “∧” (minimum) reflects a pessimistic, safety-first attitude,

and a lack of substitutability (i.e. that a low value of one life quality indicator cannot

be compensated by a higher value of another), which is often adequate.
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Finally, note that the objective evaluation concerns more the authorities than the

inhabitants by somehow “mechanically” checking the values of life quality indica-

tors attained against some desired predetermined levels. The inhabitants’ assessment

of the “goodness” of development conc‘erns in fact the (perception of) social satis-
faction resulting from the life quality index attained. This is clearly subjective. The

attained value of a particular life quality indicator at t, xi
t, implies its corresponding

partial social satisfaction si
t derived as in Fig. 6, and its interpretation is basically as

for the objective evaluation shown in Fig. 5.

Fig. 6 Partial social

satisfaction 1
st
i

z Ht
i

t( ) z Ht
i

t( ) xt
i

In general, both zi
t and zi

t may be functions of the trajectory (history) of develop-

ment [cf. (12)]

Ht = [(X1, s1, 𝜇G1
o
(X1), 𝜇G1

s
(s1)),… , (Xt, st, 𝜇Gt

o
(st), 𝜇Gt

s
(st))]

where sk = [s1k ,… , s7k], k = 1,… , t, is the social satisfaction resulting from Xk.

Basically, if Ht is encouraging, then the inhabitants may become more demanding,

and zi
t(Ht) and zi

t(Ht) may move up. On the other hand, if Ht is discouraging, then

zi
t(Ht) and zi

t(Ht) may move down (cf. Kacprzyk [7, 10]). Very often, however, one

can limit the analysis to the reduced trajectory [cf. 13)]. This important aspect will

not be considered here.

The social satisfaction at t is now

st = s1t ∧… ∧ s7t (22)

where “∧” again reflects a pessimistic, safety-first attitude, and a lack of

substitutability.

The social satisfaction st is subjected to a subjective fuzzy goal 𝜇Gt
s
(st) which is

meant similarly as its objective counterpart shown in Fig. 5.

The effectiveness of t is meant as a relation of what has been attained (the life

quality indices and their respective social satisfactions) to what has been “paid for”

(the respective investments), i.e. is a benefit–cost relationship. Formally, the (fuzzy)

effectiveness of stage t is expressed as
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𝜇Et (ut−1,Xt, st) = 𝜇Ct−1(ut−1) ∧ 𝜇Gt
o
(Xt) ∧ 𝜇Gt

s
(st) (23)

and the aggregation reflects the nature of a compromise between the interests of the

authorities (for whom the fuzzy constraints and the objective fuzzy goal matter), and

those of the inhabitants (for whom the subjective fuzzy goal, and to some extent the

objective fuzzy goal, matter); the minimum reflects a safety-first attitude, hence a

“more just” compromise.

Then, the effectiveness measures of the particular t = 1,… ,N, 𝜇Et (ut−1,Xt, st)
given by (23), are aggregated to yield the fuzzy effectiveness measure for the whole

development

𝜇E(HN) = 𝜇E1 (u0,X1, s1) ∧… ∧ 𝜇EN (uN−1,XN , sn) (24)

The fuzzy decision is

𝜇D(u0,… ,uN−1 ∣ X0,BN) =
= [𝜇C0 (u0) ∧ 𝜇G1

o
(X1) ∧ 𝜇G1

s
(s1)] ∧…

…∧ [𝜇CN−1(uN−1) ∧ 𝜇GN
o
(XN) ∧ 𝜇GN

s
(sN)] (25)

and it expresses some crucial compromises between, e.g.:

∙ the fuzzy constraints and (objective and subjective) fuzzy goals,

∙ the interests of the authorities and inhabitants, etc.

The problem is now to find an optimal sequence of controls (investments) u∗0,… ,

u∗N−1 such that (under a given policy BN ; the optimization of policy is a separate

problem which will not be cosnidered here):

𝜇D(u∗0,… ,u∗N−1 ∣ X0,BN) =
= max

u0,…,uuN−1
{[𝜇C0 (u0) ∧ 𝜇G1

o
(X1) ∧ 𝜇G1

s
(s1)] ∧…

…∧ [𝜇CN−1(uN−1) ∧ 𝜇GN
o
(XN) ∧ 𝜇GN

s
(sN)]} (26)

For illustration we will show a simple example that in its initial form was shown first

in Kacprzyk’s [10] book but will be changed with respect to numbers to account for

different economic conditions in the present time. Example: The region, predomi-

nantly agricultural, has a population of ca. 120,000 inhabitants, and its arable land is

ca. 450,000 acres. For simplicity, the region’s development will be considered over

the next 3 development stages (years, for simplicity). The life quality index consists

of the four life quality indicators:

∙ xIt – average subsidies in US$ per acre (per year),

∙ xIIt – sanitation expenditures (water and sewage) in US$ per capita (per year),

∙ xIIIt – health care expenditures in US$ per capita (per year), and

∙ xIVt – expenditures for paved roads (new roads and maintenance of the existing

ones) in US$ (per year).
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Suppose now that the investments are partitioned into parts devoted to the

improvement of the above life quality indicators due to the fixed partitioning rule

At−1(ut−1, i): 5 % for subsidies, 25 % for sanitation, 45 % for health care, and 25 %

for infrastructure.

Let the initial, at t = 0, values of the life quality indicators be:

xI0 = 0.5 xII0 = 15 xIII0 = 27 xIV0 = 1, 700, 000

For clarity, we will only take into account the following two scenarios (policies):

∙ Policy 1: u0 = $16, 000, 000 u1 = $16, 000, 000 u2 = $16, 000, 000
∙ Policy 2: u0 = $15, 000, 000 u1 = $16, 000, 000 u2 = $17, 000, 000

Under Policy 1 and Policy 2, the values of the life quality indicators attained are:

Policy 1: Year(t) ut xIt xIIt xIIIt xIVt

0 $16, 000, 000
1 $16, 000, 000 0.88 16.7 30 $4, 000, 000
2 $16, 000, 000 0.88 16.7 30 $4, 000, 000
3 0.88 16.7 30 $4, 000, 000

Policy 2: Year(t) ut xIt xIIt xIIIt xIVt

0 $15, 000, 000
1 $16, 000, 000 0.83 15.6 28.1 $3, 500, 000
2 $17, 000, 000 0.88 16.7 30 $8, 000, 000
3 0.94 17.7 31.9 $2, 250, 000

For the evaluation of the above two development trajectories, for simplicity and

readability we will only take into account the effectiveness of development, and the

objective evaluation only. The consecutive fuzzy constraints and objective fuzzy

subgoals are assumed piecewise linear, i.e. their definition requires two values only

(cf. Figs. 4 and 5): the aspiration level (i.e. the fully acceptable value) and the lowest

(or highest) possible (still acceptable) value) which are:

t

0 C0 ∶ u
p
0 = $15, 000, 000

uc
0 = $17, 000, 000

1 C1 ∶ u
p
1 = $16, 500, 000

uc
1 = $18, 000, 000 G1,I

o ∶ xI1 = 0.6 xI1 = 0.85
G1,II

o ∶ xII1 = 14 xII1 = 16
G1,III

o ∶ xIII1 = 27 xIII1 = 29
G1,IV

o ∶ xIV1 = $3, 600, 000 xIV1 = $3, 800, 000
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2 C2 ∶ u
p
2 = $16, 000, 000

uc
1 = $20, 000, 000 G2,I

o ∶ xI2 = 0.7 xI1 = 0.9
G2,II

o ∶ xII2 = 15 xII1 = 17
G2,III

o ∶ xIII2 = 28 xIII1 = 30
G2,IV

o ∶ xIV2 = $3, 800, 000 xIV2 = $4, 000, 000
3 G3,I

o ∶ xI3 = 0.75 xI3 = 1
G3,II

o ∶ xII3 = 16 xII1 = 18.5
G3,III

o ∶ xIII3 = 29 xIII1 = 31
G3,IV

o ∶ xIV3 = $3, 800, 000 xIV3 = $4, 200, 000

Using the “∧” (minimum) to reflect a safety-first attitude, which is clearly prefer-

able in the situation considered (a rural region plagued by aging of the society, out-

migration to neighboring urban areas, economic decay, etc.), the evaluation of the

two investment policies is:

∙ Policy 1

𝜇D($16, 000, 000; $16, 000, 000; $16, 000, 000 ∣ .) =
= 𝜇C0 ($16, 000, 000) ∧ (𝜇G1,I

o
(0.88) ∧

∧ 𝜇G1,II
o
(16.7) ∧ 𝜇G1,III

o
(30) ∧ 𝜇G1,IV

o
($4, 000, 000)) ∧

∧𝜇C1 ($16, 000, 000) ∧ (𝜇G2,I
o
(0.88) ∧

∧𝜇G2,II
o
(16.7) ∧ 𝜇G2,III

o
(30) ∧ 𝜇G2,IV

o
($4, 000, 000)) ∧

∧𝜇C2 ($16, 000, 000) ∧ (𝜇G3,I
o
(0.88) ∧

∧𝜇G3,II
o
(16.7) ∧ 𝜇G3,III

o
(30) ∧ 𝜇G3,IV

o
($4, 000, 000)) =

= 0.5 ∧ (1 ∧ 1 ∧ 1 ∧ 1) ∧ 0.8 ∧
∧(0.9 ∧ 0.85 ∧ 1 ∧ 1) ∧ 1 ∧ (0.52 ∧ 0.28 ∧ 0.5 ∧ 0.33) =

= 0.5 ∧ 0.8 ∧ 0.28 = 0.28

∙ Policy 2

𝜇D($15, 000, 000; $16, 000, 000; $15, 500, 000 ∣ .) =
= 𝜇C0 ($15, 000, 000) ∧ (𝜇G1,I

o
(0.83) ∧

∧𝜇G1,II
o
(15.6) ∧ 𝜇G1,III

o
(28.1) ∧ 𝜇G1,IV

o
($3, 750, 000)) ∧

∧𝜇C1 ($16, 000, 000) ∧ (𝜇G2,I
o
(0.88) ∧

∧𝜇G2,II
o
(16.7) ∧ 𝜇G2,III

o
(30) ∧ 𝜇G2,IV

o
($4, 000, 000)) ∧

∧𝜇C2 ($17, 000, 000) ∧ (𝜇G3,I
o
(0.94) ∧

∧𝜇G3,II
o
(17.7) ∧ 𝜇G3,III

o
(31.9) ∧ 𝜇G3,IV

o
($4, 250, 000)) =
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= 1 ∧ (0.92 ∧ 0.8 ∧ 0.55 ∧ 0.75) ∧ 0.8 ∧
∧(0.9 ∧ 0.85 ∧ 1 ∧ 1) ∧ 0.75 ∧ (0.76 ∧ 0.68 ∧ 1 ∧ 1) =

= 0.55 ∧ 0.8 ∧ 0.68 = 0.55

The second policy is therefore better.

4 Concluding Remarks

We tried to show that Wang’s cognitive informatics may be a potentially power-

ful general approach and paradigm to formulate, analyze and solve human centric

systems modeling, decision and control problems. To be more specific, we showed

the use of fuzzy dynamic programming for solving a regional development prob-

lem in which many crucial aspects, in particular life quality indicators, were sub-

ject to objective and subjective, by the humans, judgments and evaluations which

are closely related to human perceptions and cognitive abilities. For illustration, we

showed a simple example of regional development planning in which the problem

was to determine a best (optimal) investment policy under different development

scenarios, and subject to objective and subjective evaluations.
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On Discord Between Expected and Actual
Developments in Applications of Fuzzy
Logic During Its First Fifty Years

George J. Klir

Abstract Developments of applications of fuzzy logic during the first fifty years of
its existence are examined in this paper with the aim of comparing the actual
developments with the expected ones in various areas of human affairs. It is shown
that in many of the examined areas the actual developments turned out to be very
different from the expected ones. In each area, an attempt is made to explain reasons
for this surprising discord between reasonable expectations and the actual
developments.

Keywords Principle of bivalence ⋅ Fuzzy logic ⋅ Applications of fuzzy logic

1 Introduction

In this paper, the term fuzzy logic in used in its general, commonsense meaning,
referring to all principles and methods for representing and manipulating knowledge
that employ, in addition to the classical truth values—true and false—intermediary
truth values that are interpreted as degrees of truth. The principal characteristic of
fuzzy logic viewed in this way is the rejection of the bivalence principle of classical
logic—the assumption, inherent in classical logic—that each declarative sentence
has exactly two possible truth values, true and false.

Recognizing that any challenge of the bivalence principle in logic and mathe-
matics is extremely radical explains why such challenges have been very rare in the
long history of logic and mathematics. Prior to the 20th century, only a very few
challenges of the bivalence principle have been discovered by historians of logic,
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and these happened to be all inconsequential. In the 20th century, the bivalence
principle was challenged more seriously by the emergence of the various many-
valued logics and, eventually, by fuzzy logic.1

It is undeniable that the most significant challenge to the principle of bivalence is
closely associated with the introduction of fuzzy set theory by Lotfi Zadeh [2]. The
aim of this book is to examine how this theory has developed during the first fifty
years of its existence and what is its impact on mathematics and other areas of
human affairs. I chose to focus in this short note on a rather neglected aspect of the
50-year history of the theory—the discrepancy between the expected and actual
applications of the theory in some basic areas of science, engineering, and other
professions (medicine, business, etc.). I also try to explain the cause of this dis-
crepancy in each of the examined areas.

It has often been emphasized by Zadeh that two distinct meaning of the term
fuzzy logic should be recognized, and he introduced the terms fuzzy logic in the
narrow sense and fuzzy logic in the broad sense for these two meanings. This
distinction, which Zadeh described particularly well in [3], is useful and I consider
it relevant for the discussion I intend to pursue in this article, so let me introduce it
from the outset.

Fuzzy logic in the narrow sense is concerned with formal logical systems in
which the truth of each proposition is a matter of degree. It studies the various
propositional, predicate and other fuzzy logic systems that are sound and complete
in a similar way as in classical, bivalent logic. These systems provide foundations
for fuzzy logic in the broad sense, which has a considerably wider and highly
pragmatic agenda.

Fuzzy logic in the broad sense can be loosely characterized as a research pro-
gram that has been pursued under the leadership of Lotfi Zadeh since the publi-
cation of his seminal paper [2]. The primary aim of this program is to employ fuzzy
set theory for emulating common-sense human reasoning in natural language and
for utilizing it for various other purposes. In pursuing this aim, fuzzy logic in the
broad sense often reaches beyond the established concepts and results in fuzzy logic
in the narrow sense, which, in turn, motivates further research in fuzzy logic in the
narrow sense.2

Fuzzy logic in the broad sense is a huge undertaking, which has been shaped
over the years by many contributors. Among them, however, Lotfi Zadeh has
played a leading role by continually introducing novel ideas, which gradually
expanded the agenda of this research program. From 1965 until the mid 1990s, the
genesis of these ideas is well documented in two large volumes of his collected
papers, edited by Yager et al. [5] and Klir and Yuan [6]. After the mid 1990s, Zadeh

1For historical details regarding this very brief summary, see the recent book by Belohlavek,
Dauben and Klir [1].
2However, this statement makes sense only since the 1990s, when the first systems of fuzzy logic
in the narrow emerged through the work of Peter Hájek [4] and other logicians.
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introduced a few additional prime ideas, including those of computing with words
[7], computing with perceptions [8], and general theory of uncertainty [9, 10].

Clearly, the term fuzzy logic (in both its narrow and broad sense) represents a
generic concept that characterizes a wide variety of special systems. In fuzzy logic
in the narrow sense, these systems are distinguished from one another by various
properties such as the set of truth degrees employed and its algebraic structure, truth
functions employed for logic connectives, recognized inference rules, and the like.
In fuzzy logic in the broad sense they are distinguished by the employed set of
membership degrees and its algebraic structure, the employed aggregation opera-
tions on fuzzy sets, modifiers representing linguistic hedges, and the like.

In the next, rather short section, I examine theoretical developments in fuzzy
logic over the last fifty years. This is followed by a considerably longer section
concerned with applications of fuzzy logic, which is the core of this paper.

2 Theoretical Developments

The development of fuzzy logic in the broad sense began with the publication of the
seminal paper on fuzzy sets by Zadeh [2]. The concept of a fuzzy set, as introduced
in this paper, is an intuitive one, not an axiomatic one. Its meaning is described in
the paper as follows (page 339):

The notion of a fuzzy set provides a convenient point of departure for the construction of a
conceptual framework which parallels in many respects the framework used in the case of
ordinary sets, but is more general than the latter and, potentially, may prove to have a much
wider scope of applicability…. Such a framework provides a natural way of dealing with
problems in which the source of imprecision is the absence of sharply defined criteria of
class membership.

The agenda of Zadeh’s research program—fuzzy logic in the broad sense—
derives rather naturally from the observations that fuzzy sets generalize ordinary
(classical) sets and that this generalization expands potentially their applicability. In
developing the agenda, Zadeh set on exploring these two observations, and it is
significant that he has pursued these explorations in a systematic fashion in his
many publications. It is typical for his publications that each contains not only some
new ideas, but also an extensive overview of relevant previous ideas in the context
of the new ideas. Through this consistent repetition of relevant previous ideas, his
own or in some cases introduced by other contributors, the agenda of fuzzy logic in
the broad sense has gradually evolved in a coherent way.

In his seminal paper [2], Zadeh introduced only a special class of fuzzy sets, the
range of whose membership functions is always the unit interval [0,1]. These are
usually referred to as standard fuzzy sets. However, he made a remark in a footnote
of the paper that this range can be generalized to “a suitable partially ordered set.”
He also made another remark in the same footnote that if values of the membership
function are interpreted as truth values, a multivalued logic is obtained with a
continuum of truth values in [0,1]. These two remarks were taken seriously by
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Joseph Goguen, a student of Zadeh, who fully elaborated on them in his two early
papers. In the first paper [11], he generalized standard fuzzy sets to the so-called L-
fuzzy sets by extending the unit interval of standard fuzzy sets to a more general and
well-conceived algebraic structure of a complete residuated lattice of membership
grades. In the second paper [12], he developed basic ideas of logic for reasoning
with inexact concepts, in which fuzzy sets (standard or L-fuzzy) play the role of
inexact predicates and quantifiers. These two papers are historically very important
since they are closely associated not only with the genesis of fuzzy logic in the
broad sense, but also with genesis of fuzzy logic in the narrow sense.

The developments of fuzzy logic from the two viewpoints—the broad one and
the narrow one—have been pursued more or less independently from one another,
primarily due to their very different agendas and because most researchers attracted
to fuzzy logic were interested in either one or the other agenda. Although there have
been some researchers who were interested in both agendas, such as Joseph
Goguen, they were unfortunately very rare.

Contrary to fuzzy logic in the broad sense, the one in the narrow sense has a long
prehistory, associated with the various many-valued logics that have been studied
since the beginning of the 20th century, as is well documented in the book by
Rescher [13]. The connection of many-valued logics with fuzzy logic in the narrow
sense, which was for the first time recognized in the above-mentioned paper
Goguen [11], is examined more completely in a large book by Gottwald [14] as
well as in [1]. These books also describe in detail how the various formal systems of
fuzzy logic were developed within the framework of many-valued logics. I do not
cover these theoretical developments in this paper, which is primarily oriented to
applications of fuzzy logic.

In the next section, which is the kernel of this paper, I examine applications of
fuzzy logic in various areas of human affairs. In each area, I focus on the dis-
crepancies between expectations and reality and I try to find plausible explanations
for these discrepancies.

3 Applications of Fuzzy Logic

3.1 Motivations for Introducing Fuzzy Sets

The introduction of the concept of a fuzzy set by Zadeh in his seminal paper [2] was
based on well-conceived and convincing motivations, which are expressed not only
in the seminal paper, but also in several of his other early publications. Zadeh’s
earliest thought about the need for fuzzy sets is expressed in his 1962 paper [15],
where he writes (page 857):

For coping with the analysis of biological systems, and that to deal effectively with such
systems, which are generally orders of magnitudes more complex than man-made systems,
we need a radically different kind of mathematics, the mathematics of fuzzy or cloudy
quantities.
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He returned to this theme a few years later in [16], where he wrote (p. 199):

One cannot help feeling that, on the whole, the degree of success achieved by the use of
mathematical techniques in biosciences has been quite limited. What is more disturbing,
however, is the possibility that classical mathematics—with its insistence on rigor and
precision—may never be able to provide totally satisfying answers to the basic questions
related to the behavior of animate systems.

The importance of fuzzy sets for biology, but also for psychology and other so-
called soft sciences was also explicitly recognized by Goguen in his Introduction to
[12]:

The ‘hard’ sciences, such as physics and chemistry, construct exact mathematical models to
make predictions. Certain aspects of reality always escape such models, and we look
hopefully to future refinements. But sometimes there is an elusive fuzziness, a readjustment
to context, or an effect of observer upon observed. These phenomena are particularly
indigenous to natural language, and are common in the ‘soft’ sciences, such as biology and
psychology.

In fact, this whole paper is devoted to the investigation of imprecise concepts,
primarily from the psychological point of view.

In his seminal paper, Zadeh emphasized that fuzzy sets provides a natural tool
for “dealing with problems in which the source of imprecision is the absence of
sharply defined criteria of class membership rather than the presence of random
variables.” The same year, he illustrated in [17] these problems by those of opti-
mization under ill defined constrains. Two years later, in a joint paper with Bellman
and Kalaba [18], they were illustrated by problems of abstraction and pattern
classification and later, in another joint paper [19], by decision-making problems in
which “the goals and/or constraints constitute classes of alternatives whose
boundaries are not sharply defined.” The suggested use of fuzzy set theory in
dealing with these problem areas—decision making, pattern classification and/or
recognition, and optimization—attracted quickly attention of a small group of
enthusiastic researchers who made substantial advances in these areas already in the
1970s. This is well documented in the early monographs by Kickert [20] on fuzzy
decision making and in the book by Bezdek [21] on fuzzy pattern recognition. The
former also contains a survey of associated fuzzy optimization methods, such as
fuzzy linear programming or fuzzy dynamic programming. Research on the use of
fuzzy logic in these problem areas has even intensified since the 1970s and has
produced a remarkable spectrum of important results. These applications are cer-
tainly among the most successful applications of fuzzy logic.

In the following, I examine the development of applications of fuzzy logic in
various areas of science, engineering and other areas of human affairs. In each of
considered areas, I focus on comparing the expected developments with the actual
ones. I show that in many cases, the actual developments have turned out very
differently from the expectations and I try in each such case to explain reasons for
the discrepancy.
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3.2 Engineering

Around the time fuzzy set theory emerged, engineering was not seen as an area in
which the use of fuzzy sets was needed. Yet, one of the most successful and visible
applications of fuzzy set theory was an engineering application—fuzzy control.
Except for the applications in decision making, pattern recognition, and optimi-
zation, mentioned in Sect. 3.1, this was also one of the earliest applications of fuzzy
set theory. Let me explain circumstances that led to this early and exceedingly
successful, but highly unexpected application of fuzzy set theory.

Seven years after publishing his seminal paper, Lotfi Zadeh wrote a short, two-
page note [22], in which he argued that the excessive concern with precision and
mathematical rigor in conventional control theory has become counterproductive
because it tends to focus the research in this area only on problems that allow of
exact solution. Hence, problems that are too complex or ill defined to admit of
precise mathematical analysis are avoided as mathematically intractable. He sug-
gested dealing with such “intractable” control problems by fuzzy algorithms, which
he already introduced in an earlier paper [23]. To make his suggestion more spe-
cific, he illustrates it by a simple fuzzy algorithm for guiding a blindfolded person
from an initial position in a room with no obstacles to a desirable final position.

It seems from the way this short note was written that Zadeh did not expect that
his suggestion would be actually pursued any time soon, but presented it rather as a
long-term perspective. However, contrary to Zadeh’s expectations, actual work on
designing, implementing, and testing an experimental fuzzy controller for con-
trolling a small steam engine began shortly after the publication of his note [22] at
Queens Mary College in London by Ebrahim Mamdani with one of his students
(S. Assilian). It was already described, together with some initial experiments in
[24], three years after Zadeh’s note. In his recollections [25], Mamdani describes
circumstances that led to his pioneering work on fuzzy controllers (p. 340):

It was Zadeh’s paper [22] published at that time which persuaded us to use a fuzzy rule-
based approach. Between reading and understanding Zadeh’s paper and having a working
controller took a mere week and it was “surprising” how easy it was to design a rule-based
controller.

In 1880, the first commercial fuzzy controller, inspired by basic ideas of
Mamdani’s design, was permanently installed for controlling a cement kiln owned
by F. L. Smidth & Company in Denmark. The controller successfully replaced
control by human operators with computer-based control and even improved
somewhat the performance and cut fuel consumption. This was a great success
since the control by human operators was too expensive and inconvenient as it took
about eight weeks to train a new operator, and the process to be controlled was in
this case too complex and unwieldy for conventional controller. The fuzzy con-
troller was designed by a Danish engineer at the University of Denmark who left the
university to work at the company to develop a computer-based controller. He tried
to do that by using conventional control theory, but he soon discovered that it was
virtually impossible. Fortunately, he came across Mamdani’s work on fuzzy
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controller described in [24], and the idea immediately appealed to him due to its
focus on modeling knowledge of a well-trained operator rather than on the process
to be controlled. He found that the rules described in the textbook commonly used
for training human operators of cement kilns could be readily represented as if-then
rules in a fuzzy controller of the Mamdani type. This first commercial fuzzy con-
troller, which is described in [26], has been subsequently used for controlling many
other kilns, mills, and other complex processes. This was undoubtedly at that time
the most significant application of fuzzy logic.

However, much more significant applications were at the same time under
development in Japan. One was a sophisticated fuzzy control, involving both
feedback and feedforward features, of fully automatic operation of the subway
system in the city of Sendai. This project was conceived in 1979 by two researchers
at Hitachi Systems development Laboratory, Seiji Yasunobu and Shoji Miyamoto,
who were inspired by the novelty of Mamdani’s fuzzy controller. It is likely that the
successful installation of fuzzy controller for controlling the cement kiln in Den-
mark helped them to convince the upper management to support this large and
rather risky project. The city of Sendai switched from trains operated by human
operators to fully automatic operation based on fuzzy control in 1987, and it was a
huge success in all measures. Details of this sophisticated fuzzy controller are
described in [27].

Success of this project motivated many Japanese industries to invest in various
other applications of fuzzy logic. This resulted in a surprising variety of innovative
and sometimes unexpected applications of fuzzy logic, especially fuzzy controllers,
that turned out to be technically as well as commercially highly successful. One
positive outcome of these developments, which are described in detail in a well-
researched book by McNeill and Freiberger [28], was that the visibility of fuzzy
logic tremendously increased and, as a consequence, industries and governments in
some countries, not only in Japan, became more receptive to support research on
fuzzy logic.

The enormous success of fuzzy controllers is my first example of discrepancy
between expected and actual applications of fuzzy logic. Indeed, fuzzy control was
in no way among the factors motivating the need for introducing the concept of a
fuzzy set. Yet, it turned out to be an extraordinarily successful early application of
fuzzy sets. Next, I am going to turn to three natural sciences, biology, chemistry,
and physics.

3.3 Biology

As is explained in Sect. 3.1, the envisioned need for mathematics based on fuzzy
logic in biology was one of the primary motivations for Zadeh to introduce fuzzy
sets. Yet, the biological community has shown virtually no interest in exploring this
emerging new mathematics. Biology is thus one area in which the reasonable
expectations have not realized so far. This is surprising and not easy to explain.
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However, as I see it, this lack of interest may in this case be at least partially
explained by a huge gap between experimental and theoretical biology and by the
strong dominance of the former one. Indeed, most biologists focus on experimental
work, for which they are trained, and pay little or no attention to mathematics.
Theoretical biologists are a small minority among biologists with little influence on
biology at large. Most biologists are just not interested in the work of theoretical
biologists. Moreover, none of the few theoretical biologists have shown any interest
in exploring the utility of fuzzy set theory in their theories.

I should add that some interest in the use of fuzzy logic in biology has been
shown for the last fifteen years or so, but only in the context of the rapidly growing
new subarea of biology—bioinformatics—a rather narrow, but highly important
subarea, which is closely connected with Human Genome Project. The objective of
this large international collaborative program, which was implemented during the
period from 1990 to 2003, was to determine structures—that is sequences of
deoxyribonucleic acid (DNA) molecules—of all genes of human beings. The
outcome of the project was a very large database containing structures of all human
genes. This database and other biomolecular databases provide researchers in
molecular genetics with huge amount of information. The challenge is to utilize this
information for advancing biological knowledge by answering many profound
biological questions, such as those regarding functions of the individual genes,
processes leading to the three-dimensional structures of proteins, functions of these
structures, and the like. It is this analytical part of bioinformatics, where the use-
fulness of fuzzy logic was suggested already in 2000 in two early papers [29, 30].
These papers were soon followed by a rapid growth of literature on various
applications of fuzzy logic and soft computing in bioinformatics. Just during the
first decade of the 21st century, three large edited books devoted to these appli-
cations were published. In 2008, the time was already ripe for publishing the first
monograph on these applications [31].

3.4 Chemistry

Chemistry, similarly as physics, has always been considered as belonging to the so-
called hard sciences. As such, the need for fuzzy logic in chemistry was definitely
not among the motivations for introducing fuzzy sets (see, e.g., the excerpt from
Goguen’s paper [12] in Sect. 3.1). Hence, researchers in fuzzy logic paid virtually
no attention to chemistry for long time after the emergence of fuzzy set theory in
1965. In the early 1990s, however, a few researchers in theoretical chemistry dis-
covered fuzzy logic and began to recognize that it might be potentially useful in
dealing with some unresolved problems in their area. These problems emanated
from the conventional way of viewing some important concepts in chemistry, such
as symmetry or chirality, as bivalent—either true or false in each of their appli-
cations in chemistry. For example, in paper [32], the authors discuss this issue with
respect to the concept of symmetry as employed in chemistry (p. 7843):
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One of the most deeply-rooted paradigms of scientific thought is that Nature is governed in
many of its manifestation by strict symmetry laws. The continuing justification of that
paradigm lies with the very achievements of human knowledge it has created over the
centuries. Yet we ague that the treatment on natural phenomena in terms of “either/or”,
when it comes to a symmetry characteristic property, may become restrictive to the extent
that some of the fine details of phenomenological interpretation may be lost. Atkins writes
in his widely-used text on physical chemistry:3 “Some objects are more symmetrical than
others”, signaling that a scale, quantifying this most basic property, may be in order. The
view we wish to defend in this report is that symmetry can be and, in many instances,
should be treated as a “gray” property, and not necessarily as a black or white property
which exists or does not exist. Why is such continuous symmetry measure important? In
short, replacing a “yes or no” information processing filter, which acts as a threshold
decision-making barrier which differentiate between two states, with a filter allowing a full
range of “maybe’s”, enriches, in principle, the information content available for analysis.

In two follow-up papers published in the J. of the American Chemical Society—
115(24), 1993, and 117(1), 1995—the authors further elaborated on the continuous
symmetry measure and introduced, in addition, a continuous chirality measure.
Similar observations and arguments regarding the need to abandon the principle of
bivalence for dealing with some chemical concepts were at the same time advanced
by a fair number of other researchers in theoretical chemistry. It was also
increasingly recognized that it should be beneficial to utilize fuzzy logic for dealing
with these problems.

It was eventually decided to devote one of the annual Mathematical Chemistry
Conferences fully to the role of fuzzy logic in chemistry. The title of the conference—
Are the Concepts of Chemistry All Fuzzy?—captured quite well the primary issues
discussed within the area of theoretical chemistry at that time. The conference was
held in 1996 at conference facilities of a major distillery—very appropriate for a
conference of this kind, in Pitlochry, Scotland, in 1996. I was invited to present a
tutorial on fuzzy logic and to represent the fuzzy-logic community. A major outcome
of this conference was a book entitled “Fuzzy Logic in Chemistry”, carefully edited
by Dennis Rouvray [33]. It consists of nine rather extensive chapters that are loosely
based on presentations at the conference. The book convincingly demonstrate that
fuzzy logic is useful not only for representing realistically some fundamental
chemical concepts, such as symmetry chirality, molecular structure, or molecular
shape and size, but also for dealing properly and effectively with some methodo-
logical problems in chemistry, such as problems of molecular recognition, hierar-
chical classification, or computer-aided elucidation of molecular structures.

As far as I know, no additional books on fuzzy logic in chemistry have been
published. However, after the publication of [33], fuzzy logic has been routinely
utilized in chemistry not only for dealing with the above-mentioned conceptual
problems, but with various other problems as well. In other words, fuzzy logic has
been rather naturally recognized in chemistry as useful. This situation is clearly
radically different from the corresponding situation in biology, which is described
in Sect. 3.3. In biology, the utility of fuzzy logic was strongly anticipated, but it has

3Atkins, P. W.: Physical Chemistry, 3rd Edition, p. 406. Oxford Univ. Press, Oxford (1986).
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not yet been recognized by the biological community, with the exception of the
very recent and still rather modest recognition of its role in bioinformatics. In
chemistry, no use of fuzzy logic was anticipated and yet, its utility was discovered
already in the early 1990s by researchers in theoretical chemistry and has gradually
been accepted by the entire chemical community.

3.5 Physics

Physics, which is undoubtedly the most advanced and successful area of science,
was certainly not among the areas in which the need for fuzzy logic was anticipated.
It is perhaps due to the enormous success of physics why the developed mea-
surement routines in physics have virtually never been questioned within the
physics community. A rare dissenter was the outstanding American physicist Percy
Williams Bridgman (1882–1961).4 His rather unorthodox views about measure-
ment in physics are captured reasonably well in the following excerpts from one of
his papers ([34], 227–228, italics added):

The physics of measurement and of the laboratory does not have the yes-no sharpness of
mathematics, but nevertheless employs conventional mathematics as an indispensable tool.
Every physicist combines in his own person, to greater or less degree, the experimental
physicist who makes measurements in the laboratory, and the theoretical physicist who
represents the results of the measurements by the numbers of mathematics. These numbers
are things he says or writes on paper. The jump by which he passes from the operations of
the laboratory to what he says about the operations is a jump which may not be bridged
logically, and is furthermore a jump which ignores certain essential features of the physical
situation. For the mathematics which the physicist uses does not exactly correspond to what
happens to him. In the laboratory every measurement is fuzzy because of error. As far as
reproducing what happens to him is concerned, the mathematics of the physicist might
equally well be the mathematics of the rational numbers… Now one would certainly be
going of one’s way to attempt to force theoretical physics into a straightjacket of the
mathematics of rational numbers as distinguished from the mathematics of all real numbers,
but by forcing it into the straightjacket of any kind of mathematics at all, with its yes-no
sharpness, one is discarding an essential aspect of physical experience and to that extent
renouncing the possibility of exactly reproducing that experience. In this sense, the com-
mitment of physics to the use of mathematics itself constitutes, paradoxically, a renunci-
ation of the possibility of rigor….Now it appears to me, the linkage of error in every sort of
physical measurement must be regarded as inevitable when it is considered that the
knowledge of the measurement, which is all we can be concerned with, is a result of the
coupling of the external situation with a human brain. Even if we had adequate knowledge
of the details of this coupling we admittedly could not yet use this knowledge in formu-
lating in detail how the unavoidable fuzziness should be incorporated in our description of
the world nor how should we modify our present use of mathematics, but with the addi-
tional caveat to every equation, warning that things are not quite as they seem.

4Bridgman was an excellent experimental physicist who had been most of his academic career with
Harvard University. In 1946, he won the Nobel Prize in Physics for his groundbreaking work on
the physics of high pressures. He also wrote extensively on measurement in physics and on various
other aspects of philosophy of science.
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The use of the terms fuzzy and fuzziness by Bridgman in 1959, five years before
Zadeh’s seminal paper [2], is certainly interesting, especially because his use of
these terms is quite similar to Zadeh’s use. In fact, these terms appear even in some
of Bridgman’s earlier writings.

Bridgman’s critical comments about measurement in physics did not have any
visible impact on physics during his lifetime. However, since the early 1990s some
physicists specializing on measurement have occasionally referred to Bridgman’s
criticism and to the potential role of fuzzy sets in physical measurement; see, for
example a representative paper by Mari [35].

Finally, I should look at the potential role of fuzzy logic in quantum mechanics.
There is an extensive literature on this topic, too large and complex to be even
briefly surveyed in this paper. In any case, none of the many logics, fuzzy or non-
fuzzy, which have been proposed for quantum mechanics thus far, has not been
generally accepted as yet. The situation is well characterized in the monograph by
Chiara et al. [36], which to my best knowledge is the only one that covers logics
that recognize the principle of bivalence as well as those that do no recognize it.
They are referred to in the book as sharp quantum logics and unsharp quantum
logics, respectively. The authors seems to be well aware of the importance of the
prospective unsharp quantum logics, and make this interesting observation (p. 5):

Strangely enough, from the historical point of view, the abstract researches on fuzzy
structures and on quantum structures have undergone quite independent developments for
many decades during the 20th century.Only after the Eighties, there emerged an interesting
convergence between the investigations about fuzzy and quantum structures, in the
framework of the so-called unsharp approach to quantum theory. In this connection a
significant conjecture has been proposed: perhaps some apparent mysteries of the quantum
world should be described as special cases of some more general fuzzy phenomena, whose
behavior has not yet been fully understood.

It is also significant that on page 37 of this book, the authors describe a specific
example in quantum theory, in which the principle of bivalence fails.

Physics is thus an area of science in which the use of fuzzy logic was not
expected at all. Nevertheless, its utility in physical measurements was recognized
by some physicists, such as Bridgman a more recently Mari and others. Even more
importantly, fuzzy logic is likely to play some role, potentially a very important role
in some of its incarnations, in quantum mechanics, as suggested in the above
quotation from [36].

3.6 Geology

Similarly, as it was not expected that fuzzy logic would play any useful role in
chemistry, it was not expected that it would be of any use in geology. Now we
know that both of these expectations were wrong. The similarities extend further. In
both of these areas, the utility of fuzzy logic was not recognized by researchers
outside these areas (e.g. those who worked on fuzzy logic and were searching for
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applications), but researchers within these very areas, and it was recognized in both
areas within approximately the same period—roughly during the 1990s. It seems
that this timing could be explained by the great success of fuzzy logic in the 1990s,
as is explained in Sect. 3.2, which significantly increased its visibility.

With the emergence of computer technology around the middle of the 20th
century, geology has undergone a major transformation regarding the nature of
geological knowledge. Since the 19th century, geology has been preoccupied pri-
marily with attempts to understand how the surface of the Earth had developed. A
substantial amount of knowledge was produced by the work of many geologists via
their extensive, systematic, and painstaking observations, combined with com-
monsense reasoning. Knowledge obtained in this way was of course expressed by
the geologists in natural language, without any use of mathematics. After the
emergence of computer technology, this knowledge was gradually dismissed as
useless, as it could not be represented in a computer-acceptable language. This led
to the development of mathematical geology. When some geologist discovered
fuzzy logic around the mid 1990s and became familiar with its capabilities at that
time, they tried to experiment with it by simulating some of the knowledge
described verbally in the older geological books, often directly in the form of if-then
statements. The first such simulation was described in 1996 in a paper by Nordland
[37], where it was successfully illustrated by a particular example from the area of
dynamic stratigraphic modeling.

The paper stimulated a fair number of other geologists to pursue similar studies
not only in the same area but also in various other areas of geology. They were
astonished by the excellent results they obtained and that motivated further research
into the use of fuzzy logic in geology. As a result, the literature on applications of
fuzzy logic in geology grew very rapidly at the end of 20th century, and it was
generally felt that the time was ripe for a comprehensive book overview of this
alternative approach to dealing geological problems, once abandoned and then
rediscovered with the help of fuzzy logic. In fact, Lotfi Zadeh explicitly suggested
that such a book be published.

The book on fuzzy logic in geology was eventually published in 2004 [38] and
Zadeh wrote a wonderful Foreword to it. The book contains a tutorial on fuzzy logic
for geologists, and a comprehensive overview with a literature review of all rec-
ognized applications of fuzzy logic in geology. In addition, it contains several
chapters that describe in detail applications of fuzzy logic in the areas of strati-
graphic modeling, hydrology and water resources, paleontology, and seismology,
as well as the use of fuzzy logic for dealing with the problems of reef growth and
ancient sea level estimation.

Since the publication of [38], the literature dealing with applications of fuzzy
logic in geology as well as other areas of Earth sciences has substantially expanded
including several monographs and edited volumes. This indicates that the utility of
fuzzy logic is well recognized in this domain.
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3.7 Psychology

Psychology and biology were two areas of science in which fuzzy logic was
expected to play an important role. In fact, the need for mathematics based on fuzzy
logic in these areas was among the main motivations for introducing the concept of
a fuzzy set. As is explained in Sect. 3.3, the expectation has not realized in biology.
It has not realized in psychology as well, but for very different and more compli-
cated reasons. In the following, I am going to briefly survey the history of con-
nections between psychology and fuzzy logic, which is quite extraordinary.

One year before the publication of Zadeh’s seminal paper on fuzzy sets, Robert
Duncan Luce (1925–2012), one of the preeminent figures in mathematical psy-
chology, published a paper [39], in which he wrote (p. 376):

The language of sets does not always seem adequate to formulate psychological problems.
Put it so baldly, the statement is almost heretical since, in practice, set theory is the accepted
way to formulate mathematical problems and, hence, applied mathematical problems. Still,
we should not forget that set theory is really quite new—less than a century old. It could be
an interim theory. Certainly, when I think about certain psychological problems, I wish it
weren’t the way it is. The boundaries of my “sets,” and of ones that my subjects ordinarily
deal with, are a good deal fuzzier than those in mathematics…. It is quite difficult to pin
down just what elements are and are not members of that set, and I am not sure that it is
possible in principle. Do we merely lack techniques adequate to answer that question today,
or is it basically impossible to answer it?

Luce repeatedly returned in his many publications to the issues raised in this
short excerpt, especially the question posed in the last sentence. Although he has
frequently used in his writings the term “fuzzy” in its various forms, it is unfor-
tunate that he was apparently not aware throughout his whole lifetime about the
existence of fuzzy set theory and fuzzy logic.

Another connection between psychology, especially the psychology of con-
cepts,5 and fuzzy logic was introduced in the classic paper by Goguen [12], from
which I use a few short excerpts (pp. 325–326):

“Exact concepts” are the sort envisioned in pure mathematics, while “inexact concepts” are
rampant in everyday life…. Ordinary logic is much used in mathematics, but applications to
everyday life have been criticized because our normal language habits seem so different.
Various modifications of orthodox logic have been suggested as remedies, particularly
omission of the Law of Excluded Middle.Ordinary logic represents exact concepts syn-
tactically: that is a concept is given a name (such as ‘man’) which becomes an object of
manipulation in a formal language…. Another representation is the semantic, as in Can-
torian set theory. Here we consider the collection or set of elements exemplifying the
concept and study such manipulations as might be performed on actual physical collections:
lumping together, removing a subcollection, and so on. The laws of set theory describe

5In general, a concept is viewed in psychology as a mental representation of a class of real or
abstract entities, which is usually called a concept category. In the psychology of concepts, a
concept is usually viewed more specifically as a body of knowledge regarding the entities in the
associated concept category that is stored in the long-term memory (sometimes called a semantic
memory) and employed by default in most of cognitive processes.
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general properties of these manipulations.Without a semantic representation for inexact
concepts, it is hard to see that one modification of traditional logic really provides a more
satisfactory syntactic theory of inexact concepts than another. However, such a represen-
tation is now available. Zadeh [2] has studied fuzzy sets, and suggested a number of
concrete applications.

Another connection between psychology and fuzzy logic emerged from
groundbreaking psychological experiments that were performed by Eleanor Rosch
in the early 1970s and published in a series of articles, two of which are [40, 41].
These experiments consistently demonstrated that membership in concept catego-
ries is not a yes-or-no matter, but rather a matter of degree. This led to an almost
universal rejection of the classical view of concepts, in which each concept category
is defined by a collection of attributes that are both necessary and sufficient. Rosch’s
experiments also revealed that each concept category is associated with an ordering
relation that reflects the typicality of individuals in the category as examples of the
concept. The most typical individual(s) can be viewed as natural prototype(s) of the
category. The above-mentioned typicality ordering can then be defined via a suit-
able similarity measure, as thoroughly investigated in the psychological context by
Tversky [42]. This is briefly the essence of a prototype view of concepts that
emerged form Rosch’s experiments as a natural successor to the classical view of
concepts.

Although the results obtained by Rosch and the emerging prototype view of
concepts were suggestive of possible use of fuzzy sets in the psychology of con-
cepts, Rosch herself did not seem to be interested in exploring it. However, her
results have stimulated other psychologists to examine the potential role of fuzzy
sets in psychology. This led to a lively discussion of this issue in psychological
literature throughout the 1970s. However, this positive attitude toward fuzzy logic
has visibly changed to negative attitude since the early 1980s. It is now well
established that this change was triggered by a paper published in 1981 by two
highly influential cognitive psychologists, Daniel Osherson and Edward Smith [43],
whose aim was a critique of the prototype theory of concepts. This is how they
describe the organization of their paper ([43], p. 36):

We first present one version of prototype theory. We then show how it might be extended to
account for conceptual combinations by means of principles derived from fuzzy-set theory.
This extension is demonstrated to be fraught with difficulties. We then move on to the issue
of truth conditions for thought, again using fuzzy-set theory as a means of implementing the
prototype approach, and again demonstrating that this implementation won’t work. In a
final section, we establish that our analysis holds for virtually any version of prototype
theory, and consider ways of reconciling previous evidence for this theory with the wisdom
of the older kind of theory of concepts.

This paper had such a strong influence on attitudes toward fuzzy set theory in
psychology that fuzzy set theory was virtually dismissed by the psychological
community as useless. Only some twenty years after the paper by Osherson and
Smith was published, some awkward mathematical errors were accidentally dis-
covered in it. This led to a detailed analysis of all claims about fuzzy set theory in
the paper, which revealed, surprisingly, that they were virtually all erroneous, as is
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shown in [44]. Further investigation [45] revealed how these erroneous claims were
uncritically accepted within the psychological community and used often as
arguments against fuzzy set theory. This extraordinary episode is fully documented
in a book that I coedited with Radim Belohavek [46]. However, the primary aim of
this book is to renew the dialog and hopefully a cooperation of researchers in
psychology with those working in the area of fuzzy logic.

The up-and-downs regarding the use fuzzy logic in psychology certainly do not
coincide with the original expectations. One reason might be that fuzzy logic is not
yet properly developed for its specific use in psychology. This in fact was already
extensively argued in the late 1980s by Fuhrmann in several of his papers (see, e.g.,
his paper [47]). If he is right, then the cooperation between the two areas will be
essential.

3.8 Economics

Economics is generally viewed as the most advanced social science, primarily due
to the extensive role that mathematics has played in it since the late 19th century. It
is well known, however, that the mathematically ever more sophisticated economic
theories have almost never produced accurate and practical economic predictions,
while experience economists are often able to formulate fairly accurate and useful
economic predictions in linguistic terms, such as “The rate of inflation is likely to
increase substantially in the very near future.” Such predictions are based on
common sense reasoning, employing the economist’s knowledge and relevant
information, both expressed in natural language. Due to these observations, fuzzy
logic was broadly expected, soon after it emerged in the mid 1960s, to play an
important role in economics.

This expectation became in some sense a reality in the 1980s through the work
of some French economists under the leadership of distinguished French economist
Claude Ponsard (1927–1990). Influenced by the early publication of four-volume
French book on fuzzy sets by Arnold Kaufmann,6 Ponsard began to explore the use
of fuzzy set theory in economics in the late 1970s. In one of his early papers [49], he
shows, for example, how fuzzy sets can be used for reformulating the classical
theory of consumer behavior in mathematical economics by discarding its two
unrealistic assumptions, that the consumer can perfectly discriminate between
different goods and that goods satisfying consumer’s needs are all supplied at a
unique point in space. The result is a considerably more realistic theory of consumer
behavior. During the first half of the 1980s, Ponsard published a series of papers, in
which he fuzzified other areas of classical economics, and which culminated in the
publication of a book he co-edited with his colleague Bernard Fustier [50]. The

6Introduction a la Theorie des Sous-Ensembles: vol. 1 (1973); vol. 2 (1975); vol. 3 (1975); vol. 4
(1977). Masson et Cie Editeurs. Only the first volume was published later in English [48].
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books contains, ten important papers on fuzzy economics, all written by members
of the Institute for Mathematical Economics at the University of Dijon, which was
at that time directed by Ponsard. The book contains two papers by Ponsard, one on
a theory of spatial general equilibrium in fuzzy economics and one on viewing
spatial oligopoly7 as a fuzzy game. One year after publishing the edited book,
Ponsard generalized the famous Nash equilibrium concept8 by showing that each n-
person non-cooperative fuzzy game with mixed strategies has at least one equi-
librium point.

In 1988, Ponsard begins his excellent survey paper [51] on established fuzzy
models in economics with a question raised by Zadeh in his Foreword to the
classical book by Zimmermann [52]: “Are there, in fact, any significant problem
areas in which the use of the theory of fuzzy sets leads to results which could not be
obtained by classical methods”? And he closes the paper by answering the question:
“In economics, the answer is positive. The use of fuzzy subset theory leads to
results which could not be obtained by classical methods.”

In 1988, Ponsard also began to work on a major book with a tentative title
“Fuzzy Economic Space: An Axiomatic Approach”. When he unexpectedly passed
away in 1990, the book manuscript was not yet fully completed. Fortunately, his
main ideas are preserved and further developed in an important book by Billot [53],
who was Ponsard’s doctoral student at that time.

This section would be rather incomplete without mentioning the work by a
British economist George Shackle on the theory of graded possibilities within the
context of economics, long before the theory was interpreted in terms of fuzzy sets
by Zadeh [54]. Due to the limited space of this paper, I take the liberty to refer to
my paper [55], in which I outline Shacke’s unorthodox approach to economics and
describe in fair detail his work on the theory of graded possibilities.

The utility of fuzzy set theory in economics has not yet been fully recognized by
mainstream economists. Nevertheless, the work by Ponsard and the other French
economists, together with the work by Shackle, is sufficiently significant and
convincing to conclude that the early expectations by the fuzzy community that
fuzzy set theory would play an important role in economics have already been at
least partially met.

3.9 Other Social Sciences

The usefulness of fuzzy set theory in all social sciences, not only in economics, was
generally expected when the theory emerged in the mid 1960s. Zadeh, for example,
devoted one of his early articles fully to this issue [56].

7Market situation influenced by a few producers.
8Nash, J. F. Equilibrium points in n-person games. Proc. of the National Academy of Sciences 36,
48-49 (1950).
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The classical book by Smithson [57] attracted some attention to the useful role of
fuzzy sets in social sciences, but for many years almost exclusively within the
fuzzy-set community. Fortunately, it eventually attracted the attention of Charles
Ragin, a social scientist, who became seriously interested in exploring the role of
fuzzy sets for bridging the gap between the qualitative and quantitative methods in
social-science research. This led him to write the whole book on this subject [58].
While some social scientists praised the book, most remained skeptical about his
ideas, as is well captured by the following short excerpts from Ragin’s Introduction
to the book (p. 3):

Social scientists generally stay away from anything labeled “fuzzy” because their work is so
often described this way by others, especially by scholars in the “hard” sciences. My initial
title for this book, Fuzzy Social Science, made so many of my colleagues cringe that I felt
compelled to change it so that the adjective “fuzzy” applied to sets, not to social science.

Eight years later, another book by Ragin was published [59], in which he
challenges the conventional approach to social science research and proposes an
alternative approach based on fuzzy set theory that overcomes the various limita-
tions of conventional quantitative as well as qualitative social-science research. He
argues and demonstrates experimentally that the proposed approach has the capa-
bility to narrow the gap between knowledge obtained by qualitative social scientists
and that obtained by quantitative social scientists.

When taken together, the two books by Ragin form an important statement about
the utility of fuzzy set theory in social sciences. Unfortunately, the approach to
social science research proposed by him has not yet been widely accepted by social
scientists.

Perhaps the most important contribution to the use of fuzzy logic in social
sciences at large is at this time the book by Badredine Arfi [60], a Finnish political
scientist. He further develops in the book the idea of computing with words, first
suggested by Zadeh [7, 8], and applies it to a wide range of problems in social
sciences. In his methodology, he allows both membership grades and truth values to
be linguistic variables. The book contains Forewords by Ragin and Zadeh who both
highly praise it.

Interesting applications of mathematics based on fuzzy logic in political science
emerged from collaboration of political scientists with mathematicians at Creighton
University in Omaha, Nebraska. These applications, which are described in detail in
[61], show that the concept of fuzzy geometry is superior for dealing with some
problems in comparative politics in comparison with the traditional use of classical
Euclidean geometry.

I consider it reasonable to conclude that the expected utility of fuzzy logic in
social sciences has already been demonstrated, even though fuzzy logic has not yet
been fully endorsed within these areas. It is interesting that the most negative
attitude toward fuzzy logic is shown by the quantitative (or mathematical) social
scientists.
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3.10 Medicine

The need for fuzzy sets in medicine did not motivate, at least not explicitly, their
introduction. However, the utility of fuzzy sets in medicine was recognized quite
early, in about the mid 1970s, and primarily in the area of medical diagnosis.

The use of fuzzy set theory in medical diagnosis was first suggested and discussed
in a doctoral dissertation by Albin [62], followed shortly by two early papers by
Sanchez [63, 64]. In these papers, Sanchez formulated medical diagnosis in terms of
fuzzy relational equations, which he introduced and investigated in his earlier paper
[65]. A few additional papers regarding the use of fuzzy set theory in medical diag-
nosis were published in the 1970s. However, concentrated and systematic research on
fuzzy-set-based system for computer-assisted medical diagnosis began only in the
1980 and mostly at the Department of medical Computer Science of the University of
Vienna Medical School in Austria under the leadership of Klaus Peter Adlassnig.
Accomplishments of this research over the last two decades of the 20th century are
concisely described in [66]. Various other types of applications of fuzzy set theory in
medicine were also developed during this period and are surveyed in [67].

The literature on applications of fuzzy set theory in medicine rapidly increased in
the new millennium, including some specialized monographs, such as [68–70], and
numerous edited volumes, exemplified by [71] A particularly significant is the
scholarly work by Kazem Sadegh-Zadeh9 in analytic philosophy of medicine. In
many of his papers published since 2000, he has consistently argued on both
medical and philosophical grounds that fuzzy logic is the only adequate logic for
medical practice. This argumentation is completely and coherently covered in
Handbook of Analytic Philosophy of Medicine [72], which is a sort of climax of his
lifelong work. This large monograph, consisting of 1,133 pages, covers compre-
hensively and in considerable detail the principal philosophical issues associated
with medicine.

About 40 % of the Handbook is devoted to logical issues involved in clinical
reasoning. After showing that classical first-order predicate logic is hopelessly
inadequate in medicine as it is capable of representing only a very small fraction of
language employed in medicine, Sadegh-Zadeh then examines the various modal
extensions of classical logic and shows that even with all these extensions classical
logic is still not sufficiently expressive to represent medical language. Next, he
examines non-classical logics, such as paraconsistent, intuitionistic, and many-
valued logics, and shows that each individually would help to overcome some
common difficulties in medicine, such as dealing with contradictory medical data or
with situations in which the law of excluded middle does not hold. Finally, he
examines fuzzy logic in detail from the medical point of view and shows that it has

9Kazem Sadegh-Zadeh was born in Tabriz, Iran in 1942. In the 1960s and 1970s, he studied
medicine and philosophy at the German universities of Münster, Berlin, and Göttingen. He has
been for many years with the University of Münster, where he worked in the area of analytic
philosophy of medicine, and where he is now s professor-emeritus.
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all the ingredients needed in medicine. This leads him to the conclusion that fuzzy
logic (representing actually a class of logics) is the only one (one class) among all
currently recognized logics that is fully adequate for clinical reasoning in medicine.

I should add that one year after the publication of Sadegh-Zadeh’s Handbook, a
companion volume to it was published [73], which contains 27 chapters on various
applications of fuzzy logic in medicine.

Medicine is thus somewhat different from the other areas examined in previous
sections of this paper as far as the difference between anticipated and actual utility
of fuzzy logic. The need for fuzzy logic in medicine was not (at least explicitly)
among the factors that contributed to the emergence of fuzzy logic in the mid 1960s.
However, its potential utility in medicine was recognized quite early, in the mid
1970s, and it was expected that it would play an important role in medicine. It
turned out, eventually, that fuzzy logic is the only adequate logic for medicine,
which even exceeded the expectations.

3.11 Management and Business

The need for fuzzy logic in the areas of management and business was not among
the motivations for introducing fuzzy sets. Although some scattered applications of
fuzzy set theory to various problems related to these areas, such as optimization,
scheduling and resource allocation, began to appear in the literature since the late
1970s, the role of fuzzy set theory in these areas was for the first time systematically
discussed in a textbook by George and Maria Bojadziev [74] published 1997. Two
years later, a very impressive survey of applications of fuzzy set theory in man-
agement, consisting of four large chapters, is included in [67]. Three of the chapters
deal, respectively, with strategic planning, research and development planning, and
production planning and scheduling. The forth one is devoted to the use of fuzzy
sets in actuarial science, where the book by Ostaszewski [75]—the first and still the
only book on using fuzzy set theory in actuarial science—should be highlighted.

In the new millennium, publications devoted to the use of fuzzy set theory in
management and business virtually exploded. As far as management is concerned,
the most important seems to the monograph by Carlsson et al. [76]. In business, two
significant monographs deserve to be mentioned in this very short overview [77,
78]. The number of edited volumes in this area is too large to even mention a few
representative samples.

In summary, the utility of fuzzy set theory was not initially recognized in either
management or business. However, some applications of the theory, developed some
ten years after fuzzy set theory emerged, were already indicative that fuzzy sets might
be useful in these areas. This was more explicitly recognized and discussed in the late
1990s. Since that time, the development of applications of fuzzy set theory in
management and business has been very rapid, which showed manifestly that the
theory is of great utility in these areas. As in medicine, discussed in Sect. 3.10, the
actual success of fuzzy set theory in these areas exceeded all expectations.
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3.12 Music

Within the large variety of the arts, the use of fuzzy logic have occasionally been
suggested in some branches of the arts, such as painting, sculpture, architecture,
poetry, and others, but no significant interest resulted from these rather isolated and
ad hoc suggestions. A rare exception is music, where the use of fuzzy logic turns
out to be very natural and significant. In order to explain this rather bold claim, I
begin with a short excerpt from Preface to one of the prime monographs on
mathematical theory of tone systems [79]:

There are four important and mutually interacting attributes that we can manipulate to
create or describe any sound. And we can work with these attributes in two different ways:
We can measure them and we can hear them. If we measure them, they are physical
attributes; if we hear them, they are perceptual attributes. The four physical attributes are:
frequency, amplitude, waveform, and duration. Their perceptual counterparts are: pitch,
loudness, timbre, and (psychological) time. There is similarity between hearing and mea-
suring these attributes; however, it is a complex correlation. The two are not exactly
parallel.

As is well captured by this excerpt, the basic elements of music—musical
tones—can be viewed and studied either as physical entities produced by various
musical instruments or as perceptions of these physical entities by humans.

It is well established that human auditory perceptive capabilities are remarkably
tolerant (or insensitive) to small deviations from the ideal (physical) frequencies
representing individual tones. That is, tones whose actual frequencies are suffi-
ciently close to the ideal frequency defining a particular tone in a given tone system
are perceived as the same pitch. In a similar way, human perception is tolerant to
small deviations from the ideal values of the other three physical attributes.

This fundamental dichotomy between physical and perceptual entities applies
not only to individual tones, but to various systems of musical tones as well. The
two most important characteristics of each tonal system are the pitch of each tone
recognized in the system and the pitch differences of any two of the recognized
tones. The former is a psychological concept that represents approximately the tone
frequency. The latter, called musical intervals, are physically defined as ratios of
their frequencies, which perceptually are approximate ratios.

A particular interval whose frequency ratio is 2 is called an octave. Two tones
whose distance is equal to one or more octaves are viewed in the physical domain
as equivalent, and are perceived as approximately equivalent. Most frequently,
especially in Western classical music, 12 tones within each octave are chosen
according to some rules that govern the intervals between consecutive tones in each
octave. The notes together with their locations within each octave form a particular
tonal system. When tones in these systems are viewed a physical entities, classical
mathematics based on bivalent logic is perfectly adequate to deal with them.
However, when the tones are viewed as perceptual entities, the best classical
mathematics can do is to employ intervals of real numbers for representing the
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perceptual tolerances,10 but this is a rather poor representation. Much better rep-
resentation can be obtained by mathematics based on fuzzy logic. The concept of
“being sufficiently closed to a number expressing the ideal frequency” can be
approximated in a natural way by an appropriate fuzzy number (granule) con-
structed on the basis of available knowledge regarding characteristics of human
auditory perception.

This fuzzy approximation plays an especially important role in the so-called
well-tempered tuning within a given tonal system. The aim of this tuning is to make
small deviations (tolerated by human perception) from perfect tuning in each key in
order to achieve a perceptually acceptable tuning in all keys. This allows instru-
ments such as pianos or harps, once tuned in a well-tempered way, to play com-
positions in any key and they are all perceived as well tuned.11 Although in any
well-tempered tuning, the sizes of comparable tone intervals in the physical domain
cannot be the same in all keys, this is generally viewed as a musical advantage, as it
gives a slightly distinctive character to compositions written in different keys.

Except for one early paper by Goguen [80], the literature pointing to the role
fuzzy logic in music is almost exclusively associated with the 21st century. In
addition to the book by Haluška [79], the three papers [81–83] seem to be the most
visible representatives of the growing literature in this area.

3.13 Concluding Remarks

Due to the limited space of this paper, I had to make conscious decisions about
which applications of fuzzy logic to include and which to omit. From the well-
established applications, I chose to omit those in image analysis, spatial information
processing, robotics, risk analysis, database systems, computer vision, and a few
others. Moreover, I did not include any of the many applications that are promising,
but have not yet been adequately developed. These include for example those in
archaeology, paleontology, forensic science, humanities, and numerous other areas.
I also did not include application areas such as the law profession, in which the
utility of fuzzy logic is highly suggestive and potentially very significant, but where
its actual use encounters various virtually insurmountable barriers, such as political,
ethical, religious, and others.

10This was actually suggested by the Russian musicologist N. A. Garbuzov in 1948 in his book
entitled “Zonal Nature of the Human Aural Perception (in Russian), published by the Academy of
Sciences of the USSR in Moscow and Leningrad.
11The famous systematic collection of 24 preludes and 24 fugues, each written in all 12 major and
12 minor keys, which are known under the German name “Das Wohltemperierte Klavier” (The
Well-Tempered Clavier), were composed by Johann Sebastian Bach to provide an ultimate
practical test that a piano is properly tuned in a well tempered way. After they are all played on the
piano to be tested and each composition is perceived as well tuned, then the piano may be certified
as perfectly well-tempered.
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I hope that this review of how applications of fuzzy logic developed in some
basic areas of human affairs during its first fifty years of existence, focusing
especially on the often striking differences between the expected and actual
developments in many of these areas, is an appropriate and potentially useful
reflection on accomplishments of fuzzy logic on the 50th anniversary of its genesis.
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Meta-Heuristic Optimization of a Fuzzy
Character Recognizer

Alex Tormási and László T. Kóczy

Abstract Meta-heuristic algorithms are well researched and widely used in
optimization problems. There are several meta-heuristic optimization algorithms
with various concepts and each has its own advantages and disadvantages. Still it is
difficult to decide which method would fit the best to a given problem. In this study
the optimization of a fuzzy rule-base from a classifier, more specifically fuzzy
character recognizer is used as the reference problem and the aim of the research
was to investigate the behavior of selected meta-heuristic optimization techniques
in order to develop a multi meta-heuristic algorithm.

Keywords Fuzzy systems ⋅ Fuzzy rule-base optimization ⋅ Bacterial evolutionary
algorithm Big bang–big crunch algorithm ⋅ Imperialist competitive algorithm ⋅
Particle swarm optimization ⋅ Multi meta-heuristics

1 Introduction

Genetic [1], bacterial [2] and other evolutionary and population based meta-heuristic
methods [3, 4] are widely used [5] in various computational intelligence related
optimization problems including the tuning of fuzzy sets [6] and other parameters of
fuzzy rule-based systems [7, 8]. It has both theoretical and technical significance to
have a deep knowledge of the behavior of meta-heuristic optimization techniques in
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fuzzy rule-base optimization in order to develop new, more efficient and accurate
models. The aim of this study was not to find the optimal fuzzy rule-base for a
discrete classifier, more precisely a character recognizer system [9], but to study how
the meta-heuristic optimization algorithms handle a given problem under certain
conditions, to find out which are their most sensitive parameters and how they could
be improved – if possible at all.

The investigated meta-heuristics [2–4, 10] were selected according to actual
trends in the field and to cover various approaches to optimization algorithms. The
paper also includes results of a multi meta-heuristic [11–13] experiment, where
there is a switch between various optimization algorithms, in order to achieve lower
resource usage with faster convergence to the (quasy)optimum.

Various fuzzy systems are well researched and used in a wide scope of prob-
lems; and in many cases these solutions are more accurate and/or more efficient
compared to other conventional methods. The simple way of knowledge repre-
sentation by fuzzy sets makes these systems a great subject for experimenting with
meta-heuristic optimization. A fuzzy rule-based classifier [14–16], more accurately,
a fuzzy character recognizer [17] was selected as the sample problem used in the
experiment. The reasons of this choice were the presence of fuzzy systems in the
problem, the very wide applicability of the classifiers (including theoretical and
technical aspects), and the previous in-detail knowledge of the system and of the
dataset. The meta-heuristic algorithms had to be extended to work with multiple
populations without the ability of migration in order to handle the special features
of the problem.

The paper consists of five sections; after the introduction in Sect. 2, the studied
meta-heuristic methods are summarized including the modifications made to them
done in order to fit the sample problem. It is followed by the details of the opti-
mization task (the recognizer engine), the used/investigated parameters and other
aspects of the experiment. The results of the study are presented and interpreted
from various aspects in Sect. 4. Section 5 summarizes the results of the presented
work and discusses the possible directions for a future research.

2 Meta-Heuristic Methods Studied

2.1 Bacterial Evolutionary Algorithm

The Bacterial Evolutionary Algorithm (BEA) [2] is inspired by the evolutional
processes of bacteria. Each bacterium in the population represents a solution in the
problem space.

The algorithm uses two main evolutionary operators the bacterial mutation and
the gene transfer; the first step of the algorithm is the bacterial mutation. Each
bacterium is selected individually and cloned a maximal number of times. Each
randomly selected allele of the clones is modified randomly, the modified allele of
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the alternative bacterium (or the original one’s) together with the best result is
copied to all other clones; this step is repeated until all the alleles have been
selected.

The second step of the algorithm is the gene transfer (infection), in which the
population is sorted by the goodness of the bacteria and divided into two subsets;
the set of “good” and the set of “bad” bacteria. A randomly selected allele of a
random bacterium from the group of good bacteria is copied to a randomly selected
bad bacterium. This step is repeated until the algorithm reaches the maximum
number of infections.

The above steps of the algorithm are repeated until the maximum number of
generations specified previously has been reached or until other termination con-
ditions (like 100 % result) have been satisfied (as seen on Fig. 1).

2.2 Big Bang–Big Crunch Algorithm

The Big Bang-Big Crunch optimization algorithm [3] uses the concept of a physical
cosmology theory. In this theory the universe expands during the Big Bang event
and then it collapses (Big Crunch) into a black hole (repeatedly). The candidate
solutions are points in the search space; these entities are randomly generated in the
(complete) problem space during the initialization step. In the beginning there could
be a great number of points, which will decrease in the next generations of the
universe.

The algorithm can be divided into two main parts, one is the Big Bang phase and
the other is the Big Crunch phase. These steps are repeated until one of the ter-
mination conditions is satisfied.

Fig. 1 Flowchart of the
bacterial evolutionary
algorithm
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The points weighted by their fitness are used to determine the center of gravity
for the next generation of the universe. In the next phase the search space is
narrowed down around this new center. One of the greatest advantages of this
algorithm is the fast decrease of the search space, where the dimensions are handled
individually; in the other hand this property of the method causes its main disad-
vantage: it often converges to a local optimum instead of the global optimum.

2.3 Imperialist Competitive Algorithm

The Imperialist Competitive Algorithm (ICA) [4] is an optimization algorithm
inspired by imperialistic competition, where the points (candidate solutions) in the
problem space are the countries. Initial countries are generated randomly over the
problem space and their strength is calculated by the cost function. The countries
with greater strength are the imperialists, while the weaker solutions are the colo-
nies; empires are formed by imperialists taking control over colonies.

The algorithm uses two main operators in the first part: the assimilation and the
revolution; during assimilation the colonies are approaching the imperialist country
(in the problem space), while in the revolution phase the position of some colonies
in the problem space are changed. Colonies may turn over the imperialists by
reaching a better position during their movements in the search space caused by the
previously described operators.

Imperialist competition is the second part of the algorithm. The colonies could
be taken from the weakest empire by the stronger ones; the goal of each empire to
eliminate others by taking over them. The power of an empire is calculated from
the aggregated strength of the imperialist and the colonies. The method to calculate
the power of an empire must ensure that its power will increase even if it takes over
the weakest colony, in other words an empire cannot increase its power by losing its
weakest colony. The above steps are repeated until the stop condition is not satisfied
as in Fig. 2.

2.4 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) [10] uses the simplified model of the
dynamics of movements of various animal swarms (or particles). The solutions are
represented by the particles in the search domain; each particle has a position and a
speed vector. The evolution of the population does not use evolutionary operators
unlike in genetic algorithms [1].

The orientation and the speed of the particles are influenced by all other parti-
cles. An individual particle moves towards the particle with the best local- or global
solution and is influenced by its personal best position.
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3 Optimization Task and Experiment Properties

3.1 Optimization Task

Basic Concept, Properties and Limitations.
Four key features were defined at the beginning of the development of the

recognition engine:

1. Accuracy: it has to reach an acceptable recognition rate, i.e. at least as good as,
or better than other accepted methods.

2. Efficiency: the methods must fit the user’s requirements in response time and in
resources of hardware (complex geometrical transformations and other mathe-
matical functions should be avoided).

Fig. 2 Flowchart of the
imperialist competitive
algorithm
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3. Flexibility of the alphabet: the alphabet must be easily modifiable to support
various alphabets and context-sensitive recognition.

4. Learning: it should be able to learn user-specific writing style.

The general characteristics and properties of fuzzy systems enable them to satisfy
all the features considered above. This fact led us to use fuzzy inference method for
the recognition method. Fuzzy-Based Character Recognizer (FUBAR) is a family of
algorithms of various single-stroke and multi-stroke hand printed (handwritten,
non-cursive, capital letters) character recognition engines. The designed system is a
personalized online recognizer, which means it processes digital ink and deploys
user-specific information. The basic concept of the designed method is shown in
Fig. 3.

Input Conditioning and Handling.
The input signal of the algorithm consists of two-dimensional (x, y) coordinates in
chronological order, representing the pen-movement (stroke). In unistroke (or
single-stroke) recognizers, letters are represented by a single stroke; while in multi-
stroke systems each symbol is represented by any numbers of strokes (sub-strokes).
The FUBAR algorithm merges the multi-strokes into one unistroke and handles it
accordingly.

Usually, the received signal is non-continuous as a result of the bottlenecks of
the hardware, which causes information loss during recording the pen-movement;
this information-loss causes difficulties in the processing, because the positions of
the missing coordinates thus become non-deterministic. The received signal must
be normalized for further processing and better recognition rate. In the FUBAR

Fig. 3 Concept of the FUBAR engine
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algorithm family the points of the received signal are re-sampled; the points
between a given (Euclidean) distance from the reference point are filtered out. The
re-sampling of the strokes also has an anti-aliasing property.

Feature Extraction.
FUBAR uses two kinds of stroke features for the recognition: (1) the width/

height ratio of the stroke and (2) the average number of points in the rows and
columns of the grid drawn around the stroke. The first member of the FUBAR
family used a crisp grid (with sharp borders) for the feature extraction, but the
system reached a low average recognition rate as some of the users started to write
faster and use italic writing style The sampled points of the strokes of oblique and
normal characters could be located in completely different rows and columns of the
grid, which caused huge overlap between the features of various letters. Other
methods are rotating the input characters to avoid the negative effects of the italic
writing style, but those methods use complex mathematical transformations, which
dramatically increase the computational complexity of the method. To resolve the
problems caused by the italic writing style, fuzzy grids [18, 19] were proposed. In
fuzzy grids the rows and columns of the grid are defined by fuzzy sets. It can be
also considered as a transformation of the stroke into a fuzzy space. The points in a
fuzzy grid may belong to two different columns or rows at the same time with
various membership values as seen in Fig. 4.

Inference.
In the designed recognition engine a fuzzy rule-based inference method [7, 8] is

used. Each symbol in the alphabet is represented by a single rule. The input
parameters of the rules are the features described above; the output parameter of the
rules is the degree of matching between the features of the input stroke and the
stored rules as seen in Fig. 5. FUBAR returns the character associated to the best
matching rule after the rule evaluation phase.

Fig. 4 Concept of fuzzy grids
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3.2 Extensions of Meta-Heuristic Methods

Each algorithm is extended to use multiple populations without the option of
migration. This is an important modification in order to handle the various char-
acters independently and to avoid the overlap between the fuzzy sets representing
the features of various characters. During the evaluation of candidate solutions the
best rules are used from each population.

The initial populations are randomly generated in the original algorithms; in
order to switch between the meta-heuristics, the algorithms must support to use
predetermined populations.

4 Results

4.1 Rule Optimization from Scratch

Bacterial Evolutionary Algorithm.
In this experiment various population sizes, number of clones and number of

gene transfers (infections) were used. Tests were performed with the combination of
each parameter with values between 10 and 30 (increased by 5 in each different
test). The fourth parameter was affecting the bacterial mutation operator. If the
mutation parameter was set to “tolerant”, it accepted a new allele when the system
had the same or better result as with the original allele value; otherwise (“strict”) it
accepted only the mutation from clones with better results. The maximum number
of generations was set to 100.

The results reflected that the algorithm reached the same results (or with
insignificant difference) for various parameter values, except for the mutation
parameter. If it set to “strict”, the algorithm was stuck at the same point during the
process.

The best result (0.44 error rate) was achieved when the size of the population,
the number of clones and the number of infections both were set to 10 and the
mutation type was set to “tolerant”. The average error rates/generations are shown
in Fig. 6 for the training dataset and in Fig. 7 for the validation set.

Fig. 5 Fuzzy rule describing a character
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Big Bang–Big Crunch Algorithm.
The effect of the number of generations and the size of the population were

investigated in this algorithm. The number of generations was changed between 50
and 100, while the size of the population was selected between 10 and 50 (step size
was 10 in both parameters). The results showed that the change of these parameters
does not significantly affect the results; the distribution of the error rate was the
same for each scenario, however there was a slightly greater chance to find a better
quasy-optimum after more generations. The best result (0.11 error rate) was
achieved in 70 generations and population size 10. The best, the worst and the
average convergence of the error rates/generations for the training dataset is in
Fig. 8 and for the validation data is in Fig. 9.

Fig. 6 Error rates of BEA from flat sets on the training data

Fig. 7 Error rates of BEA from flat sets on the validation data
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The average error rates are more close to the worst case scenario compared to the
best results as it can be seen in the figures above.

Imperialist Competitive Algorithm.
At the testing of the ICA algorithm the number of countries was changed

between 10 and 30 and the number of generations was between 50 and 100 (the step
was 10 in both cases). The results indicated that the number of generations over 50
did not have any effect on the results, while the greater number of the countries did
result in lower error rates. The best result (0.04 error rate) was achieved in 50
generations and the number of countries was 30. Worst, average and best error
rates/generations for the validation set are shown in Fig. 10 (with 10 countries), in
Fig. 11 (with 20 countries) and in Fig. 12 (with 30 countries).

Fig. 8 Error rates of BBBC from flat sets on the training data

Fig. 9 Error rates of BBBC from flat sets on the validation data
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Fig. 10 Error rates of ICA from flat sets on the validation data with 10 countries

Fig. 11 Error rates of ICA from flat sets on the validation data with 20 countries

Fig. 12 Error rates of ICA from flat sets on the validation data with 30 countries
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Particle Swarm Algorithm.
The number of generations was between 50 and 100, while the size of the swarm

was between 10 and 30 during the test of the Particle Swarm method. The best
result (0.32 error rate) was achieved with swarm size of 20 and in 60 generations.
The results are indicating that, the larger swarm size slightly increases the proba-
bility of a better result. Worst, best and average error rates/generations for vali-
dation set are shown in the figures below (Figs. 13, 14 and 15).

Fig. 13 Error rates of PSA from flat sets on the validation data with 10 particles

Fig. 14 Error rates of PSA from flat sets on the validation data with 20 particles
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4.2 Rule Optimization with Multi Meta-Heuristics

In this experiment a previous test population was used as a starting point for each
algorithm; this initial population was selected from a BBBC algorithm experiment.
At generation 40 and at error rate of 0.12 the population was backed up and later
loaded into each algorithm several times.

The lowest error rate in the worst cases was achieved by the ICA (0.09), while
BEA, PSA and BBBC reached the error rate of 0.12, 0.13 and 0.13 respectively
(Fig. 16).

The lowest error rate in the best scenarios was achieved by the PSA (0.048), but
the BBBC and ICA algorithms were performing only slightly worse (0.05 error
rate), while the BEA algorithm could not achieve better error rate than 0.078
(Fig. 17).

Fig. 15 Error rates of PSA from flat sets on the validation data with 30 particles

Fig. 16 Worst error rates of BEA, BBBC, ICA, PSA
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The best performing algorithm in average was the ICA with the error rate of
0.0778, the second one was the PSA with a slightly higher error rate 0.0779, while
the BBBC reached 0.1 and the BEA produced the error rate of 0.114 (Fig. 18)

The Imperialist Competitive Algorithm and the Particle Swarm Algorithm per-
formed best during the experiment in all scenarios, while the Big Bang–Big Crunch
algorithm had the second worse results in average. The Bacterial Evolutionary
Algorithm produced the worst results in all three scenarios, but all its results were
close to each other.

5 Conclusions and Discussions

The aim of this research was to investigate the behavior of meta-heuristic algo-
rithms applied on a fuzzy rule-based classifier (multi-stroke character recognizer)
system.

Fig. 17 Best error rates of BEA, BBBC, ICA, PSA

Fig. 18 Average error rates of BEA, BBBC, ICA, PSA
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The experiment suggests that the algorithms are not enough sensitive for their
main parameters (population size, number of generations) to reach higher accuracy
without a significant increase in the computational time. A more detailed test of
other algorithm-specific parameters should be executed in order to find a low-cost
way of enhancing their effectiveness.

The results are showing that the ICA algorithm could reach the lowest error rate
(0.04), when the rule-base had to be created from scratch; the second best results
(0.11) were achieved by the BBBC algorithm. The worst result was produced by the
BEA with the error rate of 0.44, while the PSA could decrease the error rate to 0.32.

It is also important to consider that the average generations evaluated in one
second for the BEA, BBBC, ICA and PSA were 0.0667, 4, 0.667 and 1 respectively
(in the experiment environment). The ICA is 10 times faster than the BEA and it
can reach much lower error rates. The PSA is 33 % faster and the BBBC is about 6
times faster than the ICA, while their optimization performances are very close.
This means that it might be beneficial to combine these methods if we could switch
between the algorithms according to the dynamics of the population, the properties
of the problem and the algorithms.

The BBBC and PSA algorithms could be a good choice to start the optimization
process, because it is able to reach average results with a very low cost, but due to
its disadvantages (convergence to local optimum) it does not worth it to use it
during the optimization. In some scenarios they could perform same or slightly
better as the ICA, but it is more like a matter of random situations. BBBC and PSA
should be modified to avoid local optimum solutions (i.e. “anomalies” in the BBBC
algorithm which could move the center of the universe from these points or restore
some parts of the universe) without significantly increasing their processing time.

The overall performance of ICA algorithm was the best, but the evaluation time
of generations is significantly higher compared to BBBC and PSA. It might worth
to use ICA instead of the other algorithms, but in some cases it does not perform
that much better than BBBC and PSA, which would make it reasonable to use it
(considering its processing time).

The general properties of the BEA algorithm made it “stable” and it has its own
advantages despite its low results and high computational time. The algorithm
should be improved by reducing its time consuming computations.

The next aim is to research a simple and automatic procedure to test and
investigate the characteristics and other features of the population, where the pre-
sented algorithms are performing best (in terms of results and resource require-
ments). Using this knowledge a more extended alternative method for [BK] might
be developed, which would be able to switch between more than two meta-heuristic
optimization algorithms. The planned method would change to a new optimization
algorithm if the properties of the “environment” and the population are indicating
that another algorithm could be more successful (have better convergence or
solution) in order to save resource.
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Additive Fuzzy Systems as Generalized
Probability Mixture Models

Bart Kosko

Abstract Additive fuzzy systems generalize the popular mixture-density models of
machine learning. Additive fuzzy systems map inputs to outputs by summing fired
then-parts sets and then taking the centroid of the sum. This additive structure
produces a simple convex structure: Outputs are convex combinations of the cen-
troids of the fired then-part sets. Additive systems are uniform function approxi-
mators and admit simple learning laws that grow and tune rules from sample data.
They also behave as conditional expectations with conditional variances and other
higher moment that describe their uncertainty. But they suffer from exponential rule
explosion in high dimensions. Extending finite-rule additive systems to fuzzy
systems with continuum-many rules overcomes the problem of rule explosion if a
higher-level mixture structure acts as a system of tunable meta-rules. Monte Carlo
sampling can then compute fuzzy-system outputs.

Keywords Additive fuzzy system ⋅ Mixture density models ⋅ Compounding ⋅
Function approximation ⋅ Fuzzy approximation theorem ⋅ Learning laws ⋅
Conditional expectations ⋅Convex sums ⋅ E-M algorithm ⋅Monte carlo simulation ⋅
Importance sampling ⋅ Continuum-many fuzzy rules

1 Centroidal Fuzzy Systems as Statistical Estimators

This chapter reviews and extends the main mathematical properties of additive
fuzzy systems [1–9]. Additive fuzzy systems exploit the convex-sum structure that
results from additively combining fired if-then rules. They generalize mixture-
density models from machine learning and pattern recognition because such mix-
tures are convex sums that do not depend on an input value. Additive fuzzy systems

B. Kosko (✉)
Department of Electrical Engineering, Signal and Image Processing Institute,
University of Southern California, Los Angeles, CA, USA
e-mail: kosko@usc.edu

© Springer International Publishing Switzerland 2015
D.E. Tamir et al. (eds.), Fifty Years of Fuzzy Logic and its Applications,
Studies in Fuzziness and Soft Computing 326,
DOI 10.1007/978-3-319-19683-1_14

245



admit simple gradient-descent learnings laws and are uniform function approxi-
mators on compact sets. But they suffer from exponential rule explosion in high
dimensions. This curse of dimensionality limits modeling with additive fuzzy
systems and limits tuning them with sample data. Extending finite-rule additive
fuzzy systems to continuum-many fuzzy rules overcomes the problem of rule
explosion. It allows the user to define higher-level fuzzy meta-rules with a mixture
structure and then use modern statistical techniques to tune such continuum-rule
additive systems. This analysis turns on a probabilistic interpretation of fuzzy
systems. This first section shows that such a probabilistic interpretation applies to
all centroidal fuzzy systems even if they do not additively combine fired rules.

A fuzzy system is a mapping F:ℝn →ℝ. It uses a set of fuzzy if-then rules to
convert a vector input x to an output FðxÞ. There is no loss of generality if the fuzzy
system is scalar and thus if it maps to the real line ℝ. All results still hold with
appropriate vector notation for vector-valued fuzzy systems F:ℝn →ℝp.

We first show that any centroidal fuzzy system defines a conditional expectation
and hence is a probabilistic or statistical system. The fuzzy system need not be
additive. A non-additive system could combine rules through a maximum operation
or through any other aggregation operation [10–13]. Early fuzzy systems often
combined outputs with a maximum or supremum operation.

A centroidal output suffices to produce a conditional expectation. So the con-
ditional-expectation result does not require an independent probabilistic assump-
tion. It follows instead from just the nonnegativity and the integrability of the then-
part fuzzy sets that all fuzzy if-then rules use. We first state some notation for fuzzy
systems and then state and prove the conditional-expectation result as Theorem 1.

A centroidal fuzzy system F:ℝn →ℝ is a fuzzy system that computes the output
FðxÞ by taking the centroid of a finite number m of combined “fired” then-part sets:
FðxÞ=CentroidðBðxÞÞ. Later we will drop the finite assumption. The term BðxÞ
stands for the combined fired then-parts. The argument x implies that the vector
input x has fired the m rules. The fired combination BðxÞ formally is any non-
negative function b:ℝ×ℝn →ℝ+ that has a finite integral. The jth rule RAj →Bj has
the linguistic form “If X =Aj then Y =Bj” for if-part fuzzy set Aj⊂ℝn and scalar
then-part fuzzy set Bj⊂ℝ. The unfired then-part set Bj has set function
bj:ℝ→ ½0, 1�. But its fired version BjðxÞ has a two-place argument and thus cor-
responds to the set function bjðx, yÞ:ℝn×ℝ→ ½0, 1� for vector input x∈ℝn. But we
still write the set function in single-argument notation bjðxÞ for simplicity. The rule
RAj →Bj is a fuzzy subset of the input-output product space ℝn×ℝ because all input-
output pairs ðx, yÞ satisfy the rule to some degree. So the rule corresponds to a two-
valued set function rAj →Bj : ℝn×ℝ→ ½0, 1�.

The n-dimensional fuzzy set Aj corresponds to a joint set membership or mul-
tivalued indicator function aj:ℝn → ½0, 1�. Users often assume in practice that the
joint membership function factors into a product of scalar membership functions:
ajðxÞ=∏m

k=1a
k
j ðxkÞ where each factor set Ak

j⊂ℝ has set function akj :ℝ→ ½0, 1� for
row vector x= ðx1, . . . , xnÞ. Earlier fuzzy systems sometimes formed the joint set
function aj by taking pairwise minima ajðxÞ=minða1j ðx1Þ, . . . , akj ðxnÞÞ or some
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other pairwise triangular-norm operation. The minimum function ignores the
information in all scalar inputs except the smallest one when the inputs differ. The
standard additive fuzzy systems below always work with the simpler product
factorization. The product function preserves the relative values of the scalar inputs.
The then-part set function can be generalized set function. The then-part fuzzy sets
Bj need only have positive and integral set functions bj:ℝ→ℝ+ because of the
normalization involved in taking the centroid. They do not need to map to the unit
interval.

Now suppose the vector input x= ðx1, . . . , xnÞ activates the scalar fuzzy system
F:ℝn →ℝ to produce the combined rule firings BðxÞ. Then Theorem 1 states that
taking the centroid results in a conditional expectation for any fuzzy system that
combines rules to produce BðxÞ.
Theorem 1 Every centroidal fuzzy system is a conditional expectation:
FðxÞ=E½Y jX = x�.
Proof The theorem follows from the definition of the centroid and from the non-
negativity and integrability of the then-part sets Bj. We also assume that the input x
leads to nontrivial rule firings. So it leads to a nonzero combination of fired rules
BðxÞ: BðxÞ>0. Then □

FðxÞ=CentroidðBðxÞÞ ð1Þ

=

R∞
−∞ y bðxÞ dyR∞
−∞ bðxÞ dy ð2Þ

=

R∞
−∞ y bðx, yÞ dyR∞
−∞ bðx, yÞ dy ð3Þ

=
Z ∞

−∞
y

bðx, yÞR∞
−∞ bðx, yÞ dy

" #
dy ð4Þ

=
Z ∞

−∞
y pðy j xÞ dy ð5Þ

=E½Y jX = x�. ð6Þ

The result follows because pðy j xÞ= bðx, yÞR∞
−∞ bðx, yÞ dy is nonnegative and becauseR∞

−∞ pðy j xÞ dy=1 holds from the nonnegativity and integrability of the b function
if bðx, yÞ>0. So pðy j xÞ is a proper conditional probability density function. Then
E½Y jX = x� is a realization of the condition-expectation random variable E½Y jX�.
Q.E.D.
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Theorem 1 yields a system conditional variance V ½YjX = x� and higher-order
moments so long as the appropriate integrals exist:

V ½Y jX = x�=E½Y2jX = x�−E2½YjX = x�. ð7Þ

The conditional density pðy j xÞ gives the second moment as

E½Y2 jX = x�=
Z ∞

−∞
y2 pðy j xÞ dy. ð8Þ

The next section gives closed forms for these moments and for other higher-
order moments when the fuzzy systems are not just centroidal but additive.

A word is in order here about just how a given input x0 fires a rule RAj →Bj . Fuzzy
models assume that the input x0 belongs to the if-part set Aj to degree ajðx0Þ:
ajðx0Þ=Degreeðx0∈AjÞ. Then this membership or “fit” (fuzzy unit) value ajðx0Þ
changes the corresponding then-part Bj to produce the fired then-part set Bjðx0Þ with
set function value bjðx0, yÞ. Viewing the if-part set Aj as a probability density
function would give the null result ajðx0Þ=0 for all x0 since aj is continuous. We
instead view the input x0 as a delta pulse δðx− x0Þ centered at x0. Then convolution
gives the proper fit value ajðx0Þ for the fired if-part set [1, 5]:

Z ∞

−∞
δðx− x0Þ ajðxÞ dx= ajðx0Þ. ð9Þ

This convolution result follows from the “sifting” property of the delta function.
It also extends the point fuzzy system to a set fuzzy system that takes an arbitrary
continuous fuzzy set A as input if we define the corresponding activation in terms of
a more general inner product:

Z ∞

−∞
aðxÞ ajðxÞ dx= ajðAÞ. ð10Þ

Then the proof of Theorem 1 still gives the system output as FðAÞ=E½Y jX =A�.
All the standard-additive results below admit such a set-input extension.

2 Additive Fuzzy Systems as Convex Combinations
of Centroids

Additive fuzzy systems add fired then-part sets to compute the combined set BðxÞ.
This leads to the central fact of additive systems: Their outputs equal the convex
combination of the centroids of the fired then-part sets.
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This convex structure carries over into many properties of centroidal additive
systems. It starts with the basic “mixture” fact in Proposition 1 below that the global
output conditional probability density pðy j xÞ is itself a convex combination of the
m then-part conditional probabilities. This convex structure leads in particular to
simple and practical forms for the conditional expectation and conditional variance.
Theorem 3 below shows that the global conditional mean (6) equals a convex sum
of local conditional means. These conditional means are local or rule-specific in the
sense that their conditional probability density arises from the shape of their cor-
responding fired then-part set.

Theorem 3 also shows that the conditional variance decomposes into two convex
sums. The first sum averages the uncertainty that arises from the shapes of the then-
part sets. So here set shape matters. This result differs from simple function
approximation where only the shape of the if-part sets controls the approximation
for default then-part sets. This then-part shape dependence contrasts with many
fuzzy applications that simply replace the then-part sets with spikes centered at
what would otherwise be a then-part set’s centroid. Such a then-part spike simplifies
some computations but it implicitly assumes total certainly about the then-part of
the rule. The second sum averages the uncertainty that arises from interpolating
between rule centroids to produce the system output. This term measures the
inherent uncertainty in the fuzzy system that results from such interpolation. The
other higher-order conditional moments in Theorem 3 involve similar convex sums
and interpolations.

We first prove that all additive centroidal fuzzy systems are convex sums of fired
then-part centroids. An additive fuzzy system combines the m fired then part sets by
adding them:

BðxÞ=∑m
j=1wj BjðxÞ ð11Þ

for positive rule weights wj>0. The rule weights need not sum to unity. And they
can depend on the input x. They drop out of the centroidal output FðxÞ if they are all
equal: w1 =⋯=wn. Then the combined set BðxÞ has a generalized set function
bðy j xÞ for each input x as y ranges over the range space ℝ:

bðy j xÞ=∑m
j=1wj bjðy j xÞ. ð12Þ

We here use the conditional notation bjðy j xÞ: ℝn×ℝ→ ½0, 1� for the set func-
tion of the fired then-part set BjðxÞ. So the inputs x parametrize the fired then-part
sets.

Each fired then-part set BjðxÞ has an area or volume VjðxÞ:

VjðxÞ=
Z ∞

−∞
bjðy j xÞ dy. ð13Þ

We again assume that all such integrals are finite and positive. This gives in turn
an input-dependent centroid cjðxÞ for fired then-part set BjðxÞ:
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cjðxÞ=
R∞
−∞ y bjðy j xÞ dyR∞
−∞ bjðy j xÞ dy

=
1

VjðxÞ
Z ∞

−∞
bjðx, yÞ dy. ð14Þ

Then Theorem 2 states that all additive centroidal fuzzy systems equal a convex
combination of fired then-part centroids.

Theorem 2 Additive centroidal systems are convex combinations of fired then-part
centroids:

FðxÞ=∑m
j=1pjðxÞ cjðxÞ. ð15Þ

The convex coefficients pjðxÞ have the ratio form

pjðxÞ= wj VjðxÞ
∑m

k=1wk VkðxÞ . ð16Þ

Proof.

FðxÞ=CentroidðBðxÞÞ=
R∞
−∞ y bðy j xÞ dyR∞
−∞ bðy j xÞ dy ð17Þ

=

R∞
−∞ y ∑m

j=1wj bjðy j xÞ dyR∞
−∞ ∑m

k=1bjðy j xÞ dy
ð18Þ

=
∑m

j=1wj
R∞
−∞ y bjðy j xÞ dy

∑m
k =1wk

R∞
−∞ bjðy j xÞ dy

ð19Þ

=
∑m

j=1wj VjðxÞ
R ∞

−∞
y bjðy j xÞ dy
VjðxÞ

� �
∑m

k=1wk VkðxÞ ð20Þ

=
∑m

j=1wj VjðxÞ cjðxÞ
∑m

k=1wk VkðxÞ ð21Þ

=∑m
j=1

wj VjðxÞ
∑m

k=1wk VkðxÞ
� �

cjðxÞ ð22Þ

=∑m
j=1pjðxÞ cjðxÞ. ð23Þ

The coefficients pjðxÞ are convex because they are nonnegative and sum to unity
by (16). Q.E.D. □

The convex-sum structure of Theorem 2 underlies much of the power of additive
fuzzy systems. An important example is universal function approximation.
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Centroidal additive fuzzy systems F can uniformly approximate any continuous
function f :K⊂ℝn →ℝ on a compact set K [2, 5]: jFðxÞ− f ðxÞj <ε for all x given
any initial choice of the error level ε>0. The heart of the proof in the scalar case is
that convexity traps the output FðxÞ between the smallest and largest centroids:
cminðxÞ≤FðxÞ≤cmaxðxÞ. A similar result holds component-wise in higher dimensions
because the vector output FðxÞ lies in a centroidal hyper-rectangle. So in principle
we can always find some set of fuzzy rules that makes an additive fuzzy system as
close as we wish to any continuous function. The uniform approximation does not
require either that the if-part sets be fuzzy or that the then-part sets be fuzzy. Binary
rectangles still produce uniform function approximators even if the resulting fuzzy
systems are not as smooth as fuzzy systems with sets based on Gaussian or Cauchy
or other smooth functions. So a fuzzy system need not be fuzzy at all. The raw
approximation power comes not from working with fuzzy matters of degree. It
comes instead from the additive system’s use of parallel if-then rules and its
convexity.

A second example of this convex structure occurs in rule adaptation or learning.
The ratio structure in (21) allows a direct application of the quotient rule of the
differential calculus. Convexity leads to a simple form for the learning gradient term
∂F
∂wj

for the rule weight wj [5, 8]: ∂F
∂wj

= pjðxÞ
wj

cjðxÞ−FðxÞ� �
. This leads to the squared-

error-based learning law wjðt+1Þ=wjðtÞ+ μtεðtÞ pjðxÞ
wjðtÞ cj −FðxÞ� �

where the super-

vised error term εðtÞ= dðtÞ−FðxðtÞÞ requires knowledge of the system’s desired
outcome dðtÞ at a given time instant. The learning coefficients μt usually decrease
linearly in accord with convergence principles from stochastic approximation. The
same form of learning law holds for the then-part volume VjðxÞ and the if-part set
function aj. But there are two more partial derivatives to unpack in the if-part set-
function case because the set function factors and because each factor depends on
shape parameters such as the location and scale of the scalar factor set. The centroid
has an even simpler learning term: ∂F

∂cj
= pjðxÞ because of the convex structure. Then

gradient learning can use sample data to tune these system parameters. The simplest
case minimizes the squared error 1

2 f ðxÞ−FðxÞð Þ2 for some known or unknown
sample function f. Then the fuzzy system will quickly approximate the sampled
function given enough representative samples and enough training iterations. The
rules quickly move to cover the extrema or turning points of f. This reflects the
theorem that optimal additive rules cover extrema [3]. Unsupervised clustering
algorithms can help find these optimal rules in practice [1]. Such data-driven
clusters area also a good way to initialize the fuzzy system. But the number of rules
involved tends to grow exponentially with the input dimension because the fuzzy
rules define a graph cover in the input-output product space. This curse of
dimensionality tightly constrains the above learning laws when the fuzzy system
has as few as three input dimensions [8].

The next theorem shows how the convex structure in Theorem 2 passes into the
structure of the additive system’s conditional expectation and conditional variance
and indeed into all its higher conditional moments. The key insight is that additivity
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induces convexity in the global conditional probability density function pðy j xÞ.
This density decomposes into a convex sum of the m local rule-specific conditional
probability density functions pBjðy j xÞ:

pBjðy j xÞ=
bjðy j xÞR∞

−∞ bjðy j xÞ dy
. ð24Þ

The normalizing denominator is just the input-dependent area or volume VjðxÞ
from (13). This “mixture” result is important enough to state as a separate
proposition.

Proposition 1 pðy j xÞ=∑m
j=1pjðxÞ pBjðy j xÞ for pjðxÞ in (16).

Proof.

pðy j xÞ= bðy j xÞR∞
−∞ bðy j xÞ dy ð25Þ

=
∑m

j=1wj bjðy j xÞR∞
−∞ ∑m

k=1wk bjðy j xÞ dy
ð26Þ

=
∑m

j=1wj VjðxÞ bjðy j xÞ
VjðxÞ

h i
∑m

k=1wk VkðxÞ ð27Þ

=∑m
j=1

wj VjðxÞ
∑m

k =1wk VkðxÞ
� �

pBjðy j xÞ from 24ð Þ ð28Þ

=∑m
j=1pjðxÞ pBjðy j xÞ from 16ð Þ. Q.E.D. ð29Þ

We can now state and prove the key theorem on the conditional moments of all
additive centroidal systems. □

Theorem 3 All higher-order moments of additive centroidal fuzzy systems are
convex sums:

ðaÞ E½Y jX = x�=∑m
j=1pjðxÞ cjðxÞ=FðxÞ ð30Þ

ðbÞ V ½Y jX = x�=∑m
j=1pjðxÞ σ2Bj

ðxÞ+∑m
j=1pjðxÞ cjðxÞ−FðxÞ� �2 ð31Þ

ðcÞ E½ðY −E½Y jX = x�ÞkjX = x�=∑m
j=1pjðxÞ ∑k

l=1
k
l

� �
EBjðxÞ½ðY − cjðxÞÞl�ðcjðxÞ−FðxÞÞk− l for positive integer k.

ð32Þ
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Proof. Result (a) restates Theorems 1 and 2. Result (b) uses Proposition 1:

V ½Y jX = x�=
Z ∞

−∞
ðy−E½Y jX = x�Þ2pðy j xÞ dy ð33Þ

=
Z ∞

−∞
ðy−E½Y jX = x�Þ2∑m

j=1pjðxÞ pBjðy j xÞ dy ð34Þ

=∑m
j=1pjðxÞ

Z ∞

−∞
ðy− cjðxÞÞ+ ðcjðxÞ−FðxÞÞ� �2pBjðy j xÞ dy ð35Þ

from Theorem 1

=∑m
j=1pjðxÞ

Z ∞

−∞
ðy− cjðxÞÞ2pBjðy j xÞ dy

+∑m
j=1pjðxÞ½cjðxÞ−FðxÞ�2

Z ∞

−∞
pBjðy j xÞ dy

+2∑m
j=1pjðxÞðcjðxÞ−FðxÞÞ

Z ∞

−∞
ðy− cjðxÞÞpBjðy j xÞ dy

ð36Þ

=∑m
j=1pjðxÞ σ2Bj

ðxÞ+∑m
j=1pjðxÞ cjðxÞ−FðxÞ� �2 ð37Þ

because the cross term in (36) equals zero since
R∞
−∞ y pBjðy j xÞ dy

= cjðxÞ=EB, jðxÞ½Y � and because σ2Bj
ðxÞ= R∞−∞ ðy−EBjðxÞ½Y�Þ2pBjðy j xÞ dy.

The conditional higher-order moments (c) follow similarly from the binomial

theorem ðp+ qÞn =∑m
k

n
k

� �
pkqn− k for real numbers p and q and the combinatorial

coefficients
n
k

� �
= n!

k! ðn− kÞ!. Then

E½ðY −E½Y jX = x�ÞkjX = x�=
Z ∞

−∞
ðy−E½Y jX = x�Þk∑m

j=1pjðxÞ pBjðy j xÞ dy ð38Þ

=∑m
j=1pjðxÞ

Z ∞

−∞
ðy− cjðxÞÞ+ ðcjðxÞ−FðxÞÞ� �kpBjðy j xÞ dy ð39Þ

=∑m
j=1pjðxÞ

Z ∞

−∞
∑k

l
k
l

� �
ðy− cjðxÞÞkðcjðxÞ−FðxÞÞk− lpBjðy j xÞ dy ð40Þ

=∑m
j=1pjðxÞ∑k

l=0
k
l

� � Z ∞

−∞
ðy− cjðxÞÞlpBjðy j xÞ dy

� �
ðcjðxÞ−FðxÞÞk− l ð41Þ
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=∑m
j=1pjðxÞ ∑k

l=1
k
l

� �
EBjðxÞ½ðY − cjðxÞÞl�ðcjðxÞ−FðxÞÞk− l. Q.E.D. ð42Þ

The penalty term ðcjðxÞ−FðxÞÞk appears in the conditional variance and in all
the conditional higher-order moments. It measures the uncertainty due to rule
interpolation in the convex-sum output FðxÞ. The jth rule tries in effect to make the
global output FðxÞ look like its own centroidal output cjðxÞ. The jth rule tends to
have the most weight in the convex sum if the rule fires dead-on and thus if
pjðxÞ≈ 1 tends to hold. Then cjðxÞ≈FðxÞ tends to hold and thus the interpolation
penalty is small. This is easier to see with the simpler standard additive models in
the next section. The quadratic penalty tends to be higher for rules whose if-parts
fire only slightly. The penalty is most severe for inputs that occur where the if-part
sets are sparse.

The conditional variance gives a natural measure of confidence in the fuzzy
system output FðxÞ. There is no need to invoke Type-2 fuzzy sets or other ad hoc
schemes to capture this second-order uncertainty of a given fuzzy output. Com-
puting the conditional variance involves no more computation than what existing
fuzzy models already use to compute the first-order output FðxÞ. So it has arguably
been a needless oversight not to give users this confidence information. The first
published plot of the conditional variance of a fuzzy system appeared as Fig. 4 in
the 2005 paper [9]. The figure shows that rules involving one portion of the input
space have substantially more confidence than the rest.

We conclude this section with two more extensions of the additive model. The
first is the extension of the conditional covariance when the fuzzy system is a
vector-valued fuzzy system F:ℝn →ℝp. Then the conditional variance extends to a
p-by-p conditional covariance matrix KY jX = x:

KY jX = x =∑m
j=1pjðxÞ KY jX = x,BjðxÞ +∑m

j=1pjðxÞ ðcjðxÞ−FðxÞÞðcjðxÞ−FðxÞÞT . ð43Þ

Both the centroid cjðxÞ and output FðxÞ are here p-dimensional column vectors
with the same definitions as before. The local conditional covariance matrix
KY jX = x,BjðxÞ =EBjðxÞ½ðY − cjðxÞÞðY − cðxÞÞT � uses the conditional density pBjðxÞðy j xÞ.
Users can calculate these local matrices directly for simple shapes of the then-part
sets. The weak law of large numbers also allows sample covariance matrices to
approximate these population conditional covariance matrices if there are enough
random samples and if all appropriate moments exist.

The second extension is to combining multiple fuzzy systems. The fuzzy sys-
tems themselves need not be additive.

Suppose there are q separate real-valued fuzzy systems F1, . . . ,Fq. The kth
fuzzy system Fk somehow produces its own combined rule firings BkðxÞ. We also
assign the nonnegative system weight wk to Fk. Then we can additively combine the
weighted rule firings wkBkðxÞ to give the multi-system combined firings
BðxÞ=∑q

k =1w
kBkðxÞ. This allows the system to combine rules or throughputs
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rather than simply combining outputs. Taking the centroid gives the global output
as a convex sum of the system centroids: FðxÞ=∑q

k=1pkðxÞ ckðxÞ if ck is the system
centroid of BkðxÞ. The result is FðxÞ=∑q

k=1pkðxÞ FkðxÞ if the q systems are each
centroidal. The output is richer still if each of the q systems is not just centroidal but
additive [5]:

FðxÞ=∑q
k=1∑

mk
j=1p

k
j ðxÞ ckj ðxÞ ð44Þ

where the convex coefficients are now

pkj ðxÞ=
wkwk

j V
k
j ðxÞ

∑q
u=1∑

mu
v=1wuwu

v Vu
v ðxÞ

. ð45Þ

The next section shows that all the above additive results become simpler and
more practical still if the fuzzy systems are standard additive.

3 The Standard Additive Model (SAM): Rule Firing
as Multiplicative Scaling

How exactly does the vector input x∈ℝn
fire the jth rule RAj →Bj? Standard additive

models give a simple and useful answer: multiplication. We say that an additive
fuzzy system F:ℝn →ℝ is a standard additive model (SAM) if the fired if-part set
value ajðxÞ multiplicatively scales the then-part Bj [1, 5]:

BjðxÞ= ajðxÞBj . ð46Þ

The multiplicative scaling shrinks the then-part set Bj over the same base. This
scaling leaves the relative structure of the then-part set unchanged. The min-clip
minðajðxÞ,BjÞ simply discards all then-part set information above the threshold
ajðxÞ. The same problem occurs for almost all other triangular-norm functions of
ajðxÞ and Bj. So a user would need to produce some compelling reason for using
some firing operator other than SAM multiplicative scaling.

The jth rule itself defines a Cartesian “patch” Aj ×Bj or fuzzy subset of the
product space X × Y : RAj →Bj =Aj ×Bj = fðx, yÞ∈X × Y : x∈Aj & y∈Bjg. Now
suppose the vector input is x0. Then convolution gives the fired rule as a product [5]:Z ∞

−∞
δðx− x0Þ RAj →Bjðx, yÞ dx=

Z ∞

−∞
δðx− x0Þ ajðxÞ bjðyÞ dx ð47Þ

= bjðyÞ
Z ∞

−∞
δðx− x0Þ ajðxÞ dx ð48Þ
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= ajðx0Þ bjðyÞ. ð49Þ

So a traditional multiplicative Cartesian product leads to the SAM scaling
ajðxÞBj .

The SAM structure greatly simplifies the above results for additive fuzzy sys-
tems. The controlling fact is that ajðxÞ factors out of the key SAM calculations. This
leads in turn to an important cancellation that converts the local conditional
probability pBjðy j xÞ to the unconditional probability pBjðyÞ:

pBjðy j xÞ=
bjðy j xÞR∞

−∞ bjðy j xÞ dy
ð50Þ

=
ajðxÞ bjðyÞR∞

−∞ ajðxÞ bjðyÞ dy
ð51Þ

=
ajðxÞ bjðyÞ

ajðxÞ
R∞
−∞ bjðyÞ dy

ð52Þ

=
bjðyÞR∞

−∞ bjðyÞ dy
ð53Þ

=
bjðyÞ
Vj

ð54Þ

= pBjðyÞ ð55Þ

if ajðxÞ>0. Zero conditional probability pBjðy j xÞ=0 holds for zero if-part
activations ajðxÞ=0 so long as the then-part set functions bj are not trivial.

The SAM volume or area Vj is a constant that the user can pre-compute in
advance of running the SAM fuzzy system. This also holds for the SAM then-part
centroids cj:

cjðxÞ=
R∞
−∞ y bjðy j xÞ dyR∞
−∞ bjðy j xÞ dy

ð56Þ

=
ajðxÞ

R∞
−∞ y bjðyÞ dy

ajðxÞ
R∞
−∞ bjðyÞ dy

ð57Þ

= cj ð58Þ

since again ajðxÞ>0 by assumption.
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The SAM structure likewise simplifies Proposition 1 to a convex sum or mixture
of unconditional probability density functions:

pðy j xÞ=∑m
j=1pjðxÞ pBjðyÞ. ð59Þ

This is the result that directly generalizes the mixture probability model below.
These SAM simplifications now give the SAM Theorem [1, 5, 6] as a special

case of Theorem 2:

FðxÞ= ∑m
j=1wj ajðxÞ Vj cj

∑m
k=1wk ajðxÞ Vk

ð60Þ

=∑m
j=1pjðxÞ cj. ð61Þ

But now the convex coefficients are simpler:

pjðxÞ= ajðxÞ wj Vj

∑m
k=1akðxÞ wk Vk

. ð62Þ

This SAM system also enjoys simple forms for adaptation and statistics as well
as for function approximation. One example is the combination of q-many SAM set
systems using (10):

FðAÞ=∑q
k=1∑

mk
j=1p

k
j ðAÞ ckj ð63Þ

for input fuzzy set A. The SAM convex coefficients have the form

pkj ðAÞ=
wkwk

j a
k
j ðAÞ Vk

j

∑q
u=1∑

mu
v=1wuwu

v ajðAÞ Vu
v

ð64Þ

if ajðAÞ=
R∞
−∞ aðxÞ ajðxÞ dx. Gradient tuning of set-function SAMs can lead to

extremely complicated learning laws for updating the if-part sets [7]. This is not the
case for tuning ordinary point SAMs.

The most important SAM special case historically has been the so-called “center
of gravity” or COG fuzzy system because such systems were the basis of almost all
early applications of fuzzy systems [5, 11, 14]:

FðxÞ= ∑m
j=1ajðxÞ cj

∑m
k=1 ajðxÞ

. ð65Þ

So a COG corresponds to SAM with equal volumes and equal weights since then
all the volume and weight terms cancel out of the SAM ratio. Some fuzzy engineers
have ignored the shape of the then-part sets and just worked with a “spike” centroid.
This corresponds to interpreting the then-part set Bj as a delta function centered at
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the centroid: Bj = δðy− cjÞ. Then the area or volume of Bj integrates to one and thus
CentroidðBjÞ= cj holds from the sifting property of the delta function.

Gaussian sets further simplify the COG model. Using factored if-part set func-
tions ajðxÞ=∏m

k=1a
k
j ðxkÞ in the SAM/COG ratio then gives the popular radial basis

functions found in the neural network literature [15–18] when both if-part sets and
then-part sets are Gaussian or truncated-Gaussian sets. The idea for rule generation
here comes out of the theory of probability density estimation: Center a Gaussian
ball at the input vector x and center a Gaussian bell curve at the output value y for a
given data pair ðx, yÞ. Then adding up such normalized terms gives a type of
smoothed histogram of the sampled joint probability density function.

Rule weights can depend on then-part-set volumes. This often occurs in
Gaussian SAMs so that a rule with a wide then-part set Bj will not have more
influence than the same rule with a thinner then-part set. The wider then-part set has
a larger volume Vj and thus has more influence on the output FðxÞ because the
SAM ratio (60) is increasing in Vj. The choice wj = 1

Vj
cancels the volumes in the

SAM ratio. The more common choice wj = 1
V2
j
makes the width or size of then-part

sets vary inversely with their influence on the output. That roughly captures the
intuition that more uncertain rules should have less overall influence. It also
changes the SAM learning law for the volumes because then [4, 5]

∂F
∂Vj

= pjðxÞ cjðxÞ−FðxÞ� � 1
Vj

+
1
wj

∂wj

∂Vj

� �
ð66Þ

= pjðxÞ cjðxÞ−FðxÞ� � 1
Vj

−V2
j
2
V3
j

 !
ð67Þ

= − pjðxÞ cjðxÞ−FðxÞ� � 1
Vj

. ð68Þ

This leads to the volume learning law Vjðt+1Þ=VjðtÞ− μtεðtÞ pjðxÞVjðtÞ cj −FðxÞ� �
. A

cruder approach simply sets the rule weights equal to the inverse variance: wj = 1
σ2j
.

The conditional variance of a SAM simplifies to

V ½Y jX = x�=∑m
j=1pjðxÞ σ2Bj

+∑m
j=1pjðxÞ cjðxÞ−FðxÞ� �2 ð69Þ

since the then-part set variances σ2Bj
no longer depend on the input x. The COG

case simplifies further because all the then-part variances are the same and thus each
then-part set Bj has the same variance σ2. Then the convex sum structure gives the
COG conditional variance as

V ½Y jX = x�= σ2 +∑m
j=1pjðxÞ cjðxÞ−FðxÞ� �2. ð70Þ

258 B. Kosko



This shows that the shape of the then-part sets matters for higher-order uncer-
tainty even for the simplest COG models because different shapes give different
inherent variances σ2. The positive value σ2 represents the minimal level of
uncertainty that a COG can achieve.

SAM systems also allow exact representation of arbitrary bounded functions
f :ℝn →ℝ. The Watkins Representation Theorem [19–22] states that a SAM system
F needs only two rules to exactly represent a bounded real function f in the sense
that FðxÞ= f ðxÞ for all x. Such representation trivializes the usual problem of
exponential rule explosion in fuzzy function approximation. The catch is that the
two if-part set functions build the bounded function f directly into their definition:
a1ðxÞ= sup f − f ðxÞ

sup f − inf f and a2ðxÞ=1− a1ðxÞ. The two rules have the linguistic form “If
X =A then Y =B1” and “If X = not A then Y =B2”. The then-part sets B1 and B2 can
have any shape so long as the infimum of f is the center of B1 and the supremum is
the center of B2: c1 = inf f and c2 = sup f . The volumes or areas can be any positive
value so long as they are equal: V1 =V2 > 0. Then unity rule weights give

FðxÞ= ∑2
j=1ajðxÞ Vj cj

∑2
k=1ajðxÞ Vk

ð71Þ

=
a1ðxÞ inf f − ð1− a1ðxÞÞ sup f

a1ðxÞ+1− a1ðxÞ ð72Þ

=
sup f − f ðxÞ
sup f − inf f

� �
inf f − sup fð Þ+ sup f ð73Þ

= f ðxÞ for all x. ð74Þ

Such SAM representation is especially useful in modern Bayesian statistics
because it allows just two rules to represent either a bounded prior or a bounded
likelihood probability density function. A common conjugate prior is the beta

probability density function f ðθÞ=Betaðα, βÞ= Γðα+ βÞθα− 1ð1− θÞβ− 1

ΓðαÞΓðβÞ for θ in the unit

interval and for positive shape parameters α and β. Here Γ denotes the gamma
function ΓðαÞ= R∞0 xα− 1e− xdx. Then a two-rule SAM can exactly represent the

beta density f ðθÞ=Betað5, 8Þ with the set function [21] a1ðθÞ=1− 1111
7744 θ

7ð1− θÞ4
if c1 = inf f =0 and c2 = sup f = Γð13Þ

Γð8ÞΓð5Þ
7
11

� 	7 4
11

� 	4. The approximation power of

SAMs also allows users to go beyond closed-form densities and use rule-defined
priors or likelihoods and still be assured that the resulting fuzzy system will uni-
formly approximate the underlying Bayesian posterior density f ðθ j xÞ [21]. This
even holds for hierarchical Bayes systems where the prior density itself depends on
a hyperprior density [22] The above scheme for combining SAMs can combine
rule-represented priors or likelihoods with rule-defined priors or likelihoods into a
single SAM system.
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4 Generalized Mixture Models and Continuum-Many
Rules

We conclude by showing that additive fuzzy systems generalize mixture models
and that they extend to fuzzy systems with continuum-many fuzzy rules.

Mixture models are finite convex combinations of probability density functions
(pdfs) [23]. Such a convex combination mixture of m pdfs f1, . . . , fm gives a new
pdf f with m modes if the pdfs are sufficiently spread out:

f ðxÞ=∑m
j=1πj fjðxÞ ð75Þ

if the nonnegative mixing weights π1, . . . , πm sum to unity: ∑m
j=1πj =1. This

convex sum canmodel taking random samples from a population made up ofm-many
subpopulations such as m words or patterns. Then the estimation task is to find the
mixture weights and the parameters of the mixed pdfs. The most popular mixture by
far is the Gaussian mixture where fj is a scalar or vector Gaussian Nðμj, θ2j Þ.

The mixture sum is not arbitrary. It follows from the elementary theorem on total
probability. Suppose m hypothesis sets H1, . . . ,Hm partition the sample space Ω.
Suppose the set E⊂Ω represents some observed evidence. Then the theorem on total
probability states that the unconditional probability of the evidence PðEÞ equals the
convex combination of the prior probabilities PðHjÞ and the likelihoods PðE jHjÞ:
PðEÞ=∑m

j=1PðHjÞ PðE jHjÞ. This corresponds to the mixture sum because the
evidence is the input x and because πj is the prior probability of the jth class or
mixture element. So fjðxÞ= f ðx j jÞ if the conditional density f ðx j jÞ is the likelihood
that we would observe such an x if it came from the jth class or mixture density.

The ubiquitous Expectation-Maximization (EM) algorithm quite often estimates
the mixing weights and means and variances by iteratively maximizing the likeli-
hood function [23]. The class memberships of the m decision classes correspond to
the hidden or latent variables in the EM algorithm. Then carefully injected noise can
always speed up convergence of the EM algorithm [24–26] as it climbs the nearest
hill of likelihood.

Mixture moments follow directly from the convexity of the mixed sum. This
gives the unconditional mean and variance of the random variable X as [23]

E½X�=∑m
j=1πj μj ð76Þ

and

V ½X�=∑m
j=1πj σ

2
j +∑m

j=1πj μj −E½X�� �2 ð77Þ

if the mixture’s underlying jth random variable Xj has pdf fj and thus if it has
mean μj and variance σ2j . We see at once that the mixture mean and variance are
special cases of a SAM fuzzy system’s conditional mean and variance.
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The SAM and other additive systems generalize mixture models by making the
mixture weights πj depend on the input x: πjðxÞ= pjðxÞ. This in turn makes the
mixture’s means and variances (and other moments) depend on x and thus become
conditional moments. So mixture models correspond to fixed-input centroidal
additive systems. Then Proposition 1 gives back the defining mixture-density
combination for unfired then-part sets:

pðyÞ=∑m
j=1pj pBjðyÞ. ð78Þ

Mixture models sample in effect from convex combinations of m suitably nor-
malized then-part sets.

We can extend SAM models to systems with infinitely many fuzzy rules. The
cardinality of the rules can be countably or uncountably infinite. We will work with
the latter continuum case. This follows from the direct extension of mixture models
to compounding models that weight one pdf with another and then integrate out the
continuous mixture index [23]. Our approach will instead impose a higher-level
mixture structure on the continuum of rules.

Suppose now that the real parameter θ indexes the continuum-many if-part set
functions aθ and the corresponding then-part sets Bθ in continuum-many rules of
the form “If X =Aθ then Y =Bθ”. Then integration gives the combined rule firings:

bðyjxÞ=
Z θ=∞

θ= −∞
wθ bθðy j xÞ dθ ð79Þ

if we assume the integral exists for appropriate nonnegative rule weights wθ. The
proof of Theorem 3 still goes through if (definite) integrals replace the finite sums:

FðxÞ=
Z

pθðxÞ cθ dθ ð80Þ

and

pθðxÞ= aθðxÞ wθ VθR
aϕðxÞ wϕ Vϕ dϕ

. ð81Þ

Consider a simple Gaussian set of rules for a scalar parameter θ. The rules have
vector-Gaussian if-part set functions aθ and scalar Gaussian then-part set func-
tionsbθ: aθð⋅Þ=Nðθ∙1, KθÞ and bθðyÞ=Nðθ, σ2Þ if θ∙1 denotes the n-vector with
all elements equal to θ. Kθ is an n-by-n covariance matrix. It equals the identity
matrix in the simplest or “white” case. Then cθ = θ and Vθ =1 since
bθðyÞ=Nðθ, σ2Þ. This gives the output FðxÞ as a simple unconditional expectation
for each x: FðxÞ= R pθðxÞ θ dθ=EpθðxÞ½Θ�. This approach extends at once to vector
parameters.
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Computing the convex integral for FðxÞ is more complicated than in the simpler
case of probabilistic compounding. Compounding allows the modeler to pick the
weighting pdf pθ as a normal or gamma or other well-behaved closed-form pdf. But
the SAM convex-sum pθ involves a highly nonlinear transformation of continuum-
many if-part set functions aθ. This transformation may not be tractable. Integrating
it to produce FðxÞ can only compound the computational intractability.

A practical solution is to rely on the weak law of large numbers (WLLN)
through Monte Carlo simulation. The WLLN states that the sample mean
Xn̄ = 1

n∑
n
k=1Xk of independent and identically distributed finite-variance random

variables X1,X2, . . . converges in probability to the population mean E½X� :
lim
n→∞

PðjX ̄n −E½X�j > εÞ=0 for all ε>0. Monte Carlo simulation interprets an

ordinary definite integral
R b
a gðxÞ dx as the expectation of a random variable that has

a uniform distribution over ða, bÞ [23]:
Z b

a
gðxÞ dx= ðb− aÞ

Z b

a
gðxÞ dx

b− a
= ðb− aÞE½X� ð82Þ

for X∼Uða, bÞ. The user need not integrate the integrand ðb− aÞgðxÞ. The user
need only compute values ðb− aÞgðxkÞ for random uniform draws xk from ða, bÞ.
The random draws can come from any uniform random number generator. Then the
WLLN ensures that 1

n∑
n
k=1ðb− aÞgðxkÞ≈ðb− aÞE½X�= R ba gðxÞdx for enough ran-

dom draws xk . The variance in the WLLN estimate decreases linearly with the
number n of draws.

Monte Carlo simulation can estimate the integrals in the continuum-rule SAM
for a given input x. Assume there are n random draws of θ from some finite interval
ða, bÞ for a fuzzy system defined on the compact interval ½a, b�. Then

FðxÞ=
R
aθðxÞ wθ Vθ cθ dθR
aϕðxÞ wϕ Vϕ dϕ

ð83Þ

≈
1
n∑

n
k=1wk akðxÞ Vk ck

1
n∑

n
k=1wk akðxÞ Vk

ð84Þ

=
∑n

k=1wk akðxÞ Vk ck
∑n

k=1wk akðxÞ Vk
ð85Þ

=∑n
k=1pkðxÞ ck. ð86Þ

The result has the same convex-sum form as the finite-rule SAM even though the
sums use random choices of rules instead of firing all the rules.
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The final task is to control and shape the overall distribution of the continuum of
fuzzy rules. This allows the fuzzy engineer to define meta-rules at a much higher
level of abstraction. An engineer can also give the wave-like groupings of rules a
linguistic interpretation such as “small negative” or “medium positive” and the like.
The engineer should be able to pick an initial set of such meta-rules just as in the
case of setting up a finite SAM. Then there should be some practical way to tune
these meta-rules with data to give different levels of control or function approxi-
mation. This requires a Bayesian-like approach that puts some probabilistic struc-
ture on the parameter θ: Θ∼hðθÞ. This corresponds to the old fuzzy-engineering
task of picking the shapes of if-part and then-part sets.

Mixture densities offer a natural way to define fuzzy meta-rules over the con-
tinuum of fuzzy rules. The mixture variable is no longer x. It is now θ. Suppose the
fuzzy engineer wants to impose k-many fuzzy meta-rules. This requires mixing k-
many densities:

hðθÞ=∑k
i=1πi fiðθÞ. ð87Þ

The engineer might center the mixture pdfs closer together in regions of the
input space where he desires greater control. An early example of such proximity
control was the fuzzy truck-backer-upper [27]. The truck-and-trailer rig backed up
to a loading dock from a parking lot. Closer and narrower if-part sets near the
loading dock gave finer control near that equilibrium point. A few wide if-part sets
then covered much of the remaining parking lot. The engineer could distribute these
meta-rule mixture pdfs in the same way.

Standard statistical techniques can then compute fuzzy outputs FðxÞ and tune
the fuzzy meta-rules. Monte Carlo simulation can estimate the output FðxÞ for a
given x. But the sampling now cannot be from a uniform density in general. That
would always give the same output on average. The sampling must come instead
from the meta-rule mixture density hðθÞ itself to reflect the distribution of the meta-
rules. This is just the well-known technique of importance sampling from mixtures
[28]. Then the E-M algorithm or its variants can tune the mixture parameters based
on sampled inputs x.

There is algorithmic irony in using mixture densities to control fuzzy meta-rules
after seeing that the underlying fuzzy rule based systems generalize mixture den-
sities. There is also a loss of the exponential rule explosion that plagues ordinary
finite fuzzy systems. This loss holds because the growth in meta-rules is only linear
in the number k of mixed densities. That shifts much of the computational burden to
the sampling task involved in converting an input x to an output FðxÞ.
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Fuzzy Information Retrieval Systems:
A Historical Perspective

Donald H. Kraft, Erin Colvin, Gloria Bordogna and Gabriella Pasi

Abstract The application of fuzzy set theory to information retrieval has been
applied, specifically to Boolean models. This includes fuzzy indexing procedures
defined to represent the varying significance of terms in synthesizing the docu-
ments’ contents, the definition of query languages to allow the expression of soft
selection conditions, and associative retrieval mechanisms to model fuzzy pseudo-
thesauri, fuzzy ontologies, and fuzzy categorizations of documents.

Keywords Fuzzy ⋅ Information retrieval ⋅ Query ⋅ Imprecision ⋅ Vagueness ⋅
Indexing ⋅ Ememes ⋅ Geographic information retrieval

1 Introduction

The objective of this entry is to provide an overview of the application of fuzzy set
theory to design an information retrieval system (IRS). We consider the represen-
tation of uncertainty, imprecision, vagueness and subjectivity, which are charac-
teristics of the process of information searching and retrieval. Salton notes that IR
deals with the representation, storage, and access to “documents” or representatives
of documents (i.e., document surrogates) [49]. The elements of an IRS include a set
of documents, document processing for content analysis, a query describing an
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information need, a matching of the query and the documents, an output module
with a ranked list of documents deemed relevant, and a user interface.

We will discuss some current trends and key issues in information retrieval, and
give an overview of the basic notions of fuzzy set theory to model IRSs. We will
also provide a description of the traditional fuzzy document representation and a
fuzzy representation of documents structured into logical sections that can be
adapted to the subjective needs of a user. In addition, we give a description of how
the Boolean query language of IR can be extended so as to make it flexible and
suitable to express soft constraints by capturing the vagueness of the user needs.
Both numeric and linguistic selection conditions are introduced to qualify term’s
importance, and we will show how linguistic quantifiers are defined to specify soft
aggregation operators of query terms. We will also discuss how fuzzy sets can serve
to define associative mechanisms to expand the functionalities of IR systems, i.e.,
the capability to represent concepts and to model their semantic relationships.
Fuzzy sets provide notions that can be applied to this purpose allowing to model
fuzzy pseudothesauri and fuzzy ontologies and to build fuzzy categorizations of
documents via fuzzy clustering techniques. Lastly, we present emerging applica-
tions of information retrieval modelled within the fuzzy framework such as geo-
graphic information retrieval, multi-dimensional relevance evaluation, and
discovery of similar web pages contents in multiple searches and ememe identifi-
cation and tracking and discuss fuzzy performance measures for IR systems.

2 Key Issues in Information Retrieval

Modeling the concept of relevance in IR is certainly a key issue, perhaps the most
difficult one, and no doubt the most important one. What makes a document relevant
to a given user is still not fully understood, specifically when one goes beyond
topicality (i.e., the matching of the topics of the query with the topics of the docu-
ment). This leads to the realization that relevance is imprecise as well as subjective.

A second key issue is the representation of the documents in a collection, as well
as the representation of users’ information needs, especially for the purpose of
matching documents to the queries semantically. This implies introducing incom-
pleteness, approximation, and managing vagueness and imprecision. Yet another
key issue is how to evaluate an information retrieval system’s performance prop-
erly, where imprecision also exists.

2.1 Imprecision, Vagueness, Uncertainty, and Inconsistency
in Information Retrieval

Very often the terms imprecision, vagueness, uncertainty, and inconsistency are
used as synonymous concepts. Nevertheless when they are used to qualify a
characteristic of the information they have a distinct meaning [42].
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There are several ways to represent imprecise and vague concepts. One can
approach this indirectly by defining similarity or proximity relationships between
each pair of imprecise and vague concepts. If we regard a document as an imprecise or
vague concept, i.e., as bearing a vague content, a numeric value computed by a
similarity measure can be used to express the closeness of any two pairs of docu-
ments. This is the way of dealing with the imprecise and vague document and query
contents via the weights in IR’s vector space model. In this context the documents and
the query are represented as points in a vector space of terms and the distances
between the query and the documents points are used to quantify their similarity [50].

Another way to represent vague and imprecise concepts is by means of the
notion of fuzzy set. The notion of a fuzzy set is an extension to normal set theory
[66]. The notion of fuzzy set has been used in the IR context to represent the vague
concepts expressed in a flexible query for specifying soft selection conditions of the
documents [59].

Uncertainty is related to the truth of a proposition, intended as the conformity of
the information carried by the proposition with the considered reality. Possibility
theory [27, 65] together with the concept of a linguistic variable defined within
fuzzy set theory [67], provide a unifying formal framework to formalize the
management of imprecise, vague and uncertain information [15].

The same information content can be expressed by choosing a trade-off between
the vagueness and the uncertainty embedded in a proposition. A dual representation
can eliminate imprecision and augment the uncertainty, like in the expression “it is
not completely probable that document d fully satisfies the query q.” One way to
model IR is to regard it as an uncertain problem [33].

There are two alternative ways to model IR activity. One possibility is to model the
query evaluation mechanism as an uncertain decision process. The concept of rele-
vance is considered binary (crisp), as the query evaluation mechanism computes the
probability of relevance of a document d to a query q. Such an approach, which does
model the uncertainty of the retrieval process, has been introduced and developed
using probabilistic IRmodels [26, 28, 60]. Another possibility is to interpret the query
as the specification of soft “elastic” constraints that the representation of a document
can satisfy to an extent, and to consider the term relevant as a gradual (vague)
concept. This is the approach adopted in fuzzy IR models [9, 33]. In this latter case,
the decision process performed by the query evaluation mechanism computes the
degree of satisfaction of the query by the representation of each document.

This satisfaction degree, called the retrieval status value (RSV), is considered an
estimate of the degree of relevance (or is at least proportional to the relevance) of a
given document with respect to a given user query. An RSV of 1 implies maximum
relevance; an RSV of 0 implies absolutely no relevance. And, an RSV in the
interval (0, 1) implies an intermediate level or degree of relevance.

Inconsistency comes from the simultaneous presence of contradictory informa-
tion about the same reality. An example can be observed when submitting the same
query to several IRSs that adopt different representations of documents and produce
different results. This is actually very common and often occurs when searching for
information over the Internet using different search engines. To solve this kind of
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inconsistency, some fusion strategies can be applied to the ranked lists each search
engine produces. In fact, this is what metasearch engines do [14, 64].

The document representation based on a selection of index terms is invariably
incomplete. When synthesizing the content of a text manually by asking an expert to
select a set of index terms, one introduces subjectivity in the representation. On the
other hand, automatic full-text indexing introduces imprecision since the terms are
not all fully significant in characterizing a document’s content. However, these terms
can have a partial significance that might also depend upon the context in which they
appear, i.e., which document component. Modern retrieval systems may include
natural language processing capabilities to try to deal with semantics. Thus, one can
move from the notion of a document as a “bag of terms” to having a set of concepts.
This leads to the idea of a taxonomy, i.e., a vocabulary and structure (e.g., a cat or a
dog is a pet), and an ontology, i.e., a set of relationships and rules and constraints
(i.e., dog chases cat). These ideas have their own sets of imprecision or vagueness.

3 Fuzzy Retrieval Models

Fuzzy retrieval models have been defined in order to reduce the imprecision that
characterizes the Boolean indexing process, to represent the user’s vagueness in
queries, and to deal with discriminated answers estimating the partial relevance of
the documents with respect to queries. Extended Boolean models based on fuzzy set
theory have been defined to deal with one or more of these aspects [5, 10, 11, 16,
18, 21, 32, 47, 61]. Surveys of fuzzy extensions for IRSs and of fuzzy general-
izations of the Boolean retrieval model can be found in [9, 33].

Fuzzy “knowledge based” models [35, 36], and fuzzy associative mechanisms
[38–40, 43] have been defined to cope with the incompleteness that characterizes
either the representation of documents or the users’ queries. [37] illustrates a wide
range of methods to generate fuzzy associative mechanisms.

It has been speculated that Boolean logic is passé’, out of vogue. Yet, researchers
have employed p-norms in the vector space model or Bayesian inference nets in the
probabilistic model to incorporate Boolean logic. In addition, the use of Boolean
logic to separate a collection of records into two disjoint classes has been consid-
ered, e.g., using the one-clause-at-a time (OCAT) methodology [56]. Even now
retrieval systems such as Dialog and web search engines such as Google allow for
Boolean connectives.

4 Fuzzy Techniques for Indexing

During the indexing process one wants to provide more specific and exhaustive
representations of each document’s information content. This means improving
these representations beyond those generated by existing indexing mechanisms. We
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introduce the fuzzy interpretation of a weighted document representation and a
fuzzy representation of documents structured in logical sections that can be adapted
to a user that has a subjective criteria for interpreting the content of documents
[11, 41]. In order to increase the effectiveness of IRSs, the indexing process plays a
crucial role.

4.1 Vector Space, Probabilistic, and Generalized Boolean
Indexing

The vector space model and the probabilistic models generally adopt a weighted
document representation, which has improved the Boolean document representation
by allowing the association of a numeric weight with each index term [54, 60]. The
automatic computation of the index term [56, 57]. In this case, the indexing
mechanism computes d for each document and t for each term by means of a
function F. An example of F has the index term weight increasing with the fre-
quency of term t in document d but decreasing with the frequency of the term in all
the documents of the archive is given by

F d, tð Þ= tfdt×g IDFtð Þ where tfdt is a normalized term frequency, which can be
defined as:

tfdt =
OCCdt

MAXOCCd
, ð1Þ

OCCdt is the number of occurrences of t in d; MAXOCCd is the number of
occurrences of the most frequent term in d, IDFt is an inverse document frequency
which can be defined as:

IDFt = Log
N

NDOCt
, ð2Þ

N is the total number of documents in the archive; NDOCt is the number of
documents indexed by t; and g is a normalizing function.

To simplify the computation of this value, it is possible to heuristically
approximate it: during the archive generation phase, with an expert indicating the
estimated percentage of the average length of each section with respect to the
average length of documents (PERLs). Given the number of occurrences of
the most frequent term in each document d, MAXOCCd, an approximation of the
number of occurrences of the most frequent term in section s of document d is
MAXOCCsd = PERLs*MAXOCCd.

The adoption of weighted indexes allows for an estimate of the relevance, or of
the probability of relevance, of documents to a query [53, 60]. Based on such an
indexing function, and by incorporating Boolean logic into the query, the fuzzy
interpretation of an extended Boolean model has been to adopt a weighted
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document representation and to interpret it as a fuzzy set of terms [17]. From a
mathematical point of view, this is a quite natural extension: the concept of the
significance of index terms in describing the information content of a document can
then be naturally described by adopting the function F, such as the one defined
above, as the membership function of the fuzzy set representing a document’s being
in the subset of concepts represented by the term in question. Formally, a document
is represented as a fuzzy set of terms:

Rd =∑t∈TμRd tð Þ=t, ð3Þ

in which the membership function is defined as μRd: D×T→ 0, 1½ �. In this case,
μRd tð Þ = F d, tð Þ, the membership value, can be obtained by the indexing function F
which is expressed by a numeric score or RSV.

Fuzzy set theory has been applied to define new and more powerful indexing
models than the one based on the function above. The definition of new indexing
functions has been motivated by several considerations. First, the F functions do not
take into account the idea that a term can play different roles within a text according
to the distribution of its occurrences. The text can be considered as a black box,
closed to a user’s interpretation. This outlines the fact that relevance judgments are
driven by a subjective interpretation of the document’s structure, and supports the
idea of dynamic and adaptive indexing [2, 11]. By adaptive indexing, we mean
indexing procedures which take into account the users’ desire to interpret the
document contents and to “build” their synthesis on the basis of this interpretation.

An indexing model has been proposed where the occurrences of a term in the
different documents’ sections are taken into account according to specific criteria,
and the user’s interpretation of the text is modeled [11]. During the retrieval phase,
the user can specify the distinct importance of the sections and decide that a term
must be present in all the sections or in at least a certain number of them in order to
consider the term fully significant. A section is a logical subpart identified by si,
where i∈1,..,n and n is the total number of the sections in the documents. We
assume here that an archive contains documents sharing a common structure.

4.2 Fuzzy Representation of Structured Documents

We also consider the synthesis of a fuzzy representation of structured documents
that takes into account the user needs [11]. A document can be represented as an
entity composed of sections (e.g., title, authors, introduction, and references). The
information role of each term occurrence depends then on the semantics of the
subpart where it is located. This means that to the aim of defining an indexing
function for structured documents the single occurrences of a term may contribute
differently to the significance of the term in the whole document. The document’s
subparts may have a different importance determined by the users’ needs.
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When generating an archive of a set of documents, it is necessary to define the
sections one wants to employ to structure each document. The structure of the
documents, i.e., the type and number of sections, depends on the semantics of the
documents and on the accuracy of the indexing module. A formal representation of
a document using a fuzzy binary relation: with each pair <section, term>, a sig-
nificance degree in the interval [0,1] is computed to express the significance of that
term in that document section. To obtain the overall significance degree of a term in
a document, i.e., the index term weight, these values are dynamically aggregated by
taking into account the indications that a user states in the query formulation. Other
non-fuzzy approaches have also introduced the concept of a boosting factor to
emphasize differently the contribution of the index terms occurrences depending on
the document sections to the overall index term weights. However these approaches
compute static index term weights during the indexing process, without taking into
account the user interpretation.

On the contrary, in the fuzzy approach, the aggregation function, is defined on
two levels. First, the user expresses preferences for the document sections (the
equivalent of the boosting factors), second, the user should decide which aggre-
gation function has to be applied to produce the overall significance degree. By
adopting this document representation, the same query can select documents in
different relevance order depending on the user’s preferences.

Formally, a document is represented as a fuzzy binary relation,
Rd =∑ t, sð Þ∈T×S μd t, sð Þ= t, sð Þ, where the value μd t, sð Þ=Fs d, tð Þ expresses the

significance of term t in section s of document d. An indexing function Fs:
DxT→ [0,1] is then defined for each section s. The overall significance degree F(d,t)
is computed by combining the single significance degrees of the sections, the Fs(d,t)
s, through an aggregation function specified by the user.

5 Definition of Flexible Query Languages

The objective here is to define query languages that are more expressive and natural
than classical Boolean logic. This is done to capture the vagueness of user needs as
well as to simplify user system interaction. This has been pursued with two different
approaches. First, there has been work on the definition of soft selection criteria
(soft constraints), which allow the specification of the different importance of the
search terms. Query languages based on numeric query term weights with different
semantics have been first proposed as an aid to define more expressive selection
criteria [5, 18, 21, 22, 61]. An evolution of these approaches has been defined that
introduces linguistic query weights, specified by fuzzy sets such as important or
very important, in order to express the different vague importance of the query
terms [12]. Second, there is the approach of introducing soft aggregation operators
for the selection criteria, characterized by a parametric behavior which can be set
between the two extremes of intersection (AND) and union (OR) as adopted in
Boolean logic. Boolean query languages have been extended and generalized by
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defining aggregation operators as linguistic quantifiers such as at least k or about k
[10]. As a consequence of this extension, the exact matching that is employed by a
classical Boolean IRS is softened using a partial matching mechanism that evaluates
the degree of satisfaction of a user’s query for each document. This degree of
satisfaction is the RSV that is used for ranking.

5.1 Term Significance

To obtain the overall degree of significance of a term in a document, an aggregation
scheme of the values has been suggested, based on a twofold specification of the
user [11]. When starting a retrieval session, the user can specify her/his preferences
on the sections s by numeric score αs∈[0,1] where the most important sections have
an importance weight close to 1.

Within fuzzy set theory linguistic quantifiers used to specify aggregations are
defined as Ordered Weighted Averaging (OWA) operators [62]. When processing a
query, the first step accomplished by the system for evaluating F(d,t) is the selection
of the OWA operator associated with the linguistic quantifier lq, OWAlq. When the
user does not specify any preferences on the documents’ sections, the overall sig-
nificance degree F(d,t) is obtained by applying directly the OWAlq operator to the
values μ1 d, tð Þ, . . . , μn d, tð Þ : F d, tð Þ = OWAlq μ1 d, tð Þ, . . . , μn d, tð Þð Þ. When dis-
tinct preference scores α1,…,αn are associated with the sections, it is first necessary
to modify the values μ1 d, tð Þ, . . . , μn d, tð Þ in order to increase the “contrast” between
the contributions due to important sections with respect to those of less important
ones. The evaluation of the overall significance degree F(d,t) is obtained by applying
the operator OWAlq to the modified degrees a1, . . , an: F d, tð Þ = OWAlq a1, . . , anð Þ.

5.2 Fuzzy Associative Mechanisms

These associative mechanisms allow automatically generating fuzzy pseudothe-
sauri, fuzzy ontologies, and fuzzy clustering techniques to serve three distinct but
compatible purposes. First, fuzzy pseudothesauri and fuzzy ontologies can be used
to contextualize the search by expanding the set of index terms of documents to
include additional terms by taking into account their varying significance in rep-
resenting the topics dealt with in the documents. The degree of significance of these
associated terms depends on the strength of the associations with a document’s
original descriptors. Second, an alternative use of fuzzy pseudothesauri and fuzzy
ontologies is to expand the query with related terms by taking into account their
varying importance in representing the concepts of interest. The importance of an
additional term is dependent upon its strength of association with the search terms
in the original query. Third, fuzzy clustering techniques, where each document can
be placed within several clusters with a given strength of belonging to each cluster,
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can be used to expand the set of the documents retrieved in response to a query.
Documents associated with retrieved documents, i.e., in the same cluster, can be
retrieved. The degree of association of a document with the retrieved documents
does influence its RSV. Another application of fuzzy clustering is that of providing
an alternative way of presenting the results of a search. When the user does not
specify any criterion to aggregate the single degrees of the sections, a default
aggregation operator is used [10]. Since no importance is specified to differentiate
the contributions of the sections, all of them are assumed to have the same
importance weight of 1.

Associative retrieval mechanisms are defined to enhance the retrieval of IRSs.
They work by retrieving additional documents that are not directly indexed by the
terms in a given query but are indexed by other, related terms, sometimes called
associated descriptors. The most common type of associative retrieval mechanism is
based upon the use of a thesaurus to associate index or query terms with related
terms. In traditional associative retrieval, these associations are crisp.

Fuzzy associative retrieval mechanisms obviously assume fuzzy associations. A
fuzzy association between two sets X = {x1,…,xm} and Y = {y1,…,yn} is formally
defined as a fuzzy relation.

f : X × Y → [0,1], where the value f(x,y) represents the degree or strength of the
association existing between the values x∈X and y∈Y. In information retrieval,
different kinds of fuzzy associations can be derived depending on the semantics of
the sets X and Y.

5.3 Fuzzy Thesauri

A thesaurus is an associative mechanism that can be used to improve both indexing
and querying. The development of thesauri is very costly, as it requires a large
amount of human effort to construct and to maintain. In highly dynamic situations,
i.e., volatile situations, terms are added and new meanings derived for old terms
quite rapidly, so that the thesaurus needs frequent updates. For this reason, methods
for automatic construction of thesauri have been proposed, named pseudothesauri,
based on statistical criteria such as the terms’ co-occurrences, i.e., the simultaneous
appearance of pairs (or larger subsets) of terms in the same documents.

In a thesaurus, the relations defined between terms are of different types. If the
associated descriptor has a more general meaning than the entry term, the relation is
classified as broader term (BT), while a narrower term (NT) is the inverse relation.
Synonyms and near-synonyms are parts of another type of relationship associated
by a related term (RT) connection.

The concept of a fuzzy thesaurus has been suggested [37, 38, 44, 48], where the
links between terms are weighted to indicate the relative strengths of these asso-
ciations. Fuzzy pseudothesauri are generated when the weights of the links are
automatically computed by considering document relationships rather than concept
relationships [40, 44].
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The first work on fuzzy thesauri introduced the notion of fuzzy relations to
represent associations between terms [48, 49]. Let us look at a formal definition of a
fuzzy thesaurus [38, 39]. Consider T to be the set of index terms and C to be a set of
concepts. Each term t∈T corresponds to a fuzzy set of concepts h(t):

h tð Þ = f< c, t cð Þ> j c∈Cg, ð4Þ

in which t(c) is the degree to which term t is related to concept c. A measure M is
defined on all of the possible fuzzy sets of concepts, which satisfies: M(∅) = 0, M
(C) < ∞, M(A) ≤ M(B), if A ⊆ B.

A typical example of M is the cardinality of a fuzzy set. The fuzzy RT relation is
represented in a fuzzy thesaurus by the similarity relation between two index terms,
t1 and t2 ∊ T and is defined as:

s t1, t2ð Þ = M h t1ð Þ∩ h t2ð Þ½ � ̸ M h t1ð Þ∪ h t2ð Þ½ �, ð5Þ

This definition satisfies the following: if terms t1 and t2 are synonymous, i.e., h
(t1) = h(t2), then s(t1,t2) = 1; if t1 and t2 are not semantically related, i.e., h(t1) ∩ h
(t2) = ∅, then s(t1,t2) = 0; s(t2,t1) = s(t1,t2) for all t1,t2 ∈ T; and if t1 is more
similar to term t3 than to t2, then s(t1,t3) > s(t1,t2). The fuzzy NT relation, indi-
cated as nt, which represents grades of inclusion of a narrower term t1 in another
(broader) term t2, is defined as:

nt t1, t2ð Þ = M½h t1ð Þ∩ h t2ð Þ ̸ M� ½h t1ð Þ�, ð6Þ

This definition satisfies the following: if term t1’s concept(s) is completely
included within term t2’s concept(s), i.e. h(t1) ⊆ h(t2), then nt(t1,t2) = 1; if t1 and
t2 are not semantically related, i.e., h(t1)∩h(t2) = ∅, then nt(t1,t2) = 0; and if the
inclusion of t1’s concept(s) in t2’s concept(s) is greater than the inclusion of t1’s
concept(s) in t3’s concept(s), then nt(t1,t2) > nt(t1,t3).

By assuming M as the cardinality of a set, s and nt are given as:

s t1, t2ð Þ =∑M
k=1min t1 ckð Þ, t2 ckð Þ½ � ̸ ∑M

k=1max t1 ckð Þ, t2 ckð Þ½ �, ð7Þ

nt t1, t2ð Þ =∑M
k=1min t1 ckð Þ, t2 ckð Þ½ � ̸ ∑M

k=1t1 ckð Þ, ð8Þ

A fuzzy pseudothesaurus can be defined by replacing the set C in the definition
of h(t) above with the set of documents D, with the assumption that h(t) is the fuzzy
set of documents indexed by term t. This yields

h tð Þ= d, t dð Þð Þ j d∈Df g, ð9Þ
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in which t(d) = F(d,t) is the index term weight defined above. F can be either a
binary value defining a crisp representation, or it can be a value in [0,1] to define a
fuzzy representation of documents. The fuzzy RT and the fuzzy NT relations now
are defined as:

s t1, t2ð Þ=∑M
k=1min F t1, dkð Þ, F t2, dkð Þ½ � ̸ ∑M

k=1max F t1, dkð Þ, F t2, dkð Þ½ �, ð10Þ

nt t1, t2ð Þ=∑M
k=1min F t1, dkð Þ, F t2, dkð Þ½ � ̸ ∑M

k=1F t1, dkð Þ, ð11Þ

Note that s(t1,t2) and nt(t1,t2) are dependent on the co-occurrences of terms t1 and
t2 in the set of documents, D. The set of index terms of document d, i.e., {t | F(d,t)≠ 0
and t∊ T}, can be augmented by those terms tA which have s(t,tA) > α and/or
nt(t,tA) > β for parameters α and β∈[0,1].

A thesaurus can be generated based on the max-star transitive closure for lin-
guistic completion of a thesaurus generated initially by an expert linking terms [4].
A probabilistic notion of term relationships can be employed by assuming that if
one given term is a good discriminator between relevant and non relevant docu-
ments, then any term that is closely associated with that given term (i.e., statistically
co-occurring) is likely to be a good discriminator, too [60]. Note that this implies
that thesauri are collection-dependent.

One can also expand on Salton’s [50] use of the F(d,t) values. Salton [51] infers
term relationships from document section similarities. On the other hand, one can
manipulate the F(d,t) values in order to generate co-occurrence statistics to repre-
sent term linkage weights [31]. Here, a synonym link is considered, defined as:

μsynonym t1, t2ð Þ=∑d∈D½F d, t1ð Þ↔ F d, t2ð Þ�, ð12Þ

where F d, t1ð Þ↔ F d, t2ð Þ =min F d, t1ð Þ → F d, t2ð Þ, F d, t1ð Þ← F d, t2ð Þ½ � and F(d,t1)
F(d,t2) can be defined in variety of ways. For instance, F(d,t1) F(d,t2), the implication
operator, can be defined as ½F d, t1ð Þc ∨F d, t2ð Þ�, where F d, t1ð Þc = 1− F d, t1ð Þ is the
complement of F(d, t1) and ∨ is the disjunctive (OR) operator defined as the max; or
it can be defined as min(1, 1− F d, t1ð Þ + F d, t2ð Þ½ �). A narrower term link (where
term t1 is narrower than term t2, so term t2 is broader than term t1), is defined as:

μnarrower t1, t2ð Þ=∑d∈D½F d, t1ð Þ→ F d, t2ð Þ�, ð13Þ

Note that fuzzy narrower relationships defined between fuzzy sets can help the
purpose of identifying generalization and specialization of topics, while the fuzzy
similarity relationship between fuzzy sets can be of aid to identify similar topics.
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5.4 Fuzzy Clustering for Documents

Clustering in information retrieval is a method for partitioning D, a given set of
documents, into groups using a measure of similarity (or distance) which is defined
on every pairs of documents. Grouping like documents together is not a new
phenomenon, especially for librarians. The similarity between documents in the
same group should be large, while the similarity between documents in different
groups should be small.

A common clustering method is based on the simultaneous occurrences of
citations in pairs of documents. Documents are clustered using a measure defined
on the space of the citations. Generated clusters can then be used as an index for
information retrieval, i.e., documents which belong to the same clusters as the
documents directly indexed by the terms in the query are retrieved.

Similarity measures have been suggested empirically or heuristically, sometimes
analogously to the similarity measures for documents matched against queries [52,
54, 56]. When adopting a fuzzy set model, clustering can be formalized as a kind of
fuzzy association. In this case, the fuzzy association is defined on the domain
D × D. By assuming R(d) to be the fuzzy set of terms representing a document d
with membership function values d(t) = F(d,t) being the index term weights of term
t in document d, the symmetric fuzzy relation s, as originally defined above, is taken
to be the similarity measure for clustering documents:

s d1, d2ð Þ=∑M
k=1min d1 tkð Þ, d2 tkð Þ½ � ̸ ∑M

k=1max d1 tkð Þ, d2 tkð Þ½ �, ð14Þ

nt d1, d2ð Þ =∑M
k=1min F tk, d1ð Þ, F tk, d2ð Þ½ � ̸ ∑M

k=1max F tk, d1ð Þ, F tk, d2ð Þ½ �, ð15Þ

in which T is the set of index terms in the vocabulary and M is the number of
index terms in T.

In fuzzy clustering, documents can belong to more than one cluster with varying
degree of membership [3]. Each document is assigned a membership value to each
cluster. Modified fuzzy clustering, also called soft clustering, uses thresholding
mechanisms to limit the number of documents belonging to each cluster. The main
advantage of using modified fuzzy clustering is the fact that the degree of fuzziness
is controlled.

6 A Query Evaluation Mechanism

Query processing within retrieval can be interpreted as a decision-making activity.
Its aim is to evaluate a set of alternatives or possible solutions, in this case a set of
documents, based upon some criteria or selection conditions in order to select the
optimal list (perhaps ranked) of documents in response to a user’s query.
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In a Boolean query, the alternatives are the document representations as
described based on the presence or absence of index terms or keywords. The
selection conditions, as expressed by terms specified in a query, define a set of
constraints requiring the presence or absence of these terms within a document’s
representation. These conditions are expressed connected by aggregation operators,
i.e., the Boolean logic operators of AND, OR, and NOT. The decision process is
performed through an exact matching function, which is strictly dependent on the
system query language

Given a fuzzy approach to retrieval, query processing can be regarded as a
decision activity affected by vagueness. The query can be seen as the specification
of a set of soft constraints, i.e. vague selection conditions that the documents can
satisfy to a partial extent. The documents described through the significance degrees
of the index terms constitute the alternatives. The query evaluation mechanism is
regarded as fuzzy decision process that evaluates the degree of satisfaction of the
query constraints by each document representation by applying a partial matching
function. This degree is the RSV and can be interpreted as the degree of relevance
of the document to the query and is used to rank the documents. Then, as a result of
a query evaluation, a fuzzy set of documents is retrieved in which the RSV is the
membership value. In this case the definition of the partial matching function is
strictly dependent on the query language, specifically on the semantics of the soft
constraints.

A wish list of requirements that a matching function of an IRS must satisfy has
been proposed [21, 61]. Included in this list is the separability property that the
evaluation of an atomic selection condition for an individual term in a query should
be independent of the evaluation of the other atomic components or their Boolean
connectors. The matching function should be based solely upon a function evalu-
ating atomic conditions. Following the calculation of these evaluations, one can
then aggregate them based upon the Boolean operators in the query. It has been
shown that this property guarantees a homomorphic mapping from the space of all
single terms to the space of all possible Boolean queries using these terms [1]. This
property has been considered widely within fuzzy retrieval models, especially in the
definition of flexible query languages.

By designing the partial matching mechanism from the bottom-up the separa-
bility property is ensured. First, each atomic selection condition or soft constraint in
the query is evaluated by a function E for a given document. Then the aggregation
operators are applied to the results starting from the inmost operator in the query to
the outermost operator by a function E*. This E function evaluates the soft con-
straints associated with the query atoms on the fuzzy set Rd representing each
document, where these soft constraints are defined as fuzzy subsets. The mem-
bership value μatom(i) is the degree of satisfaction of the soft constraint associated
with the atomic query atom, i.e., E(<atom>,d) = μatom(F(d,t)). In other words, E
evaluates how well the term t, which has an indexing weight F(d,t) for document d,
satisfies the soft constraint specified by atom. The result of the evaluation is a fuzzy
set, ∑d∈D µatom(F(d, t))/d in which μatom(F(d,t)) is interpreted as the RSV of
document d with respect to the query atom.
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The function E*: D×Q→ 0, 1½ �, where Q is the set of all the proper queries in the
query language, evaluates the final RSV of a document, reflecting the satisfaction of
the whole query. The definition of E* depends strictly upon the structure of the
query language, specifically upon the aggregation operators used to combine the
atomic components. The AND connective is classically defined as the minimum
(min) operator, the OR connective as the maximum (max) operator, and the NOT
connective as the one-minus (1-) or complement operator. These definitions pre-
serve the idempotence property. A fuzzy generalization of the Boolean query
structure has been defined in which the Boolean operators are replaced by linguistic
quantifiers [10]. In this context, linguistic quantifiers are used as aggregation
operators to determine the degree of satisfaction for the soft constraints. They allow
to improve as well as to simplify the expressiveness of the Boolean query language.

7 Query Weights

To render a Boolean query language to be more user friendly and more expressive,
one can extend the atomic selection conditions by introducing query term weights
[5, 7, 20, 47]. An example of weighted query is the following: <t1, w1> AND
(<t2, w2> OR <t3, w3>) in which t1, t2, t3, are search terms with numeric weights
w1, w2, and w3 in the interval [0,1]. These weights are implicitly given as being
equal to 1 in the classical Boolean query language.

The concept of query weights raises the problem of their interpretation. Several
authors have realized that the semantics of query weights should be related to the
concept of the “importance” of the terms. Being well aware that the semantics of the
query term weights influences the definition of the partial matching function,
specifically the E function, different semantics for the soft constraint imposed by a
pair <t,w> have been proposed in the literature trying to satisfy as much as possible
properties of the wish list in particular the separability property.

Early on, query weights were interpreted as a relative importance weight where
the separability property does not hold. Two distinct definitions of E have been
proposed for conjunctive and disjunctive queries, respectively [5, 63]. Later, other
models [20, 47, 61] used an interpretation of the query weights w as a threshold on
the index term weight or as an ideal index term weight [7, 22].

7.1 Implicit Query Weights

The simplest extension of the Boolean model consists of the adoption of a weighted
document representation with a classical Boolean query language [17]. This
retrieval mechanism ranks the retrieved documents in decreasing order of their
significance with respect to the user query. In this case, an atomic query consisting
of a single term t is interpreted as the specification of a pair/<t,1> in which w = 1
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is implicitly specified. The soft constraint associated with <t,1> is then interpreted
as the requirement that the index term weight be “close to 1” and its evaluation is
defined as μw F d, tð Þð Þ = F d, tð Þ. This means that the desired documents are those
with maximum index term weight for the specified term t, i.e., closest to 1. This
interpretation implies that the evaluation mechanism tolerates the satisfaction of the
soft constraint associated with <t,1> with a degree equal to F(d,t).

7.2 Relative Importance Query Weights

Here, query weights are interpreted as measures of the “relative importance” of each
term with respect to the other terms in the query [5, 63]. This interpretation allows
the IRS to rank documents so that documents are ranked higher if they have larger
index term weights for those terms that have larger query weights. However, since
it is not possible to have a single definition for the soft constraint μw that preserves
the “relative importance” semantics independently of the Boolean connectors in the
query, two distinct definitions of μw have been proposed, depending on the
aggregation operators in the query. This approach, sadly, gives up the separability
property. Two alternative definitions have been proposed for conjunctive and dis-
junctive queries [5, 63]. The first proposal [5] yields μw F d, tð Þð Þ= w * F d, tð Þ½ � for
disjunctive queries and μw F d, tð Þð Þ=max 1, F d, tð Þ=wð Þ for conjunctive queries;
while the second proposal [56] yields μw F d, tð Þð Þ=min w, F d, tð Þ½ � for disjunctive
queries and μw F d, tð Þð Þ=max 1− wð Þ, F d, tð Þ½ � for conjunctive queries. Notice
that any weighted Boolean query can be expressed in disjunctive normal form
(DNF) so that any query can be evaluated by using one of these two definitions.

7.3 Threshold Query Weights

To preserve the separability property, an approach treating the query weights as
thresholds has been suggested [20, 47]. By specifying query weights as thresholds
the user is asking to see all documents “sufficiently about” a topic. In this case, the
soft constraint identified by the numeric query weight can be linguistically
expressed as “more or less over w”. Of course, the lower the threshold, the greater
the number of documents retrieved. Thus, a threshold allows a user to define a point
of discrimination between under- and over satisfaction.

The simplest formalization of threshold weights has been suggested as a crisp
threshold [47].

μw F d, tð Þð Þ=
0 for Fðd, tÞ<w

F d, tð Þ for Fðd, tÞ≥w

(
, ð16Þ
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In this case, the threshold defines the minimally acceptable document. Due to its
inherent discontinuity, this formalization might lead to an abrupt variation in the
number of documents retrieved for small changes in the query weights. To remedy
this, continuous threshold formalization has been suggested [20]:

μw F d, tð Þð Þ=
PðwÞ* F(d, t)w for Fðd, tÞ<w

PðwÞ+QðwÞ* ðF(d, t)−wÞ
ð1−wÞ for Fðd, tÞ≥w

8<
: . , ð17Þ

where P(w) and Q(w) might be defined as PðwÞ= 1+w
2 and Q(w) =1−w2

4 . For
F(d,t) < w, the μw function measures the closeness of F(d,t) to w; for F(d,t) ≥ w,
μw(F(d,t)) expresses the degree of over satisfaction with respect to w, and under
satisfaction with respect to 1.

7.4 Ideal Query Weights

Another interpretation for the query weights has been defined [7, 22]. Here, the
pair <t,w> identifies a set of ideal or perfect documents so that the soft constraint
μw measures how well F(d,t) comes close to w, yielding

μw F d, tð Þð Þ = elnðkÞ*ðFðd, tÞ−wÞ2 , ð18Þ

The parameter k in the interval [0,1] determines the steepness of the Gaussian
function’s slopes. As a consequence, k will affect the strength of the soft constraint
“close to w”. So, the larger the value of k is, the weaker the constraint becomes.
This parametric definition makes it possible to adapt the constraint interpretation to
the user concept of “close to w” [7]. The retrieval operation associated with a
pair <t,w> corresponds in this model to the evaluation of a similarity measure
between the importance value w and the significance value of t in Rd: w ≈ F(d,t).

7.5 Linguistic Query Weights

The main limitation of numeric query weights is their inadequacy in dealing with
the imprecision which characterizes the concept of importance that they represent.
In fact, the use of numeric query weights forces the user to quantify a qualitative
and rather vague notion and to be aware of the weight semantics. Thus, a fuzzy
retrieval model with linguistic query weights has been proposed [12] with a lin-
guistic extension of the Boolean query language based upon the concept of a
linguistic variable [67]. With this approach, the user can select the primary lin-
guistic term “important” together with linguistic hedges (e.g., “very” or “almost”)
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to qualify the desired importance of the search terms in the query. When defining
such a query language the term set, i.e., the set of all the possible linguistic values
of the linguistic variable importance, must be defined. Such a definition depends on
the desired granularity that one wants to achieve. The greater the number of the
linguistic terms, the finer the granularity of the concepts that are dealt with. Next,
the semantics for the primary terms must be defined. A pair <t, important> ,
expresses a soft constraint μimportant on the term significance values (the F(d,t)
values). The evaluation of the relevance of a given document d to a query consisting
solely of the pair <t, important> is based upon the evaluation of the degree of
satisfaction of the associated soft constraint μimportant.

The problem of giving a meaning to numeric weights reappears here in asso-
ciating a semantic with the linguistic term important. The μimportant function is
defined based on the ideal semantics of the numeric weight to yield [12].

μimportantðFðd, tÞÞ=
elnðkÞ*ðFðd, tÞ− iÞ2 for F(d, t) < i
1 for i≤F(d, t)≤ j
elnðkÞ*ðFðd, tÞ− jÞ2 for F(d, t) > j

8<
: . , ð19Þ

We see that if F(d,t) is less than the lower bound i or greater than the upper
bound j, the constraint is under satisfied. The strength of the soft constraint μimportant

depends upon both the width of the range [i, j] and the value of the k parameter. The
values i and j delimit the level of importance for the user. We note that as the value
|i - j| increases, the soft constraint becomes less precise. So, for the case of the ideal
semantics of numeric query term weights, k determines the sharpness of the con-
straint in that ask increases, the constraint increases in fuzziness.

We can define the μimportant function based upon the threshold semantics to yield
[34]

μimportantðF(d, t)Þ=
1+ i
2 *elnðkÞ*ðFðd, tÞ− iÞ2 for F(d, t) < i

1+F(d, t)
2 for i≤ F(d, t)≤ j

1+ j
2 * 1+ F(d, t)− j

2

� �
for F(d, t) > j

,

8>><
>>:

. ð20Þ

We note that this compatibility function is continuous and non-decreasing in F(d,t)
over the interval [0,1]. For F(d,t) < i, μimportant increases as a Gaussian function. For F
(d,t) in the interval [i,j], μimportant increases at a linear rate. For F(d,t) > j, μimportant
still increases, but at a lesser rate. The compatibility functions of non-primary terms,
such as very important or fairly important, are derived bymodifying the compatibility
functions of primary terms. This is achieved by defining each linguistic hedge as a
modifier operator. For example, the linguistic hedges are defined as translation
operators in [34] to yield:

μvery important (x) = μimportant (x) with ivery = i + 0.2 and jvery = j +0.2 and ∀x ∈
[0,1].
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μaveragely important (x) = μimportant (x) with iaveragely = i - 0.3 and javeragely = j - 0.3
and ∀x ∈ [0,1].

μminimally important (x) = μimportant (x) with iminimally = i - 0.5 and jminimally = j - 0.5
and ∀x ∈ [0,1],

in which i and j are values in [0,1] delimiting the range of complete satisfaction of
the constraint μimportant. With these definitions, any value F(d,t) of the basic domain
of the importance variable fully satisfies at least one of the constraints defined by
the linguistic query terms. In [30] a query language with linguistic query weights
having heterogeneous semantics have been proposed so as to benefit the full
potential offered of a fuzzy set to model subjective needs.

8 Linguistic Quantifiers to Aggregate the Selection
Conditions

In a classical Boolean query language, the AND and OR connectives allow only for
crisp (non-fuzzy) aggregations which do not capture any of the inherent vagueness
of user information needs. For example, the AND used for aggregating M selection
conditions does not tolerate the no satisfaction of but a single condition which could
cause the no retrieval of relevant documents. To deal with this problem, additional
extensions of Boolean queries have been provided which involves the replacement
of the AND and OR connectives with soft operators for aggregating the selection
criteria [46, 54, 55].

Within the framework of fuzzy set theory, a generalization of the Boolean query
language has been defined based upon the concept of linguistic quantifiers that are
employed to specify both crisp and vague aggregation criteria of the selection
conditions [10]. New aggregation operators can be specified by linguistic expres-
sions with self-expressive meaning, such as at least k and most of. They are defined
to exist between the two extremes corresponding to the AND and OR connectives,
which allow requests for all and at least one of the selection conditions, respec-
tively. The linguistic quantifiers used as aggregation operators, are defined by
ordered weighted averaging (OWA) operators.

Adopting linguistic quantifiers more easily and intuitively formulate the
requirements of a complex Boolean query. A quantified aggregation function can be
applied not only to single selection conditions, but also to other quantified expres-
sions. Then, the E* function evaluating the entire query yields a value in [0,1] for
each document d in the archive D. If S is the set of atomic selection conditions and Q
is the set of legitimate Boolean queries over our vocabulary of terms, then the E*
function can be formalized by recursively applying the following rules:

• if q∊ S then E * (d, s) = μw(F(d, t)) in which μw(F(d,t)) is the satisfaction degree
of a pair <t,w> by document d with w being either a numeric weight or a
linguistic weight.
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• if q = quantifier (q1,…,qn) and q1,…,qn ∈ Q then E*(d,q) = OWA quantifier(E*
(d,q1),…, E * (d, qn))E * (d, NOTq) = 1 - E * (d, q) in which OWA quantifier is
the OWA operator associated with quantifier.

The formal definition of the query language with linguistic quantifiers with the
following quantifies has been generated [10]

• all replaces AND;
• at least k acts as the specification of a crisp threshold of value k on the number

of selection conditions and is defined by a weighting vector wat least k in which
wk = 1, and wj = 0, for i ≤ k – noting that at least 1 selects the maximum of the
satisfaction degrees so that it has the same semantics of OR;

• about k is a soft interpretation of the quantifier at least k in which the k value is
not interpreted as a crisp threshold, but as a fuzzy one so that the user is fully
satisfied if k or more conditions are satisfied but gets a certain degree of sat-
isfaction even if k-1, k-2,…,1 conditions are satisfied - this quantifier is defined
by a weighting vector wabout k in which wi = i

∑k
j= 1j

for i ≤ k, and wi = 0 for i > k;

• most is defined as a synonym of at least 2
3 n in which n is the total number of

selection conditions.

With respect to non-fuzzy approaches that tried to simplify the Boolean for-
mulations, the fuzzy approach subsumes the Boolean language, allows reformu-
lating Boolean queries in a more synthetic and comprehensible way, and improves
the Boolean expressiveness by allowing flexible aggregations. Other authors have
followed these ideas by proposing alternative formalization of linguistic query
weights and flexible operators based on ordinal labels and ordinal aggregations
[29], thus reducing the complexity of the evaluation mechanism.

9 Emerging Applications of Fuzzy Set Theory to Model
Information Retrieval Tasks

9.1 Geographic Information Retrieval

An emerging task in information retrieval is retrieving documents relevant with
respect to both a content based condition and a geographic condition.

Such applications involve the management of uncertainty and imprecision and
the modeling of user preferences and context. Indexing the geographic content of
documents implies dealing with the ambiguity, synonymy and homonymy of
geographic names in texts. On the other side, the evaluation of queries specifying
both content based conditions and spatial conditions on documents contents
requires representing the vagueness and context dependency of spatial conditions
and the personal user’s preferences. The spatial condition can be specified lin-
guistically in the query through vague terms such as “close to the North East of
Milan”, whose semantic depends on the user’s context and perception of distance.
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In [25] a geographic information retrieval model has been defined that represents
both the uncertainty in indexing the geographic documents’ content and the user’s
context and preferences in evaluating flexible spatial queries.

Finally, the system allows evaluating two types of queries flexibly combining
the content based condition, such as “vegetarian Restaurants” with the spatial
condition “close to Milano Central Ralway station”. The spatial condition “close”
is defined as a soft constraint on the user’s perceived distance between the docu-
ments’ footprint and query’s footprint [8].

For each retrieved document, two relevance scores are computed with respect to
the two query conditions that are flexibly combined to generate an overall ranked
list of documents. The user can choose the semantic for the combination, that can
be either an asymmetric “and possibly” aggregation between the mandatory content
condition and the optional spatial condition, or a compensative “average” aggre-
gation, defined as a linear combination of the two conditions; further, a relative
preference between the conditions can be specified to achieve personalization and
effectiveness.

9.2 Aggregation of Multi Dimensional Relevance Dimensions

Relevance assessment is usually based on the evaluation of multiple criteria, also
called relevance dimensions, which are aimed to capture different aspects or
properties of the considered document or document/user context. All the considered
dimensions concur to estimate the utility of a document with respect to the con-
sidered user’s query. The concept of page popularity in search engines is an
example of a relevance dimension that is usefully exploited in the process of
documents’ relevance estimate. In the multidimensional relevance assessment each
dimension is usually evaluated in an independent way, and a numeric score is
associated with each dimension for each document. To obtain an overall relevance
score the single scores will get aggregated into an overall score representing the
document’s RSV.

Among the aggregation operators, traditional non-compensatory operators, such
as the min and the max operator allow to set up a pessimistic (e.g. min, as an example
of T-norm operator) or optimistic (e.g. max, as an example of T-conorm operators)
aggregation scheme, while traditional averaging aggregation operators are totally
compensatory, i.e., a lack in the satisfaction of a criterion can be compensated by the
surplus satisfaction of another one. This property is not very realistic in many real
applications in general, and in particular in Information Retrieval (IR). In [23–25]
two prioritized aggregation operators for multidimensional relevance assessment
have been proposed (the scoring and the prioritized and operators), and they have
been evaluated by a user-centered approach that has been conducted in a person-
alized IR setting, where four relevance dimensions have been considered (aboutness
(or topicality), coverage, appropriateness and reliability). An interesting aspect in
considering a personalized IR setting to evaluate the prioritized aggregation is that
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the priority over the considered relevance dimensions may be user dependent; by
setting different priority orders over the four considered relevance dimensions,
different types of users’ can be identified, with distinct search intents. The main
impact in making the prioritized aggregation scheme user dependent is that for a
same query and a same user different document rankings can be obtained.

9.3 Discovery of Similar Contents in Web Pages Retrieved
by Multiple Queries

Another recent application of fuzzy set in information retrieval is related with the
task of organizing and discovering the contents of the Web pages retrieved by
several query reformulations of the same information need.

It may often happen that by reformulating a query by slightly changing some
words or adding new terms to a previous query new and already retrieved docu-
ments are represented in the list of results.

In order to discover the common contents retrieved by two or more queries and
select only diversified contents by eliminating near duplicates an approach defined
in [6] consists in applying soft operators to distinct lists of Web pages retrieved by
either the same query submitted to distinct search engines or similar queries sub-
mitted to the same search engine.

The approach proposes [6] the soft ranked intersection to generate from two lists
of web pages retrieved by two distinct searches a cluster of Web pages with similar
contents, and the soft ranked union to generate a cluster of Web pages with diver-
sified contents. The soft operators work on the representation of the Web pages
provided by information granules consisting of the Web pages titles, url string, and
snippets displayed in the result page, thus without the need to access the Web page
content so as to achieve efficiency. The soft operators allow users to discover and
reveal the hidden shared topics retrieved by multiple Web searches, possibly iden-
tifying near duplicates and selecting Web pages with diversified contents.

9.4 Ememe Identification and Tracking

A very up to date task in information retrieval is the identification and tracking of
the evolution of Internet Meme, hereafter named ememe, intended as a unit of
information (idea) replicated and propagated through the Web by one or more
applications such as social networks and blogs. The Web constitutes a huge
information repository, and several Internet based-services and applications repre-
sent a quite rich soil for memes’ growth and evolution. Like blogs, e-mails, and
social network applications.

The conceptual notion of ememe has been intended in a simple form as a replicated
or paraphrased sentence by the scientific literature onmeme tracking. The first attempt
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that considers an ememe not asmerely a sequence of words or a quoted sentence but as
a set of interrelated concepts has been proposed in [6] where a method based on the
definition of an ememe by an OWL schema, and a process for retrieving ememe
instances and fusing them by means of Ordered Weighted Averaging Operators has
been proposed. Specifically, by taking inspiration from the anthropologic literature on
memes a methodology to formally define, identify, revise and measure some char-
acteristic properties of ememes on the Blogosphere was defined.

The proposed method for identifying ememes on the Blogosphere needs a
preliminary user-system interaction [13]; the user is in fact asked to provide an “a
priori” core definition of the ememe that he/she wants to identify; the core definition
can be specified by a conceptual schema expressed in OWL, and it is provided in
input to a pull mechanism that will search the candidate instances of the given
ememe into one or several source repositories of the blogosphere; the blogs to be
analysed can be also specified by the user, and if not provided the system will
search on the whole blogosphere.

Once the OWL core definition has been completed, some textual queries are
automatically generated and submitted to a search engine that will inquiry the
blogosphere to retrieve blogs’ posts that potentially contain ememe instances.

Finally, a filtering process is defined, which takes in input the retrieved blogs’
posts and selects those containing the ememe instances which will be used in the
phase aimed at revising and enriching the original core definition of the ememe.
The aim of the filtering process is to identify the reliable ememe instances among
the results produced by the search process. The overall satisfaction value obtained
by the aggregation operator is then used to filter the first M relevant ememe
instances. The evaluation function associated with the linguistic quantifier some is
defined by an Ordered Weighted Averaging Operator.

10 Fuzzy Performance Measures

Major factors in evaluating retrieval performance include the cost, time, and effort
to retrieve relevant items, as well as user satisfaction. The standard measures of
effectiveness include recall, the proportion of relevant documents retrieved (related
to 1-α or 1-Type I error in classical statistics the proportion of retrieved documents
that are relevant) and precision, the proportion of retrieved documents that are
relevant (1-β or 1-Type II error in classical statistics). Combining recall and pre-
cision can yield

E= 1− 1 ̸ ½αP− 1 + ð1− αR− 1Þ or F= ð1+ αÞ*P*R ̸ ðαP + RÞ, ð21Þ

where α is a user specified parameter. Other measures include G = generality
= proportion of documents that are relevant (one very weak rule based on the
notion that the act of retrieval should convey relevance information is that
precision ≥ generality), and Fa = fallout = proportion of non relevant documents
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retrieved. Another measure is S = 1=2ð Þ 1+ S+ +S−ð Þ=Smax½ � for ordering, where
S+ = number of pairs in ranked list where order is correct; S− = number of pairs in
ranked list where order is correct; Smax = maximal value of S+.

One problem with current criteria to measure the effectiveness of IR systems is
the fact that recall and precision measures have been defined by assuming that
relevance is a Boolean concept. In order to take into account the fact that IR systems
rank the retrieved documents based on their RSVs that are interpreted either as a
probabilities of relevance, similarity degrees of the documents to the query, or as
degrees of relevance, Recall-Precision graphs are produced in which the values of
precision are computed at standard levels of recall. Then, the average of the precision
values at different recall levels is computed to produce a single estimate.

Nevertheless, these measures do not evaluate the actual values of the RSVs
associated with documents and do not take into account the fact that also users can
consider relevance as a gradual concept. For this reason some authors have pro-
posed some fuzzy measure of effectiveness. [19] proposed the evaluation of fuzzy
recall and fuzzy precision, defined as follows:

Fuzzy Precision =
∑dminðed , udÞ

∑ded
, ð22Þ

Fuzzy Recall =
∑dminðed, udÞ

∑dud
, ð23Þ

where ud is the user’s evaluation of the relevance of document d (ud can be
binary or defined in the interval [0,1]) and ed is the RSV of document d computer
by the IR system. These measures take into account the actual values of ed and ud,
rather than the rank ordering based in descending order on ed.

These measures can be particularly useful to evaluate the results of fuzzy clus-
tering algorithms.

11 Experimental Results

A comparison of the results produced by using the traditional fuzzy representation of
documents and the fuzzy representation of structured documents can be found in
[10]. In this experiment, a collection of 2500 textual documents about descriptions of
CNR research projects has been considered. The indexing module of the prototypal
information retrieval system named DOMINO, used for the experiment, has been
extended in order to be able to recognize in the documents any structure simply by
specifying it into a definition file. In this way it is not necessary to modify the system
when dealing with a new collection of documents with a different structure. The
definition of the documents sections has been made before starting the archive
generation phase. During this phase it was also necessary to specify the criteria by
which to compute the significance degrees of the terms in each section. Two kinds of
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sections have been identified: the “structured” sections, i.e., the research code, title,
research leader, and the “narrative” sections, containing unstructured textual
descriptions, i.e., the project description and the project objective. It has been
observed that while the values of precision remain unchanged in the two versions of
the system, the values of recall are higher by using the structured representation than
those obtained by using the traditional fuzzy representation.

We illustrate another approach which produces a weighted representation of
documents written in HTML [41]. An HTML document has a specific syntactic
structure in which its subparts have a given format specified by the delimiting tags.
In this context, tags are seen as syntactic elements carrying an indication of the
importance of the associated text. When writing a document in HTML, an author
associates varying importance to each of the different subparts of a given document
by delimiting them by means of appropriate tags. Since a certain tag can be
employed more than once, and in different positions inside the document, the
concept of document subpart is not meant as a unique, adjacent piece of text. Such a
structure is subjective and carries the interpretation of the document author. It can
be applied in archives, which collect heterogeneous documents, i.e. documents with
possibly different “logical” structures.

An indexing function has been proposed which provides different weights for the
occurrences of a given term in the document, depending on the tags by which they
are delimited [41]. The overall significance degree F(d,t) of a term t in a document d
is computed by first evaluating the term significance in the different document tags,
and then by aggregating these contributions. With each tag, a function
Ftag: D×T → 0, 1½ � is associated together an importance weight μtag ∈ 0, 1½ �. Note
that the greater the emphasis of the text associated with a tag, the greater its
importance weight. A possible ranking of the considered tags has been suggested
[41] in decreasing order of tag importance. The definition of such a list is quite
subjective, although based on objective assumptions suggested by commonsense.
These rankings include notion such as a larger font, or text in boldface or italics or
appearing in a list can be assumed as having a higher importance.

To simplify the hierarchy of the tags, we see that certain tags can be employed to
accomplish similar aims, so one can group them into different classes. It is assumed
that the members of a class have the same importance weight. Text not delimited by
any tag is included into the lowest class. A simple procedure to compute numeric
importance weights starting from the proposed ranking can be achieved. The def-
inition of Ftag follows the same mechanism as the previous approach [10].

Once the single significance degrees of a term into the tags have been computed,
these have to be aggregated in order to produce an overall significance degree of the
term into the document. In the aggregation all the significance degrees should be
taken into account, so as to consider the contribution of each tag, modulated by
their importance weights. To this aim a weighted mean can be adopted:
A Ftag 1 d, tð Þ, . . . Ftag n d, tð Þ� �

=∑i = 1. . nFtag i d, tð Þ*wi in which ∑i = 1. . nwi = 1.
Starting from the list of tags in decreasing relative order of their importance, the
numeric weights wi are computed through a simple procedure. Assuming that tagi is
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more important than tagj iff i < j (being i and j the positions of tagi and tagj
respectively in the ordered list), the numeric importance weight wi associated with
tagi can be computed as: wi = n− i + 1ð Þ=∑i = 1. . ni . In the computation of the
overall significance degree F(d,t), the inverse document frequency of term t could
be taken into account (the definition of g(IDFt) is given in formula (2)):

F d, tð Þ= ð∑i = 1...nFtag i d, tð Þ*g IDFtð Þ, ð24Þ

12 Conclusions

This entry reviews the main objectives and characteristics of the fuzzy modeling of
the information retrieval activity with respect to alternative approaches such as
probabilistic IR and Vector space IR. The focus of the fuzzy approaches is on
modeling imprecision and vagueness of the information with respect to uncertainty.
The fuzzy generalizations of the Boolean Retrieval model have been discussed by
describing the fuzzy indexing of structured documents, the definition of flexible
query languages subsuming the Boolean language, and the definition of fuzzy
associations to expand either the indexes or the queries, or to generate fuzzy clusters
of documents. Fuzzy similarity and fuzzy inclusion relationships between fuzzy sets
have been introduced that can help to define more evolved fuzzy IR models per-
forming “semantic” matching of documents and queries, which is the current trend
of research in Information retrieval.
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Is the World Itself Fuzzy? Physical
Arguments and Unexpected Computational
Consequences of Zadeh’s Vision

Vladik Kreinovich and Olga Kosheleva

Abstract Fuzzy methodology has been invented to describe imprecise (“fuzzy”)

human statements about the world, statements that use imprecise words from natural

language like “small” or “large”. Usual applications of fuzzy techniques assume that

the world itself is “crisp”, that there are exact equations describing the world, and

fuzziness of our statements is caused by the incompleteness of our knowledge. But

what if the world itself is fuzzy? What if there is no perfect system of equations

describing the physical world – in the sense that no matter what system of equations

we try, there will always be cases when this system leads to wrong predictions? This

is not just a speculation: this idea is actually supported by many physicists. At first

glance, this is a pessimistic idea: no matter how much we try, we will never be able

to find the the Ultimate Theory of Everything. But it turns out that this idea also has

its optimistic aspects: namely, in this chapter, we show (somewhat unexpectedly),

that if such a no-perfect-theory principle is true, then the use of physical data can

drastically enhance computations.

1 Fuzzy Techniques: The Original Zadeh’s Vision

Pre-Zadeh attitude: everything can be made precise. Scientists and engineers use

both formal languages and an imprecise natural language. In engineering practice,

formulas, derivations, and computations – which are described in a precise language

– intertwine with explanations – which are usually described in a natural language.

Even in formal mathematics, when presenting a proof, a mathematician describes

part of it in precise terms and part in imprecise terms from a natural language:

“one can easily see that”, “since 𝜀 is small, the difference f (x + 𝜀) − f (x) is also

small”, etc.
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In formal mathematics, usually, the imprecise parts can be reformulated in precise

terms; professional mathematicians can do it, mathematics students are taught how

to do it – and math students do not get good grades until they are able to perform

such a reformulation. In rare occasions, an attempt for such a formalization reveals

a gap in the proof, but in most such cases, this gap is later filled.

Similarly, when an engineer makes an imprecise argument, it does not necessar-

ily mean that a more precise explanation is not possible: when needed, an engineer

can usually provide a precise quantitative justification of his/her original qualitative

decision.

A similar precisiation is often possible beyond science and engineering. For

example, instructors who grade students’ work use seemingly imprecise words like

“excellent”, “good”, “satisfactory”. However, in most cases, these words have a very

precise meaning. In the US grading system, we usually add up well-defined points

that the students got for different problems on the test. If the resulting grade is 90

(or higher) out of 100 possible points, we assign the grade “excellent” (A). If the

resulting grade is at least 80 but smaller than 90, we consider this work “good”

(grade B), etc.

Similarly, in medicine, many terms that are, at first glance, imprecise, have a very

precise meaning. “High blood pressure” means upper blood pressure above 140,

“fever” means temperature above 37.5 C, “overweight” means that the body-mass

index (body mass in kg divided by the squared height in meters) is above 25, etc. In

law, a child – a seemingly informal notion, with an imprecise transition – is legally

defined as someone younger than 18 years old.

These example led scientists and engineers to conclude that in principle, all the

statements can be made precise. According to this belief, when a statement sounds

imprecise, it is only because we have not learned the corresponding terms yet. Once

we learn these terms, the statement will become very precise.

Zadeh’s vision. In 1965, Lotfi Zadeh published his revolutionary paper, in which he

emphasized that:

– in addition to situations when use imprecise terms but have a precise meaning in

mind (“excellent test results” meaning 90+ points),

– there are also many situations when we use imprecise terms for which no precise
meaning is known.

Moreover, he showed that such situations, in which no precise meaning is known, in

which the meaning is “fuzzy”, are ubiquitous in many application areas.

To deal with such situations, L. Zadeh proposed techniques – which he called

fuzzy – that enable researchers to describe their imprecise statements in precise math-

ematical terms, and thus, enables computer-based systems to process such state-

ments. These techniques has led to many successful applications; see, e.g., [3, 5,

6, 9, 16, 20, 22, 23].
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2 Is the World Itself Fuzzy? and if Yes, What Are Possible
Physical and Computational Consequences?

Traditional viewpoint. The traditional viewpoint in engineering and science is that

the world itself is crisp, it is described by precise equations which, in principle,

enable us to predict either the events themselves (in classical, pre-quantum physics)

or probabilities of different events (in quantum physics). The only reason for “fuzzy”

uncertainty is that we only have partial knowledge about the world.

For example, when a meteorologist makes a “fuzzy” statement that there is a good

chance of rain, the meteorologist usually believes that with more information, he/she

would be able to make a more definite prediction.

But what if the world itself is fuzzy? But what if there are no ultimate equations?

What if, no matter what equations we formulate, no matter how accurate their pre-

dictions are so far, there will always be cases when these equations will lead to wrong

predictions?

In other words, what if not only our knowledge is fuzzy, what if the world itself

is fuzzy?

Somewhat surprisingly, this is what many physicists actually believe. Many physi-

cists indeed believe that every physical theory is approximate – no matter how

sophisticated a theory, no matter how accurate its current predictions, inevitably

new observations will surface which would require a modification of this theory;

see, e.g., [2].

This belief can be justified by the history of physics: no matter how good a phys-

ical theory, no matter how good its accordance with observations, eventually, new

observations appeared which were not fully consistent with the original theory –

and thus, a theory needed to be modified. For example, for several centuries, New-

tonian physics seems to explain all observable facts – until later, quantum (and then

relativistic) effects were discovered which required changes in physical theories.

At first glance, this belief is pessimistic. This belief sounds pessimistic: no matter

how much we try, we will never find the Ultimate Theory of Everything.

But maybe there is room for optimism. But is the situation indeed so pessimistic?

After all, physics is not just about finding equations. Finding equations is an impor-

tant first step, but the ultimate goal of physics is not to find equations, but to predict
future events – and equations are an important first step towards this prediction.

Many physical equations are very complex, solving them is a complex computa-

tional task. From this viewpoint, any possibility to enhance computations would be

a great optimistic development. For example, quantum physics is clearly more pes-

simistic in terms of possibility of predictions, because in quantum physics, we can

often only predict probabilities of future events, and not the events themselves. On

the other hand, research on quantum computing has shown that the use of quantum

effects can drastically enhance computations; see, e.g., [17].
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How does the no-perfect-theory belief affect computations? In this chapter, we

analyze how the no-perfect-theory belief affects our computational abilities.

At first glance, the fact that no theory is perfect seems to make the question of

computability rather hopeless: no matter how seriously we analyze computability

within a given physical theory, eventually, this theory will turn out to be, strictly

speaking, false – and thus, our analysis of what is computable will have to be redone.

In this chapter, we show, however, that in spite of this seeming hopelessness, some

important answers to the question of what is computable can be deduced simply from

the fact no physical theory is perfect – namely, in this case, we show that computa-

tions can be enhanced in comparison with the usual (Turing machine) computability.

Comment. Some preliminary results from this chapter first appeared in

[7, 8, 12, 25].

3 How to Describe, in Precise Terms, that No Physical
Theory Is Perfect

Discussion. The statement that no physical theory is perfect means that no matter

what physical theory we have, eventually there will be observations which violate

this theory. To formalize this statement, we need to formalize what are observations

and what is a theory.

What are observations? Each observation can be represented, in the computer, as

a sequence of 0 s and 1s; actually, in many cases, the sensors already produce the

signal in the computer-readable form, as a sequence of 0 s and 1s.

An exact description of each experiment can also be described in precise terms,

and thus, it will be represented in a computer as a sequence of 0 s and 1s. An exper-

iment should specify how long we wait for the result; in this way, we are guaranteed

that we get the result. The coding should be done in such a way that the waiting time

does not exceed a polynomial of the length of the code i; for example, if we want

to wait for t moments of time, we should just add t copies of an appropriate wait

symbol.

In each experiment, we can specify which bit of the result we are interested in;

for convenience, we can consider producing different bits as different experiments.

Each such experiment is represented as a sequence of 0 s and 1s; by appending 1

at the beginning of this sequence, we can view this sequence as a binary expansion

of a natural number i. This natural number will serve as the “code” describing the

experiment. For example, a sequence 001 is transformed into i = 10012 = 910. (We

need to append 1, because otherwise two different sequences 001 and 01 will be

represented by the same integer).

For natural numbers i which correspond to experiment descriptions, let 𝜔i denote

the bit result of the experiment described by the code i.
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Let us also define 𝜔i for natural numbers i which do not correspond to a syntac-

tically correct description of experiments. For example, we can take 𝜔i = 0 for such

numbers i.
In these terms, all past and future observations form a (potentially) infinite

sequence 𝜔 = 𝜔1𝜔2 … of 0 s and 1s, 𝜔i ∈ {0, 1}.

What is a physical theory from the viewpoint of our problem: a set of sequences. A

physical theory may be very complex, but all we care about is which sequences of

observations 𝜔 are consistent with this theory and which are not. In other words, for

our purposes, we can identify a physical theory T with the set of all sequences 𝜔

which are consistent with this theory.

Not every set of sequences corresponds to a physical theory: the set T must be non-
empty and definable. Not every set of sequences comes from a physical theory. First,

a physical theory must have at least one possible sequence of observations, i.e., the

set T must be non-empty.

Second, a theory – and thus, the corresponding set – must be described by a finite

sequence of symbols in an appropriate language. Sets which are uniquely by (finite)

formulas are known as definable. Thus, the set T must be definable.

Since at any moment of time, we only have finitely many observations, the set T
must be closed. Another property of a physical theory comes from the fact that at

any given moment of time, we only have finitely many observations, i.e., we only

observe finitely many bits. From this viewpoint, we say that observations 𝜔1 …𝜔n
are consistent with the theory T if there is a continuing infinite sequence which is

consistent with this theory, i.e., which belongs to the set T .

The only way to check whether an infinite sequence 𝜔 = 𝜔1𝜔2 … is consistent

with the theory is to check that for every n, the sequences𝜔1 …𝜔n are consistent with

the theory T . In other words, we require that for every infinite sequence𝜔 = 𝜔1𝜔2 …,

– if for every n, the sequence 𝜔1 …𝜔n is consistent with the theory T , i.e., if for

every n, there exists a sequence 𝜔
(n) ∈ T which has the same first n bits as 𝜔, i.e.,

for which 𝜔

(n)
i = 𝜔i for all i = 1,… , n,

– then the sequence 𝜔 itself should be consistent with the theory, i.e., this infinite

sequence should also belong to the set T .

From the mathematical viewpoint, we can say that the sequences 𝜔

(n)
converge to

𝜔: 𝜔
(n) → 𝜔 (or, equivalently, lim𝜔

(n) = 𝜔), where convergence is understood in

terms of the usual metric on the set of all infinite sequences d(𝜔,𝜔′)
def
= 2−N(𝜔,𝜔′)

,

where N(𝜔,𝜔′)
def
= max{k ∶ 𝜔1 …𝜔k = 𝜔

′
1 …𝜔

′
k}.

In general, if 𝜔
(m) → 𝜔 in the sense of this metric, this means that for every n,

there exists an integer 𝓁 such that for every m ≥ 𝓁, we have 𝜔
(m)
1 …𝜔

(m)
n = 𝜔1 …𝜔n.

Thus, if 𝜔
(m) ∈ T for all m, this means that for every n, a finite sequence 𝜔1 …𝜔n

can be a part of an infinite sequence which is consistent with the theory T . In view

of the above, this means that 𝜔 ∈ T .
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In other words, if 𝜔
(m) → 𝜔 and 𝜔

(m) ∈ T for all m, then 𝜔 ∈ T . So, the set T
must contain all the limits of all its sequences. In topological terms, this means that

the set T must be closed.

A physical theory must be different from a fact and hence, the set T must be nowhere
dense. The assumption that we are trying to formalize is that no matter how many

observations we have which confirm a theory, there eventually will be a new obser-

vation which is inconsistent with this theory. In other words, for every finite sequence

𝜔1 …𝜔n which is consistent with the set T , there exists a continuation of this

sequence which does not belong to T . The opposite would be if all the sequences

which start with 𝜔1 …𝜔n belong to T; in this case, the set T will be dense in this

set. Thus, in mathematical terms, the statement that every finite sequence which is

consistent with T has a continuation which is not consistent with T means that the

set T is nowhere dense.

Resulting definition of a theory. By combining the above properties of a set T which

describes a physical theory, we arrive at the following definition.

Definition 1. By a physical theory, we mean a non-empty closed nowhere dense
definable set T .

Mathematical comment. To properly define what is definable, we need to have a con-

sistent formal definition of definability. In this chapter, we follow a natural definition

from [10, 11] – which is reproduced in Appendix A.

Formalization of the principle that no physical theory is perfect. In terms of the above

notations, the no-perfect-theory principle simply means that the infinite sequence 𝜔

(describing the results of actual observations) is not consistent with any physical

theory, i.e., that the sequence 𝜔 does not belong to any physical theory T . Thus, we

arrive at the following definition.

Definition 2. We say that an infinite binary sequence 𝜔 is consistent with the no-

perfect-theory principle if the sequence 𝜔 does not belong to any physical theory (in
the sense of Definition 1).

Comment. Are there such sequences in the first place? Our answer is yes. Indeed, by

definition, we want a sequence which does not belong to a union of all definable phys-

ical theories. Every physical theory is closed nowhere dense set. Every definable set

is defined by a finite sequence of symbols, so there are no more than countably many

definable theories. Thus, the union of all definable physical theories is contained in

a union of countably many closed nowhere dense sets. Such sets are knows as mea-
ger (or Baire first category); it is known that the set of all infinite binary sequences

is not meager. Thus, there are sequences who do not belong to the above union –

i.e., sequences which are consistent with the no-perfect-theory principle; see, e.g.,

[4, 18].
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4 How to Describe When Access to Physical Observations
Enhances Computability

How to describe general computations. Each computation is a solution to a well-

defined problem. As a result, each bit in the resulting answer satisfies a well-defined

mathematical property. All mathematical properties can be described, e.g., in terms

of Zermelo-Fraenkel theory ZF, the standard formalization of set theory. For each

resulting bit, we can formulate a property P which is true if and only if this bit is

equal to 1. In this sense, each bit in each computation result can be viewed as the

truth value of some statement formulated in ZF. Thus, our general ability to compute

can be described as the ability to (at least partially) compute the sequence of truth

values of all statements from ZF.

All well-defined statements from ZF can be numbered, e.g., in lexicographic

order. Let 𝛼n denote the truth value of the n-th ZF statement, and let 𝛼 = 𝛼1 … 𝛼n …
denote the infinite sequence formed by these truth values. In terms of this sequence,

our ability to compute is our ability to compute the sequence 𝛼.

Kolmogorov complexity as a way to describe what is easier to compute. We want to

analyze whether the use of physical observations (i.e., of the sequence 𝜔 analyzed

in the previous section) can simplify computations. A natural measure of easiness-

to-compute was invented by A. N. Kolmogorov, the founder of modern probability

theory, when he realized that in the traditional probability theory, there is no formal

way to distinguish between:

– finite sequences which come from observing from truly random processes, and

– orderly sequences like 0101…01.

Kolmogorov noticed that an orderly sequence 0101…01 can be computed by a short

program, while the only way to compute a truly random sequence 0101… is to have a

print statement that prints this sequence. He suggested to describe this difference by

introducing what is now known as Kolmogorov complexity K(x) of a finite sequence

x: the shortest length of a program (in some programming language) which computes

the sequence x.

– For an orderly sequence x, the Kolmogorov complexity K(x) is much smaller than

the length len(x) of this sequence: K(x) ≪ len(x).
– For a truly random sequence x, we have K(x) ≈ len(x); see, e.g., [14].

The smaller the difference len(x) −K(x), the more we are sure that the sequence x is

truly random.

Relative Kolmogorov complexity as a way to describe when using an auxiliary
sequence simplifies computations. The usual notion of Kolmogorov complexity pro-

vides the complexity of computing x “from scratch”. A similar notion of the relative
Kolmogorov complexity K(x | y) can be used to describe the complexity of comput-

ing x when a (potentially infinite) sequence y is given. This relative complexity is

based on programs which are allowed to use y as a subroutine, i.e., programs which,
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after generating an integer n, can get the n-th bit yn of the sequence y by simply

calling y. When we compute the length of such programs, we just count the length

of the parameters of this call, not the length of the auxiliary program which com-

putes yn – just like when we count the length of a C++ program, we do not count

how many steps it takes to compute, e.g., sin(x), we just count the number of sym-

bols in this function call. The relative Kolmogorov complexity is then defined as the

shortest length of such a y-using program which computes x.

Clearly, if x and y are unrelated, having access to y does not help in computing

x, so K(x | y) ≈ K(x). On the other hand, if x coincides with y, then the relative

complexity K(x | y) is very small: all we need is a simple for-loop, in which we call

for each bit yi, i = 1,… , n, and print this bit right away.

Resulting reformulation of our question. In terms of relative Kolmogorov

complexity, the question of whether observations enhance computations is trans-

lated into checking whether K(𝛼1 … 𝛼n |𝜔) ≈ K(𝛼1 … 𝛼n) (in which case there is

no enhancement) or whether K(𝛼1 … 𝛼n |𝜔) ≪ K(𝛼1 … 𝛼n) (in which case there is

a strong enhancement). The larger the difference K(𝛼1 … 𝛼n) − K(𝛼1 … 𝛼n |𝜔), the

larger the enhancement.

5 First Result: No-Perfect-Theory Principle Enhances
Computability

Let us show that under the no-perfect-theory principle, observations do indeed

enhance computability.

Proposition 1. Let 𝛼 be a sequence of truth values of ZF statements, and let 𝜔 be
an infinite binary sequence which is consistent with the no-perfect-theory principle.
Then, for every integer C > 0, there exists an integer n for which K(𝛼1 … 𝛼n |𝜔) <
K(𝛼1 … 𝛼n) − C.

In other words, in principle, we can have an arbitrary large enhancement.

Comment. For readers’ convenience, all the proof are placed in a special appendix.

6 Can Access to Physical Observations Speed up
Computations?

Are computations feasible? What we have shown so far is that under Zadeh-inspired

no-perfect-theory belief, it is possible to compute things that are not computable in

the usual physical paradigm. From the practical viewpoint, being able to compute

something in principle is important, but even more important is how fast we can

compute it. In many cases, computations are theoretically possible, but not practi-

cally feasible, since they require computation times which are longer than the lifetime
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of the Universe :-( It is therefore important to analyze which problems are feasibly

computable and which are not. To perform this analysis, we need to define what is

“feasible” and what is a “problem”.

In computer science, “feasible” is usually interpreted as computable in polyno-

mial time, i.e., in time t bounded by a polynomial of the length n of the input; see,

e.g., [19]. This definition works in most cases:

– time 2n
is non-feasible already for n ≈ 300, while

– time n2 or n3 is usually feasible.

This is not a perfect definition:

– on the one hand, time t = 10400 ⋅ n is polynomial in n but clearly not feasible;

– on the other hand, computation time exp(10−10 ⋅n) is not bounded by a polynomial,

but it clearly corresponds to feasible computations.

However, this is the best definition we have.

By a problem, computer scientists usually understand a problem in which it is

absolutely clear what is a solution and what is not. For example:

– finding a proof of a given mathematical statement,

– finding a formula that fits all experimental observations,

– designing a bridge under certain specifications of strength, cost, etc.,

these are all such problems – while, e.g., the problem of designing a beautiful bridge

is not clearly defined.

In general, we need to find a solution that satisfies a given set of constraints – or at

least check that such a solution is possible. Once we have a candidate for the solution,

we can feasibly check whether this candidate indeed satisfies all the constraints.

A problem of checking whether a given set of constraints has solution is called

a problem of the class NP if we can check, in polynomial time, whether a given

candidate is a solution; see, e.g., [19].

Examples of such problem includes checking whether a given graph can be col-

ored in 3 colors, checking whether a given propositional formula – i.e., formula of

the type

(v1 ∨ ¬v2 ∨ v3)& (v4 ∨ ¬v2 ∨ ¬v5)& … ,

is satisfiable, i.e., whether this formula is true by some combination of the proposi-

tional variables vi, etc.

Each problem from the class NP can be algorithmically solved by trying all possi-

ble candidates. For example, we can check whether a graph can be colored by trying

all possible assignments of colors to different vertices of a graph, and we can check

whether a given propositional formula is satisfiable by trying all 2n
possible combi-

nations of true-or-false values v1,… , vn. Such exhaustive search algorithms require

computation time like 2n
, time that grows exponentially with n. For medium-size

inputs, e.g., for n ≈ 300, the resulting time is larger than the lifetime of the Uni-

verse. So, these exhaustive search algorithms are not practically feasible.
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It is not known whether problems from the class NP can be solved feasibly (i.e.,

in polynomial time): this is the famous open problem P
?
=NP. It is known, however,

there are problems in the class NP which are NP-complete in the sense that every

problem from the class NP can be reduced to this problem. Reduction means, in

particular, that if we can find a way to efficiently solve one NP-complete problem,

then, by reducing other problems from the class NP to this problem, we can thus

efficiently solve all the problems from the class NP.

So, it is very important to be able to efficiently solve even one NP-hard problem.

(By the way, both above example of NP problems – checking whether a graph can

be colored in 3 colors and whether coloring a propositional formula is satisfiable –

are NP-complete.)

Can the use of non-standard physics speed up the solution of NP-complete problems?
NP-completeness of a problem means, crudely speaking, that the problem may take

an unrealistically long time to solve – at least on computers based on the usual phys-

ical techniques. A natural question is: can the use of non-standard physics speed up

the solution of these problems?

This question has been analyzed for several specific physical theories, e.g., for

quantum filed theory, for cosmological solutions with wormholes and/or casual

anomalies. Several possible techniques for solving NP-complete problems are

described in [1, 11, 13, 15, 21].

How does the no-perfect-belief affect the speed of computations? In this chapter, we

show that an important speed-up can be deduced simply from the fact no physical

theory is perfect.

7 Second Result: The Use of Physical Observations Can
Help in Solving NP-Complete Problems

How to represent instances of an NP-complete problem. For each NP-complete prob-

lem  , its instances are sequences of symbols. In the computer, each such sequence

is represented as a sequence of 0 s and 1s. Thus, as in the previous sections, we can

append 1 in front of this sequence and interpret the resulting sequence as a binary

code of a natural number i.
In principle, not all natural numbers i correspond to instances of a problem  ; we

will denote the set of all natural numbers which correspond to such instances by S .

For each i ∈ S , the correct answer (true or false) to the i-th instance of the

problem  will be denoted by s ,i.

What we mean by using physical observations in computations. In addition to per-

forming computations, our computational device can produce a scheme i for an

experiment, and then use the result 𝜔i of this experiment in future computations.

In other words, given an integer i, we can produce 𝜔i.
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In precise theory-of-computation terms, the use of physical observations in com-

putations thus means computations that use the sequence𝜔 as an oracle; see, e.g., [19].

Definition 3. By a ph-algorithm , we mean an algorithm which uses, as an oracle,
a sequence 𝜔 which is consistent with the no-perfect-theory principle.

Notation. The result of applying an algorithm  using 𝜔 to an input i will be denoted

by (𝜔, i).

Definition 4. Let  be an NP-complete problem. We say that a feasible ph-algorithm
 solves almost all instances of  if for every 𝜀 > 0, and for every natural number
n, there exists an integer N ≥ n for which the proportion of the instances i ≤ N of
the problem  which are correctly solved by  is greater than 1 − 𝜀:

∀𝜀 > 0 ∀n∃N
(

N ≥ n&
#{i ≤ N ∶ i ∈ S &(𝜔, i) = s ,i}

#{i ≤ N ∶ i ∈ S}
> 1 − 𝜀

)
.

Comment. The restriction to sufficiently long inputs N ≥ n makes perfect sense: for

short inputs, NP-completeness is not an issue: we can perform exhaustive search of

all possible bit sequences of length 10, 20, and even 30. The challenge starts when

the length of the input is high.

Proposition 2. For every NP-complete problem  , there exists a feasible
ph-algorithm  that solves almost all instances of  .

In other words, we show that the use of physical observations makes all NP-complete

problems easier-to-solve (in the above-described sense).
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A A Formal Definition of Definable Sets

Definition A1. Let  be a theory, and let P(x) be a formula from the language of the
theory , with one free variable x for which the set {x |P(x)} is defined in the theory
. We will then call the set {x |P(x)} -definable.

Crudely speaking, a set is -definable if we can explicitly define it in . The set of

all real numbers, the set of all solutions of a well-defined equation, every set that we

can describe in mathematical terms: all these sets are -definable.

This does not mean, however, that every set is -definable: indeed, every -

definable set is uniquely determined by formula P(x), i.e., by a text in the language

of set theory. There are only denumerably many words and therefore, there are only
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denumerably many -definable sets. Since, e.g., in a standard model of set theory

ZF, there are more than denumerably many sets of integers, some of them are thus

not -definable.

Our objective is to be able to make mathematical statements about -definable

sets. Therefore, in addition to the theory , we must have a stronger theory  in

which the class of all -definable sets is a set – and it is a countable set.

Denotation. ForeveryformulaFfromthetheory,wedenoteitsGödelnumberby⌊F⌋.

Comment. A Gödel number of a formula is an integer that uniquely determines this

formula. For example, we can define a Gödel number by describing what this formula

will look like in a computer. Specifically, we write this formula in LATEX, interpret

every LATEX symbol as its ASCII code (as computers do), add 1 at the beginning of

the resulting sequence of 0 s and 1s, and interpret the resulting binary sequence as

an integer in binary code.

Definition A2. We say that a theory  is stronger than  if it contains all formulas,
all axioms, and all deduction rules from , and also contains a special predicate
def(n, x) such that for every formula P(x) from  with one free variable, the formula
∀y (def(⌊P(x)⌋, y) ↔ P(y)) is provable in .

The existence of a stronger theory can be easily proven: indeed, for =ZF, there

exists a stronger theory . As an example of such a stronger theory, we can sim-

ply take the theory  plus all countably many equivalence formulas as described

in Definition A2 (corresponding to all possible formulas P(x) with one free vari-

able). This theory clearly contains  and all the desired equivalence formulas, so

all we need to prove is that the resulting theory  is consistent (provided that 

is consistent, of course). Due to compactness principle, it is sufficient to prove that

for an arbitrary finite set of formulas P1(x),… ,Pm(x), the theory  is consistent

with the above reflection-principle-type formulas corresponding to these properties

P1(x),… ,Pm(x).
This auxiliary consistency follows from the fact that for such a finite set, we

can take

def(n, y) ↔ (n = ⌊P1(x)⌋&P1(y)) ∨ … ∨ (n = ⌊Pm(x)⌋&Pm(y)).

This formula is definable in  and satisfies all m equivalence properties. The state-

ment is proven.

Important comments. In the main text, we will assume that a theory  that is

stronger than  has been fixed; proofs will mean proofs in this selected theory .

An important feature of a stronger theory  is that the notion of an -definable

set can be expressed within the theory : a set S is -definable if and only if

∃n ∈ IN∀y(def(n, y) ↔ y ∈ S).
In the chapter, when we talk about definability, we will mean this property

expressed in the theory . So, all the statements involving definability become

statements from the theory  itself, not statements from metalanguage.
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B Proofs

Proof of Proposition 1. Let us fix an integer C. To prove the desired property for this

C, let us prove that the set T of all the sequences which do not satisfy this property,

i.e., for which K(𝛼1 … 𝛼n |𝜔) ≥ K(𝛼1 … 𝛼n) − C for all n, is a physical theory in

the sense of Definition 1. For this, we need to prove that this set T is non-empty,

closed, nowhere dense, and definable. Then, from Definition 2, it will follow that the

sequence 𝜔 does not belong to this set and thus, that the conclusion of Proposition

1 is true.

The set T is clearly non-empty: it contains, e.g., a sequence 𝜔 = 00…0… which

does not affect computations. The set T is also clearly definable: we have just defined it.

Let us prove that the set T is closed. For that, let us assume that 𝜔
(m) → 𝜔 and

𝜔

(m) ∈ T for all m. We then need to prove that 𝜔 ∈ T . Indeed, let us fix n, and let us

prove that K(𝛼1 … 𝛼n |𝜔) ≥ K(𝛼1 … 𝛼n) − C. We will prove this by contradiction.

Let us assume that K(𝛼1 … 𝛼n |𝜔) < K(𝛼1 … 𝛼n) − C. This means that there exists

a program p of length len(p) < K(𝛼1 … 𝛼n) − C which uses 𝜔 to compute 𝛼1 … 𝛼n.

This program uses only finitely many bits of 𝜔; let B be the largest index of these

bits. Due to 𝜔

(m) → 𝜔, there exists M for which, for all m ≥ M, the first B bits of 𝜔
(m)

coincide with the first B bits of the sequence 𝜔. Thus, the same program p will work

exactly the same way – and generate the same sequence 𝛼1 … 𝛼n – if we use 𝜔

(m)

instead of 𝜔. But since len(p) < K(𝛼1 … 𝛼n) −C, this would means that the shortest

length K(𝛼1 … 𝛼n |𝜔(m)) of all the programs which use 𝜔

(m)
to compute 𝛼1 … 𝛼n

also satisfies the inequality K(𝛼1 … 𝛼n |𝜔(m)) < K(𝛼1 … 𝛼n) − C. This inequality

contradicts to our assumption that 𝜔
(m) ∈ T and thus, that K(𝛼1 … 𝛼n |𝜔(m)) ≥

K(𝛼1 … 𝛼n) − C. The contradiction proves that the set T is indeed closed.

Let us now prove that the set T is nowhere dense, i.e., that for every finite sequence

𝜔1 …𝜔m, there exists a continuation 𝜔 which does not belong to the set T . Indeed, as

such a continuation, we can simply take a sequence 𝜔 = 𝜔1 …𝜔m𝛼1𝛼2 … obtained

by appending 𝛼 at the end. For this new sequence, computing 𝛼1 … 𝛼n is straightfor-

ward: we just copy the values 𝛼i from the corresponding places of the new sequence

𝜔. Here, the relative Kolmogorov complexity K(𝛼1 … 𝛼n |𝜔) is very small and is,

thus, much smaller than the complexity K(𝛼1 … 𝛼n) which – since ZF is not decid-

able – grows with n.

The proposition is proven.

Proof of Proposition 2.
1◦. As the desired ph-algorithm, we will, given an instance i, simply produce the

result 𝜔i of the i-th experiment. Let us prove, by contradiction, that this algorithm

satisfies the desired property.

2◦. We want to prove that for every 𝜀 > 0 and for every n, there exists an integer

N ≥ n for which

#{i ≤ N ∶ i ∈ S &𝜔i = s ,i} > (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S}.
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The assumption that this property is not satisfied means that for some 𝜀 > 0 and for

some integer n, we have

#{i ≤ N ∶ i ∈ S &𝜔i = s ,i} ≤ (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S} for all N ≥ n. (1)

Let T denote the set of all the sequences x that satisfy the property (1), i.e., let

T
def
=

{x ∶ #{i ≤ N ∶ i ∈ S & xi = s ,i} ≤ (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S} for all N ≥ n}.

We will prove that this set T is a physical theory in the sense of Definition 1.

Then, due to Definition 2 and the fact that the sequence 𝜔 satisfies the no-perfect-

theory principle, we will be able to conclude that 𝜔 ∉ T , and thus, that the property

(1) is not satisfied for the given sequence 𝜔. This will conclude the proof by contra-

diction.

3◦. By definition of a physical theory T , it is a set which is non-empty, closed,

nowhere dense, and definable. Let us prove these four properties one by one.

3.1◦. Non-emptiness comes from the fact that the sequence xi for which xi = ¬s ,i
for i ∈ S and xi = 0 otherwise clearly belongs to this set: for this sequence, for

every N, we have #{i ≤ N ∶ i ∈ S & xi = s ,i} = 0 and thus, the desired property

is satisfied.

3.2◦. Let us prove that the set T is closed, i.e., that if we have a family of sequences

x(m) ∈ T for which x(m) → x, then x ∈ T .

Indeed, let us take any N ≠ n, and let us prove that

#{i ≤ N ∶ i ∈ S & xi = s ,i} ≤ (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S}

for this N. Due to x(m) → x, there exists M for which, for all m ≥ M, the first N bits

of x(m)
coincide with the first N bits of the sequence x: x(m)

i = 𝜔i for all i ≤ N. Thus,

#{i ≤ N ∶ i ∈ S & xi = s ,i} = #{i ≤ N ∶ i ∈ S & x(m)
i = s ,i}.

Since x(m) ∈ T , we have

#{i ≤ N ∶ i ∈ S & x(m)
i = s ,i} ≤ (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S},

thus

#{i ≤ N ∶ i ∈ S & xi = s ,i} ≤ (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S}.

So, the set T is indeed closed.
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3.3◦. Let us now prove that the set T is nowhere dense, i.e., that for every finite

sequence x1 … xm, there exists a continuation x which does not belong to the set T .

Indeed, as such a continuation, we can simply take a sequence

x = x1 … xmxm+1xm+2 …

where for i > m, we take xi = s ,i if i ∈ S and xi = 0 otherwise. For this new

sequence, for every N, at most m first instances may lead to results different from

s ,i, so we have

#{i ≤ N ∶ i ∈ S & xi = s ,i} ≥ #{i ≤ N ∶ i ∈ S} − m.

When N → ∞, then #{i ≤ N ∶ i ∈ S} → ∞, so for sufficiently large N, we have

#{i ≤ N ∶ i ∈ S} − m > (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S},

thus,

#{i ≤ N ∶ i ∈ S & xi = s ,i} > (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S},

and we cannot have

#{i ≤ N ∶ i ∈ S & xi = s ,i} ≤ (1 − 𝜀) ⋅ #{i ≤ N ∶ i ∈ S}.

Therefore, this continuation does not belong to the set T .

3.4◦. Finally, since the formula (1) explicitly defines the set T , this set T is clearly

definable.

So, T is a physical theory, hence 𝜔 ∉ T , and the proposition is proven.
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Handling Noise and Outliers
in Fuzzy Clustering
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Abstract Since it is an unsupervised data analysis approach, clustering relies solely

on the location of the data points in the data space or, alternatively, on their relative

distances or similarities. As a consequence, clustering can suffer from the presence

of noisy data points and outliers, which can obscure the structure of the clusters in the

data and thus may drive clustering algorithms to yield suboptimal or even misleading

results. Fuzzy clustering is no exception in this respect, although it features an aspect

of robustness, due to which outliers and generally data points that are atypical for the

clusters in the data have a lesser influence on the cluster parameters. Starting from

this aspect, we provide in this paper an overview of different approaches with which

fuzzy clustering can be made less sensitive to noise and outliers and categorize them

according to the component of standard fuzzy clustering they modify.
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1 Introduction

In general, clustering [1–4] is a data analysis method that tries to group the records,

cases or generally data points of a data set in such a way that points in the same

group (or cluster) are as similar as possible, while points in different groups are

as dissimilar as possible. There is no predefined target attribute (like a class label)

that guides the analysis process and hence clustering belongs to the so-called unsu-
pervised methods (in contrast to supervised methods like, for example, classifier

construction): it relies solely on the location of the data points in the data space or,

alternatively, on their relative distance or similarity.

Unfortunately, due to this exclusive dependence on location and/or distance infor-

mation, clustering algorithms can suffer from noisy data points and outliers that are

present in the data. Such data points, which we may define informally as points that

do not conform (well) to the actual cluster structure of the data, can obscure the true

cluster structure and thus may lead clustering algorithms to produce results that are

far from optimal or even misleading.

Fuzzy clustering [4–7] is no exception in this respect, although it features an

aspect of robustness, due to which outliers and generally data points that are atypical

for the clusters in the data have a lesser influence on the cluster parameters (like, for

instance, the location of the cluster centers as well as shape and size parameters that

may be present). We emphasize this aspect in the next section (Sect. 2), in which we

briefly review standard fuzzy clustering.

Afterward we turn to methods that try to make fuzzy clustering (even more)

robust w.r.t. noise and outliers. Such approaches can be roughly categorized into

two classes: (1) approaches that modify the “(influence) weight” of the (atypical) data

points, either by changing how membership degrees are computed from the (relative)

data point distances to the clusters or by introducing and adapting an explicit data

point weight, and (2) approaches that rely on other distance measures than the usu-

ally employed squared Euclidean distance or transform the distance measure before

computing membership degrees.

Among the approaches in the first class are the popular noise cluster approach

[8–10] (Sect. 3), introducing and adapting an explicit data point weight (outlier clus-

tering) [11] (Sect. 4), possibilistic fuzzy clustering [12, 13] and its variants that com-

bine it with standard fuzzy clustering [14–18] (Sect. 5), as well as using an alterna-

tive transformation of the membership degrees [19] (Sect. 6). In the second class we

find approaches based on squared and particularly unsquared Minkowski distances

[20–22] (Sect. 7) or transformed or otherwise modified distance measures [23–26]

(Sect. 8).

2 Fuzzy Clustering

In the clustering approaches we study in this paper, the similarity of data points is

formalized by a distance measure on the data space and the clusters are described

by prototypes that capture the location and possibly also the shape and size of the
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clusters in the data space. With such an approach the general objective of clustering

can be reformulated as the task to find a set of cluster prototypes together with an

assignment of the data points to them, so that the data points are as close as possible

to their assigned prototypes. By formalizing this approach, and using for the pro-

totypes only points in the data space that represent the cluster centers, one obtains

immediately the objective function of classical c-means clustering [27–29]: simply

sum the squared distances of the data points to the center of the cluster to which

they are assigned. The c-means clustering algorithm then strives to minimize this

objective function.

Unfortunately, c-means clustering always partitions the data, that is, each data

point is assigned to one cluster and one cluster only. This is often inappropriate,

as it can lead to somewhat arbitrary cluster boundaries and certainly does not treat

points properly that lie between two (or more) clusters without belonging to any of

them unambiguously. A solution to this problem consists in employing one of the

different “fuzzifications” of the classical crisp (or hard) scheme (see, for instance,

[4–7, 26, 30]), which modify the objective function of classical c-means clustering

in order to obtain graded cluster memberships. In principle, there are two ways to do

this, namely (1) by membership transformation, which maps the memberships with a

convex function, and (2) by membership regularization, which adds a regularization

term, usually derived from an entropy measure, to the objective function to prevent

crisp assignments (see, for instance, [31] for a discussion). Here we focus on the

first approach (membership transformation), because it exhibits a certain robustness

property we are interested in. However, most of the approaches we study in Sects. 3

to 8 can equally well be applied to fuzzy clustering by membership regularization.

Formally, we are given a data set 𝐗 = {x⃗1,… , x⃗n} with n data points, each

of which is an m-dimensional real-valued vector, that is, ∀j; 1 ≤ j ≤ n ∶ x⃗j =
(xj1,… , xjm) ∈ ℝm

. These data points are to be grouped into c clusters, each of which

is described by a prototype c⃗i, i = 1,… , c. The set of all prototypes is denoted by

𝐂 = {c⃗1,… , c⃗c}. We confine ourselves here to cluster prototypes that consist only

of a cluster center, that is, ∀i; 1 ≤ i ≤ c ∶ c⃗i = (ci1,… , cim) ∈ ℝm
, although (most

of) the approaches we study below may just as well be applied if the cluster pro-

totypes comprise shape and size parameters (like, for instance, in [32, 33]). The

assignment of the data points to the cluster centers is encoded as a c × n matrix

𝐔 = (uij)1≤i≤c;1≤j≤n, which is often called the partition matrix. In the crisp case, a

matrix element uij ∈ {0, 1} states whether data point x⃗j belongs to cluster c⃗i (uij = 1)

or not (uij = 0). In the fuzzy case, uij ∈ [0, 1] states the degree to which x⃗j belongs

to c⃗i (degree of membership).

Since we do not obtain graded memberships by merely allowing uij ∈ [0, 1] (see,

for example, [19, 31]), the membership degrees are transformed with a convex map-

ping h ∶ [0, 1] → [0, 1]. This yields an objective function of the form [19]

J(𝐗,𝐂,𝐔) =
c∑

i=1

n∑
j=1

h(uij) d2ij.
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The clustering task now consists in finding for a given data set 𝐗 and a user-

specified number of clusters c, cluster prototypes 𝐂 and a partition matrix 𝐔 such

that J(𝐗,𝐂,𝐔) is minimized under the constraints

∀j; 1 ≤ j ≤ n ∶
c∑

i=1
uij = 1 and ∀i; 1 ≤ i ≤ c ∶

n∑
j=1

uij > 0.

Unfortunately, cluster prototypes𝐂 and a partition matrix𝐔 that minimize J are diffi-

cult to find by analytic means. Therefore one takes refuge to an alternating optimiza-
tion scheme: starting from randomly chosen cluster centers (for example, sampled

from the data set 𝐗), one iterates (1) updating the partition matrix for fixed cluster

prototypes and (2) updating the cluster prototypes for a fixed partition matrix until

convergence. Convergence may be checked with a limit for the change of the clus-

ter parameters (e.g. center coordinates) or a limit for the change of the membership

degrees from one iteration to the next.

In order to derive the update rule for the partition matrix (and thus for the mem-

bership degrees uij) we need to know the exact form of the function h. The most

common choice is h(uij) = u2ij, which leads to the standard objective function of

fuzzy clustering [30]. The more general form h(uij) = uwij was introduced in [6]. The

exponent w, w > 1, is called the fuzzifier, since it controls the “fuzziness” of the

data point assignments: the higher w, the softer the boundaries between the clusters,

while a crisp partition results in the limit for w → 1. This leads to the commonly

used objective function [4, 6, 7, 26]

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij d
2
ij.

The update rule for the membership degrees is now derived by incorporating the

constraints ∀j; 1 ≤ j ≤ n ∶
∑c

i=1 uij = 1 with Lagrange multipliers into the objective

function. (The second set of constraints, that is, ∀i; 1 ≤ i ≤ c ∶
∑n

j=1 uij > 0 can

usually be neglected, because it is satisfied by the clustering result anyway.) This

yields the Lagrange function

L(𝐗,𝐔,𝐂, 𝛬) =
c∑

i=1

n∑
j=1

uwij d
2
ij

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=J(𝐗,𝐔,𝐂)

+
n∑
j=1

𝜆j

(
1 −

c∑
i=1

uij

)
,

where 𝛬 = (𝜆1,… , 𝜆n) are the Lagrange multipliers, one per constraint.

Since a necessary condition for a minimum of the Lagrange function is that the

partial derivatives w.r.t. the membership degrees vanish, we obtain
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𝜕

𝜕ukl
L(𝐗,𝐔,𝐂, 𝛬) = w uw−1kl d2kl − 𝜆l

!
= 0 and thus ukl =

(
𝜆l

w d2kl

) 1
w−1
.

Summing these equations over the clusters (in order to be able to exploit the cor-

responding constraints on the membership degrees, which are recovered from the

fact that it is a necessary condition for a minimum that the partial derivatives of the

Lagrange function w.r.t. the Lagrange multipliers vanish), we get

1 =
c∑

i=1
uij =

c∑
i=1

(
𝜆j

w d2ij

) 1
w−1

and thus 𝜆j =
( c∑

i=1

(
wd2ij

) 1
1−w

)1−w
.

Therefore we finally have for the membership degrees ∀i; 1 ≤ i ≤ c: ∀j; 1 ≤ j ≤ n:

uij =
d

2
1−w
ij

∑c
k=1 d

2
1−w
kj

and thus for w = 2: uij =
d−2ij∑c
k=1 d

−2
kj

.

This rule is fairly intuitive, as it updates the membership degrees according to the

relative inverse squared distances of the data points to the cluster centers.

In order to derive the update rule for the cluster centers, we need to know the

(squared) distances d2ij. The most common choice is the (squared) Euclidean distance,

that is, d2ij = (x⃗j − c⃗i)⊤(x⃗j − c⃗i). With this choice, we can easily derive the update

rule for the cluster centers, namely by exploiting that a necessary condition for a

minimum of the objective function J is that the partial derivatives w.r.t. the cluster

centers vanish. Therefore we have ∀k; 1 ≤ k ≤ c ∶

∇⃗ckJ(𝐗,𝐂,𝐔) = ∇⃗ck

c∑
i=1

n∑
j=1

uwij (x⃗j − c⃗i)⊤(x⃗j − c⃗i)

= −2
n∑
j=1

uwij (x⃗j − c⃗i)
!
= 0.

Fig. 1 “Influence weight”
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It follows immediately ∀i; 1 ≤ i ≤ c ∶

c⃗i =

∑n
j=1 u

w
ij x⃗j∑n

j=1 u
w
ij

.

For the topic of this paper it is important to note that this update rule draws on the

transformed membership degrees uwij rather than on uij directly. As a consequence

the effective “influence weight” of a data point on the cluster parameters is not 1 (as

one may be led to believe by the constraints ∀j; 1 ≤ j ≤ n ∶
∑c

i=1 uij = 1), but rather

𝛼j =
∑c

i=1 u
w
ij . It is 𝛼j = 1 only if the data point x⃗j coincides with a cluster center (or

if w → 1); otherwise it is 𝛼j < 1.

As an illustration, Fig. 1 shows, for c = 2 clusters, the influence weight of a data

point lying on a straight line connecting the two cluster centers: one cluster center is

at the left border of the diagram, the other at the right border. Clearly, for a fuzzifier

w > 1 the total influence weight 𝛼j =
∑c

i=1 u
w
ij of a data point with a less ambiguous

assignment (that is, close to the left or right border of the diagram) is higher than

that of a more ambiguously assigned data point (in the middle of the diagram). Also,

this influence weight is the lower, the larger the fuzzifier. The minimum influence

weight is always obtained for equal distances (and thus equal membership degrees

uij = 1∕c) to all c clusters. In this case the influence weight of the data point is

𝛼 =
∑c

i=1(1∕c)
w = c ⋅ c−w = c1−w.

Note that a unit data point weight is obtained only at the cluster centers or for the

limiting case of crisp clustering (that is, for w → 1). This distinguishes fuzzy cluster-

ing from classical (crisp) clustering, where each data point has a unit influence (on

exactly one cluster). It also distinguishes the membership transformation approach to

fuzzy clustering from an approach that relies on membership regularization, since in

the latter the update rule for the cluster centers refers to untransformed membership

degrees (see, for instance, [31]), thus endowing each data point with a unit effective

influence weight.

Due to the reduced influence weight that ambiguously assigned data points receive

in the membership transformation approach, the locations of the cluster centers

outlier

center with outlier
center without outlier

outlier

center with outlier
center without outlier

Fig. 2 Effect of an outlier on the location of a cluster center that minimizes the sum of the squared

(left) and unsquared Euclidean distances (right)
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depend more strongly on those data points that are “typical” for the clusters. This

effect can be desirable and is very much in the spirit of, for instance, robust regres-

sion techniques, in which data points also receive a lower weight if they are not

fitted well by the regression function. This connection to robust statistical methods

was explored in more detail, for example, in [34, 35].

Despite this inherent robustness of fuzzy clustering, the influence of noisy data

points and outliers on the clustering result can still be too strong to yield sufficiently

good clustering results. A core reason for this is that the standard objective function

is defined in terms of sums of squared Euclidean distances. Due to this squaring

of distances, outliers can have an overly strong influence on the cluster parameters.

This is illustrated in Fig. 2 on the left, which shows six data points forming a cluster

(light gray circles at the left bottom) and one outlier (dark gray circle at the top

right). Computing the mean vector of the six data points forming the cluster—that

is, computing the point that minimizes the sum of the squared Euclidean distances to

the data points—yields a center vector that lies, as one would expect, in the middle

of this group of data points (lower left cross). However, if the outlier is included in

this mean computation, the cluster center is strongly pulled out of the cloud of the six

data points towards the outlier. The reason is, of course, that the large distance to the

outlier becomes even bigger by squaring and thus dominates the smaller (squared)

distances to the other six data points, producing an undesirable result.

Summarizing our discussion, we see that we can try to tackle noise and outliers in

fuzzy clustering in essentially two ways: (1) we can try to reduce the influence weight

of atypical data points even further than the membership transformation already does

(approaches based on this idea are studied in Sects. 3 to 6) or (2) we can change

or transform the distance measure in the objective function to reduce or eliminate

the deteriorating effect of the squared distances (approaches based on this idea are

studied in Sects. 7 and 8).

3 Noise Clustering

The best known and most popular approach to handle noise and outliers in fuzzy

clustering is so-called noise clustering, which was first proposed in [8], but received

attention only after it was independently developed again in [9]. The core idea of

this method is to introduce a pseudo-cluster, called the noise cluster, that has no

specific location, but rather the same distance 𝛿 from all data points in 𝐗. Thus data

points that are far away from the actual clusters (in particular: farther away than the

noise distance 𝛿), receive a high degree of membership to the noise cluster. As a

consequence, the influence of noisy data points and outliers on the parameters of the

actual clusters is reduced, since the membership degrees to the actual clusters now

sum to a value that is the smaller, the higher the degree of membership to the noise

cluster.
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Formally, this leads to the objective function [8, 9]

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij d
2
ij + 𝛿

2
n∑
j=1

uw0j,

where the index i = 0 refers to the noise cluster. Of course, the first set of constraints

now includes the noise cluster in the sum, that is, ∀j; 1 ≤ j ≤ n ∶
∑c

i=0 uij = 1. As a

consequence, even the untransformed membership degrees to the actual clusters do

not sum to 1 anymore, but only to 1 − u0j, where

∀j; 1 ≤ j ≤ n ∶ u0j =
𝛿

2
1−w

𝛿

2
1−w +

∑c
i=1 d

2
1−w
ij

is the degree of membership of the data point x⃗j to the noise cluster. Clearly, this

reduces the influence weight (in the sense of Sect. 2) of data points that are atypical

for the actual clusters and thus renders the result much more robust.

Of course, introducing a noise clusters raises the question of how to choose the

noise distance 𝛿. If 𝛿 is (too) small, a large portion of the data set will receive a high

degree of membership to the noise cluster, possibly rendering the majority of the

data points noise and outliers. On the other hand, if 𝛿 is chosen (too) large, member-

ship degrees to the noise cluster will remain small, possibly rendering its influence

negligible [36]. A proper choice depends on many aspects [37]: the amount of noise

present in the data set, the employed distance measure, the size of the feature space

(in terms of the range of possible values for the distance measure), the number c
of clusters to the found etc. In [9] it was suggested to compute the noise distance

(in each iteration) from the (unweighted) average distance of the data points to the

cluster prototypes as

𝛿

2 = 𝜅

nc

c∑
i=1

n∑
j=1

d2ij,

where 𝜅 is user-specified factor that becomes the actual parameter.

An alternative to this basic approach consist in choosing the noise distance as the

(average) “cluster radius” that is derived from the requirement that the sum of the

hypervolumes of the clusters (as computed with this cluster radius) should equal the

size of the feature space (derived, for example, from the extreme data points) [37].

A good value of the noise distance may also be determined by trying multiple values

for 𝛿 (starting at a large value and halving 𝛿 in each step), computing the fraction p of

data points that have their highest degree of membership to the noise cluster (and thus

may be considered as being assigned to the noise cluster), fitting the resulting points

(𝛿, p) with a Pareto-curve p = q𝛿−s and finding the point of this curve at which its
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slope is −1 [38]. Finally, a term may be added to the objective function that controls

what fraction of the data points can be expected to be noise or outliers, thus rendering

the method more robust against bad choices of the noise distance 𝛿 [36].

4 Data Point Weights

As we have seen in the preceding section, noise clustering relaxes the constraints

∀j; 1 ≤ j ≤ n ∶
∑c

i=1 uij = 1 somewhat by including the membership degree to the

noise cluster, due to which the membership degrees to the actual clusters can sum to

values less than 1. Alternatively, one may introduce an explicit data point weight and

adapt this weight in the optimization process [11], an approach which is also referred

to as outlier clustering. It permits that the membership degrees effectively sum to

values less than 1 (namely to the data point weights) for atypical data points, while

for very typical data points they may even sum to values larger than 1, endowing

them with a greater influence on the clusters.

Outlier clustering is based on the objective function [11]

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij
v𝜃j

d2ij,

where vj is the weight of the data point x⃗j and 𝜃 is a constant that acts on the data

point weights in an analogous way as the fuzzifier w acts on the membership degrees.

A typical choice is therefore 𝜃 = 2 (in analogy to the fuzzifier w).

To avoid the trivial solution in which all data point weights go to infinity and

thus the value of the objective function becomes zero, a constraint analogous to the

constraints of the membership degrees is introduced, namely [11]

n∑
j=1

vj = v.

With the natural choice v = n, the total weight n of the n data points is redistributed

to capture the typicality of the data points for the clusters. As an equally natural

alternative, one may choose v = n(1 − 𝜌), where 𝜌 is a user estimate of the fraction

of data points that are noise or outliers.

Note that the objective function contains (a function of) the reciprocal values

1∕vj of the data point weights, which produces exactly the desired effect: in order

to minimize the objective function, large membership degrees will have to be com-

bined with large data point weights and small membership degrees with small data

point weights. Note also that with this approach the optimization scheme has three

steps: (1) optimize the data point weights for fixed membership degrees and cluster

prototypes, (2) optimize the membership degrees for fixed data point weights and
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cluster prototypes, and finally (3) optimize the cluster prototypes for fixed data point

weights and membership degrees. Finally, note that for the last step the member-

ship degrees uij and the data point weights vj can be combined into membership

degrees ũmij = umij ∕v
𝜃

j , since both values are fixed in this step. As a consequence, the

update rules for the cluster parameters are not affected by using outlier clustering and

hence it can also be used, for example, with shape and size parameters for the clusters

(like, for instance, in [32, 33]) or other modifications of the cluster prototypes.

In order to derive the update rule for the data point weights vj, the same approach

is employed as it was demonstrated in Sect. 2 for the membership degrees. The con-

straint
∑n

j=1 vj = v is incorporated into the objective function with the help of a

Lagrange multiplier. Then the fact is exploited that at the minimum of the objective

function the partial derivatives w.r.t. the data point weights vj must vanish. In this

way we easily obtain [11] ∀j; i ≤ j ≤ n ∶

vj = v ⋅

(∑c
i=1 u

w
ij d

2
ij

) 1
𝜃+1

∑n
k=1

(∑c
i=1 u

w
ik d

2
ik
) 1
𝜃+1

,

which vanishes only if all clusters collapse to a single point. Using a threshold for

the data point weights vj one may finally identify data points as outliers.

5 Possibilistic Clustering

While the two approaches studied in Sects. 3 and 4 merely relax the constraints

∀j; 1 ≤ j ≤ n ∶
∑c

i=1 uij = 1, by (implicitly or explicitly) allowing the member-

ship degrees to sum to values less than 1 (because the membership degree to the

noise cluster is deducted or an adaptable data point weight is introduced), possi-
bilistic (fuzzy) clustering [12, 13] is more radical and abandons these constraints

altogether, allowing the membership degrees to sum to arbitrary values. However,

this permits the trivial solution ∀i; 1 ≤ i ≤ c ∶ ∀j; 1 ≤ j ≤ n ∶ uij = 0, which

obviously minimizes the objective function J(𝐗,𝐔,𝐂) = ∑c
i=1

∑n
j=1 u

w
ij d

2
ij, but, as is

equally obvious, is entirely useless.

To fix this problem, a term is added to the objective function that drives the mem-

bership degrees away from zero, leading to [12]

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij d
2
ij +

c∑
i=1

𝜂i

n∑
j=1

(1 − uij)w.

Here the 𝜂i are suitable positive numbers (one per cluster c⃗i, 1 ≤ i ≤ c) that determine

the (squared) distance at which the membership degree of a point to a cluster is 0.5.
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They are usually initialized, based on the result of a preceding run of standard fuzzy

clustering, as the average fuzzy intra-cluster distance

𝜂i =

∑n
j=1 u

w
ij d

2
ij∑n

j=1 u
w
ij

and may or may not be updated in each iteration of the optimization process [12].

The membership degrees are then computed as

uij =
(
1 +

(
d2ij∕𝜂i

) 1
w−1

)−1
.

It should be noted that the above objective function is truly optimized only if all clus-

ters are identical [39], because the missing constraints decouple the clusters (as can

be seen from the computation of the membership degrees). Possibilistic clustering

thus actually requires that the optimization process gets stuck in a local optimum

in order to yield useful results, which is a somewhat strange property. Although the

missing constraints certainly help dealing with outliers, this property limits the use-

fulness of a pure possibilistic approach, although the problem may be mitigated by

introducing cluster repulsion [39].

A first solution to this problem was suggested in [14], which combined pos-

sibilistic and standard fuzzy clustering, where the latter is sometimes also called

probabilistic fuzzy clustering, because of the formal resemblance of the member-

ship degrees of a data point to probabilities, due to the constraints ∀j; 1 ≤ j ≤ n ∶∑c
i=1 uij = 1. This approach works with the objective function

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

(uwij + v𝜅ij) d
2
ij,

with the usual constraint for the membership degrees uij, but the constraints ∀i; 1 ≤

i ≤ c ∶
∑n

j=1 vij = 1 for the possibilistic typicality values vij. However, it turns out

that the membership degrees dominate this approach and since the typicality values

depend on the number n of data points, they become very small for large data sets.

As an improvement, in [15, 16] the objective function

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

(auwij + bv𝜅ij) d
2
ij +

c∑
i=1

𝜂i

n∑
j=1

(1 − vij)𝜅

was proposed, which contains a second term that is characteristic for possibilistic

clustering. This leads to the usual (probabilistic) update rule for the membership

degrees uij, while the possibilistic typicality values are updated with
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vij =
(
1 +

(
bd2ij∕𝜂i

) 1
𝜅−1

)−1
,

that is, like the membership degrees in possibilistic fuzzy clustering.

A fundamentally different solution is the graded possibilistic approach presented

in [17], which allows for a smooth transition between possibilistic and probabilistic

fuzzy clustering. By drawing on an adequately relaxed form of the constraints ∀j; 1 ≤

j ≤ n ∶
∑c

i=1 uij = 1, data points can have a lower total influence weight (in the sense

of Sect. 2), but the cluster prototypes are still coupled and (thus) the trivial solution

(that is, ∀i, j ∶ uij = 0) is avoided.

The class of constraints suggested in [17] is ∀j; 1 ≤ j ≤ n ∶
∑c

i=1 u
[𝜉]
ij = 1, where

[𝜉] = [𝜉∗, 𝜉∗] is an interval variable, with the natural restrictions 0 ≤ 𝜉∗ ≤ 1 and 1 ≤

𝜉

∗
. These generalized constraints are satisfied if for each j there exists a value 𝜉j ∈ [𝜉]

such that
∑c

i=1 u
𝜉j
ij = 1. Note that standard probabilistic fuzzy clustering results as

a special case of this scheme for [𝜉] = [1, 1] and possibilistic fuzzy clustering for

[𝜉] = [0,∞]. Note also that we may choose 𝜉∗ = 𝛼 and 𝜉

∗ = 1
𝛼

with a single

parameter 𝛼 ∈ [0, 1] as a natural simplification.

With this approach the membership degrees are computed as uij = uij,◦∕𝜅j, where

uij,◦ is a “free” or “raw” or unnormalized membership degree, as it results from stan-

dard possibilistic fuzzy clustering (see above) and [17]

𝜅j =
⎧⎪⎨⎪⎩

(∑c
i=1 u

1∕𝛼
ij,◦

)
𝛼

if
∑c

i=1 u
1∕𝛼
ij,◦ > 1,(∑c

i=1 u
𝛼

ij,◦
)1∕𝛼

if
∑c

i=1 u
𝛼

ij,◦ < 1,
1 otherwise.

An extensive discussion of several formulations of this soft transition or graded pos-

sibilistic approach to fuzzy clustering can be found in [18].

6 Alternative Transformation

A disadvantage of the standard membership transformation approach to fuzzy clus-

tering, which relies on h(uij) = uwij (see Sect. 2), is that it always produces mem-

bership degrees. That is, regardless of how far away a data point is from a cluster

center, its membership degree never vanishes. This is one of the core reasons for the

negative influence of noise and outliers on fuzzy clustering results.

In order to allow some membership degrees to be zero, an alternative membership

transformation was suggested in [19]: h(uij) = 𝛼u2ij + (1 − 𝛼)uij, 𝛼 ∈ (0, 1], or, with

a more easily interpretable parametrization, h(uij) =
1−𝛽
1+𝛽 u

2
ij +

2𝛽
1+𝛽 uij, 𝛽 ∈ [0, 1). It

relies on the standard transformation h(uij) = u2ij and mixes it with the identity to

avoid a vanishing derivative at zero. The parameter 𝛽 is, for two clusters, the ratio
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of the smaller to the larger squared distance, at and below which we get a crisp

assignment [19]. It therefore takes the place of the fuzzifier w: the smaller 𝛽, the

softer the boundaries between the clusters.

The update rule for the membership degrees is derived in essentially the same

way as for h(uij) = uwij , although one has to pay attention to the fact that crisp assign-

ments are now possible and thus some membership degrees may vanish. The detailed

derivation, which we omit here, can be found in [19, 26]. It yields

uij =
u′ij∑c
k=1 u

′
kj

with u′ij = max
{
0, d−2ij − 𝛽

1 + 𝛽(cj − 1)

cj∑
k=1

d−2
𝜍(k)j

}
,

where 𝜍 ∶ {1,… , c} → {1,… c} is a mapping function for the cluster indices such

that ∀i; 1 ≤ i < c ∶ d
𝜍(i)j ≤ d

𝜍(i+1)j (that is, 𝜍 sorts the distances) and

cj = max
{
k
|||| d

−2
𝜍(k)j >

𝛽

1 + 𝛽(k − 1)

k∑
i=1

d−2
𝜍(i)j

}

is the number of clusters to which the data point xj has a non-vanishing membership.

This update rule is fairly interpretable, as it still assigns membership degrees essen-

tially according to the relative inverse squared distances to the clusters, but subtracts

an offset from them, which makes crisp assignments possible.

7 Unsquared Distances

Up to now we considered how fuzzy clustering can be made more robust by changing

the way in which data points are assigned to the clusters. Now we turn to the more

fundamental approach of changing how distances between the data points and the

clusters are measured.
1

As explained in Sect. 2, one of the core reasons for outliers

having a strong influence on the cluster parameters is the use of squared Euclidean

distances. If we used unsquared Euclidean distances instead, the clustering algo-

rithm would become much more robust w.r.t. noise and outliers. This can be seen

clearly in the right diagram of Fig. 2: the outlier in the top right of the diagram has a

much weaker influence on the cluster center if it is computed as the point that mini-

mizes the sum of the unsquared Euclidean distances to the data points. Although the

center moves if the outlier is included in the computations, it stays much closer to

the center computed without the outlier and remains inside the group of data points

forming the cluster.

1
Note that this approach is not restricted to fuzzy clustering, but can be applied for any clustering

scheme, including classical c-means clustering.
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However, a disadvantage of unsquared Euclidean distances is that the standard

approach of finding the cluster update rules as it was reviewed in Sect. 2 becomes

problematic, since the square is essential for obtaining (simple) derivatives. Several

solutions have been suggested to solve or circumvent this problem. In the first place,

one may rely on a scheme as it was introduced for hard clustering with the c-medoids

algorithm [40]: instead of computing c cluster centers in the data space that minimize

the sum of the distances, one selects those c data points that have this property. This

is achieved by starting with a random selection of c data points as the initial cluster

centers and assigning, as in c-means clustering, each data point to the center that

is closest to it. Then it is tried to improve each cluster center in turn by replacing

it with a data point that is not currently a cluster center. The best replacement is

chosen and then another replacement is sought for improvement. The process stops

if no replacement of a cluster center reduces the sum of unsquared distances to the

data points.

This c-medoids approach has been transferred to fuzzy clustering, for example, in

[41] under the name “relational fuzzy c-means clustering” (RFCM) and in [3] under

the name FANNY (Fuzzy Analysis). The difference between the two approaches

consists merely in the fuzzifier used, which is fixed to 2 in FANNY, but can take any

value greater than 1 in RFCM. An efficient version for large data sets was proposed

in [42]. A combination of this scheme with the noise clustering approach studied in

Sect. 3 was presented in [43].

The restriction that in the c-medoids approach only data points can become cluster

centers can be removed by using so-called c-medians clustering [2]. Again, however,

the problem consists in finding the c (geometric) medians that minimize the sum of

the distances to the data points. This is easy only if instead of the Euclidean distance

another member of the Minkowski family of distance functions, namely the L1 dis-

tance, is used: dij =
∑m

k=1 |cik − xjk|. In this case the medians can be determined

separately in each of the m dimensions of the data space, reducing the problem to

trivial statistics in one dimension.
2

For any other member Lp, p ≥ 1, of the Minkowski family, an iterative majoriza-

tion scheme was suggested in [22]. This extends the core idea of [21], which intro-

duced an iterative majorization scheme for squared Minkowski distances with 1 ≤

p ≤ 2, after the special cases of the L1 distance and the L∞ distance had been stud-

ied, for example, in [20] and [44]. The approach in [22] is even more general than

merely allowing unsquared distances from the Minkowski family. Rather it defines

the objective function as [22]

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij d
2𝜆
ij,p with d2𝜆ij,p =

( m∑
k=1

|cik − xjk|p
)2𝜆

p
,

2
Note that computing the membership degrees remains unchanged, regardless of the distance mea-

sure and whether it is squared or not, because for this computation the cluster prototypes are fixed

and thus the distances are effectively constants.
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where p ≥ 1 is the parameter that selects the member of the Minkowski family of

distance functions and the parameter 𝜆, 0 ≤ 𝜆 ≤ 1, allows to make the clustering

algorithm robust by choosing a small value for 𝜆. For example, p = 2 and 𝜆 = 1
2

specify the most interesting case of unsquared Euclidean distances.

Intuitively, the iterative majorization procedure consists in finding, for the current

state of the cluster prototypes, a sufficiently simple auxiliary function majorizing the

actual objective function. That is, this auxiliary function touches the objective func-

tion at the current cluster prototypes and is nowhere smaller than the objective func-

tion. Furthermore, it should be easy to find the optimum of this majorizing function,

so that one can jump to this optimum in a single step, obtaining new cluster proto-

types. Then a new majorizing function is constructed for the new prototypes and the

process is iterated until convergence. Presenting mathematical details of this scheme

is beyond of the scope of this paper, though. An interested reader is referred to [22],

which provides an extensive treatment.

8 Transformed Distances

Instead of using one of the approaches discussed in the preceding section, one may

also stick with the (squared or unsquared) Euclidean distance and modify the dis-

tance computation or transform the distance measure before computing the mem-

bership degrees to increase robustness. One of the most straightforward approaches

in this direction is to use an 𝜀-insensitive distance function [24]. It contains the c-

medians approach that was mentioned in the preceding section as a special case (for

𝜀 = 0), because it employs the objective function [24]

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij dij,𝜀 with dij,𝜀 =
p∑

k=1
max{0, |xjk − cik| − 𝜀},

where 𝜀 is the user-specified insensitivity parameter. The update rules for the mem-

bership degrees and the cluster centers can be derived in a fairly standard fash-

ion from this objective function (using Lagrange multipliers to incorporate the

constraints and partial derivatives), but as the result is mathematically somewhat

involved, we do not reproduce it here, but refer an interested reader to [24].

Note that the idea of an 𝜀-insensitive distance function is essentially to give a

larger weight to typical data points, since the points in the 𝜀-vicinity of a cluster

center are assigned crisply (i.e. uij = 1) to this cluster center, unless such a data

point has a vanishing 𝜀-insensitive distance from multiple cluster centers, in which

case equal membership degrees to all of these clusters are chosen. Together with the

employed unsquared Manhattan distance, this considerably increases the robustness

of the algorithm w.r.t. noise and outliers. This effect is particularly pronounced if a

larger fuzzifier is employed (compare Fig. 1, even though this figure refers to squared

Euclidean distances).
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A more general alternative consist in exploiting the idea of robust estimators

(especially M-estimators, cf. [45]) as in [25], which uses the objective function

J(𝐗,𝐔,𝐂) =
c∑

i=1

n∑
j=1

uwij 𝜌i(dij),

where the 𝜌i, 1 ≤ i ≤ c, are robust symmetric positive definite functions having

their minimum at 0 (with 𝜌i(dij) = dwij as a special case). In [25] the same function 𝜌

is used for all clusters, which is derived from Tukey’s bisquare function [45]. This

leads to update rules for the membership degrees, in which merely the distances are

replaced by 𝜌(dij), while the cluster centers are updated with

c⃗i =

∑n
j=1 u

w
ij fijx⃗j∑n

j=1 u
w
ij fij

where fij =
d𝜌(dij)

d dij
.

An even more general, but closely related approach is the alternating cluster esti-
mation (ACE) scheme that was proposed in [23] (see also [4]). The idea of this

approach is to abandon the requirement of an objective function that is to be opti-

mized and from which the update rules can be derived. Rather the alternating opti-

mization scheme is taken as the core algorithmic component, for which plausible

update rules are chosen for the two steps of recomputing the membership degrees

and recomputing the cluster parameters.

In its most common form, such an approach first transform the distances dij with

a radial function r ∶ ℝ → [0, 1] to obtain “free” or “raw” membership degrees

r(dij) to the clusters. These raw membership degrees may then be normalized using,

for instance, the constraints ∀j; 1 ≤ j ≤ n ∶
∑c

i=1 uij = 1. Typical choices for the

radial functions (the name of which stems from the fact that they are defined on a

ray—latin: radius—from the cluster center), are shown in Fig. 3. Especially those

radial functions that have a finite support (that is, for which exists x0 ∈ ℝ+ with

∀x > x0 ∶ r(x0) = 0) are well suited for handling noise and outliers, because data

points with a distance outside the support of the radial function have a vanishing

influence on the corresponding cluster.

x

1

σ

triangular

x

1

σ

cosine
down to 0

x

1

σ

Cauchy

x

1

σ

Gauss

Fig. 3 Radial functions that may be used in alternating cluster estimation (ACE) [23]
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The update rules for this scheme are simply (assuming merely cluster centers)

uij =
r(dij)∑c
k=1 r(dkj)

and c⃗i =

∑n
j=1 u

w
ij x⃗j∑n

j=1 u
w
ij

.

Generally, these update rules cannot be derived from an objective function (as

shown in Sect. 2 for the standard case), but are merely transferred from the standard

approach. It should be noted, though, that for certain radial functions, for example,

the (generalized) Gaussian and the Cauchy function

rGauss(x) = e−
1
2 r

a
and rCauchy(x) =

1
xa + b

,

where a and b are parameters to be specified by a user, a formulation with the help of

an objective function is possible, so that the needed update rules can be obtained in

the usual way (using Lagrange multipliers to incorporate the constraints and setting

partial derivatives equal to 0, see [26] for details).

A noteworthy alternative, which also relies on an ACE scheme instead of deriving

the update equations for the membership degrees and cluster parameters from an

objective function, is to compute the membership degrees as uij = ((maxk dik) −
dij)∕maxk dik [46]. In this way the degree of membership of the data point that is

farthest from a cluster center always vanishes, which has the additional advantage

that it renders the membership degrees independent of the scale of the data set. Note

that it is closely related to a possibilistic approach, because it is usually not ∀j; 1 ≤

j ≤ n ∶
∑c

i=1 uij = 1.

9 Summary

In this paper we reviewed several approaches to make fuzzy clustering (even) more

robust against noise and outliers. The studied approaches fall into two categories:

(1) reduce the “influence weight” of atypical data points and outliers on the cluster

parameters by changing how membership degrees are computed from the distances,

and (2) change the distance function or transform it before the membership com-

putation in order to reduce the degrees of memberships of atypical data points and

outliers. Approaches in the former category are usually easier to handle, because

in them the update rules are fairly easily obtained from an objective function using

standard tools. Changing the distance measure causes more problems in this respect

and thus often either a majorization approach has to be called upon or the rooting

in an objective function is abandoned as in alternating cluster estimation (ACE).

However, all of these approaches have the desired effect of making fuzzy cluster-

ing (even) more robust. Our personal favorites are noise clustering (see Sect. 3) and

using an alternative membership transformation (see Sect. 6). However, this should

not be interpreted as a recommendation against any of the other approaches.
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A Fuzzy-Based Approach to Survival Data
Mining

Mark Last and Hezi Halpert

Abstract Traditional data mining algorithms assume that all data on a given object
becomes available simultaneously (e.g., by accessing the object record in a data-
base). However, certain real-world applications, known as survival analysis, or
event history analysis (EHA), deal with monitoring specific objects, such as medical
patients, in the course of their lifetime. The data streams produced by such appli-
cations contain various events related to the monitored objects. When we observe
an infinite stream of events, at each point in time (the “cut-off point”), some of the
monitored entities are “right-censored”, since they have not experienced the event
of interest yet and we do not know when the event will occur in the future. In
snapshot monitoring, the data stream is observed as a sequence of periodic snap-
shots. Given each snapshot, we are interested to estimate the probability of a critical
event (e.g., patient death or equipment failure) as a function of time for every
monitored object. In this research, we use fuzzy class label adjustment so that
standard classification algorithms can seamlessly handle a snapshot stream of both
censored and non-censored data. The objective is to provide reasonably accurate
predictions after observing relatively few snapshots of the data stream and to
improve the classification performance with additional information obtained from
each incoming snapshot. The proposed fuzzy-based methodology is evaluated on
real-world snapshot streams from two different domains of survival analysis.

1 Introduction

Survival analysis, or event history analysis (EHA), deals with monitoring specific
objects/entities in the course of their lifetime [1]. The data streams produced by the
monitored objects contain various events that occur to those objects. In survival
analysis, we are usually interested in estimating the amount of time before the
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occurrence of an event or in the probability of event occurrence during certain
period. The following are some common applications of survival/event history
analysis:

• Health Care. The objects are patients who underwent a medical procedure (like
surgery) and the event of interest may be disease recurrence or patient death
within a certain follow-up period.

• Warranty Management. The objects are products and the event of interest is a
product failure during its warranty period.

• Customer Retention. The objects are service customers and the event of interest
is customer churn.

Since each monitored object is typically described by a set of features (e.g.,
clinical variables in case of a patient), the problem of estimating the time to event
occurrence may be defined as a regression task. Similarly, the problem of pre-
dicting the object survival (non-occurrence of an event) within a pre-defined
follow-up period (e.g., product warranty period) may be considered a classification
task with two possible outcomes – “survived” and “failed”. To induce a regression
or a classification model, we need a training set of objects with a known value of
the dependent variable or the class label, respectively. In snapshot monitoring, such
a training set may be obtained every time we take a “snapshot” of a data stream
produced by a set of monitored objects, which may be continuously updated by new
objects entering the observation process. The problem is that in each snapshot,
some objects may not have experienced the event of interest or completed the
follow-up period until the time of the snapshot (the “cut-off point”). These
incompletely observed objects are termed “right-censored”, since their time to event
is longer than the time to the current snapshot but we do not know whether they will
experience the event before the end of their follow-up period. On the other hand, we
do know how long these unlabeled objects have survived from the beginning of
their follow-up period (called the “birth event”) to the time of the current snapshot.

In this chapter, we focus on the classification task in snapshot streams, where
each snapshot may contain both censored and non-censored observations. The
proposed CENSMINER (CENsored data Stream MINing) algorithm uses a fuzzy
class label adjustment [2] so that standard classification algorithms can be trained
on all objects observed in each snapshot rather than just the objects with a known
label. The CENSMINER objective is to provide reasonably accurate predictions
after observing the first few snapshots of a data stream and to improve the classi-
fication performance with additional labeled objects observed in each incoming
snapshot.

The rest of this chapter is organized as follows. Section 2 discusses the related
work on survival analysis and mining censored data. The CENSMINER method-
ology for mining censored data streams is introduced in Sect. 3. In Sect. 4, we
evaluate the effectiveness of the proposed methodology on two real-world snapshot
streams from the warranty and the medical domains, respectively. Section 5 pre-
sents some conclusions and directions for future research.
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2 Related Work

2.1 Survival Analysis

Moeschberger and Klein in [3] review the field of survival analysis and its rela-
tionship to censored data. Traditionally, examples of survival data come from the
medical domain, where the event of interest is usually a disease recurrence or a
patient’s death. An event of interest may also be a positive event, such as a full
recovery from some disease, conception, smoking cessation, and so forth. Usually,
the event of interest is related to a specific object (e.g., a patient).

The opposite of the death event of an object in survival analysis is the birth
event. The birth event of an object denotes the time point when the object starts
being monitored. For example, in the medical field, the birth event may represent
the starting point of a particular treatment. In warranty data, the birth event is
usually the sale event, which indicates the beginning of the product usage.

The term follow-up period, or the prediction period, is used to denote the period
for which the survival probability is of interest, such as the warranty period in
product warranty management. The term cut-off point represents the time point
when the monitoring of all objects has been stopped. Usually, this point is the end
of the experiment. A continuous data stream may be sampled periodically, resulting
in multiple cut-off points, each representing a new snapshot.

The snapshot monitoring approach is more suitable for cases where the change
rate of the monitored stream is relatively slow. This allows periodically taking
discrete samples (“snapshots”) of the data stream and producing a prediction model
from each incoming snapshot. Whenever there is no high rate of changes in the set
of monitored objects, the periodic, snapshot monitoring is preferable over the
continuous, event-driven monitoring, which requires more computational resources.

Additionally, for each sampled object, the time elapsed from its birth event to the
event of death or to the cut-off point is defined as the object’s lifetime (or its age).
For example, in warranty data, the lifetime of a product is the usage time elapsed
since it has been sold.

Figure 1 describes these concepts and their relations.

Two basic concepts in the survival analysis are the survival function and the
hazard function. Assuming X is a nonnegative random variable from a

Fig. 1 Terms in survival analysis
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homogeneous population that represents the age of an individual, the survival
function is the probability of an individual to survive beyond time x. The hazard
rate (or hazard/risk function) is the conditional probability that an individual of age
x will experience the event in the next instant after x, given that the event has not
occurred until x. When X is a discrete random variable, the following equation
describes the relationship between these two functions:

S xð Þ= ∏
xj ≤ x

1− λ xj
� �� �

where S(x) is the survival function, the probability of an ndividual of age x to
survive, and λ xj

� �
is the hazard function, the “approximate” probability of an

individual of age xj to experience the event in the next instant.

2.2 Survival Probability Estimation from Censored Data

Censored data is very common in the survival analysis, especially when
inter-snapshot times tend to be significantly shorter than the overall follow-up
period. Thus, a problem of censored data frequently arises in clinical trials where a
substantial fraction of surviving participants may be removed from the study to
reduce the monitoring costs. Patients with incomplete outcome information are
considered censored or, more precisely, right-censored, since we only know that the
actual time-to-event for that participant exceeds the duration of their follow-up [4].

2.2.1 The Kaplan–Meier Estimator

The Kaplan-Meier method (also called the product-limit estimator) is aimed at
estimating the survival function, i.e., the probability for an individual in a popu-
lation to survive beyond a specific time. This method was first proposed by Böhmer
in 1912 and rediscovered by Kaplan and Meier in 1958 [5]. The Kaplan-Meier
method provides a non-parametric estimation from incomplete observations. The
term observed lifetime refers to the time interval from the birth event of each object
(e.g., a surgery or a product purchase) to its failure or “death” event. The survival
probability is estimated separately for each observed lifetime value in the dataset. It
is also assumed that the probability of surviving each lifetime ti is statistically
independent of every other lifetime. The Kaplan-Meier estimate of the survival
curve S ̂ Tð Þ is then:

S ̂ Tð Þ≈ ∏
ti ≤ T

n tið Þ− di
n tið Þ
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where n tið Þ is the number of objects “at risk” (i.e., not lost through censoring or
failure) at time ti and di is the number of objects which failed at time ti. Usually
di = 1, since ti is chosen as the observed time to failure.

Costella [6] points out some of the disadvantages of the Kaplan-Meier method:

1. The “danger times” defined by the failure occurrence times and represented by
vertical drops in the Kaplan-Meier estimation seem “unnatural” compared to the
original survival curve. The actual survival curve is probably continuous rather
than discrete and is unlikely to decrease locally at those particular failure
occurrence times.

2. With the advance of the monitoring time, there are fewer and fewer remaining
objects at risk (due to censoring and failures). As a result, the impact of a single
failure seems unjustifiably magnified if it occurs at a later time.

3. If the last remaining object at risk fails, the Kaplan-Meier estimate of S(t) drops
to zero and does not generally reflect the original survival function.

4. For each censored record, the amount of survival time from the previous failure
to the time of censoring is ignored.

In [6], Costella suggests an alternative method to the Kaplan-Meier method,
which offers a better visual representation of survival curves. Another solution for
the fourth problem above (i.e., ignoring the amount of the survival time from the
previous failure to the time of censoring) is to weigh the censored records according
to their relative time of survival. This way the information is not discarded and can
be taken into account when calculating the survival (or failure) probability. This
approach was used in our previous work with warranty data [7].

2.2.2 The Cox Proportional Hazard Models

The Kaplan-Meier estimation is a simple concept: estimate the survival curve when
there are no other covariates than the usage factor (e.g., patient age or vehicle
mileage). Other models are designed to handle covariates as well. D. R. Cox [8]
introduced the semi-parametric proportional hazard model, a continuous statistical
model for time-to-event data. In his approach, the model’s covariates are multi-
plicatively related to the hazard function such that the effect of a unit increase in a
covariate is multiplicative with respect to the hazard rate.

The Cox model contains two different parts: the underlying hazard function
denoted h0 tð Þ (also called the baseline hazard function), which describes how the
hazard (e.g., failure rate) changes over time when setting the covariate values to zero
and the other covariate parameters, which describe how the hazard varies in response
to explanatory covariates. The general form of the Cox model is as follows:
h tjxð Þ= h0 tð Þ * expðxβÞ, where β is the parameter vector. The Cox model is
semi-parametric, since its baseline hazard function h0 tð Þ can be modeled by any
probability distribution function, such as the Gompertz andWeibull distributions (the
nonparametric part), whereas the covariate coefficients must be estimated using the
partial maximum likelihood (the parametric part).
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2.3 Mining Censored Data

2.3.1 Static Datasets

Segal [9] introduced a new approach to splitting criterion in regression trees
induced from datasets with censored target variables. In each node, the
Kaplan-Meier (i.e., survival curve estimation for censored data, see Sect. 2.2.1
above) and its median are first stored. Then, all predictive attributes and all splitting
points within an attribute are considered, subject to a minimal ratio of uncensored to
censored records in each child node. The best split is the attribute and the splitting
point, which maximize the between-node separation. In addition to the regression
tree induction itself, this method also has the advantage of presenting informative
characteristics for each terminal node, such as the estimated Kaplan-Meier survival
curve and the Kaplan-Meier median [9].

Zupan et al. [10] deal with predicting the probability of prostate cancer recur-
rence in patients after prostate removal. It is assumed that if a prostate cancer patient
who has undergone a prostatectomy remains disease free for at least 7 years then the
cancer has been successfully cured. In this case, the censored data comes from
non-recurring patients who have been monitored for less than 7 years and whose
outcome at the end of the 7-year period remains uncertain.

Zupan’s suggested approach is to split the prostate cancer survival data into three
groups: patients who experienced a recurrence of cancer (i.e., the outcome is known
to be “recurrence”), patients who did not experience a recurrence and were mon-
itored for more than 7 years after their operation (i.e., the outcome is known to be
“non-recurrence”), and patients who have not experienced a recurrence but have
been monitored for less than 7 years (the outcome is censored). For the third group,
instead of a single outcome, two outcomes are considered: recurrence and
non-recurrence. Each outcome is weighted using the Kaplan-Meier method, which
estimates the probability of non-recurrence at a particular follow-up time based on
all patient groups. For a patient’s follow-up time Tf from the third group, the weight
of the non-recurrence outcome is calculated by the following formula, where
P non− recurrence tð Þð Þ is the Kaplan-Meier estimation for non-recurrence proba-
bility at a time t:

Prf Tf
� �

=
P non− recurrence 7 yearsð Þð Þ
P non− recurrence Tf

� �� �
The weight of the recurrence outcome is: Pr =1−Prf .
Since most machine-learning techniques cannot be trained on probabilistic

outcomes, two copies of patient’s record are created, one weighted with Pr values
and the other one with Prf values. The probability of class C (recurrence or

non-recurrence) is then denoted by: P Cð Þ= ∑E ∈C weight Eð Þ
∑E weight Eð Þ , where E is an individual
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example from the “new” patient’s record. A recurrence probability of higher than
0.5 is considered as a prediction for a patient to recur.

Zupan et al. have used three methods for constructing predictive models: the
Naive Bayes Classifier, the decision tree induction, and the Cox proportional
hazards model (see Sect. 2.2.2 above). The evaluation was performed using strat-
ified 10-fold cross-validation on the basis of classification accuracy, specificity and
sensitivity, correlation of predicted probability and probability estimated by the
Kaplan-Meier method, and the concordance index (i.e., the area under the Receiver
Operating Characteristic (ROC) curve). The non-recurring patients with incomplete
follow-ups in the test set were weighted by the Kaplan–Meier estimates calculated
from the training sets. The Naive Bayes and the Cox proportional hazards models
seemed to perform better than decision trees, although the differences were not
significant. The results did not include any comparison of the proposed weighting
technique to training on non-censored records only. Testing results on the actual
labels of non-censored records were not reported either.

2.3.2 Data Streams

A recent paper by [11] considers event history analysis in the data stream setting.
They assume a fixed set of data streams; each corresponding to an object charac-
terized by a feature vector (a vector of covariates). Each stream produces a sequence
of recurrent events related to a specific object. The authors of [11] introduce an
incremental, adaptive version of the Cox proportional hazard model (see
Sect. 2.2.2), which re-estimates the covariate coefficients of the hazard function at
every discrete point in time by averaging over all sliding time windows covering
that point. The sliding window has a fixed length and it is shifted by one unit at a
time. In each window, the maximum likelihood estimation of the covariate coef-
ficients in each sequence is based on the events observed in that sequence and thus
it ignores the right censoring of the next event, which has not been observed yet.

The continuous monitoring approach of [11] may be appropriate for high fre-
quency data streams of recurrent events, such as earthquakes or tweets. In [12], we
have proposed a snapshot monitoring approach for an infinite stream of “birth” and
“failure” (non-recurrent) events related to a set of objects. In each snapshot, some of
the monitored objects may be right-censored, since their “failure” event has not
been observed yet. Given a snapshot, we are interested to induce a classification
model from both censored and non-censored observations for predicting the sur-
vival of each object to the end of a pre-defined follow-up period. In the present
chapter, we describe in detail the survival analysis methodology initially introduced
by us in [12] and evaluate it on two real-world streams of survival data.
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3 The CENSMINER Methodology

3.1 Overview

The CENSMINER algorithm deals with a sequence of periodical snapshots from an
infinite stream of “birth” and “death/failure” events related to a set of monitored
objects. The snapshot frequency does not have to be fixed and the set of objects
under study may be dynamic as well. Two consecutive snapshots may differ in the
following aspects:

(1) New objects have entered the observation process (i.e., their “birth event” took
place between the snapshots). The new objects remain censored (more pre-
cisely, right-censored) as long as they cannot be labeled (cases 2 and 3 below).

(2) Some objects have survived the follow-up period (i.e., the end of their
follow-up period took place between the snapshots and no “failure event” was
observed before that time point). Such objects are assigned the crisp “survived”
label and become uncensored.

(3) Some objects have experienced a “failure event” between the snapshots. If the
event occurred before the end of their follow-up period, the object is assigned
the crisp “failed” label and becomes uncensored as well.

In each snapshot, the algorithm is aimed at predicting (or estimating the prob-
ability of) a “death event”, such as a disease recurrence in a patient or a technical
failure in a car, within a pre-defined follow-up period for all monitored objects
(entities), which are still censored and thus cannot be labeled. The
classification/probability estimation model induced in each snapshot can only be
evaluated on all objects that become uncensored between the current snapshot and
the next one (cases 2 and 3 above). We assume that the focus on these object
records as a testing set represents many real-world scenarios, such as evaluating the
outcome of a new clinical procedure or estimating the reliability of a new car
model, where we are interested in estimating the failure probability for the unla-
beled (i.e., censored) records after as few data snapshots as possible. The model
performance can be evaluated using various measures, such as the Area under ROC
curve (AUC), classification accuracy, classification sensitivity, etc.

Our fuzzy class label adjustment pre-processing strategy works as follows. Upon
arrival of a new data snapshot, the algorithm identifies all censored objects and
calculates their age value, i.e., the time since their “birth” event. Each censored
object creates two weighted records representing the two fuzzy labels (“survived”
and “failed”), respectively. The age value of the censored object is used to calculate
the weight of each record based on the Kaplan-Meier estimate [10]. Another pro-
cedure compares the current and the previous data snapshots, finds the records that
have become uncensored since the previous snapshot, and labels them with their
true (crisp) labels.

In general, any classification algorithm can be integrated with the proposed
methodology as long as it can process weighted data instances. The problem of
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learning from data instances, which are assigned fuzzy class labels, can be handled
by assuming different “label proportions” for each instance. This problem setting is
close to the tasks of unsupervised and semi-supervised learning, where only
unlabeled or partially labelled instances are given. The adaptation of a classification
algorithm to training instances with label proportions is not always trivial and it has
not gained much attention in the machine learning community. A similar problem
of learning a classifier from group probabilities is known as Multiple-Instance
Learning with Label Proportions (MIL-LP). Rueping, in [13], proposed an MIL-LP
algorithm based on SVR, a version of SVM for regression. Hernández, in [14],
proposed an adaptation of the Naive Bayes Classifier to the MIL-LP problem. In
some classification methods, the way of treating the weighted instances is
straightforward, namely, by replacing any reference to an instance, such as sum-
ming, multiplication, etc., by its weight. For example, in the C4.5 decision-tree
induction method, the entropy calculations regarding the splitting criteria of each
node include the summation of probabilities of a class C in the dataset. Usually, the
probabilities are calculated as the number of instances assigned the C label divided
by the number of all instances. However, in the presence of weighted instances,
these probabilities are calculated as the sum of weights of instances with the C label
divided by the sum of all instance weights.

Although the CENSMINER algorithm focuses on a classification task, it may be
easily adapted to the probability estimation task, as demonstrated in the warranty
use case below. Additionally, instead of a simple classification model, the algorithm
may use the probability estimation tree (PET) model [15], which can compute the
probability of each outcome. The decision whether to induce a classification model
or a probability estimation model is domain-dependent. In imbalanced domains,
such as warranty data of high quality products, a classification model would be
useless, as it will always predict a “survival”. A probability estimation model would
be more appropriate for such cases.

3.2 The CENSMINER Algorithm

3.2.1 The Notation

The CENSMINER algorithm uses the following notations:

i∈ ½1,∞Þ – a discrete index of each snapshot.
ti – The timing of a snapshot i.
Di – The set of records in a snapshot received at time ti. Each record x∈Di

contains the information known at the time of ti about the individual (object)
under study, such as a vehicle, a patient or a customer.
DS

i ,D
F
i – Two sets of weighted records representing the “survival” and the “fail-

ure” outcomes, respectively. Each weighted record is stored as a pair < x, w(x) >,
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where w(x) is the class membership value of an object record x∈Di in the
respective outcome.
Ci ⊆Di – The subset of censored records in Di, i.e., the records with unknown
outcome at the time ti.
NCi ⊆Di – The set of new uncensored records in snapshot i, i.e., the records that
were censored at time ti−1 and are no longer censored at time ti (i > 1).

In each snapshot i, every object record is either censored or non-censored.
Consequently, if we refer to the set of non-censored records in the first snapshot as
NC1, we get the following formula which mathematically defines the relationship
between the sets above:

Di = ⋃
j≤ i

NCj

 !
⋃Ci

This formula emphasizes the fact that every object record is represented in any
snapshot either by a censored record or by a record, which became uncensored in
one of the previous snapshots (including the latest one). The records that became
uncensored in the latest snapshot are used as a testing set for evaluating the per-
formance of the last model. It also means that every monitored object, excluding the
records that became uncensored in the first snapshot NC1, is used exactly once
during its lifetime for testing a classification model.

xτ – The censoring value (age) of x∈Di. For example, in warranty data, this is
the time elapsed (or the usage value) since vehicle x was sold. In churn prediction,
xτ is the time elapsed since customer x signed up for the service. In medical survival
analysis, xτ is the time elapsed since patient x experienced a medical procedure,
such as a surgery.

event(x) – The age or the usage value of x when it experienced the death/failure
event. For example, in vehicle warranty data, event(x) may contain the mileage of a
vehicle x at its first claim. In churn prediction, event(x) may contain the time until
the customer x churned. In medical survival analysis, event(x) may contain the time
until a patient x was diagnosed with a re-infection. For individuals who have not
experienced the event of interest yet, the event(x) value is null.

Mi – The classification/probability estimation model induced from the snapshot i.
Aci – The testing performance of the model Mi. The testing performance value
(e.g., classification accuracy, AUC, etc.) is calculated on the next snapshot (i.e.,
at the time ti+1) by testing the Mi model on the NCi+1 records described above.
W – The duration of the follow-up (prediction) period defined in Sect. 2.1 above.
We assume that this duration is fixed for all monitored objects disregarding the
time of their birth event.
A – The classification/probability estimation algorithm (e.g., C4.5 Decision
Tree) for inducing a classification model from each snapshot.
E – The evaluation measure (e.g., AUC) for testing the induced model on each
incoming snapshot.
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3.2.2 The Model Induction Process

The general input of the CENSMINER algorithm includes a “snapshot stream” – a
potentially infinite sequence of data snapshots. Each snapshot i consists of the
record set Di defined above where some of the records may be censored. A record
contains a list of attributes, which may be used as predictive features. In addition,
each record includes the xτ (the “age” of x) and the event(x) attributes defined
above. The value of event(x) may be null.

In addition, the algorithm has the following global parameters:

• W - the duration of the follow-up period
• A - the classification algorithm
• E - the evaluation measure

The algorithm flow is described below:
For each snapshot i:
Input:

Di – The new snapshot i.
Di−1 – The previous snapshot (for i > 1).
Mi−1 – The classification/probability estimation model induced from the pre-
vious snapshot Di−1 (for i > 1).

Output:

Aci−1 – The testing performance of the model Mi−1 on the new snapshot i
Mi – The classification model induced from the new snapshot i.

The algorithm:

1. Identify the subset of censored records Ci using censored_identification_pro-
cedure(Di,W)

2. Identify the subset of new uncensored records NCi using new_uncen-
sored_identification_procedure(Di,Di−1,W)

3. If (i > 1)then:

3:1. Calculate Aci−1 by applying Mi−1 on NCi

4. Induce a new prediction model Mi:

4:1. Calculate Si function, the survival curve estimation given the snapshot i,
using the Kaplan Meier estimate [5]:

Si Tð Þ= ∏
tj < T

n tj
� �

− dj
n tj
� �

Where Si(T) is the estimated probability of a monitored object to exceed the
lifetime T, n(tj) is the number of objects “at risk” (not lost through cen-
soring or failure) at time tj and dj is the number of objects which failed at
time tj. Usually dj = 1, since tj is chosen as the observed time to failure.
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4:2. Set SW = Si Wð Þ, the probability of an individual to survive for the duration
of the follow-up period W

4:3. Calculate the probabilities st xð Þ, st xð Þ of the two outcome classes for each
record x∈Di:

4:3:1. if x∈Ci (i.e., x is censored):

4:3:1:1. Find Si xð Þ, the probability of an object x to survive beyond
its age xτ

4:3:2. Set the total probability of the survival st xð Þ of an object x up to the
end of the follow-up period:

st xð Þ=
SW
Si xð Þ x∈Ci

0 x∉Ci and event xð Þ≠ null
1 else

8<
:

4:3:3. Set the total probability of failure st xð Þ of record x up to the end of
the prediction period: st xð Þ=1− st xð Þ

4:4. Initialize the two sets of weighted records: DS
i =∅ , DF

i =∅. DS
i and DF

i
store the “survival” and the “failure” records with their class membership
weights, respectively.

4:5. For each record x∈Di do:

4:5:1. Append x to the set of “survival” records:DS
i : =DS

i ∪ < x, st xð Þ>f g
4:5:2. Append x to the set of “failure” records:DF

j : =DF
j ∪ f< x, bstg xð Þ> g

4:6. Combine DS
i and DF

i into one weighted training dataset D
0
i : D

0
i =DS

i ∪ DF
i

4:7. Induce a new model Mi by applying the learning algorithm A to the set D
0
i

5. Return Mi – the classification/probability estimation model induced from the
records in snapshot i

censored_identification_procedure ðDi,WÞ
Input:

Di – The set of records in a snapshot received at time ti. Some of the records may
be censored.
W – The duration of the follow-up (prediction) period.

Algorithm:

1. Initialize the set of censored records: Ci =∅
2. For each record x∈Di do:

2:1. If event(x) is null and xτ < W;
Append x to the set of censored records: Ci: =Ci ∪ xf g

3. return Ci
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new_uncensored_identification_procedure ðDi,Di− 1Þ
Input:

Di – The set of records in a snapshot i.
Di−1 – The set of records in the previous snapshot i−1.

Algorithm:

1. If Di−1 is null (the first snapshot):

1:1. Return ∅

2. Otherwise:

2:1. Initialize the set of new uncensored records: NCi =∅.
2:2. For each record x∈Di do:

2:2:1. If x∈Ci− 1 and x∉Ci;
Append x to the set of new uncensored records: NCi: =NCi ∪ xf g

2:3. Return NCi

4 Empirical Evaluation

4.1 Experimental Settings

Our empirical evaluation is aimed at comparing the performance of the CENS-
MINER methodology, which involves the Kaplan-Meier estimation for the outcome
label of censored records, to a baseline approach, where the censored records are
completely discarded during the model induction process. Both approaches are
evaluated using a variety of standard classification algorithms.

4.1.1 Data Sources

In this chapter, we present the results from two real-world survival datasets rep-
resenting two different domains: warranty management and health care. The first
data set, the Vehicle Warranty Dataset, contains the warranty data of more than
200,000 vehicles of a given model sold in North America between the years 2008
and 2011 by a major automotive company. The second data set, the STD Dataset,
contains data collected from STD (Sexually Transmitted Diseases) patients, some of
whom were re-infected after a period of time. The dataset was downloaded from the
University of North Texas website.

Table 1 displays some characteristics of the datasets used in our experiments.
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4.1.2 Snapshot Simulation

Both datasets were originally obtained in the form of a single snapshot observed at
the end of the data collection period. In the pre-processing stage, we created several
snapshots from each dataset to emulate a real-world situation where data arrives as a
sequence of consecutive snapshots. For this purpose, we set fictitious snapshot
dates for each dataset. Then we created multiple samples of the original dataset,
each representing the event information, which was available on the date of a
particular snapshot. That is, an object ‘born’ after the snapshot date was removed
from the snapshot sample and each ‘failure’ event occurred after that date was
ignored. All object records associated with a given snapshot (both censored and
uncensored) were copied from the original dataset along with their attributes. In the
case of a ‘failed’ record, the event date was copied as well.

The snapshot arrival rate was set for each simulated data stream in accordance to
the nature of the relevant domain. For example, in the Vehicle Warranty Dataset,
the snapshots were created every 90 days (about three months), a reasonable period
to sample a dataset of 200,000 vehicles, which resulted in the total of 15 snapshots.
We assumed that three months is a sufficiently long period to expect a change in the
existing classification model. On the other hand, in the STD dataset, we simulated a
snapshot arrival rate of 305 days, which resulted in the total of 6 snapshots.

4.1.3 The Follow-up Period Duration

The duration of the follow-up (prediction) period was also chosen in order to
generate a real-world scenario of the relevant data stream. For the Vehicle Warranty
Dataset, four prediction periods were simulated: 365, 730, 1095, and 550 days. The
first three values represent one, two, and three years out of the three-year warranty
period, respectively, and they are reasonable choices to estimate the survival
probability. The value of 550 was chosen because it represents the median
time-to-failure in the Vehicle Warranty Dataset. For the STD Dataset, we simulated
a prediction period of 300 days, which was close to the average time to re-infection
in this data.

4.1.4 Performance Measures

The choice of the most appropriate performance measures for each data stream
depends on its class imbalance ratio. The Vehicle Warranty Dataset (with ∼4 % of
failures) is extremely imbalanced whereas the STD Dataset (with 45 % of
re-infected patients) is relatively balanced. The standard performance metrics (e.g.,
classification accuracy) are ineffective in the case of imbalanced classes because
they favor “majority rule” models like “a car under warranty never fails”. There-
fore, in our experiments with the Vehicle Warranty dataset, we use the AUC (Area
Under ROC curve) value instead of the standard accuracy metric.
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4.1.5 Experimental Environment

The experiments were run in the following environment: Windows7 Enterprise
SP1, Intel i5-2400 CPU 3.10 GHz with 4 GB RAM, and 32-bit architecture. The
classification models were induced and tested using a local extension of the MOA
environment, Version 2012.08.31 [16]. The MOA (Massive Online Analysis)
environment allows for the implementation and evaluation of learning algorithms
on evolving data streams. In particular, it allows for implementing and running
various classification algorithms. Some of these classification algorithms have been
implemented within the MOA environment, while others are available by inter-
facing with WEKA, the Waikato Environment for Knowledge Analysis [17]. The
interface with WEKA is particularly important for running standard classification
algorithms on the static training datasets extracted from each snapshot.

4.2 Vehicle Warranty Dataset Results

4.2.1 Data Description

The original dataset contains 204,708 records of vehicles of a given model sold in
North America (i.e., U.S.A and Canada) between April 2008 and December 2011.
Some of the vehicles had one or more warranty claims (e.g., failures) during this
time. We focused on 8,147 vehicles (∼4 % of the entire dataset) that have expe-
rienced a specific (battery) failure during their warranty period. The first claim was
recorded in September of 2008 and the last one in June 2011. Thus, the vehicle sale
date is considered the “birth event” and the first battery failure is considered the
“death event”. Recurrent battery failures in the same under-warranty vehicle were
ignored due to their extremely low incidence.

Each vehicle record is associated with a unique identification number and has
values for the following attributes:

1. Manufacturing date – The date when the vehicle was produced (a continuous
variable).

Table 1 Dataset characteristics

Characteristic Vehicle warranty data STD data

# of snapshots 15 6
Duration of the follow-up period (days) 365, 550, 730, 1095 300
Evaluation method AUC Accuracy
Imbalance ratio (%) 4/96 45/55
Missing values 11.70 % 0 %
Data size (total # of observed objects) 204,708 877
# of features (numeric, date, nominal) 3 (1, 1,1) 21 (3, 0, 18)
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2. Sale gap – A continuous non-negative variable representing the number of days
elapsed from the manufacturing time to the sale date.

3. Area of sale – A nominal variable representing the geographic area where the
vehicle was sold. This variable can take one of the following five values:
MIDWEST, SOUTH, WEST, NORTHEAST or CANADA. About 23 % of
vehicles are missing this value.

Each warranty claim record contains the following information recorded by the
service dealer:

1. Vehicle ID number.
2. Labor code (i.e., failure ID).
3. Job card date – The date when the vehicle failure was identified by the dealer.
4. Vehicle odometer mileage – The mileage value of the vehicle’s odometer at the

time of failure.

The pre-processing stage included the creation of snapshots from the initial
database in order to emulate a real-world situation where the data arrives in several
snapshots. The snapshot frequency was set to 90 days (about 3 months) beginning
on April 2008 (the first sale date in the database). In addition, the final snapshot date
was set to December 2011, the date of the last recorded claim in the dataset. We
have created 15 snapshots this way. Table 2 shows the characteristics of the 15
simulated snapshots. One can see that the total number of observed vehicles
increases over time as more vehicles are “born”, i.e., sold to the customers. In the
first few snapshots, the records of nearly all monitored vehicles are censored, since

Table 2 Characteristics of simulated snapshots in the vehicle warranty data stream

Snapshot
ID

Number of days since
the beginning of the
stream

Total number of
observed
vehicles

Number of censored vehicles
(prediction period = 365 days)

0 91 26 26
1 182 38,788 38,783
2 273 85,963 85,905
3 365 114,312 114,134
4 456 165,978 165,560
5 547 188,346 149,019
6 638 199,300 112,749
7 730 203,216 88,144
8 821 204,181 37,702
9 912 204,515 15,906
10 1,003 204,595 5,189
11 1,095 204,632 1,385
12 1,186 204,701 507
13 1,277 204,703 185
14 1,352 204,704 117
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there are still too new to experience a failure or to reach the end of the follow-up
period. However, after Snapshot 4, the number of censored records starts decreasing
as less vehicles of the specific model are sold whereas more and more vehicles
leave the monitoring process due to a “survival” or a “failure” outcome.

4.2.2 Summary of Results

Figures 2, 3 and 4 present the testing AUC results in each snapshot for prediction
periods of 365, 550, and 730 days, respectively. The results for the longest pre-
diction period of 1095 days (three years) are not shown here, since for this value, it
took almost the entire monitoring period to obtain a sufficient number of surviving
records in the testing set. All classification models were induced by the AdaBoost
with Decision Stump algorithm (a one-level decision tree presented in [18] and
wrapped by the AdaBoost [19]), which provided in this dataset higher AUC values
than several other popular classifiers such as Decision Tree, Decision Stump, and
Naïve Bayes Classifier (NBC). Each chart compares the baseline approach (using
uncensored records only) to the CENSMINER methodology, which utilizes the
Kaplan-Meier outcome estimation for censored records. Each chart also shows the

Fig. 2 Vehicle warranty data: prediction period = 365 Days

Fig. 3 Vehicle warranty data: prediction period = 550 Days
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weighted AUC values of both approaches, where the testing AUC of every snap-
shot is weighted by the amount of testing (new uncensored) records in that
snapshot.

For the three different prediction periods, the Total Weighted AUC values of the
proposed CENSMINER methodology are significantly higher than the results of
the baseline approach. More specifically, the CENSMINER has an advantage over
the baseline as long as the percentage of censored records in a snapshot is high.
When this percentage goes down, the difference between the two approaches
diminishes, since the Kaplan-Meier estimate is applied to much fewer records. In
addition, there is no difference between the approaches in the first few snapshots,
which still have not accumulated any “survived” records to induce a reliable
classification model. The number of such snapshots increases with an increase in
the duration of the follow-up period (compare Figs. 2 to 3 and Figs. 3 to 4), since it
takes more time for surviving vehicles to get a “survived” label. The low AUC
values in the last few snapshots, disregarding the follow-up duration, are explained
by the lack of testing records with the “failed” label in those snapshots. Thus, we
may conclude that the CENSMINER tends to reach better classification perfor-
mance than the baseline in snapshots having a significant amount of censored
records along with some uncensored records from both classes. In other snapshots,
it usually performs the same as the baseline.

4.3 STD Re-Infection Dataset Results

4.3.1 Data Description

The STD (Sexually Transmitted Diseases) dataset was taken from a collection of
survival datasets discussed in [3]. The collection is called KMsurv and it was
downloaded from the University of North Texas website for the purposes of sur-
vival analysis research. The direct link is http://rss.acs.unt.edu/Rdoc/library/

Fig. 4 Vehicle warranty data: prediction period = 730 Days
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KMsurv/data/std.txt. Unfortunately, this link has stopped being active at the time of
writing this chapter.

The raw data contains records of 877 patients diagnosed with STD. Each record
is characterized by 21 different features. Three features are continuous and the rest
are nominal, mostly binary. Each record has also a value for the binary target
variable “REINFECTION” which indicates whether the patient was eventually
diagnosed with re-infection of STD or not. In addition, each record has a value for
the numeric variable “TIME_TO_REINFECTION”, which contains the number of
days elapsed since the initial diagnosis. The actual dates of the initial diagnosis and
the re-infection (if occurred) are not included in the dataset.

To simulate the snapshot monitoring process, we randomly set the dates of the
initial diagnosis and the re-infection diagnosis (if occurred). We assumed the date of
01/01/2013 to be the CUT_OFF_DATE, which means that patients were no longer
observed after that date. Consequently, for patients who had not been diagnosed with
re-infection yet, the date of the initial diagnosis was set to the CUT_OFF_DATE
(01/01/2013) minus the amount of days elapsed since the initial diagnosis (given by
the TIME_TO_REINFECTION variable). Then, the earliest date of the initial
diagnosis (25/10/2008) was marked as MIN_START_DATE (the start date of the
monitoring process). For all other patients diagnosed with re-infection, the date of
the initial diagnosis was chosen randomly between the MIN_START_DATE and the
last date possible: CUT_OFF_DATE - TIME_TO_REINFECTION. Accordingly,
the re-infection diagnosis date of these patients was set as the (random) initial
diagnosis date plus TIME_TO_REINFECTION. The randomization process was
repeated three times to verify the consistency of the results. Similar to the case of the
Vehicle Warranty data, all snapshot dates were simulated for the period between the
MIN_START_DATE and the CUT_OFF_DATE. In each snapshot and for every
patient, only the event information available on the snapshot date was taken into
account (e.g., the initial diagnosis date and the re-infection diagnosis date).

Table 3 shows the characteristics of the six simulated snapshots with the first
randomization scheme. The total number of observed patients increases over time
as more patients are “born”, i.e., diagnosed with STD for the first time. In the first
snapshot (Snapshot 0), the percentage of censored patient records is higher than in

Table 3 Characteristics of simulated snapshots in the STD Re-infection dataset

Snapshot
ID

Number of days since the
beginning of the stream

Total number of
observed patients

Number of censored records
(prediction period = 300 days)

0 304 128 92
1 608 257 96
2 912 403 117
3 1,216 571 133
4 1,520 836 233
5 1,529 876 262
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the subsequent snapshots, since it has very few patients that reached the end of the
follow-up period (300 days since the initial diagnosis).

4.3.2 Summary of Results

Figures 5, 6 and 7 present the testing accuracy results in each snapshot for the
prediction period of 300 days and three different randomization schemes. All
classification models were induced by the J48 Decision Tree algorithm, which
provided in this dataset higher accuracy values than several other popular classifiers
such as Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM). Each
chart compares the baseline approach (using uncensored records only) to the
CENSMINER methodology, which utilizes the Kaplan-Meier outcome estimation
for censored records. Each chart also shows the weighted accuracy values of both
approaches, where the testing accuracy of every snapshot is weighted by the
amount of testing (new uncensored) records in that snapshot.

Fig. 5 STD re-infection data: random scheme 1, prediction period = 300 days

Fig. 6 STD re-infection data: random scheme 2, prediction period = 300 days
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For the three different randomization schemes, the Total Weighted Accuracy
values of the proposed CENSMINER methodology are significantly higher than the
results of the baseline approach. Similar to the Vehicle Warranty results, in this
dataset, the CENSMINER has also a greater advantage over the baseline when the
percentage of censored records in a snapshot is higher. These results confirm our
previous conclusion that the CENSMINER tends to reach better classification
performance than the baseline in snapshots having a significant amount of censored
records along with some uncensored records from both classes. In other snapshots
(like Snapshot 5 in the STD Re-infection Data), it usually performs almost the same
as the baseline.

5 Conclusions

In this chapter, we presented the CENSMINER fuzzy-based methodology, which
allows the standard probability estimation and classification algorithms to handle
censored data streams. We consider the domains where the data stream arrives in
the form of consecutive snapshots. In each new snapshot, the performance of the
last classification model is tested on the new uncensored records. Then a new model
is induced from on all available data, including the censored records. The censored
records are used in the model induction process by weighting their outcome with
the Kaplan-Meier survival curve estimation. The proposed methodology shows a
significant improvement over the baseline approach, which completely discards the
censored data. The CENSMINER methodology tends to be most useful in the
snapshots containing a relatively high percentage of censored records along with
some amount of uncensored records from both classes.

In this study, the Kaplan-Meier estimation was applied to all snapshot records
without any distinction between different object groups that might exist in the data.
In future research, it would be worthwhile to examine the effect of clustering the
monitored objects into relatively homogeneous groups and then calculating the

Fig. 7 STD re-infection data: random scheme 3, prediction period = 300 days
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Kaplan-Meier estimation for each group separately. One can also evaluate addi-
tional parametric and non-parametric approaches to the survival curve estimation.

Since we are dealing with a data stream, it would be natural to examine the use
of incremental classification algorithms that are designed to handle this kind of data.
Such algorithms can save the computational effort required for inducing a new
model from every snapshot by reusing or updating the existing one.
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Knowledge Extraction from Support Vector
Machines: A Fuzzy Logic Approach

Shahaf Duenyas and Michael Margaliot

Abstract Support vector machines (SVMs) proved to be highly efficient computa-

tional tools in various classification tasks. However, SVMs are nonlinear classifiers

and the knowledge learned by an SVM is encoded in a long list of parameter values,

making it difficult to comprehend what the SVM is actually computing. We show that

certain types of SVMs are mathematically equivalent to a specific fuzzy–rule base,

called the fuzzy all–permutations rule base (FARB). The equivalent FARB provides

a symbolic representation of the SVM functioning. This leads to a new approach for

knowledge extraction from SVMs. An important advantage of this approach is that

the number of extracted fuzzy rules depends on the number of support vectors in the

SVM. Several simple examples demonstrate the effectiveness of this approach.

Keywords Support vector machines ⋅ Knowledge extraction ⋅ Artificial neural

network models ⋅ Fuzzy rule–base ⋅ Neurofuzzy systems

1 Introduction

Support vector machines (SVMs) are a popular tool in machine learning combining a

solid theoretical background with efficient learning–from–examples algorithms (see,

e.g., [1–5]). An important advantage of SVMs is that their classification decision

is based on a subset of the training examples, referred to as the support vectors.
The number of support vectors may be much smaller than the number of training

examples.

A drawback of SVMs, that is shared by many other artificial neural network mod-

els, is their black–box nature. SVMs usually employ nonlinear kernel functions, and

the knowledge learnt by the SVM is represented as a set of numerical parameter

values. This makes it difficult to understand what the SVM is actually computing.
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This black–box character hinders a wider acceptance of SVMs, especially in safety–

critical applications (e.g. life–support systems).

In this chapter, we show that the input–output (IO) mapping of certain classes of

SVMs is identical to the IO mapping of a specific type of a fuzzy rule–base, referred

to as the fuzzy all–permutations rule base (FARB). The knowledge embedded in the

FARB is represented in a symbolic form, so this equivalence yields a new approach

for understanding the functioning of SVMs. We demonstrate the usefulness of this

new approach using several simple examples.

The remainder of this chapter is organized as follows. Section 2 reviews knowl-

edge extraction from SVMs. Section 3 reviews the FARB, and Sect. 4 defines the

mathematical equivalence between a certain class of SVMs and a corresponding

FARB. This leads to a new approach for knowledge extraction from SVMs. Section 5

demonstrates our knowledge extraction approach using several simple examples. The

final section concludes and describes possible directions for further research. An

abridged version of this chapter has appeared in [6].

2 Knowledge Extraction from SVMs

Extracting the knowledge learned by a black–box classifier and representing it in a

comprehensible form is referred to as knowledge extraction (KE). KE from SVMs

and other artificial neural network (ANN) models has received considerable attention

in the literature. Indeed, potential benefits of successful KE include [7–10]:

Validation. Explaining how the network actually works in an intelligible fash-

ion can validate its suitability for a specific application or, alternatively, help the

human expert to identify errors in the conclusion reached by the system. This is

crucial in safety–critical applications [11]. For example, medical decision aids re-

quire approval by government agencies. Gaining such an approval is much easier

for transparent systems that include adequate explanation capabilities [12].

Feature extraction. During training, classifiers learn to identify the relevant fea-

tures in immense data sets. Understanding what these features are, and how they

should be integrated to yield a correct classification, may help in gaining a deeper

understanding of the problem. Efficient feature extraction may also assist in im-

proving the accuracy and generalization capabilities of a classifier.

Knowledge refinement and improvement. An intelligible model can be exam-

ined by human experts and potentially improved in precision and efficiency.

Knowledge acquisition for symbolic AI systems. The most difficult and time con-

suming task in the construction of symbolic AI systems is knowledge acquisi-

tion [13]. Efficient KE from trained black–box classifiers may help to overcome

this problem.

Scientific discovery. Classifiers that learn from examples, such as SVMs, may be

able to solve problems for which no other solution is known (or demonstrate better

performance than any other solution). Understanding the way the classifier works

may thus lead to new discoveries [14].
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The term rule extraction (RE) is used when the extracted knowledge is stated

in the form of rules. Methods for RE from ANNs have been classified into three

categories: decompositional, pedagogical, and eclectic [15]. The decompositional

approach focuses on symbolic representation of the hidden and output associations

in the network. It aims to explain what individual components in the ANN are com-

puting. Pedagogical approaches use the trained classifier as an oracle to produce a set

of input–output (IO) examples. This set is the input to the KE algorithm. Pedagog-

ical methods can thus extract knowledge from any classifier, but cannot explain the

specific structure and parameter values of the classifier. Eclectic methods combine

both the pedagogical and the decompositional approaches. We now briefly review

several known approaches for KE from SVMs. A detailed overview may be found

in [16].

Pedagogical methods are based on querying the SVM to generate IO examples

and then applying standard algorithms for building decision trees [17, 18]. The Trees
Parroting Networks (TREPAN) algorithm introduced by Craven [9, 19] extracts de-

cision trees from trained neural networks. Martens et al. [17] used it to extract rules

from SVMs. The Genetic Rule Extraction (G–REX) algorithm [20] for KE from

ANNs was also modified to handle SVMs [17]. This method uses genetic program-

ming [21] to evolve an optimal set of rules. The extracted rules may be Boolean,

fuzzy, or M–of–N type rules.

Eclectic approaches use some of the characteristics of the trained SVM, namely,

the support vectors or the separating hyperplane. Fung et al. [22] proposed a KE

approach for hyperplane classifiers (including linear SVMs) that extracts rules in

the form:

If 𝓁1 ≤ x1 ≤ u1 and … and 𝓁n ≤ xn ≤ un Then class is C.

Here xi is the ith coordinate of the input, 𝓁i, ui are scalars, and C ∈ {−1, 1}. Thus

each rule describes a hypercube in the n–dimensional space with edges parallel to

the axes (see also [23]). Rules are extracted by solving a constrained optimization

problem. Nunez et al. [24] introduced the SVM+Prototypes rule extraction method.

The extracted rules describe ellipsoids or hypercubes in the input space, and are de-

rived by combining information from prototype vectors (obtained via clustering) and

support vectors. Martens et al. [25] suggest enriching the training set by generating

more classified examples near the support vectors, and then applying an algorithm

for building decision trees.

Castro et al. [26] developed a decompositional approach for KE based on the

equivalence between a special fuzzy rule–base (FRB) and an SVM. This approach

is closely related to our work, so we review it in more detail. An SVM is usually

trained using a set of classified patterns {xi, yi}, where xi ∈ ℝn
is the feature vector

of example i, and yi ∈ {−1, 1} is the classification of example i. The IO mapping of

the trained SVM f ∶ ℝn → {−1, 1} is given by

f (x) = sgn(h(x)), (1)
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where

h(x) = b∗ +
NSV∑
i=1

𝛼

∗
i yiK(x, s

i). (2)

Here {si, yi}
NSV
i=1 is a subset of the classified training examples, with the sis known as

the support vectors (SVs), 𝛼
∗
i , b

∗ ∈ ℝ, and K ∶ ℝn ×ℝn → ℝ is the kernel function.

The superscript ∗ is used as these values are determined via solving a quadratic op-

timization problem characterizing classification with the best possible error margin

(see, e.g. [3, 4]).

Castro et al. showed that an equivalent mapping is produced by inferring the set

of rules:

R1: If h(x) is positive Then f = 1,
R2: If h(x) is negative Then f = −1, (3)

where the linguistic terms positive and negative are modeled using the membership

functions 𝜇pos(y) = 𝜎(𝜆y), 𝜇neg(y) = 𝜎

∗(𝜆y), with 𝜎(y) = 1∕(1 + e−y), 𝜎∗(y) =
1 − 𝜎(y) = 𝜎(−y), and 𝜆 → ∞. In other words, inferencing the rule–base (3) yields

an input–output mapping x → f (x) that is identical to (1). Obviously, (3) provides

no verbal interpretation of the function h(⋅). To overcome this, Castro et al. noted

that h(x) = b∗ +
∑NSV

i=1 hi(x), where hi(x) = 𝛼

∗
i yiK(x,si), and introduced the opera-

tor ∗∶ ℝ ×ℝ → ℝ defined by:

a ∗ b = ab
ab + (1 − a)(1 − b)

.

It is straightforward to verify that: 𝜎(a(x + y)) = 𝜎(ax) ∗ 𝜎(ay), and 𝜎

∗(a(x + y)) =
𝜎

∗(ax) ∗ 𝜎

∗(ay). Therefore, (3) may be rewritten as:

R1 ∶ If {h1(x) is positive} ∗ {h2(x) is positive} ∗ …
∗ {hNSV

(x) is positive} ∗ {b∗ is positive}
Then f = 1,

R2 ∶ If {h1(x) is negative} ∗ {h2(x) is negative} ∗ …
∗ {hNSV

(x) is negative} ∗ {b∗ is negative}
Then f = −1.

This set of two fuzzy rules thus provides a symbolic representation of the SVM

functioning. However, it seems that the extracted FRB may be cumbersome and that

the use of the special operator ∗ makes the FRB less comprehensible. For other

approaches for KE from SVMs, see [27, 28] and the references therein.
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In this chapter, we describe a new decompositional method for KE from SVMs

that also relies on the mathematical equivalence between SVMs and a specific FRB,

namely, the FARB. The FARB was successfully used for KE and knowledge–based

design of ANNs [8, 29–32]. It is based on the hyperbolic FRB first suggested in [33],

and further developed in [34–36]. We show that SVMs with either a Multi Layer Per-
ceptron (MLP) or Radial Basis Function (RBF) kernels are mathematically equiva-

lent to a suitable FARB.

3 The FARB

To motivate the definition of the FARB, we begin with a simple example adapted

from [35] (see also [34]).

0 a0

a11 tanh OΣq

Fig. 1 Graphical representation of the FRB IO mapping

Example 1 Consider an FRB with input q ∈ ℝ, output O ∈ ℝ, and rules:

R1: If q is equal to k Then O = a0 + a1,
R2: If q is equal to −k Then O = a0 − a1,

where a0, a1, k ∈ ℝ, with k > 0. Assume that the linguistic terms equal to k
and equal to −k are modeled using the Gaussian membership functions:

𝜇=k(q) = exp
(
−
(q − k)2

2k

)
, 𝜇=−k(q) = exp

(
−
(q + k)2

2k

)
, (4)

respectively. Note that these functions satisfy

𝜇=k(q) − 𝜇=−k(q)
𝜇=k(q) + 𝜇=−k(q)

=
exp(−(q−k)

2

2k ) − exp(−(q+k)
2

2k )

exp(−(q−k)
2

2k ) + exp(−(q+k)
2

2k )

=
exp(q) − exp(−q)
exp(q) + exp(−q)

= tanh(q). (5)
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Applying the singleton fuzzifier and the center of gravity defuzzifier [37] to the rule

base yields:

O(q) =
(a0 + a1)𝜇=k(q) + (a0 − a1)𝜇=−k(q)

𝜇=k(q) + 𝜇=−k(q)
= a0 + a1 tanh(q).

Hence, this FRB is mathematically equivalent to a feedforward ANN with a single

neuron employing the activation function tanh(⋅) (see Fig. 1). □

This example motivates the search for an FRB whose IO mapping is mathematically

equivalent to that of a feedforward ANN.

Definition 1 (FARB) A fuzzy rule base with input q = (q1,… , qm) ∈ ℝm and
output O ∈ ℝ is called a FARB if the following conditions hold:

1. Every input variable qi is characterized by two linguistic terms: termi
− and

termi
+, modeled using the membership functions 𝜇

i
−(⋅) and 𝜇

i
+(⋅). These member-

ship functions (MFs) satisfy the following property. There exist zi, ri, ui, vi ∈ ℝ
and a sigmoid1 function gi ∶ ℝ → ℝ such that

𝜇

i
+(q) − 𝜇

i
−(q)

𝜇

i
+(q) + 𝜇

i
−(q)

= zigi(uiq − vi) + ri, for all q ∈ ℝ. (6)

2. The form of every rule is:

If q1 is term1
± and … and qm is termm

±

Then O = a0 ± a1 ± a2 ± · · · ± am, (7)

where termi
± stands for either termi

+ or termi
−, ± stands for either the plus or the

minus sign, and ai ∈ ℝ, i = 1,… ,m. The actual signs in the Then–part satisfy
the following property. If the term characterizing qi in the If–part is termi

+, then
in the Then–part, ai appears with a plus sign, otherwise ai appears with a minus
sign.

3. The rule–base contains exactly 2m rules spanning in their If–part all the possible
assignment combinations of q1, ..., qm.

This definition guarantees that the IO mapping of the FARB admits a simple

closed–form expression.

Theorem 1 [8] Applying the product–inference rule, singleton fuzzifier, and the
center of gravity defuzzifier to a FARB yields:

1
We say that a function g ∶ ℝ → ℝ is a sigmoid if g is continuous and the limits limx→∞ g(x)

and limx→−∞ g(x) exist.
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O(q) = a0 +
m∑
i=1

riai +
m∑
i=1

ziaigi(uiqi − vi). (8)

This IO mapping is depicted in Fig. 2.

Several commonly used MFs satisfy the constraint (6) [8, Chap. 2]. We consider

three specific examples. First, it follows from (5) that the pair of Gaussian mem-

bership functions {𝜇=k, 𝜇=−k} in (4) satisfy (6) with zi = ui = 1, vi = ri = 0,

and gi(x) = tanh(x). Thus we can use the linguistic terms equal to k, and equal to −k
in the FARB. As a second example, consider the linguistic terms larger than k
and smaller than k modeled using the Logistic MFs:

𝜇
>k(q) =

1
1 + exp(−𝜏(q − k))

, (9)

𝜇
<k(q) =

1
1 + exp(𝜏(q − k))

,

respectively (see Fig. 3). It is straightforward to verify that

𝜇
>k(q) − 𝜇

<k(q)
𝜇
>k(q) + 𝜇

<k(q)
= tanh((q − k)𝜏∕2),

so (6) holds for gi(x) = tanh(x), zi = 1, ui = 𝜏∕2, vi = k𝜏∕2, and ri = 0. Third, if we

model the linguistic terms equal to k and not equal to k using the MFs:

g1

z2a2

z1a1

...

O

q1

q2

qm

−vm

−v2

−v1

u1

u2

um

a0 +
m
i=1 riai

zmam

Σg2

gm

Fig. 2 Graphical representation of the FARB IO mapping



368 S. Duenyas and M. Margaliot

𝜇=k(q) = exp
(
−(q − k)2

2𝜎2

)
, 𝜇≠k(q) = 1 − 𝜇=k(q), (10)

then
𝜇=k(q) − 𝜇≠k(q)
𝜇=k(q) + 𝜇≠k(q)

= 2 exp
(
−(q − k)2

2𝜎2

)
− 1,

so for k ≥ 0, (6) holds for gi(x) = exp(−x2), zi = 2, ri = −1, ui =
√
1∕(2𝜎2),

and vi =
√
k2∕(2𝜎2).

Example 2 Consider a FARB with m = 2 inputs, linguistic terms: term1
− = smaller

than 5, term1
+ = larger than 5 (modeled using (9)), and term2

− = equal to −7,

term2
+ = equal to 7 (modeled using (4)), and parameters a0 = 1, a1 = 1∕3,

and a2 = 2∕5. Thus, the rules are:

R1 ∶ If q1 is smaller than 5 and q2 is equal to −7
Then O = a0 − a1 − a2 = 4∕15,

R2 ∶ If q1 is larger than 5 and q2 is equal to −7
Then O = a0 + a1 − a2 = 14∕15,

R3 ∶ If q1 is smaller than 5 and q2 is equal to 7
Then O = a0 − a1 + a2 = 16∕15,

R4 ∶ If q1 is larger than 5 and q2 is equal to 7
Then O = a0 + a1 + a2 = 26∕15.

yk

Fig. 3 MFs 𝜇
>k(y) (solid) and 𝜇

<k(y) (dashed) as a function of y
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The IO mapping of this FARB is: O(q) = F(q)∕D(q), where q = [q1, q2]′,

F(q) = 4
15

𝜇
<5(q1)𝜇=−7(q2) +

14
15

𝜇
>5(q1)𝜇=−7(q2)

+ 16
15

𝜇
<5(q1)𝜇=7(q2) +

26
15

𝜇
>5(q1)𝜇=7(q2),

and

D(q) = 𝜇
<5(q1)𝜇=−7(q2) + 𝜇

>5(q1)𝜇=−7(q2)
+ 𝜇

<5(q1)𝜇=7(q2) + 𝜇
>5(q1)𝜇=7(q2).

It is straightforward to verify that:

F(q)
D(q)

= 1 + 1
3
tanh

(
𝜏

2
(q1 − 5)

)
+ 2

5
tanh(q2). (11)

and this agrees with (8). □

The fact that the two atoms qi is termi
− and qi is termi

+ in (7) usually contradict,

and the use of the logical and operator suggest that only very few rules will have a

substantial degree of firing for any given input. Hence, the fuzzy rules in the FARB

actually cover the entire input domain, with each rule corresponding to a different

region in ℝm
. Thus, it is usually possible to determine which rule yielded a specific

output. This is useful in explaining how the FARB reached a certain conclusion.

Kolman and Margaliot [8, 29] showed that every standard ANN has a correspond-

ing FARB with an identical IO mapping. More precisely, there exists an explicit

transformation T such that

T(ANN) = FARB and T−1(FARB) = ANN. (12)

This provides a symbolic representation of the knowledge embedded in the ANN.

In the next section, we extend this idea to develop an equivalence between a class

of SVMs and a FARB. Given an SVM in this class, there exists a transformation P
such that:

P(SVM) = ANN. (13)

Combining this with (12) yields:

T(P(SVM)) = T(ANN) = FARB. (14)

Thus, the transformation S = T ◦P transforms an SVM into a FARB with an iden-
tical IO mapping. This provides a representation of the knowledge embedded in the

SVM as a set of If-Then fuzzy rules. Note that this method uses no approximations,

and that the extracted FARB is based on standard fuzzy logic tools.
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Σ
α∗
2y2

s2

sNSV

...

b∗

x

α∗
1y1

α∗
NSV

yNSV

h

s1

K

K

K

Fig. 4 Schematic description of the IO mapping (2) of an SVM

4 The SVM–FARB Equivalence

The computation of the SVM IO mapping h in (2) is depicted graphically in Fig. 4.

It is clear that we can view this as a kind of a feedforward ANN with a hidden–layer

of neurons employing K(⋅, ⋅) as an activation function. Since any standard ANN is

equivalent to a FARB, we may expect this SVM to have a corresponding FARB

with an identical IO mapping. Indeed, comparing (8) with (2) immediately yields

our main result in this section.

Theorem 2 (SVM–FARB equivalence)
Consider the SVM function h given in (2). Suppose that it is possible to find a FARB
with: m = NSV inputs qi, parameters ai, and membership functions 𝜇i

−, 𝜇
i
+, so that

the following conditions hold

a0 +
m∑
i=1

riai = b∗,

ziai = 𝛼

∗
i yi,

gi(uiqi − vi) = K(x, si). (15)

Then the IOmapping of the FARB is identical to that of the function h, i.e. O(q)=h(x).

One measure for the quality of rule extraction methods is their fidelity [15], that is,

the percentage of examples on which the original black–box and the extracted rule–

base agree. The FARB provides perfect fidelity, as its IO mapping is identical to that

of the SVM.
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Recall that the number of SVs may be much smaller than the total number of

training examples. This is a manifestation of the sparseness property of SVMs [2],

i.e. the fact that only a relatively small part of the training examples actually influ-

ence the decision boundary. Since the FARB has 2m = 2NSV rules, this implies that

the FARB may be relatively small, and thus simple to understand even for complex

learning problems. In other words, the spareness property carries over to the equiv-

alent FARB.

Recall that popular kernel functions include [17]:

K(x, y) = xTy, (linear kernel)

K(x, y) = (1 + xTy∕c)d, c ∈ ℝ, d ∈ ℕ, (polynomial kernel)

K(x, y) = tanh(𝜌xTy + 𝜂), 𝜌 > 0, 𝜂 < 0, (MLP kernel)

K(x, y) = exp(−‖x − y‖2∕(2�̂�2)), �̂� ∈ ℝ, (RBF or Gaussian kernel). (16)

The next two corollaries show that for SVMs with MLP or RBF kernel functions,

the equivalence in Theorem 2 indeed holds.

Corollary 1 Consider the SVM function h given in (2) with an MLP kernel, i.e.

h(x) =
NSV∑
i=1

𝛼

∗
i yi tanh(𝜌x

Tsi + 𝜂) + b∗. (17)

Consider a FARB with inputs qi = xTsi, i = 1,… ,NSV, membership functions 𝜇i
+ =

𝜇
>ki , 𝜇

i
− = 𝜇

<ki modeled using the Logistic MFs in (9) with 𝜏i = 2𝜌, ki = −𝜂∕𝜌,
and parameters a0 = b∗ and ai = 𝛼

∗
i yi, i = 1,… ,NSV. Then the IO mapping of the

FARB is identical to that of the function h.

Proof. For Logistic MFs, (6) holds with zi = 1, ui = 𝜏i∕2 = 𝜌, vi = ki𝜏i∕2 = −𝜂,

ri = 0, and gi(x) = tanh(x), for i = 1,… ,NSV . It is straightforward to verify that this

implies that the three conditions in (15) hold. □
Note that the qis that appear in the FARB If–part have a clear geometric meaning.

Every qi = xTsi is the projection of the input x on an SV. If all the vectors are

normalized, then

qi = xTsi

= ||x||||si|| cos(𝜑)
= cos(𝜑),

where 𝜑 is the angle between the vectors x and si. Thus, we can think of qi as a

measure of the “resemblance” between the current input x and the ith SV.

Specializing Theorem 2 to the case of an SVM with an RBF kernel yields the

following.
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Corollary 2 Consider an SVM with an RBF kernel, i.e.

h(x) = b∗ +
NSV∑
i=1

𝛼

∗
i yi exp

(
−‖x − si‖2

2�̂�2

)
. (18)

Consider a FARBwith inputs qi = ‖x−si‖, i = 1,… ,NSV, linguistic terms equal to 0
and not equal to 0 modeled using the MFs 𝜇i

+ = 𝜇=0, 𝜇i
− = 𝜇≠0 in (10), and

parameters a0 = b∗ +
∑NSV

i=1 𝛼

∗
i yi∕2, ai = 𝛼

∗
i yi∕2, i = 1,… ,NSV, 𝜎 = �̂�. Then the

IO mapping of the FARB is identical to that of the function h.

Proof. For the MFs in (10) with k = 0, (6) holds with zi = 2, ui = 1∕
√
2𝜎2, vi = 0,

ri = −1, and gi(x) = exp(−x2). It is straightforward to verify that this implies that

the three conditions in (15) hold. □
Summarizing, Corollaries 1 and 2 show that MLP– or RBF–kernel SVMs are

equivalent to a FARB, and explicitly define the transformation S = T ◦P in (14).

5 Examples

The SVM–FARB equivalence yields a symbolic representation of the IO mapping

of an SVM. The equivalent FARB rules are determined by the SVM structure and

parameters. We now demonstrate this using several simple examples.

Example 3 Consider the training set {xi, yi}2i=1 given by:

x1 = [1, 0]T , y1 = 1,
x2 = [2, 0]T , y2 = −1. (19)

Training an SVM with kernel function K(x, y) = tanh(2xTy−5) (i.e. an MLP kernel

with 𝜌 = 2 and 𝜂 = −5) yields NSV = 2, 𝛼
∗
1 = 𝛼

∗
2 = 1.313 = 𝛼

∗
and b∗ = 1.3065

(all the SVMs described in this section were derived using the C–support vector

classification algorithm [38]). The SVM IO mapping is thus f (x) = sgn(h(x)), where

h(x) = b∗ + 𝛼

∗ [tanh(2xTx1 − 5) − tanh(2xTx2 − 5)
]

= 1.3065 + 1.313
[
tanh(2x1 − 5) − tanh(4x1 − 5)

]
. (20)

Corollary 1 implies that this mapping is also the IO mapping of a FARB with:

two inputs q1 = xTx1 = x1 and q2 = xTx2 = 2x1, Logistic MFs 𝜇
>ki , 𝜇<ki

with ki = 2.5, and 𝜏i = 4, and parameters a0 = 1.3065, a1 = 𝛼

∗
1y1 = 1.313,

and a2 = 𝛼

∗
2y2 = −1.313. This yields the four rule FARB:

R1 ∶ If q1 > 2.5 & q2 > 2.5 Then O = a0 + a1 + a2 ≅ 1.3,

R2 ∶ If q1 > 2.5 & q2 < 2.5 Then O = a0 + a1 − a2 ≅ 3.9,

R3 ∶ If q1 < 2.5 & q2 > 2.5 Then O = a0 − a1 + a2 ≅ −1.3,
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R4 ∶ If q1 < 2.5 & q2 < 2.5 Then O = a0 − a1 − a2 ≅ 1.3.

Here and below & denotes ‘and’, qi < 2.5 stands for qi is smaller than 2.5,

and qi > 2.5 for qi is larger than 2.5. In other words, we use a “crisp” notation

such as >, but this is just a shorthand notation for a set modeled using a fuzzy MF.

This rule–base may be written as:

R1 ∶ If x1 > 2.5 & x1 > 1.25 Then O ≅ 1.3,

R2 ∶ If x1 > 2.5 & x1 < 1.25 Then O ≅ 3.9,

R3 ∶ If x1 < 2.5 & x1 > 1.25 Then O ≅ −1.3,

R4 ∶ If x1 < 2.5 & x1 < 1.25 Then O ≅ 1.3.

Rule R2 is self–contradicting, so we delete it. The other three rules may be summa-

rized as:

If x1 > 2.5 or x1 < 1.25 Then O ≅ 1.3,

Else O ≅ −1.3.

If we define the FARB decision to be sgn(O) (as in the SVM), then this becomes

If x1 > 2.5 or x1 < 1.25. Then sgn(O) = 1,

Else sgn(O) = −1.

This rule indeed correctly classifies the two examples in (19). Figure 5 depicts the

decision region of the SVM classifier (20). It is clear that this agrees well with the

verbal description given by the above rule. □

The training set in the Example 3 is clearly linearly separable. The next example

describes KE from an SVM trained on a non–linearly separable training set.

Example 4 Consider the training set:

x1 = [1, 1]T , y1 = 1,
x2 = [−1,−1]T , y2 = 1,
x3 = [−1, 1]T , y3 = −1,
x4 = [1,−1]T , y4 = −1.

This corresponds to the classic symmetric XOR problem.

Applying the training algorithm (with the same kernel function as in Example 3)

yields an SVM with four SVs (i.e. all the training examples), and parameters 𝛼
∗
i =

4.1977 ≅ 4.2, i = 1,… , 4, and b∗ = 0. Thus, the SVM IO mapping is f (x) =
sgn(h(x)), with

h(x) = 4.2( tanh(2xTx1 − 5) + tanh(2xTx2 − 5)
− tanh(2xTx3 − 5) − tanh(2xTx4 − 5)). (21)

Figure 6 depicts the equal height contours h(x) = c, for c = −1, 0, 1. Note that {x ∈
ℝ2 ∶ h(x) = 0} is the decision boundary.

By Corollary 1, (21) is also the IO mapping of a FARB with: four inputs
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Fig. 5 IO mapping f (x) = sgn(h(x)) of the SVM (20): + (∙) denotes points for which f (x) = 1
(f (x) = −1)

q1 = xTx1 = x1 + x2, q2 = xTx2 = −x1 − x2,

q3 = xTx3 = −x1 + x2, q4 = xTx4 = x1 − x2,

and MFs 𝜇
>ki , 𝜇<ki defined in (9) with 𝜏i = 2𝜌 = 4, and ki = −𝜂∕𝜌 = 2.5. The

parameters in the Then–part of the rules are a0 = b∗ = 0, a1 = a2 = 4.2, and a3 =
a4 = −4.2.

Out of the sixteen rules in this FARB, seven are self–contradicting. After deleting

them we are left with a nine rule FRB. The IO mapping of this FRB is shown in Fig. 7.

Comparing this with Fig. 6 suggests that the FRB IO mapping is still quite close to

that of the SVM.

To obtain a more comprehensible representation, we use the fact that five of the

nine rules include O = 0 in their Then part. Since the final classification decision

is based on whether the output is positive or negative, we delete these rules. We are

left with the following FRB:

R1 ∶If q1 > 2.5& q2 < 2.5& q3 < 2.5& q4 < 2.5
ThenO = 8.4,

R2 ∶If q1 < 2.5& q2 > 2.5& q3 < 2.5& q4 < 2.5
ThenO = 8.4,

R3 ∶If q1 < 2.5& q2 < 2.5& q3 > 2.5& q4 < 2.5
ThenO = −8.4,

R4 ∶If q1 < 2.5& q2 < 2.5& q3 < 2.5& q4 > 2.5
ThenO = −8.4.
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Fig. 6 Equal height contours h(x) = c, for c = −1, 0, 1. The points x1, x2 (x3, x4) are marked

by + (∙)

Rewriting this in terms of the xis yields

R1 ∶If (x1 + x2 > 2.5)& (−2.5 < x2 − x1 < 2.5)
ThenO = 8.4,

R2 ∶If (x1 + x2 < −2.5)& (−2.5 < x2 − x1 < 2.5)
ThenO = 8.4,

R3 ∶If (−2.5 < x1 + x2 < 2.5)& (x2 − x1 > 2.5)
ThenO = −8.4,

R4 ∶If (−2.5 < x1 + x2 < 2.5)& (x2 − x1 < −2.5)
ThenO = −8.4.

To simplify this, consider rule R1. The If–part here is

(x1 + x2 > 2.5) & (−2.5 < x2 − x1 < 2.5).

It is straightforward to verify that this condition implies that

(x1 > 0) & (x2 > 0).
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Fig. 7 IO mapping O(x1, x2)
of the nine–rule FRB, and

several equal height

contours O(x1, x2) = ci. The

bold contour corresponds

to O(x1, x2) = 0

Similarly, the If–part in Rules R2, R3, and R4 imply

(x1 < 0) & (x2 < 0), (x1 < 0) & (x2 > 0), (x1 > 0) & (x2 < 0),

respectively. The FRB can thus be written as

R1 ∶ If (x1 > 0)& (x2 > 0) ThenO = 8.4,
R2 ∶ If (x1 < 0)& (x2 < 0) ThenO = 8.4,
R3 ∶ If (x1 < 0)& (x2 > 0) ThenO = −8.4,
R4 ∶ If (x1 > 0)& (x2 < 0) ThenO = −8.4.

This can be summarized as

If sgn(x1) = sgn(x2) Then sgn(O) = 1,
Else sgn(O) = −1,

and this is indeed a succinct verbal description of the XOR function.

We note that in this example the trained SVM turned out to be symmetric in the

sense that b∗ = 0, and 𝛼

∗
i = 𝛼

∗
j , for all i, j. This led a to symmetric FARB where

many of the rules could be deleted without affecting the fidelity.

The next example describes KE from a hierarchical SVM trained to classify the

Iris data set.

Example 5 The Iris classification problem is a common benchmark for demon-

strating KE methods from various machine learning algorithms. The data con-

sists of 150 examples of irises classified into three classes. Each example is in

the form (z1, z2, z3, z4, c) where the zis are physical parameters of the flower (sepal
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sgn(h1) = 1

SVM1

sgn(h2) = 1

SVM2

sgn(h2) = −1

Class 3 Class 2

Class 1

sgn(h1) = −1

Fig. 8 Graphical representation of the hierarchical classification method in Example 5. Class 1 is

Setosa, class 2 is Versicolor and class 3 is Virginica

length, sepal width, petal length and petal width, respectively), and c ∈ {1, 2, 3} is

the classification in one of three classes: Setosa, Versicolor, and Virginica, respec-

tively. Each class includes 50 examples.

We trained the hierarchical SVM depicted in Fig. 8. If the output of SVM1 sat-

isfies f1 = sgn(h1) = 1, then the classification decision is Setosa; otherwise the

example is fed into SVM2 that separates between Virginica and Versicolor.

Preprocessing included scaling all the examples via xi =
zi
mi

− 1, i = 1,… , 4,

where mi is the maximal value of the ith feature over the 150 examples. This guar-

antees that each scaled feature satisfies xi ∈ [−1, 1].

Knowledge Extraction from SVM1
We used the kernel function K(x, y) = tanh(𝜌xTy + 𝜂), with 𝜌 = 1.5, 𝜂 = −0.75.

The trained SVM1 includes two SVs, and parameter values y1𝛼∗1 = 3.32, y2𝛼∗2 =
−3.32, b∗ = −2.178, so its IO mapping is f1(x) = sgn(h1(x)) where:

h1(x) = 3.32( tanh(1.5xTs1 − 0.75) − tanh(1.5xTs2 − 0.75)) − 2.178.

This mapping is depicted in Fig. 9. Substituting the SVs yields:

h1(x) = 3.32( tanh(1.5q1 − 0.75) − tanh(1.5q2 − 0.75)) − 2.178, (22)

where q1 = 0.468x1 + 0.818x2 − 0.652x3 − 0.84x4, and q2 = 0.443x1 + 0.181x2 +
0.014x3 − 0.2x4.

By Corollary 1, the mapping (22) is also the IO mapping of a FARB with in-

puts qi, i = 1, 2, MFs 𝜇
>k, 𝜇<k, and parameter values: 𝜏 = 2𝜌 = 3, k = −𝜂∕𝜌 = 0.5,

a0 = b∗ = −2.178, and a1 = 3.32, a2 = −3.32, i.e. the four–rule FARB:

R1 ∶ If q1 > 0.5 & q2 > 0.5 Then O = −2.178,
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Fig. 9 Classification of the data set by SVM1 projected to the x3 − x4 plane. + (∙) denotes points

for which sgn(h1(x)) = 1 (sgn(h1(x)) = −1). SVs are encircled

R2 ∶ If q1 > 0.5 & q2 < 0.5 Then O = 4.462,

R3 ∶ If q1 < 0.5 & q2 > 0.5 Then O = −8.818,

R4 ∶ If q1 < 0.5 & q2 < 0.5 Then O = −2.178.

This may be summarized as:

If q1 > 0.5& q2 < 0.5Then sgn(O) = 1,
Else sgn(O) = −1.

Examination of the training set shows that q2 < 0.5 for 148 of the 150 examples, so

we delete this condition from the rule. This yields

If q1 > 0.5Then sgn(O) = 1,
Else sgn(O) = −1.

Recall that q1 = 0.468x1 + 0.818x2 − 0.652x3 − 0.84x4 Thus, the simple rule above

includes a single linear function of the xis and, therefore, a linear function of the

flower features (i.e., the zis). To further simplify this rule, rewrite q1 > 0.5 as

− 0.652x3 − 0.84x4 > 0.5 − 0.468x1 − 0.818x2. (23)

Examination of the data set shows that x1 ≥ 0.0886 and x2 ≥ −0.0909 for all the

examples. Hence, we replace the right–hand side of (23) by

0.5 − 0.468 ⋅ 0.0886 − 0.818 ⋅ (−0.0909) = 0.5329.
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Fig. 10 Classification of the training set using the fuzzy rule extracted from SVM1: + (∙) denotes

examples classified as Setosa (Versicolor or Virginica). The line is the classification threshold

This yields the condition

− 0.652x3 − 0.84x4 > 0.5329. (24)

Restating (24) in terms of the original (unnormalized) features via zi = mi(1 + x1)
yields:

− 0.19z3 − 0.672z4 + 1.492 > 0.5329. (25)

Recalling that z3 is petal length (PL), and z4 is petal width (PW) provides the final

rule:

If (PW < 1.427 − 0.282 ⋅ PL) Then class is Setosa,

Else class is either Versicolor or Virginica.

This rule provides a correct classification for all the 150 examples in the training set

(see Fig. 10). Furthermore, note that the decision line depicted in this figure suggests

that this fuzzy rule is not too far from an optimal margin classifier.

Knowledge Extraction from SVM2
SVM2 separates between the classes Versicolor and Virginica. These two classes

are not linearly separable. Training is based on the 100 examples in the iris data set

that belong to either class Versicolor or Virginica, and the kernel function K(x, y) =
tanh(𝜌xTy+𝜂), with 𝜌 = 0.22, 𝜂 = −0.352. This yields an SVM with 14 SVs. Six of

these have very small 𝛼
∗
i values, so we set 𝛼

∗
i = 0 for these SVs, leaving eight SVs

with parameter values:

𝜶
∗ = [104, 2719.1, 3708.8, 104, 4417.2, 2010.7, 104, 104],
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Fig. 11 Classification of SVM2 projected to the x3 − x4 plane: ∙ (∗) denotes points for

which sgn(h2) = 1 (sgn(h2) = −1). Errors are squared. The SVs are encircled

and b∗ = 18.936. Since b∗ ≪ 𝛼

∗
i for all i, we also set b∗ = 0. Therefore, the IO

mapping of the (simplified) SVM is f2(x) = sgn(h2(x)) where:

h2(x) = 104k1(x) + 2719.1k2(x) + 3708.8k3(x) + 104k4(x)
−4417.2k5(x) − 2010.7k6(x) − 104k7(x) − 104k8(x), (26)

with ki(x) = tanh(0.22xTsi − 0.352). This SVM correctly classifies 99 of the 100
examples in the training set (see Fig. 11).

By Corollary 1, the mapping in (26) is also the IO mapping of a FARB with:

inputs qi = xTsi, MFs 𝜇
>ki , 𝜇<ki , and parameter values ki = −𝜂∕𝜌 = 1.6, 𝜏i = 2𝜌 =

0.44, a0 = 0, and

[a1,… , a8] = [104, 2719.1, 3708.8, 104,−4417.2,−2010.7,−104,−104].

This yields a FARB with 256 rules. A calculation shows that for all the examples in

the training set, only q3 and q6 ever exceed the value k = 1.6. Thus, all the rules that

contain the linguistic term qi is larger than k for i ∈ {1, 2, 4, 5, 7, 8} are deleted

from the rule–base. We are left with an FRB with just four rules:

R1 ∶ If q3 > 1.6 & q6 > 1.6 Then O = 3396.2,

R2 ∶ If q3 > 1.6 & q6 < 1.6 Then O = 7417.6,

R3 ∶ If q3 < 1.6 & q6 > 1.6 Then O = −4021.4,

R4 ∶ If q3 < 1.6 & q6 < 1.6 Then O = 0.
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Fig. 12 Classification of the

FRB extracted from SVM2:

+ (∙) denotes points of class

Versicolor (Virginica).

Errors are encircled. The

threshold is doted

We may summarize this using the single rule:

If q3 < 1.6 & q6 > 1.6 Then sgn(O) = −1,

Else sgn(O) = 1.

Substituting q3 and q6 yields:

If 0.696x1 + 0.363x2 + 0.449x3 + 0.36x4 < 1.6
and x1 + 0.727x2 + 0.855x3 + 0.6x4 > 1.6
Then sgn(O) = −1, Else sgn(O) = 1.

Examining the training set, we find that the average value of x1 is x̄1 = 0.5853, and

that x2 ≤ 0.7272. Replacing x1 by x̄1 and x2 by 0.7272 in the FRB yields:

If 0.449x3 + 0.36x4 < 0.9287 and 0.855x3 + 0.6x4 > 0.48
Then sgn(O) = −1, Else sgn(O) = 1.

Examining the two parts of this rule, we find that the first condition in the If–part

holds for all the training example, so we delete this part. This yields:

If 0.855x3 + 0.6x4 > 0.48 Then sgn(O) = −1,

Else sgn(O) = 1.

Converting back to the original feature values yields:

If (7.93 − 2 ⋅ PW < PL) Then class is Virginica,

Else class is Versicolor,

where PL is petal length, and PW is petal width (in centimeters). This simple rule

classifies the training set with an 4% error (see Fig. 12).

Figure 13 summarizes the hierarchical FRB obtained by KE from SVM1 and

SVM2. This FRB classifies the data set with an 2.66% error. Thus for this example

the KE approach provides a highly transparent classifier with a negligible degrada-

tion in performance. □
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Versicolor Virginica

7.93 − 2 · PW ≥ PL

FRB2

PW ≥ 1.427 − 0.282 · PL

FRB1

PW < 1.427 − 0.282 · PL

7.93 − 2 · PW < PL

Setosa

Fig. 13 Graphical representation of the extracted hierarchical FRB

6 Discussion

Certain classes of SVMs produce an input–output mapping that is mathematically

equivalent to that of a corresponding FARB. This FARB then provides a symbolic

representation of the SVM functioning stated in the form of fuzzy rules. This yields a

new approach for KE from SVMs. Unlike previous approaches, the FARB uses only

standard tools from fuzzy logic theory. Furthermore, the size of the extracted FARB

depends on the number of SVs, that may be much smaller than the number of training

examples.

We demonstrated this KE approach using several examples of SVMs trained to

solve classification tasks. We deliberately used relatively simple tasks, as these allow

a clear presentation of the rule extraction and simplification process. Application of

our approach for larger problems is left for future work.

One drawback of the FARB is that the number of rules increases exponentially

with the number of inputs. In our context of KE from SVMs, the number of rules in-

creases exponentially with the number of SVs. An important direction for further re-

search is thus developing a systematic approach for simplifying the extracted FARB

in order to increase transparency. One possible approach is to first simplify the SVM

itself, and then transform the simplified SVM into a corresponding FARB. It is im-

portant to note that several studies have already developed methods for simplifying

SVMs and, in particular, for reducing the number of SVs (see, e.g., [39–46]). This

is motivated by the need to reduce the run time of the training and classification

algorithms, but is of course highly relevant in the context of KE using the FARB.

An interesting question is how to modify the training algorithm beforehand so

that the resulting SVM will correspond to a simple as possible FARB. For example,

setting certain parameters (e.g. 𝜌, 𝜂) properly may lead to a FARB with MFs 𝜇
>ki ,

with the ki values relatively large. Then it may be possible to delete all the rules that

contain the term: xi is larger than ki, as their degree of firing is close to zero.
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On Type-Reduction Versus Direct
Defuzzification for Type-2 Fuzzy Logic
Systems

Jerry M. Mendel

Abstract This chapter examines type-reduction and direct defuzzification for
interval type-2 fuzzy logic systems. It provides critiques of type-reduction as an end
to itself as well as of direct defuzzification, and concludes that: (1) a good way to
categorize type-reduction/direct defuzzification algorithm papers is as papers that
either focus on algorithms that lead to a type-reduced set, or directly to a defuzzified
value; (2) research on type-reduction as an end to itself has led to results that are
arguably of very little value; and, (3) the practice of base-lining an IT2 FLS that
uses direct defuzzification against one that uses type-reduction followed by de-
fuzzification is unnecessary.

1 Introduction

A type-2 fuzzy set (Fig. 1) (T2 FS) can be thought of as a fuzzy-fuzzy set. Its
membership function (MF) no longer has a single value at each value of the primary
variable, but instead is a blurred version of that function, i.e., at each value of the
primary variable the membership is itself a function, called a secondary MF. When
the secondary MF is a constant equal to 1, the T2 FS is called an interval type-2
fuzzy set (IT2 FS) or an interval-valued fuzzy set; otherwise, it is called a general
type-2 fuzzy set (GT2 FS).

The MF of a T2 FS is three-dimensional, with x-axis called the primary variable,
y-axis called the secondary variable and z-axis called the MF value (or secondary
grade). A vertical slice is a plane that is parallel to the MF-value z-axis. The footprint
of uncertainty (FOU) of a T2 FS lies on the x-y plane and includes the closure of all
points on that plane for which theMF value is non-zero; it is the 2D-domain on which
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sit the secondary grades. The FOU is lower and upper bounded by a lower mem-
bership function (LMF) and an upper membership function (UMF), both of which are
type-1 fuzzy sets (T1 FSs). The FOU can be completely covered by T1 FSs that are
called embedded T1 FSs.

T2 FSs are used in type-2 fuzzy logic systems (T2 FLSs) (Fig. 2). A general T2
FLS (GT2 FLS) was originally called a T2 FLS; however, because most of the
works about T2 FLSs have focused on IT2 FSs, and only more recently on GT2
FSs, we now view the field of T2 FLSs as the union of the sub-fields of IT2 FLSs
and GT2 FLSs.

Practical applications of T2 FLSs (e.g., fuzzy logic control [26]) require a
number at the output of the FLS and not a FS. Readers of this book know that for a
T1 FLS such a number is obtained by a process called defuzzification, which can be

Fig. 1 Components of a General type-2 fuzzy set

Type-reduced 
Set (Type-1)

Rules

Crisp
inputs

IT2 FSs

Crisp
outputs

x X

Inference

Type-reducer

Output Processing

X

IT2 FSs

Y

y Y

Fig. 2 Type-2 fuzzy logic system [23]. When all T2 FSs are IT2 FSs, the GT2 FLS becomes an
IT2 FLS
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interpreted as the projection of a T1 FS into a type-0 FS. Many kinds of defuzzifiers
are possible, including center of gravity (centroid), height and center of sets.

So, how does one go from a T2 FS to a number? Nilesh Karnik and I struggled
with how to do this for months and finally we came up with a two-stage approach
[14, 23]: type-reduction (TR)—a new concept for FSs—followed by defuzzification.

TR projects a T2 FS into a T1 FS, after which that T1 FS is projected into a type-
0-FS by defuzzification to obtain a number. Because a type-reduced set is a T1 FS,
defuzzification is achieved by computing the centroid of that set. For an IT2 FLS
the type-reduced set is an interval set whose center of gravity is the average value of
its two end-points; so, defuzzification for an IT2 FLS is trivial.

Just as there can be different kinds of defuzzification methods for a T1 FLS,
there can be different kinds of TR methods for a T2 FLS. It is generally agreed that
all TR methods must satisfy Karnik and Mendel’s [23] fundamental design
requirement for a T2 FLS, namely: When all sources of [membership function]
uncertainty disappear, a T2 FLS must reduce to a comparable T1 FLS. This design
requirement seems as reasonable today (in 2015) as it did to Karnik and Mendel in
2001, and is analogous to what happens to a probability density function when
random uncertainties disappear. In that case, the variance of the pdf goes to zero,
and a probability analysis reduces to a deterministic analysis. So, just as the
capability for a deterministic analysis is embedded within a probability analysis, the
capability for a T1 FLS is embedded within a T2 FLS.

As is stated in [25]: “TR became burned into the architecture of a T2 FLS
because Karnik and Mendel first developed all of their T2 concepts and calculations
for a general T2 FS and a GT2 FLS. Although TR was originally developed for a
GT2 FLS, because it was so simple to perform for an IT2 FLS it was kept in the
architecture of an IT2 FLS. There is nothing wrong with doing this; however, in
retrospect we may have been blind-sided by the need for TR in a GT2 FLS from
asking the question ‘Is TR really needed in an IT2 FLS?’

“In fact, there are many ways to go from an IT2 FLS to a number that bypass TR
and still satisfy the fundamental design requirement.”

“A student in a class that I taught some years ago asked: ‘Instead of performing
TR, why can’t we just use a combination of two T1 FLSs, one that uses only the
lower membership functions and the other that uses only the upper membership
functions?’ My answer at that time was: ‘You can’t do this because each end-point
of the type-reduced set uses a mixture of lower and upper membership function
information.’ While my answer was technically correct, it was predicated on using
type-reduction, rather than on what the student had suggested. My answer today
would be: ‘You can do what you are suggesting, and this can be done in different
ways; however, by bypassing TR you may not be able to provide a measure of the
uncertainties that have flowed through all of the IT2 FLS computations (analogous
to a standard deviation).’ For example, you could begin with the architecture of an
IT2 FLS as a linear combination of two T1 FLSs, as in [1], or as the centroid of the
average of the lower and upper membership functions of the aggregated rule fired
sets, as in [29]. All of these IT2 FLSs go directly to the defuzzified output value and
they all satisfy the fundamental design requirement.”
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Unfortunately, TR cannot be performed using a closed-form mathematical for-
mula. Its calculations led to two simple iterative algorithms that have been and
continue to be called KM-Algorithms (or Karnik-Mendel Algorithms) [14, 23].
Because the computational complexity of using GT2 FSs was so great in the late
1990s, until around 2008 we as well as all others focused on TR for IT2 FLSs. It is
fair to say that all thinking about type-reduction was in the context of IT2 FLSs.

Karnik and Mendel’s two-step approach for going from a T2 FS to a number
spawned a plethora of research and subsequent publications that fall into two
categories: (1) type-reduction as an end to itself (i.e., TR viewed as a mathematical
problem but with no application in mind, focusing on finding improved ways to
perform TR); and, (2) direct defuzzification (i.e., methods for bypassing TR that
project a T2 FS directly into a number). Unfortunately, some authors use the phrase
“type-reduction” in the titles of papers that are about direct defuzzification, which is
(in the opinion of this author) arguably incorrect.

Two journal articles that cover all aspects of this appeared in 2013, [24, 33]. The
article by Wu [33] categorizes type-reduction and direct defuzzification algorithms
into the following two categories:

• Enhancements to the KM TR algorithms (W1) (these are about type-reduction)
and

• Alternative TR algorithms (W2) (these are almost all about direct
defuzzification)

The article by Mendel [24] categorizes type-reduction algorithms into the fol-
lowing four categories:

• Improved KM algorithms (M1) (these are about type-reduction)
• Understanding the KM/EKM algorithms leading to further improved algorithms

(M2) (these are about type-reduction)
• Non-KM algorithms that preserve the ability to approximate the centroid or

type-reduced set (M3) (these are about type-reduction), and,
• Non-KM algorithms that do not preserve the ability to approximate the centroid

or type-reduced set (M4) (these are about direct defuzzification)

While both articles contain a wealth of information about type-reduction and
direct defuzzification algorithms, it requires a considerable effort by readers to relate
an algorithm to its different categorizations across these two papers. In order to help
with this, I will now classify the TR algorithms differently from both of these
articles, as:

• Algorithms that lead to a type-reduced set (Table 1)
• Algorithms that lead directly to a defuzzified value (Table 2)

The connections between these two classes of algorithms and the classifications
in [24, 33] are given in these tables.
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2 Explanations of the Tables

Tables 1 and 2 organize the papers chronologically, so that one can see some sort of
continuity in thought as time progresses. Unfortunately, no standards existed when
these studies were performed (nor do they exist today, in 2015) for how to compare
TR or direct defuzzification algorithms, so it is very difficult to draw statistically
meaningful conclusions from the papers that are in these two tables. Most of the
time the authors used different IT2 FSs (FOUs) (some of which are sampled ver-
sions of continuous FOUs), or randomly chosen samples for the LMFs and UMFs
of discrete FOUs, or FOUs for which mathematical formulas are provided for their
LMF and UMF.

Fortunately, [33] provides statistically meaningful comparisons for two kinds of
FOUs: (1) randomly chosen samples for the LMFs and UMFs of discrete FOUs,
and (2) evolutionary fuzzy logic controller design. If one is interested in which of
the algorithms are the fastest or most accurate, then [33] is the paper to go to.

3 Critique of Type-Reduction as an End to Itself

Research on type-reduction as an end to itself, as summarized in Table 1, uses the
(oft unstated) assumption that one begins with an IT2 FS to perform TR on. It then
focuses on how to improve (or approximate) the KM Algorithms to perform type-
reduction on that given IT2 FS. One or both of two performance measures are used
to evaluate improvements: computing time and accuracy. All of this research
(except for [30, 37]) is done outside of the original context of a T2 FLS, and is
therefore open to some critical examinations.

For starters, the assumption that one begins with an IT2 FS to perform TR on
needs to be questioned. I have explained in [24] that there are two distinctly
different situations that can occur in an IT2 FLS:

1. Fired-rule IT2 FSs are first aggregated by means of the union operation resulting
in an aggregated IT2 FS (so that the assumption is valid), after which this
aggregated IT2 FS is type-reduced (this is called centroid type-reduction); and,

2. Fired-rule IT2 FSs are aggregated as part of type-reduction (this is called center-
of sets type-reduction), in which case one does not begin with an aggregated IT2
FS, and so the assumption is invalid.

Obviously the people who are researching type-reduction as an end to itself are
focusing on Situation 1; however, in real-world applications of FLSs it is Situation
2 that is more often used than Situation 1, because (this is also true for T1 FLSs)
performing the aggregation of the fired-rule IT2 FSs is too time consuming. Con-
sequently, research on type-reduction as an end to itself is about things that
arguably will be of very little direct value or use in a T2 FLS.

On Type-Reduction Versus Direct Defuzzification for Type-2 … 393



One is then led to question whether or not the two metrics that are used in this kind
of research for Situation 1 are important, namely computing time and accuracy.

Consider first the metric of computing time. If the results of this research are not
going to be used in a real-time FLS then does it really matter if the algorithms that
perform type-reduction take 10−3, 10−4, 10−5, etc. sec? KM or EKM [34] algo-
rithms are already quite fast; they converge quadratically [19] and have been
observed to take 10−5 to 10−3 s to converge (see, e.g., [34]). The EIASC algorithms
[35] are even faster and they are very easy to understand. So, focusing on con-
vergence time for Situation 1 is to me arguably a red herring because it makes no
perceptual difference to a human when it is already quite small.

Consider next the metric of accuracy. To me an important question is: How
much accuracy is required by the type-reduced set? Unfortunately, this question is
never asked in the papers that use the metric of accuracy. Instead, one is left with an
impression that higher accuracy is always better. Unless one knows what the type-
reduced set will be used for then, I would like to ask: “What is higher accuracy
better for?” To answer this question there are again two different situations/cases
that need to be examined:

• The LMF and UMF are given by mathematical formulas and so they can be
sampled at any desired rate (C1), and

• The LMF and UMF are given only by a collection of samples (C2).

Consider C1, in which the LMF and UMF are given by mathematical formulas,
and so they can be sampled at any desired rate. Then KM algorithms will give very
accurate results. To counter this some authors perform studies in which they reduce
the sampling rate to see how more accurate their algorithms are than the KM
algorithms. The Catch-22 to this work is that they are comparing the results from
their algorithms and the KM algorithms both of which use the reduced sampled data
with so-called true results, where the latter use the highly sampled data. To me this
is circular reasoning, because if one has access to highly sampled data and is
performing the type-reduction computations off-line then why not use all of the
highly sampled data to perform the type-reduction?

Consider next C2 in which the LMF and UMF are given only by a collection of
samples, as would occur if perchance fired rule output sets were aggregated by using
the union (although, as explained above, this is usually avoided). The reason that the
resulting aggregated IT2 FS is given only by a collection of samples is that it has been
computed using an algorithm for the union that only uses sampled values. So, what
exactly does accuracy mean in this situation? In this case the KM algorithms com-
pute the true values of the type-reduced set and so they are 100 % accurate. To get
around this fact, the authors pretend that they have access to the LMF and UMF
given by mathematical formulas and have created a set of sampled values for the
LMF and the UMF from those formulas. This throws us back to the previous case,
but now that case is reached by violating the assumption that the LMF and UMF are
given only by a collection of samples. This again is circular reasoning.

Regrettably, the conclusion I am led to about research on type-reduction as an
end to itself is that it has led to results that are arguably of very little value.
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4 Critique of Direct Defuzzification

All research on direct defuzzification should be applauded as long as the direct
defuzzification method obeys the already-mentioned fundamental design require-
ment for a T2 FLS, namely: When all sources of [membership function] uncertainty
disappear, a T2 FLS must reduce to a comparable T1 FLS. It should be applauded
because its researchers have had the courage and conviction to challenge the need
for type-reduction in an IT2 FLS. To me, this is how real progress occurs. These
authors (although they may not have actually said it this way or at all) asked: “Why
is type reduction needed in an IT2 FLS? Why can’t we go directly to a defuzzified
output?”

As is demonstrated by the large number of papers in Table 2, there are many
ways to go directly to a defuzzified output; however, many of the authors of direct
defuzzification papers compare their numerical results with the ones obtained from
using type-reduction followed by defuzzification, as though the latter was a baseline
approach. So another natural question to ask is:

• Should an IT2 FLS that uses type-reduction followed by defuzzification be the
baseline IT2 FLS against which all others must be compared?

My answer to this question is “No,” and my reason is that maybe it should be the
other way around, i.e. maybe an IT2 FLS that uses type-reduction followed by
defuzzification should be compared against an IT2 FLS that uses direct defuzzifi-
cation. This may sound like double talk or the chicken before the egg parable, but I
am quite serious about my answer. Let me explain.

Real-world FLSs are designed with application-dependent performance speci-
fications in mind. Unfortunately, authors (myself included) do not usually state
what those specs are. Instead they assume that the goal is to optimize the perfor-
mance metrics rather than meet those metrics, something that is not done in the
business world.

Many years ago I attended a one-day seminar on entrepreneurship given by
world-famous Peter Drucker. It just so happened that we were sitting at the same
table for lunch. Everyone around the table introduced themselves. When it came to
my turn and I told everyone that I was an engineer, Drucker shook his head. I asked
him why he was doing that, to which he replied:

You engineers are always trying to optimize something, which is why you make such poor
businessmen. A business person develops a product with a certain level of performance as
quickly as possible, manufactures it, sells it and makes a profit. He or she then improves the
product a bit and sells the next version, making even more profit. In the meantime, you
engineers have not gotten off of the block; you are still trying to optimize your product, and
have nothing to show for it.

So if an application’s performance metrics can be met by an IT2 FLS that uses
direct defuzzification, that should be the end of the story. If, however, those per-
formance metrics cannot be met by such an IT2 FLS then one could try either a
different IT2 FLS that uses direct defuzzification, or, perhaps as a last resort, an IT2
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FLS that uses type reduction followed by defuzzification. There is no a priori
guarantee, however, that even the latter will be able to meet the performance
metrics. If it cannot, then one may need to use a GT2 FLS.

5 Conclusions

Ever since Karnik and Mendel introduced the concept of type-reduction, which
leads to solving two optimization problems, one for the left-end and one for the
right end of the type-reduced set, a cottage industry has emerged that has focused
on better ways to perform TR or to bypass it entirely. This paper has tried to provide
a critical examination of the research that has been performed on these two topics.

It has explained that:

1. A good way to categorize type-reduction/direct defuzzification algorithm papers
is, as: papers that focus on algorithms that lead to

a. A type-reduced set, or
b. Directly to a defuzzified value.

2. Research on type-reduction as an end to itself has led to results that are arguably
of very little value.

3. The practice of base-lining an IT2 FLS that uses direct defuzzification against
one that uses type-reduction followed by defuzzification is unnecessary.

Note that if Karnik and Mendel had never introduced type-reduction followed by
defuzzification, and instead had achieved their design requirement by using direct
defuzzification, then we would not be having this conversation, and people would be
comparing results obtained by using one kind of direct defuzzificationmethod against
those obtained by using at least one other kind of direct defuzzification method.

As a final thought, note that type reduction was invented because Karnik and
Mendel thought that the type-reduced set would itself be of value, in that it would
provide a valuable measure of the flow of MF uncertainties through the FLS.
Although it does do this, regrettably, to the best of knowledge of this author, there
is not one application paper that makes use of the type-reduced set in this way. On
the other hand, type-reduction did lead to the KM Algorithms (as well as others)
which are very useful for solving other non-FLS problems, as is explained in [24].
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On Fuzzy Theory for Econometrics

Hung T. Nguyen and Songsak Sriboonchitta

Abstract This paper aims mainly at informing statisticians and econometricians of

relevant concepts and methods in fuzzy theory that are useful in addressing economic

problems. We emphasize three recent significant contributions of fuzzy theory to

economics, namely fuzzy games for capital risk allocations, fuzzy rule bases and

compositional rule of inference for causal inference, and a statistical setting for fuzzy

data based on continuous lattices.

1 Introduction

Lotfi Zadeh advocated fuzzy sets as mathematical modeling of fuzzy concepts in nat-

ural language in 1965 [1]. Ever since, while fuzzy theory found significant applica-

tions in engineering and technology fields from its own concepts and methods, it was

Zadeh himself who emphasized that fuzziness, as a distinct concept of uncertainty,

should be a complement to randomness, i.e., when facing uncertainty in real-world

complex systems, we should handle both fuzziness and randomness together. This

paper is about a concrete and important situation where random fuzzy sets appear

naturally and should be studied simultaneously.

This paper is organized as follows. In Sect. 2, biased by our own experience, we

recall two anecdotes concerning fuzzy theory, as a “contribution” to the celebration

of 50 years of fuzzy sets. The rest of the paper is devoted to elaborating on some sig-

nificant contributions of fuzzy theory to a specific area of social science, namely eco-

nomics, again biased by our own current research interests. In Sect. 3, within the nice
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connection of Von Neumann’s view of economics and [2], we bring out the neces-

sity to take fuzzy games into account in order to investigate coherent risk allocations

in financial risk management. In Sect. 4, we illustrate the appearance of “observed”

time series of fuzzy data in econometric regression with seemingly unobservable
variables (SUV), as well as discussing the necessity of using fuzzy technology in

both statistical and econometric causal inference. To put fuzzy data on a firm basis

for statistical treatment, we outline, in Sect. 5, our recent development of random

fuzzy sets using topologies from continuous lattices.

2 Two Anecdotes of Fuzzy Theory

Professor Dennis Lindley gave a thought-provoking lecture in Zadeh’s seminar at the

University of California, Berkeley, in 1981, in which he showed that, in the frame-

work of scoring rules, fuzzy sets, belief functions and even confidence intervals are

all inadmissible measures of uncertainty. His message is that “you cannot avoid prob-

ability”. His lecture was published in 1982 (see [3]). In a followed-up debate orga-

nized by a statistical journal, all invited discussants felt strongly that Lindley was

wrong, but Lindley replied something like “everybody said that I am wrong, but

nobody was able to show me where I am wrong, mathematically”.

I. R. Goodman and H. T. Nguyen spent a year or so, starring at Lindley’s paper.

And, finally, they saw what was wrong with Lindley’s result. There is nothing wrong

with Lindley’s result, only his implications! His result is this. If an uncertainty mea-

sure is admissible, then it must be a function of a probability measure. But then,

that uncertainty measure need not be additive, such as the square of a probability

measure which is precisely a belief function. So, the matter is clear and settled! We

can go on to use fuzziness without contradicting Lindley’s message. Our findings

were published in 1991 (see [4]). It is interesting to note that the philosophical side

of the above issue seems to lie between (semantic) information and probability. In

1982, A. N. Kolmogorov said “Information theory must precede probability and not

be based on it” (See [5]). This is a quote in the book Information Theory and The
Central Limit Theorem by [6].

The second anecdote is even more “threatening”! C. Elkan presented a paper enti-

tled “The paradoxical success of fuzzy logic” at a Conference on Artificial Intelli-

gence in 1993 in which he said that all successes attributed to fuzzy logic are due to

something else, and in fact, fuzzy logic does not exist, using a short mathematical

theorem showing that, from his set of axioms for fuzzy logic, fuzzy sets just collapse

to ordinary (crisp) sets! See [7]. Again, a journal debate was organized with a famil-

iar outcome: discussants “argued” that Elkan was wrong, but nobody was able to

point out where he was wrong mathematically! It was Vladik Kreinovich who found

a way to get around Elkan’s theorem by examining logics of experts (See [8]). It

was a good step but not quite an answer to Elkan’s result. Upon seeing that paper by

Nguyen et al., three logicians at New Mexico State University (Las Cruces, USA),
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Mai Gehrke, Carol and Elbert Walker, quickly saw the flaw in Elkan’s theorem. It is

his own system of axioms which was wrong. Their findings were published in 1997

(See [9]). So, again, we can go on!

3 Fuzzy Games for Financial Risk Management

This section is devoted to the explanation of a significant contribution of fuzzy set

theory to economics, in the sense that its generalization of crisp sets is necessary

to solve important problems, and not just a generalization per se. In a sense, this is

somewhat similar to the invention of complex numbers!

Extensions of concepts are familiar phenomena in mathematics. In the applied sci-

ences, mathematical generalizations of concepts are immediately appreciated when

not only they are motivated by concrete needs in applications, but also since they

help to solve problems that otherwise we cannot come up with solutions. The striking

example is the generalization of (pure) strategies in non-cooperative games to mixed

strategies, leading to the existence of Nash equilibria in behavioral economics. Now,

as we will see, Von Neumann’s cooperative (coalitional) games need to be general-

ized to solve a problem in econometrics. It is interesting to mention that R. J. Aumann

and L. S. Shapley (1974), in their famous book Values of Non-Atomic Games, needed

to generalize ordinary sets to obtain what they called “evenly spread sets” to formu-

late their notion of values for games with large masses of players. As they put down

in a footnote [10], their “ideal sets” are formally Zadeh’s fuzzy sets.

Recent literature on the capital risk allocation (CRA) problem revealed a nice

marriage between two seemingly “disjoint” ingredients in studying economics,

namely von Neumann’s game theory, and Haavelmo’s econometrics. The basic ref-

erence is [11] which triggered current intensive research on fuzzy games for practical

applications.

As its name indicates, the CRA problem consists of finding (“fair”) ways to allo-

cate capital risk of a firm to its (business) units. Suppose there are n units in a

firm, each unit has a risk of Xi (a random variable). The risk Xi is quantified by

using a risk measure r(.). The “cost” of a group of units A ⊆ I = {1, 2, ..., n}, is

c(A) = r(
∑

i∈A Xi). To capture diversification effect, the risk measure r(.) should be

chosen to be “coherent”, i.e., subadditive, such as the Tail Value-At-Risk. For such a

risk measure, the set function v ∶ 2I → ℝ, defined by v(A) =
∑

i∈A c({i}) − c(A), is

super additive, so that, formally, (I, v) is a coalitional (cooperative) game, in which

units play the role of “players”, subsets of I are coalitions, and v(.) gives the “pay-

offs” of coalitions. Thus, the CRA problem can be reformulated as a coalitional game

which is more “convenient”, in the sense that game solution concepts will be used to

derive allocation principles for CRA problem. Specifically, a cost allocation is a vec-

tor (x1, x2, ..., xn) ∈ ℝn
+ such that

∑n
i=1 xi = c(I) which is obtained from an allocation

(y1, y2, ..., yn) ∈ ℝn
+ of the game (I, v) by taking xi = c({i}) − yi.

Specifically, the Shapley value S of (I, v) is a “coherent” allocation (i.e., a solution

for the CRA problem) when it belongs to the core C (v) of the game (which is non
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empty here by the choice of a coherent risk measure). Note that, if a game (I, v) can

be modeled arbitrarily, e.g., as a convex game, then it is well-known that not only the

core is non empty, and equals to the unique stable set, but also contains the Shap-

ley value. The problem here is that, we cannot choose the associated characteristic

function v(.) arbitrarily, since it is defined in terms of a (coherent) risk measure r(.),
via the cost function c(.), namely

v(A) =
∑
i∈A

c({i}) − c(A) =
∑
i∈A

r(Xi) − r(
∑
j∈A

Xj)

If (I, v) is a convex game, then necessarily the risk measure r(.) is linear, which is

not acceptable since such a risk measure eliminates the diversification effect. Thus,

we are facing a non convex game (I, v), i.e., lacking all the nice properties of convex

games, in particular, a coherent allocation principle for the original CRA problem.

Hence, the question is: for a non convex game, but with non empty core, when the

Shapley value belongs to the core? As [11] put it “We thus fall short of a convincing

proof of the existence of coherent allocations”. The “way out” is fuzzy games!
So let’s us just spell out what are fuzzy games, how they appear, and how they

provide solutions to CRA problem.

In standard coalitional games (I, v), a coalition is a subset A of the set I =
{1, 2, ..., n} of players. It was Aubin (see e.g., [12]) who made the following real-

istic observation. When joining a coalition, players might not necessarily commit

their full resources (e.g., money, time) to it. They could choose their levels of par-

ticipation to a coalition, and not just whether they decide to participate or not. As

such, degrees of participation of players should be taken into account when consid-

ering coalitions (e.g., here, for a “fair” capital risk allocation). A coalition A when

all of its members committing fully is just an ordinary coalition, i.e., a crisp subset

of I, whereas, a “partial” coalition can only be characterized by degrees of partici-

pation of players, i.e., by a function f ∶ I → [0, 1] with f (i) represents the degree of

participation of player i in the coalition. Thus, a partial coalition is not a set unless

f ∶ I → {0, 1}, but a kind of a “generalized set”, a fuzzy set. It should be noted that

f (.) < 1 is possible: it corresponds to a coalition where no player wants to commit

fully to it.

Remark. Using indicator functions of sets, we identify the power set of I with

the subset {0, 1}n
of ℝn

, denoted as 2I
. The convex hull of {0, 1}n

is [0, 1]n which

is identified as the set of functions I → [0, 1]. Thus, each “membership function”

f ∶ I → [0, 1] is written as f (.) =
∑

A⊆I 𝛽(A)1A(.) with 𝛽(.) ≥ 0 and
∑

A⊆I 𝛽(A) = 1.

As a result, f (i) =
∑

i∈A 𝛽(A) which can be interpreted as the (one-point) coverage

function of the random set S ∶ (𝛺,A ,P) → 2I
, with P(S = A) = 𝛽(A), i.e., f (i) =

P(i ∈ S). It is important to note that this interpretation is by no means an indication

that fuzziness is subsumed by probability! First, the above connection exhibits only

a weak form of randomness. Membership functions (defining fuzzy sets) are not

probability distributions. Fuzziness is a matter of degree. Let’s elaborate on these

two points. The function A(.) ∶ ℝ+ → [0, 1] given by



On Fuzzy Theory for Econometrics 405

A(u) =
⎧⎪⎨⎪⎩

0 if u < 20
u−20
55 if 20 ≤ u ≤ 75

1 if u > 75

is a membership function for the fuzzy concept “high income” (where, e.g., 20means

$20, 000, annually). The value
30
55 ∈ [0, 1] is the degree to which the income of 50

is compatible with the meaning of “high income”. It is not the probability that an

income of 50 is high! Membership functions on general domains (not necessarily

finite domains) exhibit a weak form of randomness as follows. Let f ∶ U → [0, 1],
then there exists a random set (see Sect. 5) S ∶ (𝛺,A ,P) → 2U

, such that, for each

u ∈ U, f (u) = P(u ∈ S). Indeed, it suffices to consider a random variable 𝛼 ∶
(𝛺,A ,P) → [0, 1], uniformly distributed, and take S(𝜔) = {u ∈ U ∶ f (u) ≥ 𝛼(𝜔)}.

The adjective “weak” refers to the knowledge of the coverage function u → P(u ∈ S)
of a random set (as in the theory of sampling in finite populations) which is weaker

than the knowledge of the “distribution” of the random set. This is illustrated by a

previous work of Robbins (1944). Historically, while random sets appeared natu-

rally in many places, such as stochastic geometry, its formal theory was not rigor-

ously established until 1975 (by [13]). When estimating the “size” (area, volume) of

a random set, [14] did not really consider a formal concept of a random set. This so

since the size of a random set 𝜇(S) (where 𝜇 the Lebesgue measure on ℝd
) is in fact

a numerical random variable, although it depends on the random set S. Without a

formal concept of random sets, it is not possible to find the distribution of the non-

negative random variable 𝜇(S) which is a function of S. The clever result of Robbins

is this. As far as the expected value of 𝜇(S) is concerned, we need much less than

the distribution of 𝜇(S). Specifically, the knowledge on the coverage function of the

informal random set S is sufficient to determine E𝜇(S), a “weaker” form of informa-

tion. The computation of the expected length of a random set of the form S = [0,X]
where X ≥ 0 is a random variable is simple: the length of S is X, so that

E𝜇(S) = EX =
∫

∞

0
P(X > x)dx =

∫

∞

0
𝜋(x)dx

where

𝜋(x) = P(x ∈ S) = P(x ∈ [0,X]) = P(X > x)

is the coverage function of the random set S. The Robbins’ formula says that the

above formula is in fact general: For any random set S on ℝd
, we have

E𝜇(S) =
∫ℝd

𝜋(x)d𝜇(x)

where 𝜋(.) ∶ ℝd → [0, 1] is the coverage function of S.

Coalitional games in which partial coalitions are considered are referred to as

fuzzy games. Just like fuzzy logic (which really means “a logic of fuzzy concepts”
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and not a logic which is fuzzy!), maybe we should rename fuzzy games by games
with fuzzy coalitions to be specific?

A fuzzy game is a pair (I, v∗) where I = {1, 2, ..., n} and the generalized “char-

acteristic function” (of coalitional games) is v∗ ∶ [0, 1]n(fuzzy subsets of I)→ ℝ,

with v∗(0) = 0, noting that a fuzzy coalition is characterized by a vector 𝜆 =
(𝜆1, 𝜆2, ..., 𝜆n) ∈ [0, 1]n with 𝜆i being the participation level of player i in that fuzzy

set. An allocation for a fuzzy game is a vector x ∈ ℝn
such that

∑n
i=1 xi = v∗(I) and,

for any fuzzy coalition 𝜆,
∑n

i=1 𝜆ixi ≥ v∗(𝜆) (Noting that, the attainable outcome of

a fuzzy coalition depends obviously on the degrees of commitment of the players).

This is the generalization of the core of a standard coalitional game. However, while

the game is fuzzy, its “fuzzy core” is not.

Remark. The “cost function” of a fuzzy coalition 𝜆 is defined in terms of a risk

measure r(.) as c(𝜆) = r(
∑n

i=1 𝜆iXi).
In the context of the CRA problem, the associated fuzzy game is this. Let 𝛬 =

(𝛬1, 𝛬2, ..., 𝛬n) ∈ ℝn
+ be the vector of “business volumes” of units in a firm. Suppose

each unit can commit some portion of its volume to a coalition. Let denote by 𝜆 =
(𝜆1, 𝜆2, ..., 𝜆n) a “resource commitment” of the units to a coalition, where, of course,

0 ≤ 𝜆 ≤ 𝛬 (componentwise). Then the degree of membership (level of participation)

of unit i in that coalition is
𝜆i
𝛬i

∈ [0, 1]. The fuzzy coalition is determined by the

membership function f ∶ I → [0, 1], given by f (i) = 𝜆i
𝛬i

.

When taking into account of partial participation in coalitions, such as this impor-

tant situation in financial risk management, we arrive as a natural concept of fuzzy

games which turn out to be a “good” example of Aumann and Shapley’s non-atomic
games [10]. Indeed, since each player (business unit) can choose to joint a coalition

by declaring a portion f (i) = 𝜆i
𝛬i

∈ [0, 1] of its total business volume, the “real”

players in I = {1, 2, ..., n} become “players” in the infinite set [0, 1]. In other words,

a fuzzy game is a game with infinite number of players. Note that, in this view, coali-

tions of the game ([0, 1],w) are taken as Borel sets of [0, 1], i.e., w(.) ∶ B1 → ℝ,

but noting also that ([0, 1],B1,w) is not a measure space since the set function w(.)
is not additive.

Without entering into more technical details, let’s just mention how the extension

to fuzzy games leads to solutions for the CRA problem. Extending basic concepts of

crisp coalitonal games to fuzzy games, such as core of fuzzy games, (Shapley) fuzzy

values, as well as associated coherent risk measures, the solution to the CRA can be

taken as an allocation (fuzzy value map) with values in the core (non fuzzy) of the

fuzzy game. It turns out that the Aumann-Shapley value (extending the usual Shapley

value) of non-atomic games is a coherent CRA solution, when the underlying risk

measure is chosen to be coherent (in an extended sense), and under mild and possible

conditions. See [11] for details.

The advantage of considering fuzzy games in the CRA problem is this. With

coherent risk measures, it is not clear whether the Shapley value is a coherent allo-

cation, but, the Aumann-Shapley value (when it exists) is a coherent allocation (i.e.,

solution of the CRA problem) in the context of fuzzy games.
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4 Fuzzy Methods for Econometric Causal Inference

We turn now to another significant contribution of fuzzy theory to econometrics,

namely using fuzzy rule bases to investigating causal inference (specifically, in

counterfactual problem: how to use a knowledge of a causal structure to “reason” to

unobservable outcomes?), leading to econometric predictions with seemingly unob-

servable variables.

But first, while fuzzy technology is well-known in engineering circle, it is not so

for econometric community. Here is a tutorial on the basis of fuzzy technology that

we will employ in this paper. According to [1], fuzzy concepts in a natural language,

such as “low” (temperature), “efficiency”, “happiness”, can be modeled mathemati-

cally for information processing purposes. As we will see, fuzzy concepts are usually

values of qualitative (linguistic) variables of interest in decision-making (e.g., not

disabled, partially disabled, fully disabled are “values”/outcomes of the linguistic

variable “disability status”). More importantly, fuzzy concepts are used as coars-
ening schemes in human intelligent behavior (e.g., in intelligent control). Note that

qualitative/latent models and regression are also in the practical statistical tool box.

Using a familiar procedure in mathematics, namely, as far as generalizations

are concerned, some equivalences of a concept are more suitable for the purpose

than others (e.g., an equivalent framework for deriving the Black-Scholes option

pricing formula from PDE is martingales, allowing extensions to other markets),

Zadeh defined fuzzy sets (i.e., mathematical objects representing fuzzy concepts)

by extending the range of ordinary (crisp) set indicator functions (for a complete

theory of fuzzy sets and logics, see e.g., [15]). Let U be a set. A subset A ⊆ U is

characterized by it indicator function A(.) ∶ U → {0, 1} (note that we use the same

notation A for the set and its indicator function, the context will tell us clearly which

is which!), where A(u) = 1 or 0 according to u ∈ A ∈ or u ∉ A. This equivalent way

to describe a set brings out the notion of membership of elements of U to subsets of

U: when A(u) = 1, the element u is a member of A, whereas when A(u) = 0, u is

not a member of A. Here, membership degrees are only 1 and 0 (there is no partial

membership). Extending the range {0, 1} to the whole unit interval [0, 1] lead to a

generalization of crisp sets to fuzzy sets. Specifically, a fuzzy subset of U is a func-

tion A(.) ∶ U → [0, 1] where A(u) ∈ [0, 1] is the membership of an elements u ∈ U
in the underlying fuzzy concept.

Having fuzzy data modeled as fuzzy sets, we can proceed to manipulate/process

them by extending operations on the underlying set U. This is achieved by the well-

known extension principle. If 𝜑 ∶ U × V → W and A,B are fuzzy subsets of U,V ,

respectively, then 𝜑 is extended to fuzzy subsets as

𝜑(A,B)(w) = max
{(u,v)∶𝜑(u,v)=w}

(A(u) ∧ B(v))

where ∧ denotes minimum (and ∨ denotes maximum).

Note that, in one hand, since any function A(.) ∶ U → [0, 1] can be recovered

from its level sets A
𝛼

= {u ∈ U ∶ A(u) ≥ 𝛼}, 𝛼 ∈ [0, 1] by A(u) = ∫
1
0 A

𝛼

(u)d𝛼,
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and on the other hand, manipulations with level sets are simpler, the following well-

known result, known in the literature as Nguyen’s Theorem (See, [16–18]) is useful.

A necessary and sufficient condition for

𝜑(A(1)
𝛼

,A(2)
𝛼

, ...,A(n)
𝛼

) = [𝜑(A(1)
,A(2)

, ...,A(n))]
𝛼

where 𝜑 ∶ U1 × U2 × ... × Un → V , and A(i)
is a fuzzy subset on Ui, i = 1, 2, ..., n is

that for each v ∈ V ,

max
{(u1,u2,...,un)∈𝜑−1(v)}

[∧n
i=1A(i)(ui)]

is attained.

While fuzzy logic connectives, including “implication operator” ⟹ (represent-

ing “If... Then...” rules in fuzzy technology), are familiar with engineers, they appear

as tools to suggest (nonlinear) models for statistics.

This can be seen as follows. A statistical model, such as a linear regression model

Yi = 𝜃Xi + 𝜀i, i = 1, 2, ..., n, is in fact a collection of “If...Then...” rules, since what

they mean is that, for each i, the model reads “If X is Xi (and 𝜀 is 𝜀i), then Y is Yi”
(where “is” stands for “equal”). This observation allows an extension to fuzzy data:

when (Xi,Yi), i = 1, 2, ..., n are fuzzy data (linguistic labels), the “rules” become Ri ∶
“If X is Xi, then Y is Yi” or “Xi ⟹ Yi” where the connective “If...Then...” is the

implication ⟹ in fuzzy logic, which is a fuzzy relation on the Cartesian product,

say, U × V , i.e. f⟹(u, v) is the degree to which u “implies” v. In the simplest fuzzy

logic system, f⟹(u, v) in “Xi ⟹ Yi” can be taken as Xi(u) ∧ Yi(v).
In the statistical linear regression, the goal is to arrive at a “prediction formula”

from, say, given numerical data (Xi,Yi), i = 1, 2, ..., n. This is achieved by combining

the “rules” Yi = 𝜃Xi + 𝜀i by using some method of estimation (e.g., least squares,

when random variables have finite variances) to estimate the parameter 𝜃 to arrive

as Y = ̂
𝜃nX. A counterpart of such a procedure when the data (Xi,Yi), i = 1, 2, ..., n

are fuzzy is combining the rules “Xi ⟹ Yi” by the compositional rule of inference

∨n
i=1[Xi(u)∧Yi(v)] to obtain the combined membership function, where ∨n

i=1[Xi(u)∧
Yi(v)] is the degree to which u implies v given the rule base. Given a value u, the

implied consequence is a fuzzy subset of V given by v → ∨n
i=1[Xi(u) ∧ Yi(v)]. The

important point is this. Fuzzy rule bases play the role of statistical models in the

presence of fuzzy data. We will elaborate on this important ingredient in the problem

of “estimating” unobservables using nonparametric causal “structures”.

Remark. With respect to the “conditional” implication “A ⟹ B” and its degree

of compatibility, used in the previous context, it is of course tempting to ask whether

they can be given a probabilistic flavor? For example, for crisp events A,B on some

probability space (𝛺,A ,P), can we view the degree of “A ⟹ B” as P(B|A)?
If A ⟹ B = Ac ∪ B (material implication), then

P(A ⟹ B) = P(Ac ∪ B) = P(Ac ∪ (A ∩ B))

= P(Ac) + P(A ∩ B) = P(Ac) + P(B|A)P(A) = P(Ac) + P(B|A)[1 − P(Ac)]
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= P(B|A) + P(Ac)[1 − P(B|A)] = P(B|A) + P(Ac)P(Bc|A) ≥ P(B|A)
with equality holding if and only if P(Bc∩A) = 0 or P(A) = 1, a rather trivial case.

It is known that there is no operation ▽ on the 𝜎− field A such that P(A▽B) =
P(B|A) (see Goodman, Nguyen and Walker [19]). Thus, the answer is no, even for

crisp events let alone for fuzzy events (a fuzzy event is a fuzzy subset of 𝛺 whose

membership function is measurable). Therefore, if we insist on P(A|B) as the degree

for A ⟹ B to be true, we have to represent mathematically the rule A ⟹ B
differently. Since A ⟹ B ∉ A , it could be an object lying outside of A for the

equation P(A ⟹ B) = P(B|A) to hold. This is similar to complex numbers. For the

solution to this problem, see [19]. See also [20–23].

Fuzzy rules and their fusion are very important for reasoning in intelligent sys-

tems. Each rule reflects common sense knowledge, and will be used (see later) to

provide models for knowledge acquisition. Just like the case of default reasoning

in computer science, rules could have exceptions (for reasoning with such rules,

see [24]).

We turn now to the question: how can fuzzy technology help statistics? In a sense,

we will point out some significant contributions of fuzzy theory, outside the engi-

neering fields, to statistics in particular, and to decision theory in general.

Regression analysis is the main tool of statistics for investigating relationships

between economic variables. As statistical theory, based upon probability theory,

seems to leave no stone unturned in its path, it addresses also the important situa-

tions where variables (response variables, regressors and covariates) could be latent

or qualitative. However, in this context, there is one stone unturned. It is the case

where regressors are seemingly unobservable and need to be “estimated” to run the

regression. A typical situation is the study of the effect of underground economy

(u.e.) on national economy, recently investigated by [25], and [26]. Let Y denote

the GDP of a country and X denote the size of the u.e. of that country. A simple

linear regression model is Y = aX + b + 𝜀. While Y is observable (say, yearly),

X is not. It is not realistic to make further assumptions to proceed as in standard

practice! To run such a regression, we need to “create” a time series of X. How? It

is precisely here that fuzzy technology could help! But before elaborating on this

possibility, let’s pause and says few words about this interesting demand. Although

X is unobservable, we might be able to identify some main causes of it. Then we

need an ingredient to infer X, in some fashion, from these observable causes. This

sounds somewhat like we are in the context of causal inference? As emphasized by

[27]: “Causal inference requires two additional ingredients: a scientific language
for articulating causal knowledge, and a mathematical machinery for processing
that knowledge, combining it with data and drawing new causal conclusions about
the phenomenon”. While our problem here is not about causal inference, since we

assume that some causes of X are identified, and we proceed to “estimate” X from

them. However, fuzzy theory seems to provide the two additional ingredients men-

tioned by Pearl: the “scientific language for articulating knowledge” is fuzzy logic in

the form of fuzzy “if...then...” rules, and “a mathematical machinery for processing

knowledge” is the compositional rule of inference.
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Remark. When considering causality, we face two problems: finding the causes

of an “effect”, and studying the effects of causes of an effect. See Holland [28] for

an excellent paper on causal inference from a statistical viewpoint. The above fuzzy

procedure offers a more realistic way for assessing the effects of given causes on

an “effect” variable, even for the case where the effect variable is not observable.
It does so by using (linguistic) coarsening schemes, resulting in assessing (rather

than “measuring”) causal effects from a common sense knowledge, without impos-

ing untested statistical assumptions. This is a very important issue to explore for

future research and applications, where fuzzy technology could provide a realistic

alternative to statistical approach, somewhat in line with Pearl’s view. It should be

remembered that when we offer an alternative (to existing approaches) we need to

explain why another alternative (e.g., what are its advantages?). In view of the state-

of-the-art of causal inference, an alternative to carry out causal inference by fuzzy

theory should be welcome and well-justified. Indeed, as [29] put it “I would advise
against regarding any one approach or blending as a complete solution or algorithm
for problems of causal inference; the area remains one rich with open problems and
opportunities for innovation”.

In the specific case of u.e., causes of u.e. could be “taxation”, “unemployment

rate” and “corruption index”. A typical fuzzy rule is of the form “If taxation is

high, unemployment rate is low, and corruption index is medium, then the size of

u.e. is medium”. Given a fuzzy rule base (consisting of a finite set of fuzzy rules),

the compositional rule of inference allows the derivation, from observed causes, the

“estimated” size of u.e., expressed as fuzzy sets. With such “fuzzy estimates” of the

regressor “size of u.e.”, we then face a linear regression model Y = aX + b + 𝜀 with

fuzzy data (Xi,Yi), i = 1, 2, ..., n. Note that (statistical) regression with fuzzy data is

different than conventional “fuzzy regression” in engineering literature, in which the

model is Y = aX + b with coefficients a, b being fuzzy sets, X non fuzzy, resulting

in fuzzy output Y .

In order to carry out statistical regression with fuzzy data, we need to treat fuzzy

data as realizations of bona fide random elements in probability theory. These will

be called random fuzzy sets, and will be discussed in the next section.

5 Incorporating Fuzzy Data into Statistics

In order to view fuzzy data as bona fide statistical observations, it is necessary to

define the formal concept of a random element whose values are fuzzy sets. The

standard process consists of specifying a measurable space (U,U ) where U is the

set of “oucomes” of the random element X that we wish to define, and U is an

appropriate 𝜎−field of subsets of U, representing events. Also, as usual, the 𝜎−field

U is Borel, i.e., constructed from some topology on U. Thus, the main task is to

topologize U. For concreteness, we take U to be the set F of closed fuzzy subsets
of ℝd

, i.e., fuzzy subsets whose membership functions f ∶ ℝd → [0, 1], are upper

semi continuous, i.e., their level sets A
𝛼

(f ) = {x ∈ ℝd ∶ f (x) ≥ 𝛼}, 𝛼 ∈ [0, 1], are



On Fuzzy Theory for Econometrics 411

closed subsets of ℝd
. It is not obvious how to come up with some metric in order to

topologize the space F . Fortunately, we are standing on the shoulders of giants (!):

the theory of continuous lattices [30] offers the topology we need here. Note that,

continuous lattices, or “domains” are known also in computer science, see e.g., [31].

Topologies generated by (partial) order relations in general spaces are well-

known. What is interesting is that depending upon how we choose an order relation,

we can obtain an interesting topology. Now, fuzzy sets not only represent the seman-

tic meaning of fuzzy concepts, they are used also as “coarse data”, exhibiting a form

of localization information (just like crisp sets), in the sense that the fuzzy set A is

“more informative” than a fuzzy set B if A is contained in B, in symbol A ⊆ B i.e.,

A(u) ≤ B(u) for all u ∈ U. Thus, an (partial) order relation on F could be taken

as A ≿ B (A is “greater” than B) if A ⊆ B. In other words, we take as an order

relation on F the reverse order of set inclusion. It is this order ≿ which makes F
a continuous lattice. Indeed, first, the poset (F , ≿) is a complete lattice. Moreover,

it is a continuous lattice, i.e., for every F ∈ F , we have F = ∨{G ∈ F ∶ G ⋑ F}
where the finer relation ⋑ (“much less informative than”) or “way below” is defined

as follows. G ⋑ F if for every collection D of elements of F for which F ≿ ∨D,

there is a A ∈ D such that G ≿ A.

On a continuous lattice (F ,⋟,⋑), there is a canonical topology, called the Lawson
topology, which is the topology 𝜏 with a subbase consisting of sets {G ∈ F ∶ G ⋑
F} and {G ∈ F ∶ G  F} for all F ∈ F , i.e., open sets are taken as arbitrary

unions of finite intersections of these sets. Note that, the Lawson topology on the set

of closed (crisp) subsets coincides with the Matheron (1975) hit-or-miss topology.

Let B(𝜏) be the Borel 𝜎− field generated by the Lawson topology 𝜏 on F . Let

(𝛺,A ,P) be a probability space. Then by a random fuzzy (closed) set, we mean a

map X ∶ 𝛺 → F , A −B(𝜏)− measurable, i.e., X−1[B(𝜏)] ⊆ A .

Remark. Our approach here is to place fuzzy sets as values of random elements

within probability theory, as opposed to “the fuzzy approach to statistical analysis”,

see, e.g., [32].

In the special case of random (crisp) closed sets [13], the counterpart of Lebesgue-

Stieltjes theorem is the Choquet theorem characterizing probability measures by

capacity functionals. Specifically, let F ,K denote the classes of closed and com-

pact subsets of ℝd
, respectively, and define T ∶ K → [0, 1] by

T(K) = P(F ∈ F ∶ F ∩ K ≠ ∅}

then T satisfies the following axioms

(1) T(∅) = 0
(2) T is alternating of infinite order, i.e., for any n ≥ 2 and K1,K2, ...,Kn in K ,

T(∩n
i=1Ki) ≤

∑
∅≠I⊆{1,2,...,n}

T(∪i∈IKi)

(3) If Kn ↘ K in K , then T(Kn) ↘ T(K)
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Any function T ∶ K → [0, 1] satisfying the above three axioms is called a

capacity functional. Capacity functionals play the role of distribution functions of

random variables. The collection of closed sets FK = {F ∈ F ∶ F ∩K ≠ ∅} plays

the role of intervals (−∞, y] on the real line, in the determination of the distribution

function of a real-valued random variable Y: FY (y) = P(Y ≤ y) = PY ((−∞, y]).
Like Lebesgue-Stieltjes theorem, the following result simplifies the search for

probability laws governing random evolution of random sets.

Choquet Theorem. If T ∶ K → [0, 1] is a capacity functional, then there exists

a unique probability P on B(F ) such that P(FK) = T(K) for all K ∈ K .

For more details on the above, see Nguyen and Tran [33]. For the extension of

Choquet theorem to random fuzzy sets, see [34]. Finally, for representing fuzzy infor-

mation on a computer system, see, e.g., [35].
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1 Introduction

“Language is, at its core, a system that is both digital and infinite. To my knowledge, there
is no other biological system with these properties…” - [1]

Languages are built from finite sets of primitive symbols or alphabets, which are
combined into complex elements like words, phrases, clauses, sentences, etc., to
express thoughts and the world in general. Natural language understanding begins
with decoding the context-sensitive perceptions of words, followed by incremental
computations on these interpretations across levels of language units (phrases,
sentences, etc.). A sentient machine capable of natural language comprehension
should typically possess high Machine Intelligence Quotient (MIQ) [2], and can be
envisioned as an intelligent human aid.

Coined by Zadeh in 1996, Computing With Words (CWW) [3] is inspired by the
cognitive process of comprehension. It aspires to capacitate a machine to ‘learn’,
‘think’ and ‘respond’ to words akin to human beings. CWW heralds a paradigm
shift from definite, numeric processing to imprecise word-sense computations.
Realization of the paradigm requires the machine to learn words – both existing and
new, apply them to form semantically, and ideally syntactically, correct natural
language statements. Meanings of words, thus, require to be translated into some
symbolic form. CWW is founded on the concepts of fuzzy logic [2–4], fuzzy
linguistics [4], test score semantics [5] and Precisiated Natural Language (PNL) [6],
and is the precursor to Computing With Perceptions (CTP) [7].

The Z-number [8], proposed by Zadeh, is a fairly new addition to the CTP
family. Besides unifying fundamentals of CWW, it incorporates an indicator of the
information-reliability of a statement. Z-numbers, thus, can precisiate the infor-
mation (factual and subjective) in a ‘statement’. This article describes our efforts –
through an algorithm and perception-operators (forming complex or spectral
Z-valuations) – towards extending it to CWW in ‘sentences’. Our defined methods
are used to simulate a real-life differential diagnosis scenario. The section on
Z-numbers ends with a study of its strengths and practical challenges. The issue that
interests us profoundly is the endogenous instantiation of machine-subjectivity
towards the formation of bespoke elements of comprehension (will we ever be able
to emulate a naturally functioning brain?).

“The world isn’t just the way it is. It is how we understand it, no? And in understanding
something, we bring something to it, no?” – Yann Martel in Life of Pi, 2001

Encouraged by the capabilities of the Z-numbers, we direct our efforts to the design
of machine-mind architecture – a framework of function modules and memory
constructs that realize the machine-self, emulate thinking and the autogenous
arousal of affects and qualia, for natural language comprehension. The framework is
based on Minsky’s Society of Mind [9] and Emotion Machine [10] theories of
‘productive’ (intuitive, commonsense-based) and ‘reproductive’ (learned, deliber-
ative, reflective, self-reflective, self-conscious) thinking. It utilizes the Z-numbers
to represent knowledge-frames, facilitating constituent perception computations.
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The role of the cerebral cortex regions in language comprehension [11, 12] serves
as our reference of design ‘completeness’.

Besides Zadeh and Minsky’s ideas, our work draws from key natural language
understander design efforts spanning over the last four decades [13–19]. Turing’s
landmark paper [20] and Vannevar Bush’s phenomenal article [21] are primary
stimuli behind the research.

In addition to the expansion of the basic Z-numbers, the novelty in our work lies
in using Minsky’s theories of the mind to design a framework for cognitive lan-
guage understanding. The system aims to formulate procedures of comprehension
customized to the problem being processed, learn from mistakes and improvise as
well. While ‘existing’ language understanders [19, 22–24], either do not ‘reflect’,
are not ‘self-reflective’ or ‘self-conscious’, or do not possess intuition and com-
monsense, our framework conceptually includes each of these elements.

The design is currently in its very early stages and is subject to evolution with
recurrent knowledge gain on the brain-processes.

The article is divided into the following sections: Sect. 2 – presents an overview
of the fundamental theories (CWW, Z-numbers and the Society of Mind) under-
lying our work; Sect. 3 – describes our work (extension of the Z-numbers and
enumeration of the computational-mind architecture); and Sect. 4 – summarizes the
key elements of this article.

2 Fundamentals

This section is dedicated to a brief discussion of the theories underlying the syn-
thesis of intelligent or thinking machines. The discussion begins with an outline of
the Computing With Words (CWW) paradigm, followed by highlights on the
Z-numbers and design principles of a machine-mind framework.

2.1 CWW

“In the coming years, computing with words is likely to evolve into a basic methodology in its
own right with wide-ranging ramifications on both the basic and the applied levels.” - [3]

The Computing With Words (CWW) [3, 25] paradigm deals with processing
rhetoric perceptions encoded in the building blocks (words and phrases) of natural
language expressions. CWW is imperative when:

i. Do not know rationale – The available information is imprecise and cannot be
represented as numbers. E.g., a person being called ‘young’ when the exact age
is unknown but is perceived to be within a certain age-group.
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ii. Do not need rationale – The tolerance to imprecision can be exploited to devise
“tractable, robust and low cost solutions”. E.g., putting up a picture on the wall
based on the directions of another person.

iii. Cannot solve rationale – The problems cannot be solved via numerical com-
puting processes. E.g., automation of driving in traffic.

iv. Cannot define rationale – Words express more than numbers. E.g., a patient
describing his illness.

The foundations of CWW lie in fuzzy logic [2–4], fuzzy linguistics and infor-
mation granulation [4], test-score semantics for mapping natural language state-
ments to degrees of constraint satisfaction [5], precisiation of natural language [6],
and the computational theory of perceptions [7]. CWW can be divided into levels
[26] – ‘level-1’ being the quantification of perceptions of adjectives and adverbs
(words and phrases), while ‘level-2’ focuses on the precisiation of entire natural
language statements. Refer to [27, 28] for a discussion on the generic architecture
and algorithm for CWW.

Since its coinage, the last decade has been a witness to phenomenal research on
CWW – particularly ‘level-1’ CWW. Some significant endeavours are: an effort
towards formalization of fuzzy number arithmetic [29]; application of mass
assignment theory on fuzzy sets to realize semantic interpretations of membership
functions [30]; design-concepts of fuzzy Finite State Machine (FSM) that generate
linguistic descriptions of complex phenomenon [31], and simulate emotions [32];
studies on the use of Interval Type-2 Fuzzy Sets (IT2-FS) to represent levels of
ambiguities in word perceptions [33]; amalgamation of concepts of fuzzy sets and
ontology [34]; formalization of the Generalized Constraint Language (GCL) into a
toolkit for CWW [35, 36].

CWW can be intuitively envisioned as capable of supporting the emulation of
“subjective-comprehension” of natural language; thereby contributing to research
initiatives in Man-machine symbiosis [37], Artificial General Intelligence
(AGI) [38] and the Intelligent Systems Revolution [20, 39]. The primary challenges
in the construction of a system capable of CWW are:

i. Representation of the richness and inherent ambiguity of natural languages –

perceptions (meanings and qualia) of words and phrases:

a. Accommodate polysemes, homonyms, capitonyms, synonyms, metaphors
and other figures of speech.

b. Provide for simple, complex, compound, declarative, interrogative, imper-
ative, exclamatory and conditional sentences.

c. Model changes in perceptions and encode reasons thereof – emulate pro-
cedural (predestined) learning.

d. Simulate endogenous arousal of subjective associations to events.
e. Synthesize an evolving context-sensitive rule-base and system lexicon to

guide comprehension computations.

ii. Encoding real-world knowledge and ‘common-sense’.
iii. Construction of concept granules underlying natural language expressions:
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a. Translate natural language inputs to some precisiated form for
machine-processing.

b. Identify contexts and test subsequent sentence relevance [40].
c. Design rules of computations for word and sentence perceptions; integration

of inter-sentence perceptions towards construction of concept granules.
d. Comprehend semantics despite syntactical errors or incomplete sentences.
e. Encode system inputs and results of computation into machine mentalese

[41] and human-understandable forms, respectively.

iv. Processing time requirements to be of the order of average human cognition
[∼150–300 ms].

v. Natural language comprehension involves processing multi-modal sensory
affects (facial expressions, voice intonations, eye-gaze and brightness, response
times, etc.). Such systems, thus, require components that can accept, interpret
and process these non-verbal or non-textual elements [this has been concep-
tually handled in our machine-mind architecture discussed in Sect. 3.2],
resulting in the integration of CWW, Natural Language Processing (NLP) and
affective computing processes.

2.2 Z-Numbers

“You cannot see what I see because you see what you see. You cannot know what I know
because you know what you know. What I see and what I know cannot be added to what
you see and what you know because they are not of the same kind. Neither can it replace
what you see and what you know, because that would be to replace you yourself.” –

Douglas Adams in Mostly Harmless, 1992.

Voluntary actions are the result of decision-making processes, and decisions
depend on information. Thus, greater the reliability of the information, stronger is
the decision made. The Z-number [8] philosophy aims at encoding the reliability or
the confidence in the information conveyed by natural language statements.
The Z-number draws on the concepts in [2–7, 25, 42]. The novelty of the
Z-numbers lies in the fact that it not only considers perceptions of individual words,
but also the perception of an entire statement. It is a manifestation of level-2 CWW.
Consequently, if it were possible to simulate the endogenous arousal of beliefs on
information, the Z-numbers would prove to be an effective means of representations
of machine-subjectivity.

Given a natural language statement, Y, the ‘Z-number’ ofY is a 2-tupleZ=<A,B>,
where A is the restriction (constraint) on the values of X (a real-valued uncertain
variable, interpreted as the subject of Y) andB is a measure of the reliability (certainty)
of A. Typically, A and B are expressed as words or clauses, and are both fuzzy
numbers. Some examples of Z-numbers are:
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i. Y1 = This book is absolutely excellent.
Therefore, X = Quality of the book, and Z = <excellent, absolutely>.

ii. Y2 = It takes me about half an hour to reach point A.
Therefore, X = Time to reach point A, and Z = <about half an hour, usually>.

Understandably, A is context-dependent while B summarizes the certainty or belief
in the applicability of A given X within the purview of the designated context. The
value of B could be explicitly quoted in the statement (as in example (i)) or it could
be implicit (as in example (ii)).

The ordered 3-tuple <X, A, B> is referred to as a ‘Z-valuation’. A Z-valuation is
equivalent to an assignment statement ‘X is <A, B>’. As for example:

i. The Z-valuation of Y1 is <Quality of the book, excellent, absolutely>.
Implication: [Quality of the book] is <excellent, absolutely>.

ii. The Z-valuation of Y2 is <Time to reach point A, about half an hour, usually>.
Implication: [Time to reach point A] is <about half an hour, usually>.

A collection of Z-valuations is referred to as ‘Z-information’ and is the stimulus to a
decision-making process.

Preliminary rules of Z-number computations [8] are:

i. For the purpose of computation, the values of A and B need to be precisiated
through association with membership functions, μA, μB respectively.

ii. X and A together define a random event in R, and the probability of this event,
p, may be expressed as:

p= ∫
R
μA uð ÞpX uð Þdu ð1Þ

where, u is a real-valued generic value of X and pX is the underlying (hidden)
probability density of X.

iii. The Z-valuation <X, A, B> is viewed as a generalized constraint on X, and is
defined by:

Probability X is Að Þ is B
or, p= ∫

R
μA uð ÞpX uð Þdu is B

ð2Þ

(2) is mathematically equivalent to the expression:
p= μBð∫

R
μA uð ÞpX uð ÞduÞ

subject to, ∫
R
pX uð Þdu=1

ð3Þ

iv. Computation using the Z-numbers is based on the ‘Principle of Extension’.

For example, considering a problem statement of the form:

“It is probable that Mr. Smith is old. What is the probability that he is not?”

Let, X = Mr. Smith’s age, A = old, B = probable, C = not old, D = degree of
certainty;
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μA, μB, μC, μD are the membership functions associated with A, B, C and D
respectively;
pX is the underlying (hidden) probability density of X; u is a real-valued generic
value of X.
We therefore have: Probability (X is A) is B; and
We need to evaluate: Probability (X is C) is ? D.
Thus, using the Principle of Extension and expressions (1), (2) and (3),

<X,A,B>
<X,C, ?D>

=
Probability X is Að Þ is B
Probability X is Cð Þis?D =

μBð∫ R μA uð ÞpX uð ÞduÞ
∫ R μC uð ÞpX uð Þdu� �

is? D

Implying,

μD wð Þ= suppX ðμBð∫
R
μA uð ÞpX uð ÞduÞÞ

subject to, w= ∫
R
μC uð ÞpX uð Þdu and ∫

R
pX uð Þdu=1

ð4Þ

Refer to [43] for a comprehensive discussion on the work done on Z-numbers.
While most of these initiatives concentrate on the definition of Z-calculi, our focus
is on its use in the embodiment of semantic-sense comprehension of natural lan-
guage sentences. Major challenges in the implementation of the Z-numbers lie in
the lack of: (a) Representation of meanings of natural language elements in some
form of machine-language, and (b) the emulation of endogenous arousal of cer-
tainty values and subsequent metacognition. These issues call for synergistic
research across multiple disciplines: philosophy, psychology, neuroscience and
computer science towards understanding the neural processes of comprehension in
human beings and defining their computational equivalents.

The capabilities of the methodologies elucidated in the preceding sections,
encourage machine-mind synthesis – the design of a machine-mind framework that
is self-evolving and self-organizing, autogenously attaches subjectivity to com-
prehension of the world and possesses common-sense. The following section is
dedicated to a discussion of the essential properties of such a cognitive architecture.

2.3 Machine-Mind

“You end up with a tremendous respect for a human being if you’re a roboticist” – Joseph
Engelberger, 1985

The human brain is a continually evolving, self-organizing computing system that
acquires, constructs, stores and processes symbols. A cognitive system, analogous
to the human brain, therefore, must think, improve by learning, adapt to the
environment, and find structure in ever-growing amounts of real-world data. Such
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systems require analyzing problems from multiple perspectives and ascertain
viewpoints that are in harmony with the context, identify objectives, weigh multiple
solution strategies and activate scheme(s) that predictably lead the system to some
goal state in reasonable time. These solution schemes include commonsense rea-
soning [44–48] and improvisation. Cognitive systems aim at man-machine sym-
biosis [37], e.g., intelligent sentient aids for the unwell and elderly, library
cataloguers, supports for children with learning disorders.

The Cognitive Machine or ‘Thinking Machines’ were pioneered by Turing. In
[49], he describes the design of random, self-organized, self-evolving structures for
the construction of intelligent machines. The pleasure-pain system outlined here is
perhaps the earliest work on ‘understanders’ built on the philosophy of CWW
[3, 25]. The Turing test described in [20] yet stands as a test of machine
think-ability. The last four decades or so has witnessed sporadic work in this area,
with major milestones [19] being achieved over the last decade. [Refer to [50] for a
broad comparison between some well known computational-mind theories.]

Our efforts in the thinking-systems initiative, is based on Minsky’s phenomenal
compilation on the Society of Mind [9] and Emotion Machine [10] theories. These
theories are ultimate culminations of a computational theory of the human mind,
consequential catalysts for ‘thinking’ on ‘thinking’, and are yet to be entirely
realized. While the ‘Society of Mind’ has been widely used [22–24, 51–54], the
‘Emotion Machine’ has seen sparse implementation initiatives [55–57].

Drawing from [58–63], the design prerogatives of a cognitive machine are:

i. Possess a finite alphabet set, which are used to form complex components like
words, sentences, etc.

ii. Have a finite, substantial memory unit that can store a large number of inde-
pendently variable symbols.

a. These symbols assume values from elements in the alphabet set; values
represent data and instructions.

b. These values can be generated, stored, searched for, manipulated upon and
deleted. The system thus should include a large and adaptive repository of
information or knowledge.

c. Symbols interpreted as instructions control system behaviour (internal,
external, self-modification, intuition, etc.).

d. Symbols that represent information flowing into the system through sensors
and other input devices represent beliefs about the world.

iii. System-knowledge to be inclusive of commonsense [45] and acquired run-time
concepts. Knowledge-handling mechanisms require strategies that can realize
cross-contextual associations [21].

iv. An adaptive system is reflective [64] or history-sensitive [58] and
self-conscious [65, 66]. It incorporates structures that represent the self, and
questions its own actions towards robustness and fault-tolerance improvement.
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These necessitate maintaining performance statistics for debugging [67], step-
ping and tracing facilities, interfacing with the external world, predicting future
computations, self-optimisation, self-modification and self-activation.

v. Data structures to represent the complexity, variety, unpredictability and
degrees of familiarity of an environment.

vi. Emulate neurogenesis [68] by being part of a social system – acquire new forms
of knowledge (e.g. new concepts and language skills), and adapt to changing
goals, principles, ideals, preferences, likes, dislikes. This demands
motive-comparators (‘critics and selectors’ [10, 69, 70],) to trade-off between
competing alternatives, analyze long-term or short term objectives, ignore or
suppress some motives or needs in the light of others and form new goals.

vii. The system must be comparable to average human processing [51] – conscious
processing (of the order of 100 ms) and unconscious processing (at the speed of
neural firing which is 40–1000 times per second).

2.3.1 Building Blocks of the Society of Mind Theory

The Society of Mind [9] theory construes the mind as a hierarchical, modular
computing mechanism, assembled of the following:

Agents: Building blocks of a computational mind; a component of a cognitive
process that is simple enough to ‘understand’.
Agency: Societies of agents which in unison perform functions more complex than
a single agent. The mind is a society of agencies.
K-lines: Agents (analogous to data and control structures in system architectures)
that turn on designated sets of agents. Types of K-lines:

Nemes: Agents responsible for the representation of an idea (context) or a state
of the mind.
Nomes: Agents that control the manipulation of representations and effect
agencies in a predetermined manner.

Frames [71]: Data structures representing the depiction of events and its constituent
properties. These structures connect into hierarchical connected graphs of nodes
and relations, where ‘top-level’ frames (or ‘frame-headers’) depict designated
abstractions of a situation, while the ‘lower-level’ frames have terminal slots (or
‘sub-frames’) instantiated to event-specific data. Data entry into the terminal slots is
directed by assignment conditions like ‘name of a person’, ‘pointer to another
sub-frame’, ‘relation to another sub-frame’, etc. Types of frames:

Surface Syntactic Frames: For verb and noun structures, prepositional and
word-order indicator conventions.
Surface Semantic Frames: For action-centred meanings of words, qualifiers and
relations involving participants, instruments, trajectories and strategies, goals,
consequences and side-effects.
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Thematic Frames: For scenarios concerned with topics, activities, portraits,
setting, outstanding problems and strategies commonly linked to a topic.
Narrative Frames: For scaffoldings of typical stories, explanations, and argu-
ments, conventions about foci, protagonists, plot forms, development, etc.;
assists the construction of new, instantiated thematic frame in the mind.

Difference-Engines: Problem solvers based on the identification of the dissimi-
larities between the current state of the mind and some goal state.
Censors: Restrain mental activity that precedes unproductive or dangerous actions.
Suppressors: Suppress unproductive or dangerous actions.
Protospecialists: Highly evolved agencies that yield initial behavioural solutions to
basic problems like locomotion, defence mechanisms etc. These develop with time.
Types of Learning:

Accumulating: Remember every experience as a separate case.
Unframing: Find a general description for multiple examples.
Transframing: Form an analogy or mapping between two representations.
Reformulation: Find new schemes of representing existing knowledge.
Predestined Learning: Learning that develops under sufficient internal and
external constraints such that the goal is assured, like learning a language or
learning to walk.
Learning from Attachment Figures: Learning how and when to adopt a par-
ticular goal and prioritize it, based on reinforcement of knowledge by ‘attach-
ment figures’- acquaintances who profoundly influence our minds. E.g., ‘praise’
and ‘censure’ from parents and teachers contribute significantly to goal learning.

2.3.2 Layers of the Mind

‘Thinking’ is a complex phenomenon entailing the analysis of a given situation
across multiple causal perspectives, consideration of valid propositions and solution
methods, and to apply or improvise upon them towards appropriate solution(s).
This involves recall, manipulation and organization of a vast repertoire of knowl-
edge, and powerful automated reasoning processes. Thinking operates across a
diverse array of mental realms [70, 72] some of which are: (a) Physical: Where
object behaviour is predicted; (b) Social: Dealing with inter-personal relationships;
and, (c) Mental: Reflections upon mistakes, failures and successes.

In [10] Minsky describes the mind as ‘thinking’ in terms of a ‘layered-
critic-selector-reflective’ [48, 69, 70, 72] framework. The six-layered structure in
Fig. 1 illustrates this model. Each of the layers incorporates ‘critics’ that consider
the external world and the internal system states, and activate ‘selectors’ to initiate
‘thinking’ on the interpretation strategies. The lower levels of the model handle and
represent ‘instinctive reactions’ to the external world, while the higher levels
control the reactions of the lower levels in accordance with the system’s model of
itself. The basic functions [10, 72] of the layers in the model are:
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Instinctive or inborn reactions: An implicit database of ‘if situation and goal,
then do action’ reaction-rules like: ‘if there is a seat and you are tired, then sit’;
often instrumental in predicting outcomes to situations.
Learned reactions: A database of <problem_descriptors, action, result, rea-
son> tuples ranked in the decreasing order of reinforcement; greater the rein-
forcement, higher is the probability of the action being recalled. E.g: I am far from
something I need immediately → Run towards it; I feel scared → Run quickly to a
safe place.
Deliberative thinking: Consideration of several alternative solution approaches,
and choosing the best; logic and commonsense reasoning to select solution paths.
E.g: Action A did not quite achieve my goal → Try harder, or find out why;
Action A worked but had adverse effects → Try some variant of that action.
Reflective thinking: Introspection over mental activities that went into
decision-making, rank inference methods, representation selection, etc. E.g.: The
search has become too extensive → Find methods that yield fewer alternatives;
Overlooked some critical feature → Revise problem description.
Self-reflective thinking: While the reflective layer considers only recent thoughts
that went into some decision-making, the self-reflective layer focuses on the entity
that ‘thought’. E.g: I missed an opportunity by not acting quickly enough → Acti-
vate a mental alarm that alerts me whenever I am procrastinating; I can never get
this right → Spend time practicing required skills.
Self-conscious emotion: Verification of agreement of decisions with ideals;
self-appraisal. E.g: I think I am good at this task → Can I do it as well as the best
people I know? How is it that other people can solve this problem? → Spend time
with those who are good at it.

Fig. 1 The layers of the
computational mind, as
defined by Minsky in [10]
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With this brief overview of the theories underlying our efforts, the article now
progresses to a discussion of the work done. In the following section, we illustrate
the very basic of our initiatives towards the design on a Machine-mind or a
computational-mind for man-machine symbiosis. The section begins with a dis-
cussion on the primary features of the Z-number approach to CWW – a mechanism
for processing machine-subjectivity, followed by a presentation of a generic
machine-mind framework for natural language comprehension.

3 Proposed Work: Theory and Results

3.1 The Z-Number Approach to CWW

As has been emphasized in almost each of the preceding sections, the emulation of
subjectivity is a prime property of a sentient system; the Z-number is our principal
tool towards representing and processing machine subjectivity. In this section we
present an algorithm for Z-number based CWW, primitive operators for processing
Z-valuations or Z-information sets and an analysis of the advantages and associated
issues with Z-number realizations.

3.1.1 Z-Number Based Algorithm for CWW [27, 28]

Natural language comprehension, intuitively, follows an incremental-developmental
strategy (described and illustrated in Sect. 3.2) – building upon existing knowledge
and previous comprehension granules. The following algorithm works through a
primitive developmental methodology of understanding complex and compound
sentences (S) by decomposing them into their simple sentence constituents, evalu-
ating and processing their Z-valuation equivalents, and integrating these results into
a comprehension granule of S. Section 3.1.3 presents a snapshot of a real-life
example of execution of the following algorithm for differential diagnosis.

Input: Natural language sentence (I).
Output: Context-dependent response (O) to I.
Assumptions:

i. The system is capable of identifying irrelevant sentences.
ii. The system grasps the perception of a complex or a compound sentence (Y) by –

a. Extracting the simple sentence components of Y.
b. Individually comprehending each of these simple sentence components.
c. Integrating these component perceptions.
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Steps:

1. If I is irrelevant
Then

Else
Goto step 10 

Goto step 2
2. If I is a simple sentence

Goto step 3 
Else 

a. Extract the simple sentence component set (I') of I
b. Repeat steps 3 through 4 for each sentence in I'
c. Goto step 5. 

Then

3. Extract the values of X, A and B in I to evaluate the Z-valuation (ZI)
4. ConvertZI intoequivalentmathematical expression (ZE) (basedonEqs. (3)and(4))
5. Assemble all ZE to form the logical expression (E) guided by the conjunctions

or connectives in I
6. Convert E to the mathematical expression (M)
7. Evaluate M to receive a set of Z-valuations (ZO) in response
8. Translate ZO into simple sentences (S)
9. If step 8 results in more than one simple sentence

10. Stop

3.1.2 Primitive Z-Number Based Operators for Perception
Manipulation

The operators described here are basic Z-number based operators for perception
intersection and union, and process Z-information sets towards comprehension
granule formations.
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The simulation of differential diagnosis described in Sect. 3.1.3, utilizes the
following operators – in conjunction with the algorithm described in Sect. 3.1.1, to
arrive at results that coincide with natural intuitive responses of human beings.

Let S1 and S2 be two natural language statements, and Z1 = <X1, A1, B1> and
Z2 = <X2, A2, B2> be the Z-valuations of S1 and S2 respectively

• Operator for the intersection of perceptions ð∩ PÞ [27, 28]
If S1 defines a requirement and S2 describes an event from the perspective of S1,

i.e., X1 =X2 ≠∅, A1 =A2 ≠∅, and B1 ∈ fwords that are synonymous
to 0expect0g,

The Intersection of Perceptions ðZ1 ∩ P Z2Þ is defined as,

Z1 ∩ P Z2ð Þ= <X1,A1,B2 > ð5Þ

This expression describes the certainty with which Z2 complies with Z1, which in
turn is a measure of the certainty with which S2 is in accordance with S1.

For example:

i. Requirement: S1 = I would like my book to be a Miss Marple mystery;
Z1 = <detective, Marple, expected>
Statement in given mystery book: S2 = Miss Marple was investigating into
whereabouts; Z2 = <investigator, Marple, appears_to_be> => Z2 = <detective,
Marple, appears_to_be>
Thus, Z1 ∩ P Z2ð Þ = <detective, Marple, appears_to_be> => the book appears
to be a Miss Marple mystery.

ii. Requirement: S1 = I prefer my soup piping hot; Z1 = <soup temperature, piping
hot, expected>
Situation: S2 = The soup served is lukewarm; Z2 = <soup temperature, luke-
warm, certainly> => Z2 = <soup temperature, piping hot, false>
Thus, Z1 ∩ P Z2ð Þ = <soup temperature, piping hot, false> => the soup served
is not piping hot.

The perception-intersection operator defined above could predictably come of
use in scenarios where it is imperative to verify the confidence with which the
current situation satisfies a given requirement.

• Operator for the union of perceptions ð∪ PÞ
If S1 and S2 depict progressions in perceptions of the same event,

Where, S1 represents an earlier perception, and S2 is interpreted from the per-
spective of S1 i.e., A1 =A2 ≠∅,

The Union of Perceptions ðZ1 ∪ P Z2Þ is defined as,

Z1 ∪ P Z2ð Þ= <X,A1,B>

Where,X = the event and B= B1,B2ð Þ ð6Þ
i.e., B = an ordered set of certainty progressions
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This expression leads to complex or a spectral Z-number (drawing from the basic
philosophy of ‘spectral fuzzy sets’ [73]) or a spectral Z-valuation that describes the
updated certainty perception of the event. [Details on the spectral Z-valuations are
out of the scope of the current article.]

For example:

i. S1 = Miss Marple made certain inquiries; Z1 = <detective, Marple,
appears_to_be>
S2 = Miss Marple solved the mystery; Z2 = <detective, Marple, certainly>
Thus, Z1 ∪ P Z2ð Þ = <detective, Marple, (appears_to_be, certainly) => I
wasn’t sure that Miss Marple was the detective, but I now am.

ii. S1 = It took me about an hour to reach point A yesterday; Z1 = <time to reach
point A yesterday, an hour, probably>
S2 = It took me about an hour to reach point today as well; Z2 = <time to reach
point A today, an hour, probably>
Thus, Z1 ∪ P Z2ð Þ = <time to reach point A, an hour, (probably, probably)
> => It probably takes me an hour to reach point A.

iii. S1 = It took me about an hour to reach point A yesterday; Z1 = <time to reach
point A yesterday, an hour, probably>
S2 = It took me about half-an-hour to reach point today; Z2 = <time to reach
point A today, half-an-hour, supposed> => Z2 = <time to reach point A today,
hour, false>
Thus, Z1 ∪ P Z2ð Þ = <time to reach point A, an hour, (probably, false)> => I
am not very sure as to how long it would take me to reach point A, close to an
hour perhaps.

The perception-union operator defined above could be of use in the study of
modulations in the confidence in a concept and reasons thereof. Intuitively, lesser
the modulation in certainty, greater is the stability of the association between X and
A in the current context. It might thus be possible to locate abrupt changes in
certainty patterns and identify consequent reasons – a step towards emulation of
intuitive (or predestined) learning by a machine.

Observations:

i. These primitive operators do not claim to lead to definitive conceptual sum-
maries, but do initiate the formation of instantaneous summaries at time t –
with respect to the information experienced till t.

ii. These operators depend on the ‘meanings’ of the constituent parameters of the
Z-numbers.

iii. The interpretation of S2 from the perspective of S1, as demonstrated in the
examples above, involves loss in information. This, however, is countered by
the substantiation of perception summarization.

The use of these operators involves measures of information-loss and
summarization-degree, following which the interpretations may be modelled to be
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inclusive of high-information facts and yet arrive at a reasonable balance between
the measures. E.g., in differential diagnosis, it would be imperative to include
symptom-specifics in the interpretations (refer to Sect. 3.1.3).

3.1.3 An Example of Z-Number Based Comprehension

The experiment described here, simulates an instance of differential diagnosis. We
consider here, a sample discourse (Table 1) between a doctor (D) and patient (P) as
the basis of the simulation.

Assumptions:

i. The Machine (Mc) is aware of the probability distribution of the symptoms and
symptom details per disease.

ii. Mc is proficient in syntactic analysis, and can resolve anaphoric and cataphoric
dependencies.

iii. Mc can categorize symptom descriptions into information granules like
‘fever-presence-symptom’, ‘fever-fall-symptom’.

iv. Mc comprehends ‘meanings’ of words in natural language expressions.

Execution:
Mc should ideally behave like the doctor (D) in the conversation shown in

Table 1.

Table 1 Sample discourse between a patient (P) and a doctor (D)

Natural language statement Equivalent Z-valuations

D: Please tell me about your
problems

Z1 = <problem, exists, expectedly>

P: It’s been two days since I’ve
been suffering from high fever!

Z11 = <problem, fever, certainly>
=> Z11 = <problem, exists, certainly>
Z111 = <fever intensity, high, certainly>
Z112 = <fever duration, 2 days, probably>

D: Did you note the temperature?
Did you notice if it comes at
specific times, is accompanied by
sensations of nausea?

Z2 = <fever temperature, above 100, expectedly>
Z3 = <fever arrival time, specific, uncertain>
Z4 = <fever accompaniment, nausea, uncertain>

P: The fever’s been ranging at
around 102–104° and it’s been
coming in the mornings and
evenings. The temperature falls
after a bout of intense sweating and
is accompanied by shivering,
nausea, and aches all over

Z21 = <fever temperature, 102–104, certainly>
=> Z21 = <fever temperature, above 100, certainly>
Z31 = <fever arrival time, morning and evening, certainly>
=> Z31 = <fever arrival time, morning and evening, certainly>
Z41 = <fever accompaniment, shivering, certainly>
Z42 = <fever accompaniment, nausea, certainly>
=> Z42 = <fever accompaniment, nausea, certainly>
Z43 = <fever accompaniment, aches, certainly>
Z51 = <fever release, sweating certainly>
Z511 = <sweating pattern, intense, certainly>

(continued)

430 R. Banerjee and S.K. Pal



Thus, assuming the probability distributions of disease-symptoms is well-defined,
after precisiating the memberships of the presence and intensity of symptoms from
the Z-information set acquired from the patient, the system computes the rank of the
membership of the probable diseases with respect to the expression:

E= ððZ111 ∧ Z112ÞðZ21 ∧ Z31 ∧ Z41 ∧ Z42 ∧ ðZ51 ∧ Z511ÞÞ∧ ðZ611 ∧ Z621Þ∧ ðZ71 ∧ Z81ÞÞ ð7Þ

Table 1 (continued)

Natural language statement Equivalent Z-valuations

D: What kind of aches? Z6 = <aches, specific, expectedly>

P: A blinding headache and
stinging muscle-aches as well

Z61 = <ache, head, certainly>
=> Z61 = <aches, specific, certainly>
Z611 = <headache intensity, blinding, certainly>
Z62 = <ache, muscles, certainly>
=> Z62 = <aches, specific, certainly>
Z621 = <muscle-ache, stinging, certainly>

D: Do you have any problems in
your appetite and sleep patterns?

Z7 = <appetite problem, exists, expectedly>
Z8 = <sleep problem, exists, expectedly>

P: I do not have an appetite and
sleep’s rather disturbed with the
headaches

Z71 = <appetite problem, appetite absent, certainly>
=> Z71 = <appetite problem, exists, certainly>
Z81 = <sleep problem, sleep disturbed, certainly>
=> Z81 = <sleep problem, exists, certainly>

Notes:
i. For an expression symbolized by Zijk, i = the Zi

th enquiry, j = the jth response to Zi, k = the kth detail of
Zij.
ii. ∩ P is used from the perspective of the doctor on the expression pairs (Z1, Z11), (Z2, Z21), (Z3, Z31), (Z4,
Z42), (Z6, Z61), (Z6, Z62), (Z7, Z71), (Z8, Z81).
iii. On relevance analysis of the Z-valuations, expressions symbolized Z11, Z43, Z61, Z62 are
inconsequential or redundant.
iv. The doctor, intuitively, uses ∪ P to unite patient symptom-persistence intensity certainty after a course
of medication. For example, after a certain course of medication, from observations in Table 2, we have:
Z611 ∪ P Z91ð Þ= <headache intensity, blinding, certainly, rarelyð Þ>

= > Z ′

91 = <headache, improvement, certainly > ; and

Z9 ∩ P Z ′

91

� �
= <headache, improvement, certainly >

v. The Z-valuations in the example depict top-level perceptions. Each of the natural language statements
incorporate micro-aspects of subjective experiences (e.g. the subtleties that lead to a headache being
attributed ‘blinding’), which have not been considered.

Table 2 Sample discourse between patient (P) and doctor (D), after a course of medication

Natural Language Statement Equivalent Z-valuations

D: How is the headache? Z9 = <headache, improvement, expectedly>
P: There is just a mild throbbing
every now and then

Z91 = <headache intensity, mild, certainly>
=> Z91 = <headache intensity, blinding, rarely>
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Or, E= ððμcertainly ∫
R
μhigh uð ÞPfeverintensity uð Þdu ∧ μprobably ∫

R
μ2days uð ÞPfeverduration uð ÞduÞ ∧

ðμcertainly ∫
R
μabove100 uð ÞPfevertemperature uð Þdu ∧ μcertainly ∫

R
μmorningandevening uð ÞPfeverarivaltime uð ÞduÞ ∧

μcertainly ∫
R
μshivering uð ÞPfeveraccompaniment uð Þdu ∧ μcertainly ∫

R
μnausea uð ÞPfeveraccompaniment uð Þdu ∧

ðμcertainly ∫
R
μsweating uð ÞPfeverrelease uð Þdu ∧ μcertainly ∫

R
μintense uð ÞPsweatingpattern uð Þdu ∧

ðμcertainly ∫
R
μblinding uð ÞPheadacheintensity uð Þdu ∧ μcertainly ∫

R
μstinging uð ÞPmuscleache uð ÞduÞ ∧

ðμcertainly ∫
R
μexists uð ÞPappetiteproblem uð Þdu ∧ μcertainly ∫

R
μexists uð ÞPsleepproblem uð ÞduÞÞ

ð8Þ

i.e., the system uses Eq. (8) to evaluate and rank the probability of all diseases in its
repertoire, as per Eq. (4)), ideally leading to the Z-valuation expression: (<Disease,
malaria, most likely> ^ <Blood test, required, definitely>).

3.1.4 Analysis of the Z-Number Approach to CWW

• Pros
The potential of the Z-numbers is illustrated through the experiment described in
Sect. 3.1.3 [refer to [27, 28] for other simulation examples]. Features of interest
are:

i. Though originally a model for the precisiation of natural language statements,
the Z-number methodology can be envisioned to precisiate any natural lan-
guage sentence.

ii. A Z-number captures the perception of a single natural language sentence,
while the Z-information does the same for a group of sentences.

iii. A Z-number summarizes simple sentences only. Thus, if a complex or a
compound sentence (S) were decomposed into its simple sentence constitu-
ents, assimilating these constituent Z-numbers would lead to the Z-information
equivalent of S.

iv. Z-numbers support the identification of the context (e.g., ‘fever-occurrence’,
‘fever-presence’ etc. with respect to Table 1) of a statement in the universe of
discourse.

v. Z-information allows grouping statements into context-sensitive granules of
information. This mimics the natural data-compression and subsequent
data-comprehension by the human brain. The mechanism, intuitively, should
help in knowledge-extraction from a sentence.
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vi. Z-numbers represent the inherent uncertainty associated with machine
behaviour. Moreover, implicit certainty levels of sentences involve affective
computing principles. Z-numbers consequentially integrate affective comput-
ing and CWW, thereby adding a new dimension or ‘level’ to CWW.

vii. Parameters of Z-numbers are context-independent.
viii. Translation from Z-numbers to simple sentences is straightforward.

• Challenges in the implementation of Z-number based natural language
processing
There are indeed quite some challenges that need to be overcome before the
concept finds emulation on real systems. Some of these issues are:

i. Construction of a self-evolving system lexicon – with words and phrases
granulated and self-organized into semantic nets and synonym clusters; these
clusters and nets form the value pool for parameter X, given a concept.

ii. Identification of an evolutionary fuzzy set model that represents perceptions of
words in A and B.

iii. Identification of the probability distribution of the events defined by the words
in A – is it practically possible to evaluate the probability distribution for all
events in a context, and how can the probability distributions be updated?
Could the probability distribution be replaced by better statistical parameters?
Encoding of reasons for modulations in probability.

iv. Creation of a dynamic rule-base or an explanatory database – akin to an
Answer-Library (described in Sect. 3.2.1).

v. Formulation of well-defined rules of computation – towards a grammar of
Z-numbers or perceptions

vi. Identification of the category of the input statement – simple, complex or
compound, declarative, exclamatory, interrogative, conditional and
imperative.

vii. Decomposition of complex or compound sentences (S) into simple sentence
constituents, comprehension of individual component perceptions and inte-
gration of perceptions – based on the connectives used in S.

viii. Evaluation of the relevance [40] of the sentence with respect to the text corpus.
ix. Identification of parameters X, A and B from a sentence. The major challenge

lies in extraction of an implicit affect and translating it into parameter B.
x. Formulation of the logical expression based on conjunctions linking

Z-valuations of the input sentence.
xi. Conversion of the Z-valuation logical expression into an equivalent

context-sensitive mathematical expression.
xii. Translation of the components of resultant Z-valuations into simple sentences

and integration into concept granules.
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xiii. Definition of algorithms for knowledge-extraction – new words and reasons of
comprehension successes and failures – resulting in text corpus and rule base
updating.

xiv. Formulation of methods that simulate the endogenous arousal of emotions and
qualia.

3.2 The Machine-Mind Framework for Natural Language
Understanding

In this section we present the macro-components and working principle of a
machine-mind framework – built on the philosophy of the Society of Mind –

followed by an analysis of its analogy with the human brain. The framework uses
the Z-number equivalents of knowledge in the machine mind as the operands for
processing. Elaborations on agent-structures and algorithms, and detailed memory
data structure formats, are out of the scope of this article.

Here it might be prudent to mention that though the machine-mind constructs
have been predominantly studied in their capacities as text-understanders, the
principles are applicable to the general concept of natural language understanding.

3.2.1 Macro-Components of the Machine-Mind Architecture: Agencies
and Memory Constructs [62]

Comprehension or understanding involves the execution of a number of complex
conscious and omniscient unconscious cognitive processes that ideally lead to the
following mind-activities:

Prediction – Envisage a future action – causally relate the present to past experi-
ences and judge expectations on the basis of intuition, commonsense, reinforced
learning and reflection.
Visualization – Conjure mind-images (real or intentional [74] ) of language
components depicting people, places, events, etc.
Connection – Build factual or conceptual associations between: (a) all frames
recalled and those created for the current language processing event, and (b)
real-world or domain knowledge and new information.
Question and Clarification – Reflect upon, and test the strength, completeness,
correctness and relevance of knowledge associations; re-organization and rectifi-
cation of associations.
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Evaluation – Test coherence between perception granules, measure relevance of
each and prune the insignificant; attach notions of subjectivity or ‘self conscious-
ness’ (emotions, degrees of interest, summarize, biases, etc.).

Intuitively,

i. Comprehension ‘iterates [75, 76]’ through the above stages – working
incrementally on micro-granules of information to form coherent networks of
information and a macro-granule summary of the language unit (a text sample,
for example) being understood. Figure 3 illustrates this point.

ii. These processes are complex, mostly concurrent, and co-operative.
iii. The ‘meaning’ of a word or a phrase implies the manner in which the sense of

the language unit is encoded in the mind. These encodings could be in the
form of precise symbols in the native language of the system or as metaphors,
synonyms or associations with other words. A single word or phrase may have
multiple sensory (visual, auditory, etc.) implications as well.

iv. Prediction and visualization involves all but the topmost two layers of the
mind; connection – the four lower layers; question and clarification – the
learned, deliberative and reflective thinking layers; and evaluation involves the
top three layers.
These functions straddle multiple layers of thinking and involve bi-directional
information percolation. The information that is transferred to the higher layers
relies on the extracted language-sample while that from the higher layers is
conceptual and relates to the reader’s sensibilities acquired through learning,
experience and commonsense reasoning.

v. The above list is not an exhaustive enumeration of the broad mechanisms
leading to comprehension. We hope to add to it in the process of under-
standing how the brain ‘understands’ the real world.

• Mind-agencies

A computational mind typically processes, concurrently arriving multi-modal
sensory inputs with existing knowledge about the real-world and the problem
domain, through the above steps to produce granules of understanding.

We categorize the agencies of such a computational mind into super-agencies,
each representing a complex cognitive functionality like ‘reasoning’ or ‘process-
ing’, and sub-agencies. A super-agency comprises of a cluster of sub-agencies that
work in health and harmony to achieve the super-agency functionality. The
sub-agencies are again built of agents each representing an atomic sub-process of
the sub-agency purpose. Figure 2 is a pictorial representation of the mind-agency
framework.

The super-agencies and constituent sub-agencies in a computational mind are as
follows:

Sensory_Gateway (SG): At any instant, SG serves as the receiver of sensory
information, based on the nature of which, ‘sensory’ sub-agencies [Vision (V),
Audition (A), Olfaction (O), Tactile (Tc), Taste (Ta), Balance (B) [77],
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Temperature (Te) [77], Pain (P) [77] and Kinesthetic (K) [77]] activate other
framework components for further processing. SG transports system results to the
external world as well.

Sub-agencies like A, O and Te continually receive stimuli from the environment
and process these unconsciously; Tc and K are activated in the ‘turning pages’,
‘scrolling over text’ activities. However, none of these contribute significantly to
the ‘comprehension’ phenomenon and have thus not been elaborated upon, in this
article.

Vision (V): The ‘eyes’ of the system – leads to textual symbol-extraction,
symbol-interpretation (numbers, alphabets, punctuation, etc.), and
symbol-granulation into complex language elements (words, sentences, etc.).

Deducer (De): The ‘brain’ of the system; is responsible for the emulation of each of
the comprehension processes named above. It receives outputs (data) of SG to
formulate units (frames) of comprehension – utilizing syntax and semantic analysis
mechanisms, relevance-evaluation, affect-extraction, comprehension-evaluation and
error-handling processes; sends out instructions (activation, re-evaluation, error
signals, inhibition) to the other super-agencies. The sub-agencies of De are:

Syntax (Sy): Syntax-resolution and consequent generation and manipulation of
surface syntactic frames.
Semantic (Se): Semantic-resolution, generation and updating of surface
semantic, narrative and thematic frames.
Self (Sf): Seasons comprehension granules with components of subjectivity
(affects, biases, ideals, etc.) based on the system personality; multiple
mental-realm activations.
Recall (Re): Thin-slices a problem into sub-problems, maps problems to
memories and retrieves them from long-term into the working memory for
processing in the current context.
Creative (Cr): Projects and suggests solutions for ‘new’ problems; the hub of
reflection, imagination, creativity and system IQ [2].
Summary (Su): Analyzes the distance between the current state of the system
and the projected goal through relevance, affect and comprehension progression
evaluation; can activate or inhibit agencies (under De and SG) based on sum-
mary results; consolidation of memories.

Manager (M): The global administrator of the system; runs in the background and is
responsible for the activation and execution of ‘involuntary’ functions (system-time
management, memory handling, process synchronization, K-line management, frame
encoding/decoding, job scheduling, etc.) that support the functioning of all the other
agencies; continual self-evaluation of system processes and subsequent updating
towards optimal (cost effective and robust) system performance.

• Memory Constructs

The long-term memory stores of knowledge, that support the functioning of the
agencies, are:
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Lexicon (L): System vocabulary; a resource of language units – words, phrases,
idioms – and their meanings encoded in machine ‘understandable’ form; includes
meanings of words ‘learnt on the fly’ and jargon; meanings may be encoded as
precise statements or exist in a number of data types (sounds, images, metaphors) –
indicating the different ways the machine ‘understands’ or ‘remembers’ an element.
Answer-Library (AL): Resource of <solution_strategy, result, reasons> for a
given <context_parameters, problem> query.
Concept-Network (CoN): Hypergraph of inter-contextual frame associations;
elements are incorporated consciously or unconsciously, but are retrieved
consciously.
Commonsense-Network (ComN): Network of networks of commonsense and
intuitive (automatic) behaviours; components are retrieved ‘unconsciously’; ele-
ments of L, CoN and AL are incorporated into ComN after prolonged periods of
reinforcement.

The basic working-memory data-structures are as follows; these are referenced by
all the agencies and support the deliberative and reflective actions of the system:
Log: A global record of time-stamped agency-activity entries; indicates the
instantaneous state of the system, analyzing which – a number of agencies may be
autogenously or exogenously activated, mechanisms like intelligent backtracking
[78] initiated, error signals generated, etc.; serves as an indicator of solution strategy
results and reasons thereof for the system to ‘reflect’ upon.
Frame-Associations (FA): A blackboard or scratchpad for frame manipulations
during the process of understanding; categorized into global and local (per
sub-agency); all frame recollections are placed in the global FA space, while sections
of the global FA are transferred into local FA for deliberations by sub-agencies;
sub-agencies under De use their local FA workspace to reason through the appro-
priateness ofmultiple solution-perspectives before globally ‘advocating (a <problem,
solution, reason> tuple)’ frame manipulation processes through Log; sub-agencies
underM, use their local FA to reason through system optimization mechanisms; each
sub-agency can share sections or all of its local FA with other agencies; globally
approved suggestions (by Su) are implemented in the global FA, and all updates to
existing networks of information are reflected across the long-term memory net-
works; all local sub-agency trials are annotated in local FA; trial-results are annotated
in Log and global FA for deliberation and reflection by other agencies.

The system memory-management constructs, used by M, are:
Working-Set (WS): Set of pointers to frame-networks in FA being referenced
within a narrow time-window (intuitively, of the order of seconds).
Active-Frames (AF): Set of pointers to frame-networks in FA being referenced
within a broad time-window (intuitively of the order ofminutes);WS is a subset ofAF.
Passive-Frames (PF): Set of pointers to frame-networks in FA that were members
of AF but were pruned away due to irrelevance or lack of use; instead of consol-
idating them back to the long-term memory, these frames remain available during
the entire span of the processing of the current text for quick ‘on-demand’ place-
ment into FA for re-processing.
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Fig. 2 Macro-components (agencies and memory constructs) of the machine-mind framework
[62]
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• Working Mechanism

Referring to the functionalities of the components defined in the preceding section,
the basic working mechanism of the framework (illustrated in Fig. 4), is as follows:

Comprehension is an iterative process, where complex granules of compre-
hension (inclusive of surface and deep semantics) are incrementally developed from
primitive knowledge elements and simpler information granules. Given a sample of
natural language to understand, e.g., a text to read, V is activated and it makes
corresponding Log and global FA entries – indicating the symbols extracted,
granulated and interpreted. These interpretations could include annotations like
(author_name, text_name, title, chapter_name, starting words, word meanings,
etc.), based on the L and ComN memories (frames) retrieved. Once initiated,
V extracts text in saccadic-granules [76] until reading and subsequent compre-
hension is complete. De regulates the length of the saccadic-granules and the
location thereof (initiating re-reads on insufficient comprehension or endogenous
enquiries, etc.).

Fig. 3 The iterative incremental-developmental execution schematic of comprehension [62]
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All retrievals by V are visible, through working-memory entries, for all the other
agencies to deliberate upon. The sub-agencies under De assess the status (famil-
iarity, syntax, semantics, context, affects, interests, relevance, etc.) of the problem
(words, clauses, sentences, paragraphs, frame-systems, etc.) and opportunistically
‘suggest’ interpretation mechanisms and consequent results. These involve
decomposing the problem into sub-problems and incremental-developmental iter-
ations – through long-term to working-memory frame transfers, agency-specific
local frame-manipulation trials and broadcasting of predictable success-rendering
schemes, signals to improvise or construct new solutions from scratch, alignment of
interpretations with self-interests, and information consolidation – towards the
formation of a granule of comprehension of the entire text sample. M works
seamlessly in the background to support agency activities.

Every hypothesis, agency operation, information retrieval, or change in the
working-memory is corroborated by a Log entry. This allows Su to constantly
monitor (predict, visualize, question, clarify and evaluate) the convergence of
solutions suggested by the sub-agencies, and accordingly activate or inhibit oper-
ations (e.g. Sy and Se might be requested to re-process an incoherent granule).
Ideally, an inhibited agency possesses the right to ‘question’ Su’s directions, and
thereby all of Su’s instructions are annotated with encoded-reasons for evaluation
and reflection. In the current version of the system, though no agency can override
Su’s commands, none of its possible partial processing results are lost. All partially
processed frames or inhibited processing vestiges can be retrieved from PF, on
requirement, for re-analysis. [Refer to [62] for a detailed description of the func-
tions of each of the sub-agencies for comprehending the world and
text-understanding in particular.]

An algorithmic or effective procedural view of the working principle necessitates
detailed elucidation of the working-memory formats and definition of frame
structures of the architecture, time and space complexity analyses, and correctness
and completeness verifications. This article clearly focuses on the higher-level
elements of the framework. Subtle hints towards parameters and tuples of these
macro-constructs have been provided across this article, but we deliberately refrain
from discussions on their fine-grained components.
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• Properties of the Framework

Essential properties of the machine-mind framework include:

i. The design of the framework is bound to evolve as we learn more about how
the human brain functions. The primary advantage that function-designated
agencies provides is the ease with which an agency may be modified without

Fig. 4 The working mechanism of the machine-mind framework [62]. [Refer to [9] for definitions
of the nemes and nomes mentioned here]
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affecting the design of the entire framework; introduction of new agencies or
framework components would however involve amendments to every level of
the design.

ii. The agencies are interconnected such that they form a causal system. This is
roughly demonstrated in the feed-back schematic of the system in Fig. 2.

iii. SG depicts instinctive and learned behaviour, while all the other agencies
transverse all the layers of thinking.

iv. SG sub-agencies reference L and ComN, and De references CoN, ComN and
AL.

v. CoN and ComN draws inspiration from ConceptNet [79], while AL from
Hacker [17].

vi. Information storage and retrieval from each of the long-term knowledge dat-
abases involves encoding/decoding processes across frame-types and
data-types.

vii. M is responsible for arbitrating multiple log-access requests from a number of
agencies.

viii. Re, Cr, and Su constitute the Difference-Engines of the machine-mind
framework. These are built on the functional programming [58] paradigm –

where function-modules are combined into bespoke algorithm fitting the
current interpretation problem.

ix. Su is the control shell of the architecture – coordinating inter-agency activities
via heuristics and approximation schemes, to handle combinatorial explosions
of thoughts and solution strategies; ensures tractability of the comprehension
problem. Acts like the Censor and Suppressor of the framework.
It annotates solutions with <problem, process, result, reason> for storage in
AL, and annotates memories by <environment descriptors, problem, solution,
result, reason, affects, beliefs, etc.> for storage in CoN.

x. Agencies possess local critic-selector agents that gauge the effectiveness of
different algorithms to reason and choose the best option. Su monitors global
appropriateness of solution-strategies.

xi. Global FA and Log resemble the global workspace [51, 80, 81] construct of
blackboard architectures [59].

xii. Log serves as the basis of inter-agency communication, thereby grossly
reducing these costs – any message on Log is equivalent to broadcasting it
across all the agencies for reflection or deliberation. This instinctively implies
the use of standard formats for Log-messages for uniform comprehension
across the system.

a. Each agency has at least one critic-selector agent dedicated to the analysis
of Log entries and subsequent agency self-activation.

b. Su through Log messages - <agency, operation completed, frame-systems
handled, terminal values before operation, terminal values after operation,
questions in the mind, probable future operations, reasons> tuples -
broadcasts the current status of the interpretation
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• The <probable future operations> symbolize hypotheses by Cr,
sub-problems identified by Re, or suggestions by Su, Se and Sy.

• The <questions in the mind, probable future operations> parameters
indicate frame-terminals with uncertain, missing slot values or inco-
herent granules of comprehension, and exogenously or endogenously
activate specific sub-agencies.
These activated agencies, execute innate algorithm trials in their local
FA space, and then through Log, ‘suggest’: (a) strategies towards the
resolution of the <probable future operations>, or (b) new operations
altogether. Su analyses this candidate solution space for the effective
mix of partial solutions for the problem.

c. Status updates and records of partial-solution in Log, allows Su to back-
track, `deliberate and reflect upon’ schemes in case of erroneous or
cost-ineffective choices made.

xiii. Operations activated by agencies, depends on the encoding of meanings into
frames. The local critic-selector analyses of agency-operations, as well as
global agency-suggestions are analogous to mentalese [41] in the computa-
tional mind. While Log is a manifestation of the mentalese of the computa-
tional mind, frames represent the components of system-mentalese.

xiv. Frame manipulation schemes operate seamlessly across multiple data-types
representing different sensory memories.

xv. Besides parameters that describe a fact or an event, frames include parameters
to denote the system’s belief of the world and itself. The Z-number philoso-
phy, described in the earlier sections, is an effective scheme for
subjective-belief symbolization, and thus is the macro-knowledge processing
element of the system.
System inputs are translated into Z-number or Z-information sets that are
processed as per the algorithm described in Sect. 3.1.1. Given a
Z-valuation <X, A, B>, the parameters are synonymous to frame-terminal,
slot-value, and the strength in the terminal-slot_value connectivity, respec-
tively. Z-valuations summarize the information in a frame while Z-information
summarizes that in a frame-network. Frame-manipulations are typically
Z-number calculi.

xvi. The sub-agencies under De can be categorized into the following, based on the
levels of information-granules they deal with:

a. Tier 1 – Acknowledge system ‘self’; subjective decisions – Sf
b. Tier 2 – Conjecture abstract or well-defined procedures for text interpre-

tation – Re, Cr, Su
c. Tier 3 – Hypothesize steps of abstract procedures; procedure-step execu-

tion – Se, Sy
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3.2.2 Demonstration of the Operation of the Machine-Mind
Architecture

Table 3 presents an explicit run through the framework – depicting the stages of
comprehension and the roles of the mind-agencies. A unit of text is being com-
prehended. Components in the table abide by the following schematics:

i. <bold> => ‘frame_header’
ii. <italics> => ‘terminal_slot’
iii. <bold and italics> => ‘slot_value’
iv. () => ‘frame-terminal_slot’ relation
v. Arrow heads => connectivity destinations; destinations could be ‘termi-

nal_slots’ or ‘slot_values’

Assumptions: Each of the mind-agencies and memory constructs is functional, as
per the descriptions in Sect. 3.2.1.
Input text: Smita’s eyes were fireflies.
Expected output: Narrative(s) of comprehension.

Observations:

i. Inference results and data of one stage percolate across parallel threads of
operation (co-operating threads) as well as down to the next stage of
comprehension.

ii. Entries across time units indicate Log as well as global FA values.
iii. Activities of M have not been highlighted, as our focus was exclusively on

the emulation of comprehension – unhindered by consideration of system
optimization issues.

iv. The progression of comprehension depicted in Table 3 was validated by the
thought processes of twenty random individuals. These individuals were
asked to list – over a time period of two days – all that their minds processed
in relation to the given text input, and in the order that their thoughts were
activated. Synopsis of the survey results are illustrated in Table 4 and Fig. 5.
The Venn diagram (Fig. 5) of data in Table 4 (where U = universe of
discourse), clearly depicts the system outputs to be in line with majority
human interpretations.
We are currently in the process of performing more such experiments, so as
to understand better the average thought processes given random text
instances. [Refer to [62] for other examples of system execution.]

v. Formats of Z-valuations, with respect to agency-operations, are indicated in
Table 3.

vi. The framework is conceptually a cognitive model of text comprehension, as
it demonstrates: (a) multiple-realm ‘thinking’, (b) ambiguity resolution,
(c) recollection and reflection, and (d) subjective decision-making.

vii. The question of interest here is how can a machine prove to be ‘thinking’ or
behaving ‘intelligently’? Ryle states in [82], that the procedure a system uses
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Table 3 The action dynamics of comprehension by the computational mind framework
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to arrive at solutions is an indication of its intelligence; the procedures being
an amalgamation of its knowledge, intuition, commonsense, and experience.
Thus, a measure of think-ability or intelligence of a machine (MIQ [2])
requires parameters that represent the strength of the system in each of these
areas.
Considering the implication of the self-conscious facet of thinking, [83, 84]
indicate the need for effective indicators of ‘conscious’ thoughts and states of
the system. These need to incorporate both objective and subjective machine
responses. (Would a ‘conscious’, ‘thinking’, ‘understanding’ machine be
immune to consciousness disorders leading to psychiatric or neurologic
disorders or minimal conscious states?)

viii. The ultimate test of understanding is if the machine is able to utilize this
newly learnt expression in appropriate situations.

ix. As stated in [59], the key requirements of knowledge based language un-
derstander systems are:

a. Representation and structuring of the problem in a way that permits
decomposition.

b. Total interpretation is to be broken down into hypotheses and modular-
ized into different types of knowledge that can operate independently and
co-operatively.

The framework supports the conceptual acknowledgement of these
requirements, in the following ways:
a. We have factored the problem of comprehension into its component

functions and assigned their execution to mind-agencies (Sect. 3.2.1).
What remains to be done is factoring the agency-functions into individual
agents – which represent and operate on natural language samples to
construct modules of comprehension.

b. Decomposition of interpretations into hypotheses and knowledge mod-
ularization is executed by:

• Re disintegrates an interpretation problem into “similar” sub-problems
and recalls known solutions.

• Cr conjectures new answers.
• Su periodically summarizes comprehension statuses that consequently

activate solution suggestions by different agencies.
• Critic-selector agents critically analyze multiple approaches towards

the realization of an agency-function.
• Global FA and Log serve as global workspaces for the agencies to

co-operate towards solutions.
• Local FA supports independent agency-activity trials, moderated by

critic-selector agents.
• The De agencies (Sect. 3.2.1), operate across a number of

information-granular levels – beginning with the syntax of a word to
its subjective perception.
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• Analyses across agencies form pools of candidate partial solutions,
which Su combines into effective global solutions.

• Knowledge, modularized into facts, concepts, intuition, commonsense
and procedures, is referenced by agencies relative to the demands of
the status of comprehension.

Table 5 maps the processing activities, during comprehension of the given input, to
the layers (Sect. 2.3.2) of the mind (the machine-mind) they pertain to, thereby
demonstrating thinking across all the layers. [Refer to [62] for other depictions of
natural language comprehension by the defined machine-mind framework.]

3.2.3 Validation of Completeness of Machine-Mind Conceptualization

• Correspondence between machine-mind agencies and the layers of the
mind

Table 6 maps the layers of the mind and the agencies that emulate them. The agency
functionalities seamlessly traverse the layers (refer to Table 5), cover all of them
and overlap multiple levels. A (*) in a cell indicates coverage of the
layer-functionality (row) by the mind-agency (column).

Table 4 Summary of human subject responses to metaphor – Smita’s eyes were fireflies

System input – text – Smita’s eyes were fireflies
Number of human subjects in survey – 21
No. of survey
subjects who
stated…

System
interpretation:
‘a’ only

System
interpretation:
‘b’ only

System
interpretations:
‘a’ & ‘b’

System
interpretation:
‘c’ only

1 14 3 0

Fig. 5 Venn diagram
summarizing human
responses to metaphor -
Smita’s eyes were fireflies

On Z-numbers and the Machine-Mind … 447



• Correspondence between machine-mind agencies and parts of the human
brain

The human brain serves as our reference. In Table 7 and Table 8 we summarize the
correspondence between the different parts of the brain – that play significant roles
in natural language comprehension and agency functionalities. Table 7 depicts the
equivalence between the human memory categories and the framework memory
constructs. Table 8 illustrates the analogy between parts of the cerebral cortex of the
human brain and the framework agencies.

The conceptualized architecture-agencies cover all known memory categories
and essential language processing centres of the human brain.

Having described our efforts towards the emulation of natural language under-
standing, the questions that loom up as major design issues are as follows. It is in
the search for answers to these issues that our research is currently directed:

i. How does a natural organism encode real-world information? Could it provide
clues to encoding the ‘meaning’ of natural language elements in
machine-understandable form?

Table 5 Correspondence between comprehension activity, for the given input, and layer of mind
functionality

Layer of the
mind

Processing activity

Instinctive • Read given text
• Updating of long-term memory constructs in response to new metaphorical
interpretation of “fireflies”

Learned • Syntax analysis by Sy: Smita → proper noun, ‘s → [is | was | has],
eyes → [common noun | verb], were → verb, fireflies → common noun
• Surface semantic analysis by Se of the words in the sentence
• Re recalls properties of ‘eyes’ and ‘fireflies’
• Re recalls Smita has eyes → Smita living (human | non-human)

Deliberative • Su simulates visuals of “eyes were fireflies” based on surface interpretation
as well as metaphorical sense
• Cr and Re map properties of fireflies with that of eyes and the subjective
meaning as well => [bright | glow | shining | beautiful |…] => [happy |
excited | …]
• Se prunes irrelevant non-contextual semantic frames
• Se identifies “fireflies” being used as an adjective or metaphor

Reflective

Self-reflective • Sf awakens affect – incomprehension (confusion); interest (new knowledge
gained)
• Sf contemplating on what could make Smita [happy | excited]? – projection
of self onto Smita

Self-conscious Sf contemplating on what would make the system [happy | excited], what the
system considers “beautiful”, whether acquaintances remarked on the
system’s beautiful eyes, …
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ii. Could scientific definitions of the ‘self’ and ‘consciousness’, provide for the
machine-self – resulting in the emulation of self-reflection and
self-consciousness?

iii. Encoding meta-cognition, i.e., machine-awareness of comprehension – the
autogenous arousal of the ‘Aha!’ moment of understanding

iv. The emulation of endogenous instantiation of information-certainty and
event-affects

v. Tests for machine-thinking and MIQ
vi. Devise measures of information-loss on Z-valuation compaction of frames and

degrees of comprehension

Table 7 Correspondence between computational mind memory constructs and human memory
categories

Human memory categories Framework memory constructs

Working (temporary representations of
information on current task)

global FA; local FA of De and
M sub-agencies; AF; PF
[WS ⊆ AF and is therefore not explicitly
mentioned]

Declarative (represent explicitly stored and
recalled memories)

CoN

Procedural (represent implicitly stored and
recalled memories of automatic behaviours)

ComN

Long-term (semantically encoded declarative
and procedural memories)

L; CoN; ComN; AL

Short-term (memories recalled, without
repetition, for a duration of the order of
seconds; are acoustically encoded)

First set of entries into global FA by SG

Sensory (memories of sensory stimulus after
it has ceased; is of order of milliseconds)

local FA of SG sub-agencies

Visual (visual experiences)
Olfactory (olfactory experiences)
Haptic (tactile experiences)
Taste (taste experiences)
Auditory (auditory experiences)

Memories annotated by the senses they
represent – indicated by their data-types in
ComN and CoN

Autobiographic (personal episodic
experiences)

Subset of CoN

Retrospective (action of remembering the
past)

Constructed out of ComN and CoN
[PF supports the emulation of these
memories]Prospective (memories activated in the future

based on time and event cues)
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4 Conclusion

This article is an elucidation on our study of the Z-number [8] approach to CWW
[3, 25] and the enumeration of high-level Society of Mind [9, 10] elements of a
machine-mind framework for natural language understanding.

The Z-numbers, as defined by Zadeh, provide a basis for the precisiation of the
meaning (both objective and subjective) of natural language statements. We extend
this capability to that for sentences – define an algorithm for Z-number based CWW
and perception-operators that form complex Z-numbers. These have been used to
simulate an instance of differential diagnosis – thereby demonstrating the possible
strengths and challenges of the paradigm.

Work on the Z-numbers prompted our focusing on the synthesis of mechanisms
for the endogenous instantiation of system-affects and emulation of
system-mentalese [41]. Thus, utilizing the primary philosophy of Minsky’s Society
of Mind theories of the human mind and using the human brain as a reference, we
turned to the design of a machine-framework for natural language understanding.
This framework, currently in its early stages, is a co-operating association of
function-modules and memory elements. It conceptually emulates every aspect of
cognitive comprehension – intuition, commonsense, thinking, adapting and learn-
ing. The modified Z-numbers precisiate knowledge in the framework and allow
system-perception manipulation. The working of the architecture has been dem-
onstrated through a detailed example of metaphor comprehension. System results
have been validated against human responses. System-conceptualization

Table 8 Correspondence between computational mind-agencies and cerebral cortex region
functionalities

Lobe Parts /Functions of the lobe in relation to language
understanding

Framework
agencies

Occipital Processes visual information V
Frontal Broca’s area (syntax and morphology analysis) Sy

Self definition, attention, social behaviour Sf
Reasoning, judgment, strategic thinking Re, Cr, Su

Parietal Angular gyrus (language and number processing, spatial
cognition, memory retrieval, attention mediation and metaphor
comprehension [85, 86])

Se, Sf, Su,
Re, Cr

Temporal Wernicke’s area (semantic resolution) Se
Amygdala (affective processing and memory consolidation) Sf, Su
Hippocampus (storage and consolidation of semantic and
episodic memories)

Su

Basal Ganglia (reinforcement learning, procedural memory –

priming and automatic behaviours or habits, eye movements
[87] and cognition [88])

Sf, Su, Re

Recognition Re
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completeness has been studied through correspondence analysis with the layers of
the mind (Minsky) and cerebral cortex regions.

We do not claim that the proposed design mimics the vast repertoire of mind
functions nor have we defined every psychological process in its computational
equivalents, but we have here a set of very basic agencies and methodologies that
work in unison and harmony to realize language understanding. The concepts here
serve as a blueprint for our endeavours. Our current research initiatives are pri-
marily concentrated in defining parameters that represent the dynamic machine-self,
encoding ‘meanings’ (objective and subjective) in machine-understandable form,
and the emulation of metacognition. The designed computational-mind is envisaged
to define its own self, be self-organized, dynamic, adaptable, and social – behave
like an ‘intelligent’ object [65, 66].

A cognitive system, we believe, applies to the development of ‘intelligent’ and
‘symbiotic’ man-machine interactive systems – plagiarism-checkers, library cata-
loguing systems, text summarizers, differential diagnosis systems, educational aids
for children with reading disorders, etc.
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Evolutionary Reduction of Fuzzy
Rule-Based Models

Witold Pedrycz, Kuwen Li and Marek Reformat

Abstract In the design of fuzzy rule-based models we strive to develop models
that are both accurate and interpretable (transparent). The approach proposed here is
aimed at the enhancement of transparency of the fuzzy model already constructed
with the accuracy criterion in mind by proposing two modifications to the rules.
First, we introduce a mechanism of reduction of the input space by eliminating
some less essential input variables. This results in rules with the reduced subspaces
of input variables making the rules more transparent. The second approach is
concerned with an isolation of input variables: fuzzy sets defined in the n-dimen-
sional input space and forming the condition part of the rules are subject to a
decomposition process in which some variables are isolated and interpreted sepa-
rately. The reduced dimensionality of the input subspaces in the first approach and
the number of isolated input variables in the second one are the essential parameters
controlling impact of enhanced transparency on the accuracy of the obtained fuzzy
model. The two problems identified above are of combinatorial character and the
optimization tasks emerging there are handled with the use of Genetic Algorithms
(GAs). A series of numeric experiments is reported where we demonstrate the
effectiveness of the two approaches and quantify the relationships between the
criterion of accuracy and interpretability.
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1 Introductory Notes

In the construction of fuzzy rule based systems, we have been witnessing a wealth of
design strategies and detailed algorithms involving the technology of Evolutionary
Computing and neurocomputing. Just recent developments reported in this realm can
be found in a series of studies [1–3, 5, 6, 8]. Predominantly, the development of
fuzzy models is guided by the criterion of accuracy. Another fundamental criterion
being at the heart of fuzzy modeling is interpretability (transparency) of resulting
fuzzy models. This criterion is central to fuzzy models however its multifaceted
nature requires a thorough formulation and a detailed quantification of essential
aspects of interpretability. Subsequently, it calls for engaging advanced optimization
techniques supporting the realization of the ensuing design.

The concept of interpretability of fuzzy rule-based models has been around for
several decades and attracted a significant deal of attention. The transparency of fuzzy
models is one of the outstanding and important features of fuzzymodels. In contrast to
the criterion of accuracy, whose quantification is relatively straightforward and easy
to come up with performance indexes, transparency of fuzzy rules is more difficult to
describe. What makes the fuzzy rule-based easier to interpret and comprehend is still
an open issue. It is quite subjective to assess and in one way or another invokes a
factor of subjective judgment given that a human user is ultimately involved in the
evaluation process. What also becomes apparent, is a multifaceted nature of the
problem and a multitude of various approaches supported by various optimization
technologies including evolutionary optimization. When it comes to the main factors
worth considering when discussing a concept of interpretability, we can enumerate a
list of factors that may be involved in the reduction process:

• number of rules forming a rule base of the model,
• number of sub-conditions (input variables) forming a condition part of a given

rule,
• number or rules and the number of input variables,
• complexity of local regression models forming the conclusion part of the rules

(in case of Takagi-Sugeno model)
• interpretability of a family of fuzzy sets formed in the input space for individual

variables.

As a result, given this diversity of possible ways of reduction of rules, it is
difficult to quantify the effect of reduction. For instance, it is not always clear if it
would be better to have a larger number of simple rules (whose condition parts are
linear functions) or a smaller number of rules of a more complex conclusion parts
(say, those of polynomial form).
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The reader may refer to a large body of studies devoted to the issue of inter-
pretability, cf. [3, 10]. Quite often, given the combinatorial nature of the reduction
problems, Genetic Algorithms are used in the optimization process, see [9]. There
are also more specialized algorithmic vehicles to support the reduction process such
as e.g., singular value decomposition [14] however one has to be cognizant as to the
interpretability of the reduced rules.

As to the overall strategy of rule reduction and interpretability enhancement,
there are two general design strategies: either the reduction is completed once the
model has been constructed or the reduction mechanism of rule-based modeling is
incorporated into the design process from its very beginning.

The objective of the study is to pursue a fundamental issue of building more
transparent and user-centric fuzzy rule-based models by starting from an already
designed fuzzy model. The intent is to make the rules more readable in two different
ways: (a) by reducing the input space (the number of antecedents) of the individual
rules, and (b) by isolating input variables completed for the input variables treated
en block in the condition parts of the rules.

In both these fundamental scenarios we can establish and quantify a tradeoff
between a gradual reduction of accuracy (which is inevitable when realizing any of
the reduction mechanisms of the rules and enhancing its intensity) and the increased
interpretability of the rules. The presentation of the material is structured in the
following way. We briefly revisit the essentials of Takagi-Sugeno rule- based
systems, stressing the proposed design approach in which we use fuzzy clustering
(Sect. 2). The reduction of input space and a formation of input subspaces for each
rule is introduced in Sect. 3; in the same section we also present an optimization
process realized with the use of genetic algorithm. The second approach to the
enhancement of the interpretability of the rule – an isolation of input variables is
discussed in Sect. 5. Detailed experimental studies are reported in Sects. 3 and 6.

In the study, we experiment with a number of publicly available datasets coming
from eight datasets from UCI Machine learning repository and DELVE repository;
their main characteristics are listed in Table 1.

Table 1 Main characteristics of datasets used in the experiments (number of data and
dimensionality –number of input variables)

Dataset Number of
input variables

Number
of data

Origin of the data

Abalone 8 4177 UCI Machine learning repository (http://
archive.ics.uci.edu/ml/)

Auto MPG 7 392 UCI Machine learning repository
Boston Housing 13 506 UCI Machine learning repository
Computer Activity 21 8,192 DELVE repository (http://www.dcc.fc.up.pt/

∼ltorgo/Regression/DataSets.html)
Concrete strength 8 1030 UCI Machine learning repository
Forest fires 12 517 UCI Machine learning repository
Red wine quality 11 1599 UCI Machine learning repository
White wine
quality

11 4898 UCI Machine learning repository
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2 Fuzzy Rule-Based Models: An Overview and Main
Design Issues

Our point of departure of the reduction processes of the rules is a “standard”
Takagi-Sugeno fuzzy model comprising c rules coming in the following form

− if x is Ai then y= fi x, aið Þ ð1Þ

for i = 1, 2, .., c where x ∈ Rn. Ai is a fuzzy set defined in the n-dimensional
space while fi is the corresponding local model (linear or nonlinear) endowed with
its parameters ai forming the conclusion part of the ith rule. The design of such
models is well reported in the literature and as usual consists of the two main steps,
namely (a) a construction of condition parts (through clustering of input data done
in the input space) and (b) estimating parameters of the linear models (which leads
to the problem of linear regression). The number of rules (c) is determined by
monitoring the behavior of the model on the training and testing data. The rules in
the form (1) come with several essential properties. The condition part is a fuzzy set
expressed in Rn making the rules concise, which helps avoid a curse of dimen-
sionality we are commonly faced with in rule based systems with a higher number
of input variables. In the case of treating all input variables at the same time, the
number of rules becomes small (c) and the rule base itself is compact. Unfortu-
nately, the interpretability could be negatively impacted as no individual variables
in the condition part are treated and visualized separately.

When it comes to the quantification of the accuracy of the fuzzy model (1) its
performance is commonly expressed by the RMSE index computed for the training
set

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N

k=1ðFM(xkÞ− targetkÞ2
r

ð2Þ

where N denotes the number of data in the training set. In the same way, quantified
is the performance of the constructed model on the testing data (consisting of
M data points)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

∑M
k=1ðFM(xkÞ− targetkÞ2

r
ð3Þ

Proceeding with the data summarized in Table 1, the performance of the cor-
responding models visualized versus the number of rules is illustrated in a series of
figures shown below, Fig. 1. The results are reported both for the training and
testing data. In the design, we use a standard version of the Fuzzy C-Means (FCM)
[4] with the fuzzification coefficient (m) set to 2.0. The algorithm was run for 10
iterations (more specifically, we completed 10 runs with different splits of data into
training/testing data)
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Fig. 1 Performance of fuzzy models versus the number of rules reported for the training and
testing data for datasets (Table 1)
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For the training sets, there is a general tendency of having lower values of the
RMSE with the increase of the number of rules. The performance reported on the
testing sets points at the memorization effect where the some models tend to lose
their generalization capabilities. By eyeballing these plots, we choose a suitable
number of rules (clusters) where sound approximation abilities come hand in hand
with the generalization of the models. The values selected in this way are collected
in Table 2.

3 Reduction of Input Subspaces in Rule-Based Models

The essence of the enhancement of interpretability of the rules is accomplished by
reducing the number of input variables standing in the condition parts of the rules.
The reduced rules are concisely described in the form

− if x is Ai½ �Xi then y= fiðx, aiÞ ð4Þ

where the symbol []Xi stresses the fact that the fuzzy set Ai is now effectively
confined to the reduced input space Xi ⊂ Rn where some original input variables
have been removed. In other words, dim (Xi) = ni < n.

The computing of the activation level of Ai positioned in this new reduced space
is realized as follows

Ai½ �Xi xð Þ=1=∑c
j = 1ð

. x− vi
�� ����

ℵi

. x− vj
��� ������

ℵi

Þ 2
m− 1, ð5Þ

for i = 1,2,.., c; m > 1 where the computations of the distance are realized in the
reduced input space Xi.

The reduction of the rules can be quantified in terms of a reduction factor ν,
which relates with the number n*c (expressing an overall number of variables
across all the rules) in the following way

Table 2 Number of rules of
fuzzy models constructed for
the corresponding data

Data name Selected number of rules

Abalone 7
Auto MPG 6
Boston Housing 6
Computer Activity 6
Concrete strength 4
Forest fires 4
Red wine quality 9
White wine quality 5
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p = n n*cð Þ. ð6Þ

where p represents a reduced number of input variables used in c rules.
The reduction of the input variables existing in the new, more interpretable rules

is done via engaging the optimization capabilities of Genetic Algorithms (GAs).
More specifically, we optimize a matrix of allocation of input variables W = [wij]
with c rows and n input variables. The p largest entries of W are selected giving rise
to a binary 0–1 matrix. The p entries with the largest values are set to 1 while the
remaining ones are suppressed to zero. Each row of the matrix formed in this way
identifies the variables to be used in the corresponding reduced rule. If all entries of
the ith row of W are equal to zero, this entails that the corresponding rule does not
exist in the reduced set of rules.

The process of identifying which input variables should be kept in the ante-
cedents of rules is translated into an optimization problem. Its solution is obtained
through evolutionary optimization, namely Genetic Algorithm (GA) [7]. GA uses
elements of natural selection to determine the best solution to a problem by min-
imizing a certain fitness function capturing the essence of the optimization problem.
The best solution is obtained via selecting and modifying a population of potential
solutions (chromosomes). A main flow of GA computing is outlined in Table 3.

Table 3 A flow of
optimization realized by
genetic algorithm

Parameters of genetic algorithm:
iter – number of generations
Z – size of population
pc – crossover rate
pm – mutation rate
Algorithm
1 Initialization:

2 Random generation of chromosomes ck using uniform
distribution in [0,1]), for k = 1, 2,…, Z

3 Iterate (

4 Calculate the fitness value for each chromosome ck
5 Select the candidates for the next generation based on their
fitness values
6 Retain the overall best chromosome so far, say cbest
7 Apply the crossover and mutation operations based on the
crossover (pc) and mutation (pm) rates
8 Until the number of iterations does not exceed the
predetermined limit, iter*
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The two aspects of GA that require special attention and directly impact the
quality of results of the optimization process are: 1) construction of a suitable fitness
function, and 2) mapping a solution to the problem onto a structure of the
chromosome.

A fitness function is used to evaluate possible solutions. Fitness values associ-
ated with solutions (chromosomes) represent their ability to solve a given problem.
The values are used during selection of chromosomes for further processing
(Table 3, line 5). The fitness function has to reflect the objective of optimization
process and ensure that the obtained fitness values are adequate for mechanisms of
selection, i.e., the fitness values should be such that a selection process leads to a
diversified set of potential solutions [11]. In the case of our problem of selecting
input attributes that should be kept in the rules, the fitness function evaluates quality
of fuzzy rules that model a given dataset. The form of the fitness function used in
the optimization is given by (2).

As noted earlier, each chromosome represents a solution to the considered
problem. It consists of simple elements, called genes, that can assume values 1 or 0
(Binary Coded GA), or any real numbers from a specified range (Real Coded GA).
A chromosome with such a simple structure, called genotype, has to represent a
solution to the problem, i.e., it should be mapped into a form called phenotype that
is adequate for a given problem domain.

For the optimization problem considered in the paper, we use a Real Coded GA
(RCGA). The size of chromosome, i.e., a number of genes gsize, is equal to the
product of a number of rules c and a number of input attributes n of a given dataset:
gsize= cn. Therefore, each chromosome contains information which input attributes
are present in each rule. A single gene is a real number between 0 and 1. The
translation of such a chromosome (genotype) into a solution to our problem
(phenotype) occurs in the following way. The user has to determine a number p of
input attributes or isolated attributes (Sect. 5) that should be kept in all c rules. This
means that among all genes of a chromosome only p of them should be used to
construct c rules. The selection of these genes is done via sorting all genes based on
their values (between 0 and 1) and identifying the first p of them. The process is
presented in Fig. 2.

Once an initial population of chromosomes ck has been generated, RCGA starts
an iteration process. A single iteration consists of calculating fitness values
(Table 3, line 4), selecting best chromosomes (line 6), and performing crossover
and mutation operations on selected chromosomes (line 7). All this constitutes a
single generation. After executing a number of generations, GA provides an optimal
solution in a form of a chromosome that gives the highest value of the fitness
function.
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The purpose of crossover is to exchange information between chromosomes. In
its simplest form it means exchange of genes between a pair of randomly selected,
with the probability pc given by the user, chromosomes. For our RCGA, a linear
crossover is applied [13]. The linear crossover generates three offspring (new
chromosomes): Ok = ðok1, . . . , oki , . . . oknÞ, k=1, 2, 3, where oki represents the ith
gene of the kth chromosome. The genes of offspring are built from the genes of two
parents. Let us assume that the parents are: Ck = ðck1, . . . , cki , . . . cknÞ, k = 1, 2. The
values of genes of the offspring are calculated in the following way:

o1i =
1
2
c1i +

1
2
c2i , o

2
i =

3
2
c1i −

1
2
c2i and o

3
i = −

1
2
c1i +

3
2
c2i ð7Þ

Each of the offspring is evaluated, i.e., a fitness value is determined for each of
them. The two most promising offspring are selected to substitute their two parents
in the population.

The mutation operator modifies genes of a single chromosome in order to
introduce diversity to the population. The frequency of modifications is controlled
by the mutation probability pm provided by the user. Mutation ensures that a search
process covers the whole space of possible solutions. In the case of RCGA, the

Fig. 2 GA chromosome: (i) original matrix of rules, (ii) a single chromosome built from the
whole matrix, (iii) rules built based on this chromosome (there are p black boxes representing
attributes selected for c rules)
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Muhlenbein’s mutation is adopted [12]. For a given parent chromosome
Ck = ðc1, . . . , ci, . . . cnÞ, the gene values of a new – mutated – chromosome are
calculated as c′i = ci±rangi∙g, where rangi defines the mutation range, and it is
normally set to 0. 1*ðbi − aiÞ, where bi and ai are the maximum and the minimum of
ci, respectively. The sign + or − is chosen with a probability of 0.5, while
g =∑15

k= 0ak2
− k, ak ∈ f0, 1g is randomly generated with pðai =1Þ= 1

16 , i=0. 15.
The operations on a single chromosome are implemented in such a way that at

least one input attribute is kept in each rule.
For reduction of input spaces, if p is a number of input attributes to be kept, the

top p genes will be used to calculate the model output. The rest gsize-p attributes
will be omitted in the calculation.

For isolation of attributes (Sect. 5), if p is a number of isolated attributes in each
rule, the top p attributes in each rule (row of the matrix W) will be marked as
isolated. The rest n − p attributes will be treated as the remaining group of attri-
butes. Thus, the total number of isolated attributes is pc.

4 Experimental Studies

In the following experiments we present how the reduction of the rules proceeds
and how the reduced, more interpretable rules perform. We use different values of ν
and report the corresponding values of the RMSE for the training and the testing
data. The GA used a population of 100 individuals and was run for 100 generations.
The crossover rate was set to 0.8 while the mutation rate was equal to 0.1. The
choice of these numeric values was a result of some preliminary experimentation.
The results are quantified by reporting the RMSE values obtained for different
values of the reduction index; refer to Fig. 3.

It becomes apparent (and intuitively anticipated) that lower values of ν result in
higher RMSE values. The detailed behavior varies across data with regard to how
far the rules can be reduced and how the differences shape up for the training and
testing data. For example, the reduction could be made quite substantial not
compromising the performance of the model as this becomes present in case of
abalone, auto, concrete, and white wine. In some case, we witness a phenomenon of
increased generalization abilities of the model (lower differences of the RMSE for
the training and testing data for lower values of ν). Figure 4 illustrates the per-
formance of the GA for some selected data; most of the improvement is visible at
the beginning of the optimization (first 20–30 generations).

The detailed results of reduction of the number of variables in the rules are
contained in Fig. 5. The shaded regions identify the input variables being retained
in the corresponding rules. This offers a better view as to which input variables can
be dropped and points at a sequence of the variables, which have been eliminated.
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(a) Abalone                                    (b) Auto MPG

(c) Boston Housing                                            (d) Computer Activity

(e) Concrete Strength                                   (f) Forest Fires

(g) Red Wine Quality                               (h) White Wine Quality

Fig. 3 RMSE values of the reduced rule-based models versus reduction level ν
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5 Isolation of Input Variables

To enhance the transparency of the rules, we express the fuzzy set Ai as a Cartesian
product of a single isolated fuzzy set defined in R and a relational remainder
expressed in Rn−1. In other words, we form the expression describing the condition
part as follows

A∧
i ðxjÞ×A∧

i ∼ x∼ð Þ ð8Þ

where Ai
^ is a fuzzy sets defined in R and Ai

∼ is expressed in Rn−1. Then the rules of
the form read as follows

− if xj is A∧
i ðxjÞ and x∼A∼

i ðx∼ Þ then y is fiðx, aiÞ ð9Þ

Here a certain input variable (jth one) has been selected to be isolated. The term
isolation pertains to the fact that a certain variable has been chosen and subse-
quently a fuzzy set isolated from the fuzzy set Ai is treated separately and thus
becomes more visible and interpretable.

Obviously, the above Cartesian product is not identical to the original Ai that is
the following holds

Ai ≠ ðA∧
i ×A

∼
i Þ ð10Þ

In terms of membership functions this means that the following relationship
holds

Ai xð Þ≠minðAi∧ ðxjÞ,Ai∼ ðx∼ ÞÞ ð11Þ

(a) Abalone                              (b) Auto MPG        (c) Concrete Strength

Fig. 4 Values of fitness function reported in successive GA generations for ν ranging from 0.1 to
0.9 with step 0.1 show direction of ν
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(a) Abalone; ν=0.2, 0.4, 0.5                           (b)Auto MPG; ν=0.3, 0.5, 0.7

(c) Boston Housing; ν=0.4, 0.6, 0.9        (d) Computer Activity; ν=0.3, 0.4, 0.9

Fig. 5 Visualization of reduced rules: shaded regions identify the input variables being retained
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(e) Concrete Strength ν=0.3, 0.5, 0.7              (f) Forest Fires ν=0.3, 0.6, 0.8

(g) Red Wine Quality; ν=0.2, 0.4, 0.8 (h) White Wine Quality; ν=0.2, 0.3, 0.4

Fig. 5 (continued)
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Note that the corresponding membership functions of Ai
^(xj) and Ai

∼(x∼) are
computed as follows

A∧
i ðxjÞ= 1

∑c
l= 1

xj − vij
xj − vil

� �2/ðm− 1Þ ð12Þ

A∼
i x∼ð Þ= 1

∑c
l= 1

jjx∼ − v∼i jj
jjx∼ − v∼l jj

� �2/ðm− 1Þ ð13Þ

The consequence is that if Ai
^(xj) × Ai

∼(x∼) is used as the condition part of the ith
rule, the output of the model is going to be different than the original rule. It is
likely that the accuracy of the model could be reduced as a result of the increased
interpretability of the rules because of the isolation of the input variables. In the
above formulation, one is interested in choosing an individual variable (jth one) for
which the results provided by the rule-based model are as close as possible to those
formed by the original fuzzy model. The selection of the input variable is quite
straightforward through a direct enumeration.

The plots showing the LHS and the RHS relationship is shown for concrete
strength with one or five isolated input variables.

From the plots above, several observations of a general character can be drawn.
First, the values of the LHS are higher than the corresponding ones for the RHS.
This is reflective of the fact that the separation of the variable(s) leads to the higher
activation levels of the rules with eventual reduction of the specificity of the results
of reasoning. It is also apparent that with the increase of the variables being isolated
– compare Fig. 6a, b, the differences between the values produced by the LHS and
RHS of the expression (10) are more profound. Again, this is not surprising as by
isolating more variables we depart from the RHS more vigorously.

In a general setting, one can realize an isolation of L input variables, which as a
result leads to the rules in the form

− if xj1 is A∧
i xj1 and xj2 isA∧

i ðxj2Þ
and⋯and xjL is A∧

i ðxjLÞ and x∼ A∼
i ðx∼ Þ

then y is fiðx, aiÞ
ð14Þ

note that in this case x∼ is defined in Rn−L.
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(a) single input variable isolated

(b) 5 isolated input variables

Fig. 6 Values of the original activation of the rules value versus the one with isolated input
variables - concrete strength data set, 4 rules in the rulebase
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Fig. 7 Performance of the fuzzy model versus the number of isolated input variables
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Here an optimal choice of L variables gives rise to a combinatorial optimization
problem. This could be solved by GA optimization. Considering that the value of
L is specified in advance, GA forms an optimal isolation matrix I consisting of
c rows (number of rules) and n rows (number of input variables) where in each row
there are L 1 s indicating the variables which are isolated in the rule. For instance,
for L = 3 the matrix with the entries

I=
1 0 0 1 1 0
0 1 1 1 0 0
. . .

2
4

3
5 ð15Þ

states that in the first rule isolated are variables 1, 4, and 5; in the second rule we
isolate variables 2, 3, and 4, and so on.

6 Experiments

The GA was carried out with 100 populations and maximum 50 generations.
Preliminary experiments with GA indicated lack of improvement before 50th
generation, so the maximum generation is set to 50. The population is not large, so
relative large values of moderate crossover and mutation rates are used. The
crossover rate is set as 0.8 and mutation rate is 0.1.

We present the results in a similar way as before by focusing on the presentation
of the rules with isolated variables and showing how the families of isolated
variables impact the performance of the model (Figs. 7, 8 and 9).

(a) Abalone                              (b) Auto MPG                     (c) Concrete Strength

Fig. 8 Fitness function reported in successive GA generations
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a) Abalone with L= 1, 3, 5                           b)Auto MPG with L= 1, 3, 4

c) Boston Housing with L= 1, 4, 10                 d) Computer Activity with L= 2, 11, 13

Fig. 9 Isolated variables (shaded) obtained for selected values of L
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e) Concrete Strength with L= 1, 2, 5                   f) Forest Fires with L= 2, 7, 9

(g) Red Wine Quality with L= 4, 5, 7                 (h) White Wine Quality with L= 1, 3, 5

Fig. 9 (continued)
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7 Conclusions

The two approaches enhancing the interpretability of rule-based models are directly
applied to the already constructed Takagi-Sugeno fuzzy models realized with the
use of fuzzy clustering. Both the formation of the input subspace of conditions as
well as the isolation of the input variables are the methods refining multivariable
fuzzy sets produced through fuzzy clustering. The proposed approaches are
quantifiable in terms of the level of the interpretability abilities offered by them
(expressed either in terms of the number of variables eliminated or the variables
isolated). This aspect is helpful in determining how much the interpretability could
be enhanced without any significant sacrifice of accuracy of the model. Furthermore
in this way one could reveal input variables (or their combinations) that are essential
in rule-based modeling.

The approach offers a certain new view at the enhancement of fuzzy rule-based
models. There could be several avenues worth pursuing in the future including (a)
development of a hybrid arrangement of the formation of subspaces of conditions of
the rules associated with some further isolation of variables from such subspaces,
(b) use of other techniques of Evolutionary Optimization in the entire process, (c)
construction of interpretability measures quantifying various facets of the inter-
pretation mechanisms.
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Geospatial Uncertainty Representation:
Fuzzy and Rough Set Approaches

Frederick Petry and Paul Elmore

Abstract Uncertainty in geospatial data is often considered in the context of
geographical information systems which enable a variety of operations and
manipulation of spatial data. Here we consider how both fuzzy set and rough set
theory has been used to represent geospatial data with uncertainty. Terrain mod-
eling and triangulated irregular networks techniques utilizing fuzzy sets are pre-
sented. Rough set theory is overviewed and its application to spatial data is
described. Issues of uncertainty in the representation of spatial relationships such as
topological and directional relationships are discussed.

Keywords Geographic information systems ⋅ Spatial database ⋅ Fuzzy sets ⋅
Rough sets ⋅ Triangulated irregular networks ⋅ Indiscernibility relation ⋅ Spatial
relations ⋅ Upper and lower approximations

1 Introduction

Representation of uncertainty in geospatial data can viewed in context of the most
important use of such spatial data in geographic information systems (GIS). GIS are
employed extensively throughout governmental and industrial organization for
planning and decision making [1]. Typically underlying a GIS is a spatial database
in which many of the representation issues arise [2, 3].
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Of particular interest for geographical information systems are the ongoing
efforts in the area known as “big data” [4, 5]. Typically with respect to big data
concerns, a major issue involves how to efficiently utilize the variety of sources
providing a vast amount of heterogeneous data [6]. Special emphasis is on envi-
ronmental data that has spatial aspects or with a spatial basis [7]. Sensor and
instrumentation advances have tremendously increased the variety and amount of
remote sensed data available. In particular at the NASA EOSDIS (Earth Observing
System Data and Information System) the imagery data archived is greater than
3 PB (Petabytes). Furthermore this system is creating each day an additional 5 TB
(Terabytes) of data. To effectively utilize such volumes of data, data mining
techniques are very critical [8]. One factor that must be considered in particular is
how to deal with the inherent uncertainty involved with the huge amount of such
spatial data in databases.

Uncertainty has been widely accepted as an implicit factor in geographical data
[9, 10]. Varsi [11, 12] has stated that vagueness is one of the principal issues in
geography, since concepts such a river’s length or a peak’s height in a specific area
are uncertain as the specification of a river or peak are vague concepts. Couclelis
[13] posits that uncertainty is an intrinsic property of complex geospatial knowl-
edge and as such should be managed properly. It is not simply a problem or flaw to
be reduced or eliminated. Many of the problems associated with data are prevalent
in all types of database systems. Spatial databases and GIS contain descriptive as
well as positional data. The various forms of uncertainty occur in both types of data,
so many of the issues to be discussed apply to ordinary databases as well. These
same techniques, including integration of data from multiple sources [14], time-
variant data, uncertain data, imprecision in measurement, inconsistent wording of
descriptive data, and “binning” or grouping of data into fixed categories, also are
employed in spatial contexts [15].

Figure 1 illustrates the complexity that can be observed in a real world envi-
ronment. This figure is an image of the Louisiana gulf coastal region in the area of
the Atchafalaya Bay and illustrates the difficulty of specifying the characteristics of
the spatial features. The boundary between the coastline and the Gulf of Mexico,
the relationship of the various waterways and their characterization are difficult to
specify as they exhibit both spatial and temporal uncertainty.

In this chapter we will examine some of the approaches that have been taken to
represent various aspect of geospatial data with fuzzy set and rough set techniques.
Here we consider how both fuzzy set and rough set theory has been used to
represent geospatial data with uncertainty. Terrain modeling and triangulated
irregular networks techniques utilizing fuzzy sets are presented. Rough set theory is
overviewed and its application to spatial data is described. Issues of uncertainty in
the representation of spatial relationships such as topological and directional rela-
tionships are discussed.
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2 Fuzzy Set Representations

2.1 Background

In general, the idea of implementing fuzzy set theory as a way to model uncertainty
in spatial databases has a long history. Geographical research investigations of the
use of fuzzy set approaches [16] involved areas such as geographical decision-
making and behavioral geography [17, 18]. However, the most consistent consid-
erations of the utilization of fuzzy set theory in applications to geographic infor-
mation systems was developed initially by Robinson [19]. Several models
appropriate to this situation were considered—fuzzy database representations using
simple membership values in relations, and a similarity–based approach for geo-
spatial features. In an application for which both the data as well as spatial rela-
tionships are imprecise, he modeled this situation as one that entails imprecision
intrinsic to natural language which is possibilistic in nature.

In the following period of time there were a number of efforts using fuzzy set
approaches for spatial databases developed. These included among others: querying
spatial information [20], representing spatial relationships [21], and object-oriented
modeling [22, 23]. Models have been proposed as well that allow for enhancing
database models to manage uncertain geospatial data [24]. A major motivation for
many approaches are the uncertain boundaries associated with geographic features
and objects. Fuzzy sets provide a natural representation for such forms of uncertainty

Fig. 1 Gulf of Mexico coastal region: Atchafalaya Bay area
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2.2 Terrain Modeling

Digital elevation models (DEM) have been used to produce fuzzy representations of
terrain features. In Skidmore [25] a formulation of Euclidean distances from the
nearest streamline and ridgeline was used to represent the relative position, of a
specified location. However to represent finer local morphological characteristics of
a location, a Euclidean distance may not always be adequate.

K-means approach. Another approach [26] used fuzzy k-mean classifiers to
provide a continuous classification of terrain features. Since fuzzy k-means is
predominately an unsupervised classification, it may have a problem to produce
results that provide a compatible matching to a landscape with the views provided
by domain experts such as soil scientists.

Rule-based approach. MacMillan et al. [27] developed a sophisticated fuzzy
classification of terrain features using a comprehensive rule-based approach. This
method is particularly suitable for problems requiring intensive terrain analysis
operations and needs extensive information of local landforms from users..

Similarity approach. Locational similarity is another approach to determining a
specific area’s degree of membership in a spatial category. This is done by com-
puting a similarity of a location of interest to a typical location for the terrain
morphology [28]. For example special terrain features can have a very specific
interpretations by soil-landscape analysts where unique conditions of soil types
occur in locations of interest. Both a knowledge-based and definition-based
approach are presented as ways to specify the needed proto-typical locations.
Straightforward rules based on definitions can be utilized to determine the proto-
typical locations when there is a clear geomorphology. For example there are
algorithms for determining ridgelines and streamlines that can be used. However, if
a terrain feature has only has a local or regional meaning, finding the typical
location may require knowledge from local experts. This may be captured through
manual delineation using a GIS visualization tool.

The similarities of any other location to those specified typical locations can be
evaluated based on a set of selected terrain attributes such as elevation, slope
gradient, curvatures, etc. The process of assigning fuzzy membership value to a
location then consists of three steps:

1. A similarity evaluation of a location of interest and a typical location based on
the individual terrain attribute level is calculated.

2. The similarities are then aggregated based on individual terrain attributes. This
produces an overall similarity between a test location of interest and a typical
location.

3. Finally the similarities of the location of concern with all typical locations are
integrated. This results in the test location’s final fuzzy membership relative to
the terrain feature of interest.
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2.3 Fuzzy Triangulated Irregular Networks

A common approach to represent field data in contrast to object-based spatial data is
the Triangulated Irregular Networks (TINs). A TIN represents a surface in a GIS by
a partitioning of the 2-dimensional space into a network of non-overlapping
triangles. Applications using TINs in a GIS have motivated TIN extensions (ETINs)
[29] by using fuzzy memberships, fuzzy numbers and type-2 fuzzy sets. The ETIN
structure uses a mapping function S that specifies a geographic area’s property.

For example consider the problem of selection and acquisition of a site for a
manufacturing facility which is “Close to” Seattle, Washington. So S = 1.0 for the
function indicates a location “near “ Seattle and S = 0.0 is interpreted as “far” from
Seattle. An intermediate value such as S = 0.5 could be interpreted as being “more
or less” close to the city.

Another ETIN alternative extension uses the common, easily implemented
representation by triangular membership function for fuzzy numbers. So here it is
necessary to extend the fuzzy number associated data types with the associated data
value for a point from a simple (crisp) value to a fuzzy set. By associating a
triangular membership function, this can be accomplished at every point of the
region of interest. There are then three characterizing points of importance: two
points where the membership grade equals 0 which delimit the membership
function, and the intermediate point for which the membership grade equals 1.

Lastly an ETIN extension can be based on type-2 fuzzy sets, which are a
generalization of regular fuzzy sets. This type permits imprecision as well as the
modeling of uncertainty regarding the membership grades. Again in our example
we can consider how to capture the certainty about the extent to which a site can be
characterized as “close to” Seattle. If we wish to describe the location of some
person, there could be doubt as to where they are exactly located. The individual
could be in a location close to Seattle, but also near Tacoma Washington. This sort
of imprecision or doubt can be modeled by using a type-2 fuzzy set: the mem-
bership grade on every location is extended to a “fuzzy” membership grade. As a
result, every point will now have an associated fuzzy set over [0,1].

3 Rough Set Approaches to Spatial Data Representation

Another approach for uncertainty representation uses the rough set concept of
indiscernibility of values. We first give a background of rough sets and spatial data.
Then we provide the overview needed of rough set theory and discuss the rough set
model for imprecise spatial data.
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3.1 Background

A number of geospatial research investigations have considered the applications of
rough set approaches. The ROSE system [30], proposed a description of spatial data
using rough sets. This approach focused on a formal modeling framework for
realm-based spatial data types in general. Based on the resolution at which data is
represented, Worboys [31] developed a model for imprecision of spatial data and
applied it to issues related to the integration of such data. This approach relies on
the use of indiscernibility – a central concept in rough sets. However it does not
carry over the entire framework and is just described as “reminiscent of the theory
of rough sets” [32]. The definition of a rough classification of spatial data and
representation of inexact spatial locations using rough sets was developed by
Ahlqvist et al. [33]. This work also developed a quality metric of a rough classi-
fication as compared to a crisp classification. This technique was evaluated on
ground truth data from vegetation map layers. In it combinations of rough and fuzzy
set approaches were utilized for reclassification as needed to obtain the integration
of geographic data.

Other research investigators in a geographical information systems and mapping
environments [34] have developed an approach for the field representation of a
spatial entity using a rough raster space which was evaluated for remote sensing
images in a classification case study. Using K-labeled partitions, which can rep-
resent maps, Bittner and Stell [35] developed their relationship to rough sets in
order to approximate map objects with vague boundaries. Also they investigated
stratified partitions and extended this approach using the concepts of stratified
rough sets. For example in the case of map scale transformations, this approach can
obtain more refined levels of details or granularity in many applications.

3.2 Rough Set Theory

Rough set theory [36] provides another mathematical formalism for capturing
uncertainty. The partitioning of some universe U into equivalence classes is known
as an approximation region in rough set theory. Such a partitioning can be modified
by increasing or decreasing its granularity, used to group elements together that, for
a particular application, are considered indiscernible, or to “bin” ordered domains
into range groups. The following is a set of common terminology and notation for
rough sets:

U is the universe, which cannot be empty,
R : indiscernibility relation, or equivalence relation,
A= U, Rð Þ, an ordered pair, called an approximation space,
[x]R denotes the equivalence class of R containing x, for any element x of U,
elementary sets in A - the equivalence classes of R.
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Any finite union of these elementary sets in A is called a definable set. A particular
rough set X ⊆ U, however, is defined in terms of the definable sets by specifying its
lower RXð Þ and upper RX

� �
approximation regions:

RX= x∈U x½ �j . R⊆Xf g

and

RX= x∈U x½ �j . R∩X≠∅f g

RX is the R-positive region, U−RX is the R-negative region, and RX −RX is
the R-boundary or R-borderline region of the rough set X. This allows for the
distinction between certain and possible inclusion in a rough set. The set approx-
imation regions provide a mechanism for determining whether something certainly
belongs to the rough set, may belong to the rough set, or certainly does not belong
to the rough set. X is called R-definable if and only if RX=RX. Otherwise,
RX≠RX and X is rough with respect to R. In Fig. 2 the universe U is partitioned
into equivalence classes denoted by the rectangles. Those elements in the lower
approximation of X, RX, are denoted with the letter “p” and elements in the R-
negative region by the letter “n”. All other classes belong to the boundary region of
the upper approximation.

Rough sets use an indiscernibility relation to partition domains into equivalence
classes, and lower and upper approximation regions for distinguishing between
certain and possible (or partial) inclusion in a rough set. The indiscernibility relation
allows us to group items based on some definition of ‘equivalence’, which basically

n

n

n

n

n n

n

n

n

p

p p

X

U

Fig. 2 Illustration of the concept of a rough set X
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depends on the application domain. We may use this partitioning to increase or
decrease the granularity of a domain, to group items together that are considered
indiscernible for a given application, or to “bin” ordered domains into range groups.
For example, for data mining applications one may need to vary the partitioning of
domains in systematic ways in the process of discovering rules and relationships in
the data. The indiscernibility relation is fundamental to rough sets. The approxi-
mation regions can only be defined in terms of the indiscernibility relation and the
equivalence classes it creates.

To obtain possible results, in addition to the obvious, certain results encountered
in querying an ordinary spatial database system, we may employ the use of the
boundary region information in addition to that of the lower approximation region.
The results in the lower approximation region are certain. They correspond to exact
matches. The boundary region of the upper approximation contains those results
that are possible, but not certain.

3.3 Rough Set Spatial Example

Let us assume we have a spatial area with a particular set of spatial objects com-
prising the universe U:

U= mast, brook, bayou, river, woods, thicket, pasture, fieldf g.

The particular equivalence relation R* for this specific area might be defined as
follows:

R*= mast½ �, brook, bayou, river½ �, woods, thicket½ �, pasture, field½ �f g

Then given some subset X of spatial objects

X= mast, brook, bayou, river, woods, pasturef g,

we would like to define X in terms of its lower and upper approximations:

RX= mast, brook, bayou, riverf g,

RX= mast, brook, bayou, river, woods, thicket, pasture, fieldf g

The equivalence classes that are totally included in the subset X form the lower
approximation. Then the upper approximation contains the lower approximation
and the classes that are only partially contained in X. For this example all the values
in the classes [mast] and [brook, bayou, river] are included in X. Hence these
belong to the lower approximation region. Note that the class [woods, thicket] is not
completely contained in X as X does not contain “thicket.” But, [woods, thicket] is
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part of the upper approximation since “woods” ∈ X. In the example given, the
rough set is:

mast, brook, bayou, river, woods, pasturef gf .

mast, brook, bayou, river, woods, fieldf g
mast, brook, bayou, river, thicket, pasturef g

. mast, brook, bayou, river, thicket, fieldf gg

Although rough set theory defines the set in its entirety this way, for most
applications one typically will be dealing with only certain parts of this set at any
given time.

3.4 Spatial Data Uncertainty and Rough Sets

The approximation regions of rough sets are useful when information related to
spatial data regions is queried. Consider a region such as a woodland. One can
reasonably conclude that any grid point labeled as “woods” which on all sides is
surrounded by grid points also classified as “woods” is, indeed a point characterized
by the feature “woods”. But we may also be interested in grid points labeled as
“woods” that adjoin points identified as “field”. Here it is possible that such points
represent field areas as well as forest areas but were identified as “woods” during
the classification. Likewise, points identified as “field” but adjacent to “woods”
points may represent areas that contain part of the forest.

This uncertainty maps naturally to the use of the approximation regions of rough
set theory, where the lower approximation region represents certain data and the
boundary region of the upper approximation represents uncertain data. It applies to
spatial database querying and spatial database mining operations.

If we force a finer granulation of the partitioning, a smaller boundary region
results. This occurs when the resolution is increased. As the partitioning becomes
finer and finer, finally a point is reached where the boundary region is non-existent.
Then the upper and lower approximation regions are the same and there is no
uncertainty in the spatial data as can be determined by the representation of the
model.

3.5 Rough Sets for Gridded Data

For spatial data with a raster data or other non-vector type formats as used for
continuous variables such as temperatures, soil types and population densities, such
data is often mapped with a particular grid representation. A regular matrix-like
structure organizes the spatial coordinates and the specific data is associated with

Geospatial Uncertainty Representation … 491



point locations on the grid. Clearly for improved data representation, a finer reso-
lution or scale of a grid is desired. However there is a tradeoff between the reso-
lution and the processing required as higher resolutions provide more information,
but at a cost of execution complexity and memory space needed.

It is clear that from the rough set data viewpoint, the process of rasterizing or
gridding data. represents an inherent indiscernibility. Consider for example grid
locations representing various object /feature classifications such as forested,
agricultural, residential and industrial areas. We find that certain grid points may
directly correspond to one of these classifications but some are in between one or
more of them. A data item at a particular grid point in essence may represent data
near the point as well. This is due to the fact that often point data must be mapped to
the grid using techniques such as nearest-neighbor, averaging, or statistics. We may
set up our rough set indiscernibility relation so that the entire spatial area is par-
titioned into equivalence classes where each point on the grid belongs to an
equivalence class. If we change the resolution of the grid, we are in fact, changing
the granularity of the partitioning, resulting in fewer, but larger classes.

4 Representation of Spatial Relations

Relationships among spatial objects can generally be classified in three types:

1. Topological - Touches, Disjoint, Overlap,... The border of Vietnam touches the
Laotian border

2. Directional - West, South-East, ... Chicago is West of New York
3. Metric – Distance San Francisco is about 50 km from San Jose

The nine-intersection model allows many topological relations between two
objects C and D to be specified. This model uses the intersections between the
interior, exterior and boundary of C and D [37]. This section will describe a variety
of approaches introducing uncertainty into these relationships.

4.1 Spatial Relations

Papadias et al. [38] describe a process for determining configuration similarity for
spatial constraints involving distance, direction and topology. Their approach uses
the centroids of objects for distance and extended objects for direction and topology.
Uncertainty in the areas of fuzzy relations such as objects satisfying multiple
directional constraints are handled in their approach. Additionally fuzziness related
to linguistic relationship terms is supported as well. To allow comparison of alter-
native conceptualizations of direction, the concept of graded sections was developed
by another research effort [39]. Section bundles are introduced in order to describe
graded sections. This technique provides a formal means to:
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(1) compare alternative candidates related, for example by a direction relation like
“south-west” or “east,”

(2) characterize the candidates relative to their quality - between “satisfactory”
and “not as satisfactory” candidates, and

(3) select the optimal candidate from the set of possibilities.

Vazirgiannis [40] also considers the problem of representing uncertain topo-
logical, directional, and distance relationships on the assumption of crisply bounded
objects. All relationship definitions for this approach are centroid-based. A minimal
set of topological relations, overlapping and adjacency, are defined based on
Egenhofer’s boundary/interior model [37]. This model is enhanced by providing
degrees of relationship satisfaction. Direction relations are defined by a sinusoidal
function based on the angle between two objects’ centroids. The linguistic terms
corresponding to “near” and “distant” are used for to provide characterizations of
distances, where the ratio of the distance to a maximum application-dependent
distance determines the degree of membership in one of these categories. The three
relationships are combined for query retrieval. Afterward, a similarity measure is
computed for each relationship and then combined into a single, overall similarity
measure.

Another approach to spatial relations uses the histogram of forces [41] to provide
a fuzzy qualitative representation of the relative position between two-dimensional
objects. This can also be used in scene description where relative positions are
represented by fuzzy linguistic expressions. In Guesgen [42] we see the introduc-
tion of several approaches for reasoning about fuzzy spatial relations, including an
extension of Allen’s algorithm and additionally methods for fuzzy constraint sat-
isfaction. Also relevant is [43] which presents a unified framework for approximate
spatial and temporal reasoning using topological constraints as the representation
schema and fuzzy logic for representing imprecision and uncertainty. The appli-
cation of the resulting fuzzy representation to each of Allen’s interval relationships
[44] is developed as the possibility of the occurrence of the conditions of the
original definition.

Another approach using Allen’s relationships and based on minimum bounding
rectangles (MBRs) was developed by Cobb and Petry [45, 46]. A minimum
bounding rectangle is determined by the smallest X-Y parallel rectangle which
completely encloses a spatial object and so can provide an effective approximation
of the geometry of such objects. The wide use of MBRs in geographic information
systems and spatial databases is because they provide a computationally efficient
way of locating and accessing objects in a spatial realm. Extending Allen’s tem-
poral relationships [46] into the spatial domain permits the representation of any
relationship that can occur between two one-dimensional (temporal) intervals
including: before, equal, meets, overlaps, during, starts, and finishes, along with
their inverses.

The binary relationship between objects in both the vertical and horizontal
direction can be entirely defined by a tuple, [rx, ry] as determined by the minimum
bounding rectangles of two objects. Here rx is the one of the Allen’s temporal
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relations described above that defines the interaction of the object MBRs in the x
direction, and ry represents the same for the y direction. For example, for the case of
the relationship, A [finishes, starts] B, the definition is given as:

Bxl<Axl<Bx2, Ax2 =Bx2, Byl<Ay2<By2, Ayl =Byl
� �

where {x1,y1} and {x2, y2} represent the lower left and upper right corners,
respectively, of the minimum bounding rectangles.

In Fig. 3 is an example set of four object MBRs, {A,B,C,D}. A subset of the
existing relationships between them consists of:

A before, overlaps½ �B; B before, overlaps− 1½ �C;D during, meets½ �Cf g.

5 Conclusion

We have described a number of approaches using fuzzy set or rough set theory to
describe various aspects of spatial as might be utilized in geographic information
systems. To provide modeling of finer details of spatial data type 2 fuzzy sets [47]
have been considered [48, 49] and other possible approaches include intuitionistic
fuzzy sets [50].
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How to Efficiently Diagnose and Repair
Fuzzy Database Queries that Fail

Olivier Pivert and Grégory Smits

Abstract Telling the user that there is no result for his/her query is very poorly

informative and corresponds to the kind of situation cooperative systems try to avoid.

Cooperative systems should rather explain the reason(s) of the failure, materialized

by Minimal Failing Subqueries (MFS), and build alternative succeeding queries,

called maXimal Succeeding Subqueries (XSS), that are as close as possible to the

original query. In the particular context of fuzzy querying, we propose an efficient

unified approach to the computation of gradual MFSs and XSSs that relies on a

fuzzy-cardinality-based summary of the relevant part of the database.

1 Introduction

The paradigm of cooperative answering is originated from the works in the context of

natural-language question-answering done by Kaplan [1] at the end of the seventies.

Cooperative responses to a query are indirect responses or instructions that are more

helpful to the user than direct, literal responses would be. Interest in cooperative

responses in the database field arose in the middle of the eighties [2–6]. A major

objective of cooperative answering systems is to avoid producing “there is no result”

when a query fails. Cooperative systems should rather explain the reason(s) of the

failure and suggest succeeding queries that are as close as possible to the original

one. Whereas most cooperative techniques from the literature deal with the “empty

answer set” problem in a classical (Boolean) query setting, in this paper, we rather

consider fuzzy queries that express user preferences. We address the situation where

a fuzzy query “fails” — we will see below that this term may take different meanings

— and we propose an explain-and-repair strategy relying on a summary of a part of

the database. This summary provides information about the distribution of the data
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over the different predicates involved in the failing query. Moreover, the complexity

of the summarization process only linearly depends on the size of the database, and

this fuzzy-cardinality-based summary is then efficiently used to detect the original

reasons of the query failure and to identify succeeding subqueries.

With respect to Boolean queries, fuzzy queries reduce the risk of obtaining an

empty set of answers since the use of a finer discrimination scale — [0, 1] instead of

{0, 1} — increases the chance for an element to be considered somewhat satisfac-

tory. Nevertheless, the situation may occur where none of the elements of the target

database satisfies the query even to a low degree. In the context of fuzzy queries,

beside the empty answer set (EAS) problem stricto sensu, another situation may be

considered as a failure: that where the answer set is not empty but only contains el-

ements which satisfy to a low degree the preferences specified in the user query. We

show in this paper that a generic type of approach that leverages fuzzy cardinalities

may be employed to (i) provide explanations for both types of situations (empty or

unsatisfactory answer set), and (ii) suggest relevant non-failing alternative queries.

As we will see, minimal failing subqueries [7] constitute useful explanations about

the conflicts in a failing query, that may be used to set up a semi-automatic and

targeted relaxation strategy. This relaxation strategy consists in identifying the max-

imal succeeding subqueries of an initial failing query and to let users decide which

relaxation they are ready to accept.

The remainder of the paper is structured as follows. Section 2 provides a refresher

about fuzzy queries and fuzzy cardinalities. Section 3 presents how such a summary

is used in a unified approach to the computation of minimal failing subqueries and

maximal succeeding subqueries, that respectively explains and repairs the initial fail-

ing fuzzy query. Before discussing related works in Sect. 5, results of a first experi-

mentation are presented in Sect. 4. Finally, Sect. 6 recalls the main contributions and

outlines perspectives for future work.

1.1 Principle

Figure 1 graphically illustrates the principle of the approach and the three step

process used by the proposed cooperative system. Faced with a failing or poorly

satisfied fuzzy query, the first step consists in summarizing the useful part of the

database, this summary being then used to explain the reasons of the failure and to

detect succeeding subqueries as well.
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Fig. 1 Overview of the cooperative system

2 Preliminaries

2.1 Fuzzy Sets and Fuzzy Preference Queries

Fuzzy set theory was introduced by L.A. Zadeh [8] for modeling classes or sets

whose boundaries are not clear-cut. For such objects, the transition between full

membership and full mismatch is gradual rather than crisp. Typical examples of

such fuzzy classes are those described using adjectives of the natural language, such

as young, cheap, fast, etc. Formally, a fuzzy set E on a referential U is characterized

by a membership function 𝜇E ∶ U → [0, 1] where 𝜇E(u) denotes the grade of mem-

bership of u in E. In particular, 𝜇E(u) = 1 reflects full membership of u in E, while

𝜇E(u) = 0 expresses absolute non-membership. When 0 < 𝜇E(u) < 1, one speaks of

partial membership. Two crisp sets are of particular interest when defining a fuzzy

set E:

∙ the core C(E) = {u ∈ U | 𝜇E(u) = 1}, which gathers the prototypes of E,

∙ the support S(E) = {u ∈ U | 𝜇E(u) > 0}.

The notion of an 𝛼-cut encompasses both these concepts. The 𝛼-cut E
𝛼

of a fuzzy

set E is defined as the set of elements from the referential which have a degree of

membership to E at least equal to 𝛼. Straightforwardly, one has: C(E) = E1 and

S(E) = E0+ .

The complement of E, denoted by Ec
, is defined by 𝜇Ec (u) = 1 − 𝜇E(u). Further-

more, E ∩ G (resp. E ∪ G) is defined the following way:

∙ 𝜇E∩G(u) = min(𝜇E(u), 𝜇G(u))
∙ 𝜇E∪G(u) = max(𝜇E(u), 𝜇G(u)).
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As usual, the logical counterparts of the theoretical set operators ∩, ∪ and the com-

plementation operator correspond respectively to the conjunction ∧, disjunction ∨
and negation ¬. See [9] for more details.

In a database context, fuzzy sets make it possible to rank-order the items that

somewhat satisfy a user query involving gradual preference criteria. The language

called SQLf described in [10, 11] extends SQL so as to support fuzzy queries. The

general principle consists in introducing gradual predicates wherever it makes sense.

The three clauses select, from and where of the base block of SQL are kept in SQLf

and the from clause remains unchanged. The principal differences concern mainly

two aspects:

∙ the calibration of the result since it is made with discriminated elements, which

can be achieved through a number of desired answers (k), a minimal level of sat-

isfaction (𝛼), or both, and

∙ the nature of the authorized conditions as mentioned previously.

Therefore, the base block is expressed as:

select [distinct] [k | 𝛼 | k, 𝛼] attributes
from relations where fuzzy-condition

where fuzzy-condition may involve both Boolean and fuzzy predicates.

The operations from relational algebra — on which SQLf is based — are extended

to fuzzy relations by considering fuzzy relations as fuzzy sets on the one hand and

by introducing gradual predicates in the appropriate operations (selections and joins

especially) on the other hand. The definitions of these extended relational operators

can be found in [11, 12]. As an illustration, we give the definition of the fuzzy selec-

tion hereafter, where 𝜙 denotes a fuzzy predicate and r is a fuzzy (gradual) relation:

𝜇
𝜎
𝜙

(r)(t) = min(𝜇r(t), 𝜇𝜙(t)).

2.2 Fuzzy Cardinalities

In the context of flexible querying, fuzzy cardinalities appear to be a convenient

formalism to represent how many tuples from a relation satisfy a fuzzy predicate

(or a logical combination of fuzzy predicates) to various degrees. We assume in

the following that these various membership degrees are defined by a finite scale

S ∶ 𝛼1 = 1 > 𝛼2 > ... > 𝛼f > 0. Fuzzy cardinalities can be incrementally computed

and maintained for each predicate involved in the user query and for all possible

conjunctions of predicates as well. Fuzzy cardinalities are represented by means of

a possibility distribution [13] or, without loss of information, with a more compact

representation:

FP = 1∕c1 + 𝛼2∕c2 + ... + 𝛼f ∕cf ,
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where ci, i = 1..f is the number of tuples in the concerned relation that are P to a de-

gree at least equal to 𝛼i. For the computation of cardinalities concerning a conjunc-

tion of q fuzzy predicates, like FP1∧P2∧...∧Pq , one takes into account the minimum

of the satisfaction degrees obtained by each tuple t for the concerned predicates,

min(𝜇P1 (t), 𝜇P2 (t), ..., 𝜇Pq(t)).

2.3 Gradual Minimal Failing Subqueries

An empty set of answers associated with a fuzzy query Q = P1 ∧ P2 ∧ … ∧ Pq

is necessarily due to an empty support (w.r.t. the current state of the database) for

a least one of the subqueries of Q. The notion of an unsatisfactory set of answers

generalizes this problem by considering an empty 𝛼-cut of Q where 𝛼 is a user-

defined qualitative threshold. As explained in Sect. 2, the support and the core of a

fuzzy set are particular cases of 𝛼-cuts where 𝛼 is respectively equal to 0+ and 1.

In the rest of the paper we only use the notion of an empty 𝛼-cut to refer to failing

queries as well as poorly satisfied ones.

Thus, an extreme case of a failing query corresponds to an empty 0+-cut for Q
only. The opposite extreme is when one or several predicates have an empty 0+-cut.

Between these two situations, it is of interest to detect the subqueries composed of

more than one predicate and less than n predicates, that have an empty 0+-cut. From

an empty to an unsatisfactory set of answers, the problem defined above just has to

be slightly revisited, transposing the condition of an empty 0+-cut to 𝛼-cuts, where 𝛼

is taken from the predefined scale of membership degrees S ∶ 1 = 𝛼1 > 𝛼2 > ... >

𝛼f = 0+.

Definition 1 Let us consider a query Q = P1 ∧ P2 ∧ … ∧ Pq
, and let S and S′ be

two subsets of predicates such that S′ ⊂ S ⊆ {P1
, P2

, … , Pq}. A conjunction of

elements from S (resp. S′) is a subquery (resp. strict subquery) of Q.

If one wants to explain why the result of the initial query is empty (resp. unsatis-

factory), one must naturally require that such subqueries be minimal: a subquery Q′

of a query Q constitutes a minimal explanation if the considered 𝛼-cut is empty and

if no (strict) subquery of Q′
has an empty 𝛼-cut. This corresponds to a generalization

of the concept of a Minimal Failing Subquery (MFS) [14].

Let us denote by 𝛼

𝛼

Q the set of answers that corresponds to the 𝛼-cut of a query Q
against a given database D: 𝛼

𝛼

Q = {t ∈ D | 𝜇Q(t) ≥ 𝛼}.

Definition 2 A Minimal Failing Subquery of a query Q = P1 ∧ P2 ∧ … ∧ Pq
for a

given 𝛼 is any subquery Q′
of Q such that 𝛼

𝛼

Q′ = ∅ and for all strict subquery Q′′
of

Q′
, 𝛼

𝛼

Q′′ ≠ ∅.

Property 1 Let Q′ ∈ Q be an MFS of Q for a given 𝛼. As we consider convex fuzzy

sets only, Q′
also fails for higher satisfaction degrees 𝛼

′
> 𝛼. However, the property
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of minimality of the MFS Q is not guaranteed for higher satisfaction degrees. A

subquery Q′
may indeed be an MFS of Q for a given 𝛼 without being minimal for

higher satisfaction degrees 𝛼
′
> 𝛼 as a strict subquery of Q′

, say Q′′
, may fail for 𝛼

′

and not for 𝛼.

The set of minimal failing subqueries of an initial failing fuzzy query Q for a

degree 𝛼 is denoted by MFSQ
𝛼

.

Example 1 To illustrate this property, let us consider a conjunctive query Q = P1 ∧
P2 ∧P3 ∧P4 ∧P5

and five tuples whose satisfaction degrees on these five predicates

are given in Table 1. One may notice that no tuple satisfies the subquery Q′ = P1 ∧
P2 ∧ P4

to the degree 0.2, whereas at least one tuple satisfies each strict subquery

of Q′
to this degree. Thus, Q′

is an MFS of Q for the degree 0.2 and using Property

1, one also knows that Q′
fails for more demanding satisfaction degrees (𝛼 ≥ 0.2).

However, despite the fact that Q′
also fails for 𝛼 = 0.4, Q′

is not an MFS for that

degree as there exists a strict subquery ofQ′
, namelyP1∧P2

, whose 0.4−cut is empty.

Thus, Q′
fails for 𝛼 = 0.4 but is not a minimal failing subquery as Q′′ = P1∧P2

⊂ Q′

also fails. This is also the case for P1 ∧ P3 ∧ P4
that is an MFS for 𝛼 = 0.2 but not

for 𝛼 = 0.4, as P1 ∧ P3
fails for 𝛼 = 0.4 making P1 ∧ P3 ∧ P4

not minimal.⋄

Table 1 Satisfaction of five tuples wrt. the predicates of Q
tuple 𝜇P1 𝜇P2 𝜇P3 𝜇P4 𝜇P5

t1 0.2 0.5 0 0 0

t2 0.5 0.1 0 0.5 0

t3 0 0.2 1 1 0

t4 0.2 0.5 0.4 0 0

t5 0 0.8 0.7 1 0

2.4 Gradual Maximal Succeeding Subqueries

For a fuzzy query Q that fails at a degree 𝛼, MFSs detected for this degree thus con-

stitute the explanations of the failure. Fixing Q so as to obtain a non empty set of

answers at this degree 𝛼 may be achieved by a relaxation of Q, where one or more

predicates appearing in the MFSs are discarded. This (these) predicate(s) is (are)

chosen in such a way that (i) the obtained subquery does not contain any of the de-

tected MFS, and (ii) the subquery is as close as possible to the initial query, i.e. with

a minimal number of removed predicates. Obviously, if the subquery Q′
of Q does

not contain any MFS of Q for a given threshold 𝛼, then one has the guarantee that

Q′
returns a non-empty set of answers. Repairing an initial query Q that fails at a

degree 𝛼 consists in identifying the maximal succeeding subqueries of Q for 𝛼. As

several distinct maximal succeeding subqueries may be envisaged for a given thresh-

old, candidate relaxations may be ordered according to two criteria: their closeness
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wrt. the initial query Q and the number of answers that they return, which has to be

as close as possible to the quantitative threshold k that may be defined by the user in

his/her query (Sect. 2.1).

Definition 3 Consider a query Q that fails at a given qualitative threshold 𝛼. A max-
imal succeeding subquery (XSS for short) at a degree 𝛼

′ ≤ 𝛼 is a query Q′
⊆ Q such

that |𝛼𝛼′Q′ | > 0, and such that there exists no other query Q′′
, Q′

⊂ Q′′
that succeeds

at the degree 𝛼

′
.

Property 2 Symmetrically to Property 1, a subquery Q′
of a failing query Q that is

an XSS at a degree 𝛼 also succeeds for lower satisfaction degrees 𝛼
′
< 𝛼. However,

the property of maximality of such an XSS is not guaranteed for lower satisfaction

degrees. A subquery Q′
may indeed be an XSS of Q for a given 𝛼 without being

maximal for lower satisfaction degrees 𝛼
′
< 𝛼 as a query Q′′

,Q′
⊂ Q′′

may succeed

for 𝛼
′

and not for 𝛼.

The set of maximal succeeding subqueries of an initial failing fuzzy query Q for

a degree 𝛼 is denoted by XSSQ
𝛼

. Obviously, an XSS of XSSQ
𝛼

cannot contain any

predicate (or conjunction of predicates) from MFSQ
𝛼

.

3 A Unified Approach to Failing Queries

Faced with a failing conjunctive query Q = P1 ∧ P2 ∧ ... ∧ Pq
, the cooperative

system presented in this paper provides explanations for the vacuity of the answer set

using layered MFSs, and also suggests layered and ordered relaxations materialized

by XSSs. The identification of these MFSs and XSSs relies on a fuzzy-cardinality-

based summary of a part of the searchable database, whose construction constitutes

the first step of our unified approach.

3.1 Summarizing Step

Considering an initial user query Q = P1 ∧ P2 ∧ ... ∧ Pq
that fails, the first step

of our approach relies on the construction of a fuzzy-cardinality-based summary

of the useful part of the database (one focuses on the predicates from Q). Thus,

the summary is not constructed on the whole database but on the set of items that

somewhat satisfy at least a subquery of Q. This summary tells us how many tuples

from the database satisfy each conjunctive subquery ofQ for the different satisfaction

degrees involved in the predefined scale S (Sect. 2.2).

A fuzzy-cardinality-based summary wrt. a set of predicates {P1
,P2

, ..., Pq} is

composed of up to 2q − 2 fuzzy cardinalities, i.e. one for each nonempty strict sub-

query ofQ. Obviously, it is not necessary to store a fuzzy cardinality for a conjunction

of predicates that is not satisfied at all (𝛼
f = 0+) by at least one tuple of the database.
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As said previously, the fuzzy-cardinality-based summary is not computed on the

whole database but on the set of tuples that somewhat satisfy at least one predicate of

the initial query. Thus, considering a conjunctive fuzzy query Q = P1 ∧P2 ∧ ...∧Pq
,

one first builds a disjunctive query P1
0+ ∨ P2

0+ ∨ ... ∨ Pq
0+ , where Pi

0+ is a crisp set

corresponding to the 0+-cut (i.e., the support) of the fuzzy predicate Pi
. Processing

this Boolean disjunctive query returns a relation denoted by r, on which the fuzzy-

cardinality-based summary is then computed using the following algorithm:

for every tuple t of r do
compute 𝜇P1 (t), 𝜇P2 (t); ... and 𝜇Pq (t);
V ← ⟨𝜇P1 (t), ..., 𝜇Pq (t)⟩;
update the fuzzy cardinalities for all strict subqueries of Q using V;

done.

Ordered by the inclusion relation, the set of all subqueries of a conjunctive query,

say Q = P1 ∧ P2 ∧ P3 ∧ P4 forms a lattice as illustrated by Fig. 2, with Q as the

upper bound and ∅ as the lower bound. For a given satisfaction vector V , updating

the fuzzy cardinalities consists in traversing this lattice using a bottom-up breadth-

first strategy. The exploration of a branch of the lattice stops when the current tuple

doest not satisfy at all the corresponding conjunction.

It is worth recalling that the computation of the satisfaction degree 𝜇Q′ (t) of a

nonatomic subquery Q′
consists in taking the minimum of the individual satisfaction

degrees of t on the different predicates involved. Internally, at the end of the process,

each node of the lattice is associated with its fuzzy cardinality.

Moreover, thanks to Property 1, one knows that if Q ⊂ Q′
, 𝜇Q(t) = 0 ⇒ 𝜇Q′

(t) = 0. This property is used to prune branches of the lattice during the update of

the fuzzy cardinalities for a given tuple t.

Q = P1 P2 P3 P4

P2 P3 P4 P1 P3 P4 P1 P2 P4 P1 P2 P3

P2 P3 P1 P2P1 P3 P1 P4 P2 P4P3 P4

P1 P2 P3 P4

Fig. 2 Lattice of subqueries of Q = P1 ∧ P2 ∧ P3 ∧ P4

Remark 1 A possible heuristic for optimizing the computation of the fuzzy cardi-

nalities is to consider the different predicates in increasing order of the size of their

support as branches of the exploration tree are cut as soon as no item satisfies the
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conjunction associated with the current node. Indeed, one may assume, in the ab-

sence of further information about data distribution, that the smaller the support of

a predicate is, the more likely the number of items satisfying it is low.

Example 2 Let us consider a fuzzy query Q = P1 ∧P2 ∧P3 ∧P4 ∧P5
that fails even

for the lowest satisfaction threshold 𝛼 = 0+, where {P1
,P2

,P3
,P4

,P5} are fuzzy

predicates. Table 1 gives the exact satisfaction degrees of five tuples wrt. the predi-

cates involved in Q, and Table 2 is an extract of the fuzzy-cardinality-based summary

where exact satisfaction degrees are projected on the scale S = ⟨0+, 0.2, 0.4, 0.6,
0.8, 1⟩.⋄

Table 2 Extract of the fuzzy-cardinality-based summary

Q′ ∈ P(Q) |Q′
1| |Q′

0.8| |Q′
0.6| |Q′

0.4| |Q′
0.2| |Q′

0.0+
|

P1
0 0 0 1 3 3

... ... ... ... ... ... ...

P4
2 2 2 3 3 3

P1 ∧ P2
0 0 0 0 2 3

... ... ... ... ... ... ...

P3 ∧ P4
1 1 2 2 2 2

P1 ∧ P2 ∧ P3
0 0 0 0 1 1

... ... ... ... ... ... ...

P2 ∧ P3 ∧ P4
0 0 1 1 2 2

3.2 Explaining the Failure

In the presence of an empty or unsatisfactory set of answers for a query Q, the con-

flict detection process described hereafter generates layered MFSs for the different

satisfaction degrees in S .

The algorithm used to identify the layered MFSs investigates the different sub-

queries of the initial failing query Q for the different satisfaction degrees in S . To

determine if a subquery Q′
is a failing subquery of Q for a satisfaction degree 𝛼i, one

just has to check the table storing the fuzzy cardinalities.

As illustrated by Fig. 3, detecting layered MFSs relies on a bottom-up breadth-

first traversal of the lattice, where for each subquery, one checks the emptiness of

the 𝛼-cut, using the fuzzy cardinalities, in an increasing order of 𝛼 from 𝛼f to 𝛼1.

Property 1 is used to propagate failing subqueries to more demanding satisfaction

degrees. The worst case in terms of complexity is when only Q is an MFS for the

highest satisfaction degree considered in S , i.e. 𝛼1 = 1.

In the manner of Apriori [7], Algorithm 1 traverses the lattice of subqueries of Q
(Fig. 2) starting with atomic predicates and the less demanding satisfaction threshold

𝛼f . If no tuple satisfies an atomic subquery, say P1
, to the degree 𝛼i then P1

, as an
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Fig. 3 Bottom-up breadth-first traversal of the lattice to detect MFSs

atomic subquery, is by definition an MFS of Q and is also an MFS for 𝛼j ≥ 𝛼i.

Obviously, no subquery containing P1
will be considered as a candidate MFS during

the rest of the process. In the case where P1
is satisfied for the current satisfaction

threshold, say 𝛼i, one checks for more demanding thresholds 𝛼j > 𝛼i if P1
is still

satisfied. These tests are performed for each possible atomic subquery of Q.

Then, one goes to the second round of the loop (line 1.7 of Algorithm 1) where

conjunctions containing two nonfailing predicates are generated for the different sat-

isfaction degrees of S . For each subquery (line 1.11), one checks the fuzzy cardi-

nalities so as to determine if it is an MFS. A subquery c is identified as an MFS for

the degree 𝛼i if the function that checks the summary card(c, 𝛼i) returns 0. If one of

these conjunctions, let say P2 ∧ P3
, is an MFS for a degree 𝛼i one tries to propagate

it to higher satisfaction degrees (see Algorithm 2 where isMinimal (L, MFS
𝛼j
(Q))

returns true if ∀M ∈ MFS
𝛼j
(Q),M ⊄ L, false otherwise). It is worth recalling that

this last test is necessary as the MFS property is not monotonic with respect to 𝛼-

cuts. One indeed has to check, using Algorithm 2, that for each 𝛼j > 𝛼i, no subquery

of P2 ∧ P3
has already been detected as an MFS for degree 𝛼j. If it is not the case,

P2 ∧ P3
is stored as an MFS of Q for 𝛼j. Obviously, an atomic query that fails is

by definition an MFS for all 𝛼-cuts. Then, the algorithm goes back to the loop (line

1.7) and conjunctions containing three predicates are generated for each considered

satisfaction degree (line 1.8) taking care that these conjunctions do not contain an

already identified MFS. This recursive process goes on until candidate conjunctions

cannot be generated anymore.

Remark 2 Even if a qualitative threshold 𝛼u is specified by the user in the initial

query Q that fails, MFSs are detected for the different satisfaction degrees defined

in the scale S . It is indeed important to detect that it is useless to expect any result
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if an atomic subquery of Q fails for the least restrictive satisfaction degree 𝛼f . In the

case of Boolean queries, Algorithm 1 can also be used: one just needs to change the

scale of satisfaction degrees into the singleton {1}.

Input: a failing query Q = P1 ∧ … ∧ Pq
; a scale of degrees

S = 𝛼f < ... < 𝛼2 < (𝛼1 = 1);
Output: MFSQ

𝛼i
, i ∈ S layered MFS’s of Q;

begin1.1
foreach 𝛼i ∈ S do1.2

MFS
𝛼i
(Q) ← ∅; E

𝛼i
← {P1

, … , Pn};1.3

Cand
𝛼i
← E

𝛼i
;1.4

end1.5
nbPred ← 1;1.6
while Cand

𝛼1
≠ ∅ do1.7

foreach 𝛼i ∈ S from 𝛼f to 𝛼1 do1.8

// generation of the candidates of size nbPred1.9
Cand

𝛼i
← {subqueries Q′

composed of nbPred predicates from E
𝛼i1.10

such that ∀Q′′
⊂ Q′

, Q′′ ∉ MFS
𝛼i
(Q)};

foreach c in Cand
𝛼i

do1.11

if card(c, 𝛼i) = 0 then1.12
MFS

𝛼i
(Q) ← MFS

𝛼i
(Q) ∪ {c};1.13

//Ec is the set of predicates involved in c1.14
//thus remove Ec from the list of predicates used to generate1.15
//candidate subqueries of size nbPred + 11.16
E
𝛼i
← E

𝛼i
− Ec;1.17

//Propagate c to higher satisfaction degrees1.18
MFS = ∪i MFS

𝛼i
(Q)1.19

propagate(𝛼i, A, c, MFS, E
𝛼1
...E

𝛼f
);1.20

end1.21

end1.22

end1.23
nbPred → nbPred + 1;1.24

end1.25

end1.26
Algorithm 1: Gradual MFS computation
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Input: 𝛼i is a satisfaction degree; S is the scale of degrees; c is the MFS detected

for 𝛼i to propagate; MFSQ
𝛼i
, i ∈ S layered MFS’s of Q; E

𝛼i
, iS arrays of

predicates to use for the generation of candidates, one array per degree;

procedure propagate(𝛼i, A, c, MFS, E
𝛼1
...E

𝛼f
) begin2.1

foreach 𝛼j ∈ S | 𝛼j ≥ 𝛼i do2.2

if isAtomic(c) or isMinimal(c,MFS
𝛼j
(Q)) then2.3

MFS
𝛼j
(Q) ← MFS

𝛼j
(Q) ∪ {c};2.4

E
𝛼j
← E

𝛼j
− Ec;2.5

else2.6
break;2.7

end2.8

end2.9

end2.10

end2.11
Algorithm 2: Procedure that propagates an MFS to higher satisfaction degrees

Example 3 Applied to the summary of Table 2, Table 3 gives the layered MFSs that

explain the failure of the query Q introduced in Example 1.⋄

Table 3 Layered MFSs of Q
𝛼 MFSQ

𝛼

𝛼 MFSQ
𝛼

𝛼1 = 1 {P1
,P2

,P5} 𝛼4 = 0.4 {P1 ∧ P2
,P1 ∧ P3

,P5}
𝛼2 = 0.8 {P1

,P2 ∧ P3
,P5} 𝛼5 = 0.2 {P5

,P1 ∧ P2 ∧ P4
,

P1 ∧ P3 ∧ P4}
𝛼3 = 0.6 {P1

,P5} 𝛼f=6 = 0+ {P5}

3.3 Repairing the Failure

Repairing a failing fuzzy query consists in suggesting XSSs for the different satisfac-

tion degrees considered in the scale S . Obviously, the identification of the maximal

succeeding subqueries for a given degree 𝛼i depends on the minimal failing sub-

queries found for this degree, this (these) failing subquery(ies) being denoted by

MFSQ
𝛼i

. Indeed, a subquery Q′
of an initial failing query Q succeeds at a degree 𝛼i if

it does not contain any MFS from MFSQ
𝛼i

.

The algorithm that is used to identify layered XSSs is pretty much the same as

the one used for detecting MFSs (Alg. 1). As illustrated by Fig. 4, it consists in per-

forming a top-down breadth-first traversal of the lattice of candidate XSSs, this time

starting with the largest subqueries, and considering also the satisfaction degrees

of S in a decreasing order. For a given node, i.e. a subquery Q′ ∈ Q, of the lat-

tice and a given satisfaction degree 𝛼i, one just has to check whether Q′
does not
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contain any MFS from MFSQ
𝛼i

. If Q′
succeeds, i.e. returns a nonempty answer set

whose cardinality is stored in the fuzzy-cardinality-based summary, then Property 2

is used to propagate Q′
to lower satisfaction degrees 𝛼j, 𝛼j < 𝛼i, taking care that the

maximality of the identified succeeding subquery is preserved for less demanding

satisfaction thresholds. As soon as a subquery Q′
⊆ Q is identified as an XSS of

Q for a degree 𝛼i then, by definition of an XSS, one can prune the part of the lat-

tice composed of strict subqueries of Q′
. The worst case in terms of complexity is

when the XSSs correspond to atomic subqueries for the least restrictive considered

satisfaction degree 𝛼f .

Fig. 4 Top-down depth-first traversal of the lattice to detect XSSs

Example 4 For the failing fuzzy query Q introduced in Example 1, Table 4 gives the

layered repaired queries returned to the user (who may then choose the one that best

fits his/her need).⋄

Table 4 Layered XSSs of Q
𝛼 MFSQ

𝛼

XSSQ
𝛼

𝛼1 = 1 {P1
,P2

,E} {P3 ∧ P4}
𝛼2 = 0.8 {P1

,P2 ∧ P3
,P5} {P2 ∧ P4

,P3 ∧ P4}
𝛼3 = 0.6 {P1

,P5} {P2 ∧ P3 ∧ P4}
𝛼4 = 0.4 {P1 ∧ P2

,P1 ∧ P3
,P5} {P2 ∧ P3 ∧ P4}

𝛼5 = 0.2 {P1 ∧P2 ∧P4
,P1 ∧P3 ∧P4

,P5} {P2 ∧ P3 ∧ P4}
𝛼f=6 = 0+ {P5} {P1 ∧ P2 ∧ P3 ∧ P4}
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3.4 Human Readable Explanations

Explanations of the failure of an initial failing query are given to the user, as well

as succeeding subqueries, in order to let him/her choose the predicate(s) to relax.

The graduality of the detected MFSs and suggested XSSs significantly improves the

informativeness of this cooperative feedback, as users can precisely adjust their ex-

pectations. Moreover, thanks to the fuzzy-cardinality-based summary, it is possible

to inform the users about the number of answers returned by each candidate XSS.

This latter piece of information may strongly influence the user about the predicates

he/she is ready to relax. Example 4 illustrates the structure of the explanations and

suggestions addressed to the user in case of a failing query.

Example 5 Considering the query introduced in Example 1, its MFSs presented in

Example 2 and the subsequent XSSs given in Example 3, the following human read-

able explanations are generated:

No item satisfies simultaneously P1
, P2

, P3
, P4

and P5
to the degree 𝛼u because ...

∙ no item satisfies P5
,

∙ no item satisfies P1
and P4

, with P2
or P3

to a degree ≥ 0.2,

∙ no item satisfies P1
with P2

or P3
to a degree ≥ 0.4,

∙ no item satisfies P1
to a degree ≥ 0.6;

∙ no item satisfies P2
with P3

to a degree ≥ 0.8,

∙ no item fully satisfies P2
.

... but the database contains:

∙ k1 items that fully satisfy P3
and P4

,

∙ k2 items that satisfy P4
, with P2

or P3
to a degree ≥ 0.8,

∙ k3 items that satisfy P2
, P3

and P4
to a degree ≥ 0.6,

∙ k4 items that satisfy P1
, P2

, P3
and P4

to a degree > 0.⋄

4 Experimentation

In this section, we present experimental results obtained using a prototype that imple-

ments the approach described above. The goal of this experimentation is to assess the

efficiency of the approach with real data, and more precisely with a relation contain-

ing ads about 92,178 second hand cars. The relation schema is {price,make,mileage,

year, length, height, nbseats, acceleration, consumption, co2emission}. The results

presented in this section have been obtained using an Intel Core 2 Duo 2.53GHz

computer with 4Go 1067 MHz of DDR3 ram.
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In a first experimentation, we have observed the time needed to compute the

fuzzy-cardinality-based summary on preloaded datasets of various sizes. It is worth

recalling that, faced with a failing query, the fuzzy-cardinality-based summary is not

computed on the whole database but on the result of the crisp and disjunctive version

of the initial query.

Figure 5 shows the time needed to compute the summary on datasets of various

sizes for queries involving a fixed number of predicates (here 6). This result empiri-

cally confirms that the complexity of the summarization step linearly depends on the

size of the dataset. Fuzzy cardinalities are stored in main memory in a hashtable, keys

being conjunctions of predicates whereas values are the cardinalities themselves.

To complete the experimentation on the fuzzy-cardinality-based summarization of

a dataset, we have observed the space taken in memory by this hashtable according

to different dataset sizes. Figure 6 shows an interesting though predictable phenom-

enon: the convergence of the size of the summary. This convergence can be indeed

explained by the fact that, whatever the number of tuples, the possible combina-

tions of properties that make sense to describe them is finite and can be quickly

enumerated. This last result has been obtained considering 10 fuzzy predicates for

the summarization, one for each attribute on which a second hand car is described

in our database. Thus, even for very large databases, fuzzy-cardinality-based sum-

maries easily fit in main memory. This phenomenon is all the more pronounced as

there exist correlations between attributes of the considered relation.

Based on the summary stored in main memory, we have applied the cooperative

approach introduced in this paper to identify the MFSs and XSSs of failing queries

and observed the time needed to perform these tasks. Figure 7 shows that for different

sizes of failing queries, i.e. from one to ten predicates, the time needed to compute

the MFSs and XSSs is negligible compared with the computation of the summary

which is obviously the most costly task.

As said in Sect. 3, a single disjunctive query has to be submitted to the database in

order to explain and repair a failing fuzzy query. Even with efficient indexes defined

on the different searchable attributes, it is not conceivable to apply a naive strategy

where each subquery of the initial failing subquery is submitted to the database. To

confirm the relevance of a summary-based approach that relies on a single query to

the database, Fig. 8 compares the time needed to identify the MFSs of a failing query

Q using our approach and a naive one that runs each subquery of Q (note that the

y-axis corresponds to a logarithmic scale).

These experimentations show that the proposed approach is not very sensitive to

the size of the dataset and remains tractable even for very large databases as long as

the size of the query is reasonable. This is why one can conclude that this approach

may be efficiently integrated in many applicative contexts, for instance e-business

as online shops generally propose query interfaces where at most half a dozen of

predicates can be specified.
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Fig. 5 Computation time

of the summarization step

wrt. the size of the DB

Fig. 6 Size of the summary

wrt. the number of

considered predicates

Fig. 7 Computation time

of the different steps:

summarization, explanation,

repair

5 Related Works and a Few Words About Complexity

Providing explanations and repairs for a failing query is a crucial issue if one wants

to devise genuinely cooperative information systems. In [14], Godfrey studied the

computational complexity entailed by the identification of all of the MFSs and XSSs

for a failing conjunctive query. Even though it is easy to find one MFS, Godfrey



How to Efficiently Diagnose and Repair Fuzzy Database Queries that Fail 515

Fig. 8 fuzzy-cardinality-

based approach vs. naive

approach (logarithmic scale)

showed that finding all the minimal causes of the emptiness of the answer set is

NP-Hard and implies to run an exponential number of subqueries. In the context of

recommendation systems, McSherry introduced in [15] a heuristic called coverage
for removing first the predicates that are the most likely to be responsible for the

failure. The coverage of a predicate is the number of times this predicate is involved

in the discovered MFSs. In [16], Bidault et al. also studied the problem of identifying

the minimal explanations of a failing query in the particular context of a mediation

system and suggesting possible query repairs.

As databases are getting larger and larger, it is not realistic to run an exponential

number of queries, even if such a strategy would produce very informative explana-

tions. This is why Jannach proposed in [17] an MFS and XSS detection technique

that relies on a single scan of the database. During this full scan of the database, a

binary matrix is built, that contains as many rows as there are tuples, and as many

columns as there are Boolean predicates in the query. A 1 bit is set to a cell if the con-

cerned tuple satisfies the concerned predicate, 0 otherwise. This binary matrix is then

used to identify the MFSs and suggest XSSs. Even though the strategy proposed by

Jannach relies on a single query to the database, the size of its binary matrix linearly

depends on the size of the database, which can be highly problematic in practice.

We show in this paper that a unified approach based on fuzzy cardinalities may

be used to detect the layered MFSs and to repair the initial query as well. The sum-

marization step is obviously the most costly step of these two approaches. Indeed,

the construction of the fuzzy-cardinality-based summary linearly depends on the

number of tuples considered when building this summary. So, one can say that the

proposed approach, as the one introduced in [17], linearly depends on the size of the

database, which is a very positive point, but exponentially depends on the number

of predicates involved in the initial failing query, where the worst case corresponds

to a single MFS Q for the maximal satisfaction degree of 1. This is not a serious

limitation in practice as the number of predicates generally defined by users in their

queries is rather low (≤ 8) in most application contexts. Thus, even for a medium-

sized database, a fuzzy-cardinality-based summary is significantly smaller than the

binary matrix used in [17].
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Note also that the works mentioned above all deal exclusively with Boolean fail-

ing queries, whereas our approach is suitable both for Boolean and fuzzy queries.

6 Conclusion

There is a consensus inside the community working on cooperative approaches that

clear explanations have to be given when users are faced with failing queries. These

explanations have to focus on the minimal causes of the failure and should come

along with succeeding queries corresponding to relaxations of the original one. In

this paper, we have proposed an efficient unified approach based on a summary of

the database composed of fuzzy cardinalities. The main advantage of this approach

is that a single scan of a part of the database is needed in order to identify the causes

of the failure and suggest succeeding queries that are as close as possible to the initial

failing query.

As perspectives for future works, we are currently investigating the computation

of fuzzy cardinalities in a massively distributed system in a context of big data. We

also intend to use correlation measures between attributes or a workload of succeed-

ing queries to define heuristics that could be used during the XSSs detection step for

influencing the choice of the predicates to discard first.

References

1. Kaplan, S.J.: Cooperative responses from a portable natural language query system. Artif.

Intell. 19, 165–187 (1982)

2. Cuppens, F., Demolombe, R.: Cooperative ansering: a methodology to provide intelligent

access to databases. In: Proceedings of DEXA’88, pp. 333–353 (1988)

3. Gaasterland, T.: Relaxation as a platform for cooperative answering. J. Intell. Inf. Syst. 1(3–4),

296–321 (1992)

4. Motro, A.: Cooperative database system. In: Proceedings of FQAS’94, pp. 1–16 (1994)

5. Ras, R.W., Dardzinska, A.: Intelligent query answering. In: J. Wang (ed.) Encyclopedia of Data

Warehousing and Mining, 2nd edn, vol. II, pp. 1073–1078. Idea Group Inc., Canada (2008)

6. Corella, F., Lewison, K.: A brief overview of cooperative answering. In: Technical report.

http://www.pomcor.com/whitepapers/cooperative_responses.pdf (2009)

7. McSherry, D.: Retrieval failure and recovery in recommender systems. Artif. Intell. Rev. 24(3–

4), 319–338 (2005)

8. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

9. Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets, vol. 7.

Kluwer Academic Publishers, Netherlands (2000)

10. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans.

Fuzzy Syst. 3(1), 1–17 (1995)

11. Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press,

London (2012)

12. Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade,

H. (eds.) Fuzzy Sets in Approximate Reasoning and Information Systems. The Handbook of

Fuzzy Sets Series, pp. 403–468. Kluwer Academic Publishers, Dordrecht (1999)

http://www.pomcor.com/whitepapers/cooperative_responses.pdf


How to Efficiently Diagnose and Repair Fuzzy Database Queries that Fail 517

13. Dubois, D., Prade, H.: Fuzzy cardinalities and the modeling of imprecise quantification. Fuzzy

Sets Syst. 16, 199–230 (1985)

14. Godfrey, P.: Minimization in cooperative response to failing database queries. Int. J. Coop. Inf.

Syst. 6(2), 95–149 (1997)

15. McSherry, D.: Incremental relaxation of unsuccessful queries. In: Funk, P., González-Calero,

P.A. (eds.) Advances in case-based reasoning. In: Proceedings 7th European Conference, EC-

CBR 2004, Madrid, Spain, August 30 - September 2, 2004, Lecture Notes in Computer Science,

vol. 3155, pp. 331–345. Springer, Berlin (2004)

16. Bidault, A., Froidevaux, C., Safar, B.: Repairing queries in a mediator approach. In: Horn,

W. (ed.) ECAI 2000. Proceedings of the 14th European Conference on Artificial Intelligence,

Berlin, Germany, August 20–25, 2000, pp. 406–410. IOS Press, Amsterdam (2000)

17. Jannach, D.: Finding preferred query relaxations in content-based recommenders. In: Intel-

ligent Techniques and Tools for Novel System Architectures, pp. 81–97. Springer, London

(2008)

Authors Biography

Olivier Pivert (http://people.irisa.fr/Olivier.Pivert/) received

the Ph.D. degree in computer science from the University of

Rennes 1, France, in 1991. He is currently a full Professor of

computer science at École Nationale Supérieure des Sciences

Appliquées et de Technologie, Lannion, France, and a Member

of the Institut de Recherche en Informatique et Systèmes Aléa-

toires where he heads the research team Shaman (http://www-

shaman.irisa.fr/). His research work mainly concerns the exten-

sion of database systems for fuzzy querying and for dealing

with imprecise/uncertain information. He has published over

250 papers in books, journals, and conference proceedings.

He is the co-author of Fuzzy preference Queries to Relational
Databases (Imperial College Press, 2012) and the co-editor

of Flexible Approaches in Data, Information and Knowledge
Management (Springer, 2014). He is a Member of the editor-

ial board of several technical journals (Fuzzy Sets and Systems, the Journal of Intelligent Infor-
mation Systems and the International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems).

Grégory Smits received the Ph.D degree in computer sci-

ence from the University of Caen (France) in 2008. He is cur-

rently an Associate Professor at IUT Lannion (University of

Rennes, France) and he is a member of the research labora-

tory named IRISA (Institut de Recherche en Informatique et

Systèmes Aléatoires). His research works mainly concern the

extension of usual relational database systems for fuzzy query-

ing and cooperative answering.

http://people.irisa.fr/Olivier.Pivert/
http://www-shaman.irisa.fr/
http://www-shaman.irisa.fr/


The Web, Similarity, and Fuzziness

Parisa D. Hossein Zadeh and Marek Z. Reformat

Abstract The Internet is perceived as a source of multiple types of information, a
large shopping mall, a social forum and an entertainment hub. The users constantly
browse and search the web in order to find things of interest. The keyword-based
search becomes less and less efficient in the case of more refined searches where
details of items become important. The introduction of Resource Description
Framework (RDF) as a relation-based format for data representation allows us to
propose a different way of performing a relevancy-based search. The approach
proposed is based on representation of items as sets of features. This means that
evaluation of items’ relevance is based a feature-based comparison. A more realistic
relevancy determination can be been achieved via categorization and ranking of
features. The calculated relevancy measures for individual categories of features are
aggregated using a fuzzy-based approach.

1 Introduction

Internet is perceived as a repository of information. Everyday, millions of users
search and browse the web. Besides news and information, they also look for items
of possible interest: books, movies, hotels, travel destinations, and many more. It is
anticipated that these items possess specific or similar features (Tversky 1977).
Additionally, not all of these features are equally important, some of them are
significant with a high selective power, while some are entirely negligible.

The improvement of the users’ searching activities depends on development of
web applications that are able to support the users in finding relevant entities. So
far, identification of data satisfying user’s request is realized by matching the query
keywords to pieces of information. Most of the web search engines utilize this
approach and its variations.
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A novel representation of information on the web, introduced by the concept of
Semantic Web (Berners-Lee et al. 2001), changes the way how individual pieces of
information are stored and accessed on Internet. The fundamental data format is
called Resource Description Framework (RDF) (Lassila et al. 2014) and it relies on
a simple concept of a triple: <subject-property-object>. In other words, a triple can
be perceived as a relation existing between two entities: one of them – subject – is
the main entity that is in relation embodied by a property with another item –

subject. It means that any piece of information can be represented as a set of triples
where multiple items are linked to each other being subjects and/or objects in
different triples.

An evaluation of relevancy between two items is associated with determining
similarity between them. Therefore, similarity assessment between two items is an
important and fundamental step in processes and applications related to information
extraction and retrieval, web search, automatic annotation, etc. Application of RDF
as data representation format allows us to propose a different approach to evaluate
items’ relevancy. The approach is based on the fact that an item is represented as a
set of triples while all of them are “tied” by the fact that a subject of these triples is
the same, i.e., it is an item under consideration. In such representation of a single
item, each triple is treated as its feature. This allows us to apply a feature-based
comparison of items and to take advantage of its flexibility and adaptability in a
process of evaluating relatedness between items.

Our approach is based on the idea that properties/features of an entity can be
categorized and ranked based on their importance in describing the entity. The
calculated similarity measures for these categories of features are aggregated using
fuzzy weights associated with the importance of these categories.

This chapter introduces a novel approach suitable for identification of related
items. A number of important aspects of the proposed approach are presented here:

• The evaluation of relatedness of two items is performed using features of the
items. The RDF representation allows us to compare items on a feature-by-
feature (triple-by-triple) basis. The principles of the approach are explained in
Sect. 2.

• The importance of features is recognized as essential characteristics of similarity
evaluation process. Different features contribute to the overall similarity in
different ways. It is important to automatically determine importance of features,
as well as to apply a proper aggregation process to combine similarities of
individual features. The process of determining importance of features is based
on Wikipedia Infoboxes1 as explained in Sect. 3.1. Further, a fuzzy-based
method of aggregating evaluated similarities of single features and taking into
account different importance levels of the features are fully explained in
Sect. 3.2.

1http://en.wikipedia.org/wiki/Help:Infobox
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• The proposed method is applied to a real-life scenario of finding relevant books.
The results obtained using the proposed approach are compared with the sug-
gestions provided by Google. The case study is presented in Sect. 4.

2 Feature-based Similarity in Linked Data

Similarity is essential for finding relevant things. This can be further explored by a
need to dig a bit “deeper” and look not only on items as whole units but also at
individual features of these items. Potentially, this can lead to a more refined
similarity estimation process and better results. The introduction of Resource
Description Framework (RDF) provides an opportunity to “see” items as sets of
features and built simple procedures for evaluating similarity of items.

2.1 Linked Data and RDF

The goal of the Semantic Web as an enhancement to the current web is to provide a
meaning and structure to the web content. The Semantic Web’s road map points to
ontology as a way of accomplishing this. Ontology defines a structural organization
and relations between concepts,2 properties and instances. It also adds semantic
richness and reasoning capabilities. Any type of information expressed with a
means of ontologies can be semantically analyzed and processed leading to more
comprehensive results.

The Semantic Web concept introduces RDF as a way of representing informa-
tion including ontologies and their instances. The fundamental idea is to represent
each piece of data as a triple: <subject-property-object>, where the subject is an
entity being described, the object is an entity describing the subject, and the
property is a “connection” between the subject and object. For example, Godfather
is book is a triple with Godfather as its subject, is its property, and book its object.
In general, a subject of one triple can be an object of another triple, and vice versa.
The growing presence of RDF as a data representation format on the web brings
opportunity to develop new ways how data is processed, and what type of infor-
mation is generated from data.

A single RDF-triple <subject-property-object> can be perceived as a feature of
an entity identified by the subject. In other words, each single triple is a feature of
its subject. Multiple triples with the same subject constitute a definition of a given
entity. A simple illustration of this is shown in Fig. 1(a). It is a definition of
Godfather. If we visualize it, definition of the entity resembles a star with the
defined objects as its core. We can refer to it as an RDF-star.

2Throughout this chapter, two terms “concept” and “entity” are used interchangeably.
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Quite often a subject and object of one triple can be involved in multiple other
triples, i.e., they can be objects or subjects of other triples. In such a case, multiple
definitions – RDF-stars – can share features, or some of the features can be centres
of another RDF-stars. Such interconnected triples constitute a network of inter-
leaving definition of entities, Fig. 1(b).

In general, Uniform Resource Identifiers (URI) are used to uniquely identify
subjects and properties. Objects, on the other hand, are either URIs or literals such
as numbers or strings.

Due to the fact that everything is interconnected, we can state that numerous
entities share common features. In such a case, comparison of entities is equivalent
to comparison of RDF-stars. This idea is a pivotal aspect of the proposed approach
for determining relevance of items.

Based on the Semantic Web vision, several knowledge bases have been created
including DBpedia,3 Geonames,4 YAGO,5 and FOAF6. The collection of interre-
lated datasets on the Web is referred to as Linked Data (LD) (Bizer and Berners-Lee
2009). DBpedia is a large linked dataset, which contains Wikipedia data translated

(a)          

(b)

Fig. 1 (a) RDF-stars: a
definition of Godfather with
one of its features enhanced,
(b) interconnected RDF-stars
representing: Godfather,
Hyperion, The Sicilian, Ubik
and Do Androids Dream of
Electric Sheep

3http://dbpedia.org/About
4http://www.geonames.org/
5http://www.mpi-inf.mpg.de/yago-naga/yago/
6http://www.foaf-project.org/
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into RDF triples. Even though DBpedia is a large dataset that has over one billion
triples from Wikipedia, it also provides RDF links to other datasets on the Web
such as Geonames and Freebase7. With a growing number of RDF triples on the
web – more than 62 billions8 triples– processing data in RDF format is gaining a
special attention. There are multiple works focusing on RDF data storage and
querying strategies using a specialized query language SPARQL (Levandoski and
Mokbel 2009)(Schmidt et al. 2008).

2.2 Similarity in RDF Data

The underlying idea of the proposed approach for relevancy evaluation is to
determine number of common and relevant features. In the case of RDF defined
concepts, this nicely converts into checking how many features they share as
presented in Fig. 2. Defined entities are books “The Godfather” and “The Sicilian”
that share number of features. Some of these features are identical – the same
property and the same subject (black circles in Fig. 2), while some have the same
object but different properties.

Basically, number of different comparison scenarios can be identified. It depends
on interpretation of the term “entities that they share”. The possible scenarios are
(for details see Hossein Zadeh and Reformat 2013a, b):

• identical properties and identical objects
• identical properties and similar objects
• similar properties and identical objects
• similar properties and similar objects

Fig. 2 Similarity of RDF
defined concepts: based on
shared objects connected to
the defined entities with the
same properties

7http://www.freebase.com/
8http://stats.lod2.eu
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To better understand the proposed methodology, Fig. 3 shows similarity
assessment between two entities x and y. As can be seen, similarity is evaluated by
taking into account two layers, Layer 1 and Layer 2. Similarity of Layer 1 is
assessed via two components: common objects of the two entities, i.e., the common
object {z} in Fig. 3; and the pair of unique objects {(w, u)}. Similarity of Layer 2 is
to estimate similarity between unique pairs – {(w, u)}. It is evaluated based on all
permutations of objects that are connected to the elements, i.e., {(s, g), (s, f), (s, r),
(t, g), (t, f), and (t, r)}.

3 Similarity Evaluation

The principle idea presented here relies on the assertion that properties of an entity
should have different importance values in similarity assessment between that entity
and other entities. These importance values reflect their influence in describing that
entity. Thus, similarity between entities cannot be ideally calculated with properties
having equal weights. In fact, human judgment of similarity considers relative
importance values for properties of an item. As an example, in a problem of finding
books similar to a particular book, properties such as “author”, “genre”, and
“subject” are more dominant compared to such properties as “country”, “number of
pages”, and “cover artist”. It is worth noting that the present study should not be
confused with similarity assessment within a context defined via specific properties.
For example, a context similarity evaluation can be applied in the question, “How
much these two books are similar in the context of their topic?” For similarity
assessment in a context in Linked Data (LD), see (Hossein Zadeh and Reformat
2013a, b). The solution presented in this chapter determines the semantic similarity
between entities expressed in RDF triples while recognizing and dealing with the
importance of each property associated with the entities under study.

Fig. 3 Similarity evaluation
process for Layer 1
and Layer 2
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A fundamental step in similarity assessment of two entities is comparing features
associated with the entities. Having RDF triples for representing information in LD,
features are represented with properties and their values with objects (Sect. 2.2). For
example, in LD a book can be represented with multiple features (properties) such
as name, author, country, language, genre, and publisher. An example of a real
entity (from DBpedia) described with multiple features is shown in Fig. 4.

The problem of handling importance of features is composed of two sub-prob-
lems: (1). How to recognize dominant properties? (2). How to deal with them? In
real life, it is intuitive to distinguish very important properties of an entity from less
important and not important ones. A computer program requires a well-defined
approach to do the same task since every piece of information in LD is represented
as RDF triples, and all the triples are equally important. Additionally, importance
values of properties for all entities are constantly modified on the web. Therefore, a
process of determining the importance values is a very time-consuming and
impractical task.

Section 3.1 presents an answer to the first sub-problem of how to detect and
distinguish the properties that vary in their importance. We present a solution to this
problem by obtaining this information from the most popular online encyclopedia,
Wikipedia. The next important question is how to use the obtained properties and
their significance values in similarity evaluation. The answer to this question, usage
of fuzzy membership functions, is explained in Section 3.2.

3.1 Properties and their Importance

Once the properties and their importance values are defined, we create a fuzzy set
(Zadeh 1965) L of n subsets that categorize the properties with respect to their
importance. Each subset has an assigned linguistic label that corresponds to its
importance degree, such as:

Fig. 4 Book “The Lord of the Rings” with its features
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L= fl1 = critical, l2 = very important, . . . , ln = not importantg ð1Þ

In other words, properties with equal importance describing an entity are clas-
sified in the same subset. Each subset li may contain any number of properties:

li = fp1, p2, . . . , pmg ð2Þ

A total number of subsets, n, is a user-defined constant. This helps us to cate-
gorize a property in a proper subset that indicates its importance.

We developed an approach using Wikipedia Infoboxes to find key properties of
an entity and to classify them into the suitable importance subset. Infobox is
summarized information represented in a table on the top right-hand side of a
Wikipedia page. It provides information about a particular entity. An example of
Infobox for the book “The Lord of the Rings” is shown in Fig. 5.

First, we obtain the Infobox template9 corresponding to the category of a con-
sidered entity. Properties included in the Infobox template are selected as the
characteristic properties of the entity that we keep. We discard the rest of properties
that the entity has. This step reduces the amount of data to be processed in a
similarity evaluation method. Next, we classify the properties into proper subsets of
L based on their importance in describing the entity.

The main idea proposed here is to exploit the information in the domain of a
property. Domain of a property is a class of the subject in the <subject-property-
object> RDF triple. Basically, the class refers to an item located in a hierarchical
taxonomy. We argue that this information plays a critical role in identifying the
importance of a property. Therefore, we categorize the properties based on the
location of their domains in taxonomy of domains. This approach is justified
because classes located in higher levels of taxonomy are more abstract than the ones
in lower levels (Hossein Zadeh and Reformat 2013a, b). In general, abstract classes
carry paramount description of an entity compared to less abstract and specific
classes. Thus, properties with more abstract domains are more important. For
example, considering an entity “book” properties such as {subject, genre, name}
carry important information, intuitively, and they belong to the most abstract class,
“thing”, in DBpedia ontology10. In Fig. 6, a fragment of DBpedia taxonomy related
to an entity “book” is depicted.

In a situation of comparing entities that belong to different Infobox templates,
e.g., a book and a car, same process is followed. However, the obtained similarity
will be very low as it lacks existence of common properties.

In LD, information is represented as a set of triples:

LD= < s, p, o> s∈C, p∈P, o∈C ∪Dj .f g ð3Þ

9http://en.wikipedia.org/wiki/Template:Infobox_book
10http://mappings.dbpedia.org/server/ontology/classes/
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where C, D and P={p1,p2,…,pm} are sets of entities, data values and properties,
respectively. Each entity, c, is a subject in a number of triples connected to it via
properties, p. Therefore, we represent an entity as a set of triples defining it.

Our proposed algorithm for similarity calculation is shown in details in Pseudo
codes 1 (Table 1) and 2 (Table 2). In line 5 (Table 1), a set of common triples
between two entities x and y, Ocommon, is obtained. Ox and Oy are two sets of objects
unique to each entity x and y, respectively. They are initialized in line 6. For all
permutations of elements in sets Ox and Oy, a sub-function Sim_Second_Layer is

Fig. 5 Wikipedia Infobox for
the book “The Lord of the
Rings”

Fig. 6 Small fragment of
DBpedia taxonomy for an
entity “book”
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Table 1 Pseudo code for similarity calculation

Table 2 Pseudo code of Sim_Second_Layer (a, b)
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called (line 10). Similarites calculated for all pairs (a, b) are obtained and combined
in line 12. Similarity between two entities x and y is calculated in line 16. It should
be noted that to avoid division by zero, which happens in the case if there are no
common objects, the value of similarity, line 8, is set to zero. This situation may
happen when different entities are compared.

In sub-function Sim_Second_Layer, triples of the pair of entities a and b are
extracted, Table 2. Two sets of Oa and Ob are initialized each containing the objects
attached to entities a and b respectively via the property “rdf:type” (line 1). Note
that, only triples having the property “rdf:type” are obtained and the rest are dis-
carded. This is because, the description of an entity provided by the property “rdf:
type” is of a special importance in Linked Data. “rdf:type” is used to say that things
are of certain types. It is worth noting that a similar procedure can be repeated for
the property “rdf:subject”. Results from these two properties may be combined
depending on how the information is expressed in a data set. For simplicity, we
only consider the property “rdf:type” in the proposed similarity computation pro-
cess. Similarity between c and d as the permutations of elements in sets Oa and Ob

is calculated in lines 5–8. If c and d are different, their similarity is calculated using
(Wu and Palmer 1994). Otherwise, their similarity is calculated based on the depth
of the ontology that c or d belongs to. Finally, the maximum of similarities of all
pairs is returned to the main function Similarity_final(x,y) (line 11).

3.2 Similarity and Fuzziness

Similarity between two entities x and y is defined as the aggregated similarity
values computed for every subset li:

Simfinalðx, yÞ= aggrðSiml1ðx, yÞ, Siml2ðx, yÞ, . . . , Simlnðx, yÞÞ ð4Þ

where aggr(.) is an aggregation operator, described later. Similarity values related
to each subset li is obtained as the average of similarities for all properties in that
subset:

Simliðx, yÞ= avgðSiml1
p1ðx, yÞ, Siml1

p2ðx, yÞ, . . . , Siml1
pmðx, yÞÞ ð5Þ

The Sim(.) function calculates the similarity value between two entities as
defined below. Due to the nature of LD, entities along with their properties are
distributed over the Web in a form of connected RDF triples. Considering an entity
in LD, values of its properties may be a subject of another triple and so on. Those
triples provide further information that can be used in similarity evaluation of an
entity to another. For this reason, we include in similarity evaluation not only the
triples that are directly connected to the entity (Layer 1) but also the triples con-
nected one layer further away from the entity (triples describing the objects of that
entity), see Fig. 3.
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In (4), the aggr(.) operation can be any process that takes the weights of the
similarity values into consideration. The main idea is that similarity measures
calculated for each subset li contribute differently to the final similarity according to
their importance. Here, it is defined as the normalized weighted sum of the simi-
larity measures in which weights are the membership degrees obtained in (7). The
final similarity is calculated as:

Simfinalðx, yÞ=w1. Siml1ðx, yÞ+w2. Siml2ðx, yÞ+ . . . +wn. Simlnðx, yÞ ð6Þ

where,

wi =
μðSimliðx, yÞÞ

∑iμðSimliðx, yÞÞ ð7Þ

μð. Þ gives the membership degree for each Simliðx, yÞ and is obtained as follows:

μðSimliðx, yÞÞ= Simliðx, y� �ψ i ð8Þ

Here, we know that Simliðx, yÞ∈ ½0, 1�, therefore larger values of ψ i leads to
smaller values of membership degrees. ψ is a significance power and is calculated
as:

ψ i = i− f ðli, cÞ ð9Þ

where, i - index of the subset li representing importance of a property, and f ðli, cÞ
is a ratio of a number of properties of a subset li for a given entity to the total
number of properties over all li ‘s of that particular entity. To justify (9) it should be
noted that more important properties have smaller values of i and their μðSimliðx, yÞÞ
are larger. Also, f ðli, cÞ adjusts μðSimliðx, yÞÞ such that if the subset li constitutes a
substantial part of all properties, f ðli, cÞ is larger, i− f ðli, cÞ becomes smaller, and
μðSimliðx, yÞÞ increases. This shows higher influence of more representative
properties.

All the steps in our approach of calculating similarity between any two entities
are shown in Fig. 7. As it can be seen, triples in Layer 1 and Layer 2 of entities
under similarity assessment are extracted from datasets in LD. After detecting the
category of the entity by examining the related property, the corresponding Infobox
template from Wikipedia is obtained. The Infobox contains key properties of that
entity. We categorize them and rank the subsets of properties L= {l1, l2,…,ln}.
Similarity values for all subsets are calculated separately, and further they are
aggregated to compute the final similarity.
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4 Experiments

To evaluate the above approach, a set of entities is selected from a real-world
dataset DBpedia and their associated RDF triples were extracted. The entities are
instances of a concept “book” in DBpedia. As discussed previously, the Infobox
template representing the concept “book” is extracted. This helps to detect char-
acteristic properties and to group them. Next, a list of classes, {book, thing, work,
written work}, are obtained from this template representing domains of the Infobox
properties. Accordingly, we define four subsets of properties that group the prop-
erties within the same domain. Based on the location of each domain in the
DBpedia ontology, we assign importance ranking to the created subsets. Table 3
shows the formed subsets for the entity “book” for this experiment.

The last subset in Table 3, null, contains properties related to an entity “book”
that are labeled as non-important and are ignored in the similarity evaluation pro-
cess. It is worth noting that discarding the non-important properties may cause
losing some information. However, this will reduce the time and increase the speed
of the similarity evaluation process especially when large number of entities are
described with large numbers of properties. In addition, selection of these subsets
and assigning each property to a subset can be customized to users’ preferences or
an application context.

Fig. 7 Schematic of the similarity evaluation approach
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Eight instances of the entity “book” are selected: “The Godfather”, “The Sicilian”,
“Do Androids Dream of Electric Sheep?”, “Hyperion”, “Ubik”, “The Master and
Margarita”, “Fools Die” and “The Family Corleone”. Figure 8 illustrates entities and
their features, as well as relationships between. As it can be seen, entities may be
connected directly via common objects or through subsequent connections.

Figure 9 shows similarity results between the entities based on the approach
presented in Sect. 3.

According to the obtained values of similarity between any pair of books, the
books “The Sicilian”, “The Family Corleone” and “Fools die” are ranked as top
three matches. Table 4, compares this result to the Google Knowledge Graph and

Fig. 8 Relationship of the given entities in LD

Table 3 Different subsets of properties and their importance

Subset Properties

l1 Name, caption, title, country, language, series, subject, genre, publication date
l2 Author, translator, publisher, preceded by, followed by
l3 oclc11, lcc12

l4 Illustrator, cover artist, media type, number of pages, isbn, dewey13

null First publication date, last publication date, number of volumes, based on,
completion date, license, description, abstract, rights, editor, format, sales, etc

11Online Computer Library Center number
12Library of Congress Classification
13Dewey Decimal System Classification
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the suggestions provided by Amazon. For the Google Knowledge Graph, the list is
compiled based on searches performed by the users, and the position of books
reflects the frequency searches performed after “The Godfather” was searched for.
It should be noted, that this list contains three books from our experiment. The
swapped position of “The Family Corleone” and “Fools Die” is due to the fact that
our approach assigns high importance to an author. In the Google Graph the
importance of features does not exist. Also, the Amazon website suggests “The
Sicilian” and “The Family Corleone” to the buyers of “The Godfather”. This
emphasizes the high similarity of these books.

Table 5 compares the obtained similarity values of the proposed approach in the
case when similarity values are averaged and weighted. In the averaged case,
properties are considered to have equal importance, thus final similarity is averaged
over the similarities of all properties regardless of their dominance in defining an
entity. The weighted approach is the weighted sum of the similarities (6). The
influence of recognizing importance of properties and the application of fuzzy
membership functions can be easily observed.

Table 4 Results of searching for the book “The Godfather”

Our approach “The Sicilian”, “Fools Die”, “The Family Corleone”

Google Knowledge
Graph

“The Sicilian”, “The Godfather returns”, “The Family Corleone”,
“The Last Don”, “Fools Die”, “The Fortunate Pilgrim”, …

Amazon “The Sicilian”, “The Family Corleone”

Fig. 9 Similarity values between entities
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5 Conclusion

The work presented here addresses the problem of relevance assessment between
concepts within the environment of Linked Data (LD). In LD, data is represented in
a form of RDF triples. RDF triples that share the same subject are perceived as
features describing an entity identified by this subject. In other words, a given
concept is defined via a set of features, and these features can be used to compare
two entities. Such a simple idea is applied here to perform similarity assessment
between concepts.

It is intuitively obvious, that not all features of concepts are equally important.
Therefore, we propose a novel approach to calculate the semantic similarity by
taking into account the importance levels of properties defining concepts. A method
is presented to identify these properties and their degree of importance using the
information included in Wikipedia Infoboxes. Based on these importance levels,
fuzzy membership functions are developed. They are used to determine weights
associated with levels of properties. These weights are further used to aggregate
similarity measures assessed for each group of properties with the same importance.

The proposed approach is deployed to estimate similarities between several
books. The RDF-based definitions of these books have been obtained from
dBpedia. The results are very encouraging. They are comparable with the lists of
books identified by Google Knowledge Graph that is composed based on the users’
searches, and by Amazon suggestions that are determined based on the users’
purchases.
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The Genesis of Fuzzy Sets
and Systems – Aspects in Science
and Philosophy

Rudolf Seising

Abstract In 1965 Lotfi A. Zadeh founded the theory of Fuzzy Sets and Systems.

This chapter deals with developments in the history of philosophy, logic, and mathe-

matics during the time before and up to the beginning of fuzzy logic and it also gives

a view of its first application in control theory. Regarding the term “fuzzy” we note

that older concepts of “vagueness” and “haziness” had previously been discussed in

philosophy, logic, mathematics. This chapter delineates some specific paths through

the history of the use of these “loose concepts ”. Haziness and fuzziness were con-

cepts of interest in mathematics and philosophy during the second half of the 20th

century. The logico-philosophical history presented here covers the work of Russell,

Black, Hertz, Wittgenstein and others. The mathematical-technical history deals with

the theories founded by Menger and Zadeh. Menger’s concepts of probabilistic met-

rics, hazy sets (ensembles flous) and micro-geometry as well as Zadeh’s theory of

Fuzzy Sets paved the way for the establishment of Soft Computing methods. In the

first decade of Fuzzy Sets and Systems, nobody thought that this theory would be

successful in the field of applied sciences and technology. Zadeh expected that his

theory would have a role in the future of computer systems as well as Humanities

and Social Sciences. When Mamdani and Assilian picked up the idea of Fuzzy Algo-

rithms to establish a first Fuzzy Control system for a small steam engine, this was the

Kick-off for the “Fuzzy Boom” and Zadehs primary intention trailed away for years.

Then in the new millennium a new movement for Fuzzy Sets in Social Sciences and

Humanities was launched.

1 Introduction
In the summer of 2015 we will commemorate the 50th anniversary of the theory

of Fuzzy Sets and Systems (FSS). This is a fuzzy jubilee because the exact time

when Lotfi A. Zadeh (born 1921, Fig. 1 (a)) discovered the concept of fuzzy sets is
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unknown. The event is roughly assigned to the summer of 1965. This chapter

reviews the genesis of this new mathematical theory following my original (histor-

ical) research work that encompasses inspections of scientific articles, newspapers,

letters, and – most importantly – interviews with Lotfi A. Zadeh and other protago-

nists of the early years of the theory of FSS. For details see [1].

In Sects. 2 and 3 we briefly follow Zadeh’s development as an electrical engineer

in the 1950s and 1960s from concrete Network theory and Filter theory to abstract

System theory and then to the theory of Fuzzy sets and Systems as a generalized Sys-

tem theory. In Sect. 4, we present short views on historical paths of modern logic and

philosophy of mathematics in the 20th century, the logical analysis of vagueness, the

concepts of statistical metrics and ensembles flous and we consider Wittgenstein’s

late philosophy in relation to our subject. Section 5 gives a review of Zadehs works

on Fuzzy Sets in language and meaning that appeared before the “Fuzzy Boom”

with real-world application systems that is the subject of Sect. 6. Section 7 gives

an outlook on Zadeh’s later theories: Computing with words and with perceptions.

Finally the bibliogrpahy includes some comments to most of the references to this

book contribution.

2 From Electrical Engineering to System Theory

Fuzzy Sets and Systems can look back upon an eventful story in the scientific envi-

ronment of electrical engineering, including the initial system theory and computer

sciences known during this time, which were part of Zadeh’s training as a student in

Tehran, Iran. Following his immigration to the USA in 1942, Zadeh continued his

studies at the Massachusetts Institute of Technology (MIT) in Cambridge, Massa-

chusetts. He moved to New York in 1946, where he was awarded a Ph.D by Columbia
University in 1949. Since 1958, he has been a Professor of Electrical Engineering at

the University of California at Berkeley. When he established the theory of fuzzy sets

in the mid-1960s, he was already a well-known protagonist of the system theoretical

approach in electrical engineering, which was a new scientific trend from the 1950s

onward. Together with Charles A. Desoer (1926–2011, Fig. 1 (b)) he published in

1962 Linear System Theory: The State Space Approach [2], which became a standard

textbook. In 1963, together with Desoer’s former Ph.D. student Elijah Polak (born

1931, Fig. 1 (c)) he edited the volume System Theory [3]. In his own contribution

to this volume, which was entitled “The Concepts of System, Aggregate, and State

in System Theory” [4], Zadeh presented his state space approach. Two years later,

when he introduced fuzzy sets, he construed his new theory as a “general system

theory”.

In 1954 – Zadeh was then an instructor at Columbia University in New York - he

wrote for the Columbia Engineering Quarterly an article, named “System Theory”

[5] that begins as follows: “If you never heard of system theory, you need not feel

like an ignoramus. It is not one of the well-established branches of science. In fact, it

has not yet been officially recognized as a scientific discipline. It does not appear on
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programmes of meetings of scientific societies nor in indices to scientific publica-

tions. It does not have well-defined boundaries, nor does it have settled objectives.”

[5, p. 34]. Zadeh emphasized that all scientific disciplines are concerned with sys-

tems, but the new branch, named system theory, considers systems as mathematical

constructs rather than physical objects: “The distinguishing characteristic of system

theory is its abstractness.” [5, p. 16] In this and later papers Zadeh quoted the defini-

tion of a “system” from Webster’s Dictionary: A system is “an aggregation or assem-

blage of objects united by some form of interaction or interdependence.” (Fig. 2)

System theorists deal with abstract systems, “that is, systems whose elements

have no particular physical identity” [5, p. 16]; they deal with “black boxes”. Fig. 3

reproduces the illustration to this article – actually a “black box”!

Communication systems are a special type of systems that have been of interest

since the 1950s, when information and communication theory emerged as success-

ful scientific and technological disciplines. Zadeh was deeply involved in the devel-

opment of this new communication theory and its techniques when he delivered a

lecture on “Some Basic Problems in Communication of Information” at the meeting

of the Section of Mathematics and Engineering of the New York Academy of Sci-
ences in March 1952 [6]. He represented signals as ordered pairs (x(t), y(t)) of points

in a signal space Σ, which is imbedded in a function space with a delta-function

basis. This analogy between projection in a function space and filtration by an ideal

filter led Zadeh to postulate a function symbolism of filters in the early 1950s [7].

Thus, N = N1 +N2 represents a filter consisting of two filters connected by addition,

N = N1N2 represents their tandem (sequential) combination and N = N1 ||N2 the

separation process (Fig. 4).

Fig. 1 Lotfi A. Zadeh,

Charles A. Desoer, and

Elijah Polak: colleagues at

the University of California,

Berkeley

Fig. 2 Block diagram of

interconnected objects,

[5, p. 17]

Later (in [8]), Zadeh discussed the concept of optimal filters as opposed to ideal

filters following Norbert Wiener’s work. Ideal filters are defined as filters that achieve
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a perfect separation of signal and noise. However, in reality there are no ideal filters,

e.g., an ideal low-pass filter should retain all frequency components until a certain

threshold until which all components should be fully suppressed. In practice, we can-

not have such a step-shaped separation. Zadeh knew that we get a smooth transition

from 1 to 0 transmission coefficient as the frequency decreases. These transitions

are similar to the well-known membership functions of fuzzy sets. However, in the

1950s the time was not ripe for this new mathematical theory. Zadeh defined optimal

filters as those that give the “best approximation” of a signal, and he noted that “best

approximations” depend on reasonable criteria. At this time he formulated these cri-

teria in statistical terms.

Fig. 3 Illustration from

Zadeh’s article [5]

Fig. 4 Functional

symbolism of ideal filters,

[7, p. 225]

But starting in the next decade he wrote the landmark article “From Circuit

Theory to System” for the anniversary edition of the Proceedings of the IRE that

appeared in May 1962 to mark the 50th year of the Institute of Radio Engineers
(IRE) [9]. Here, he could outline problems and applications of system theory and

its relations to network theory, control theory, and information theory. Furthermore,

he pointed out “that the same abstract ‘systems’ notions are operating in various

guises in many unrelated fields of science is a relatively recent development. It has

been brought about, largely within the past two decades, by the great progress in our

understanding of the behaviour of both inanimate and animate systems—progress
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which resulted on the one hand from a vast expansion in the scientific and techno-

logical activities directed toward the development of highly complex systems for

such purposes as automatic control, pattern recognition, data-processing, commu-

nication, and machine computation, and, on the other hand, by attempts at quanti-

tative analyses of the extremely complex animate and man-machine systems which

are encountered in biology, neurophysiology, econometrics, operations research and

other fields” [9, p. 856f].

In this article Zadeh used for the very first time the word “fuzzy” and he wrote it

down to characterize his vision of new mathematics:

In fact, there is a fairly wide gap between what might be regarded as ‘animate’ system theo-

rists and ‘inanimate’ system theorists at the present time, and it is not at all certain that this

gap will be narrowed, much less closed, in the near future. There are some who feel that this

gap reflects the fundamental inadequacy of the conventional mathematics – the mathemat-

ics of precisely-defined points, functions, sets, probability measures, etc. – for coping with

the analysis of biological systems, and that to deal effectively with such systems, which are

generally orders of magnitude more complex than man-made systems, we need a radically

different kind of mathematics, the mathematics of fuzzy or cloudy quantities which are not

describable in terms of probability distributions. [9, p. 857f].

However, when Zadeh published these notions, he did not know what this math-

ematics of fuzzy quantities would look like.

Another method to deal with imperfect or noisy signals in communication systems

was introduced in the 1950s by Richard E. Bellman (1920–1984, Fig. 5 (a)), a young

mathematician working at the RAND Corporation, United States Air Force Project

in Santa Monica, California. Bellman was the founder of the method of Dynamic
Programming [10], and tried to apply his “principle of optimality” in communication

theory.

In the late 1950s, Bellman met Zadeh in New York, where Zadeh worked at

Columbia University. Their friendship lasted until Bellman’s death in 1984. Even

though they considered diverse mathematical aspects of electrical engineering, sys-

tem theory and, later, computer science, they met each other very often and discussed

several aspects of their scientific work. Bellman was the first and most important

critic of Zadeh’s new theory of fuzzy sets in 1965.

Fig. 5 (a): Richard E.

Bellman and (b): Robert E.

Kalaba, (c): Lotfi A. Zadeh
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3 New View on System Theory: Fuzzy Sets and Systems

Zadeh and Bellman planned to work together at RAND in Santa Monica, California,

in the summer of 1964. Prior to the summer of 1964, Zadeh gave a talk on pattern

recognition at the Wright-Patterson Air Force Base, Dayton, Ohio. It may have been

on this occasion that he started thinking about the use of grades of membership for

pattern classification and that he conceived the first example of fuzzy mathematics,

which he wrote in one of his first papers on the subject: “For example, suppose that

we are concerned with devising a test for differentiating between handwritten letters

O and D. One approach to this problem would be to give a set of handwritten letters

and indicate their grades of membership in the fuzzy sets O and D. On performing

abstraction on these samples, one obtains the estimates �̃�O and �̃�D of 𝜇O and 𝜇D,

respectively. Then given a letter x which is not one of the given samples, one can

calculate its grades of membership in O and D; and, if O and D have no overlap,

classify x in O or D.” [11, p. 30]

In a few days he extended this concept to the theory of fuzzy sets and a few weeks

later, he discussed this preliminary version of the theory of fuzzy sets with Bellman.

Then he wrote his manuscript on “Fuzzy Sets” [12] and submitted it to the journal

Information and Control in November 1964. “Fuzzy Sets” appeared in June 1965 and

was the first article on fuzzy sets in a scientific journal. However, Lotfi Zadeh also

wrote other papers at the time. According to common practice at the department

of electrical engineering in Berkeley, the article “Fuzzy Sets” was preprinted as a

report of the Electronics Research Laboratory in November 1964 [13]. As a result

of his talk in Dayton, Ohio, he wrote a paper which he sent to Bellman who was the

editor of the Journal of Mathematical Analysis and Applications. Bellman agreed to

publish the paper in said journal but the publication appeared late, in 1966, under

the title “Abstraction and Pattern Classification” [14]. The authors of the article were

Bellman, his associate Robert E. Kalaba (1926–2004, Fig. 5 (b)) and Zadeh. The text

and the authors’ names are identical to those of the RAND memorandum RM-4307-

PR, which appeared as early as October 1964. This memo was written by Zadeh

alone. Here he defined fuzzy sets for the first time in a scientific paper, establishing

a general framework for the treatment of pattern recognition problems [15].

In April 1965 the Symposium on System Theory was held at Polytechnic Institute
in Brooklyn. At this meeting Zadeh presented “A New View on System Theory”:

a view that deals with the concepts of fuzzy sets, “which provide a way of treating

fuzziness in a quantitative manner.” In the subsequent publication of the proceedings

of this symposium we find a shortened manuscript version of the talk. His contribu-

tion was entitled “Fuzzy Sets and Systems” in this publication: [11, p. 29]. In this

lecture and in the paper, Zadeh first defined “fuzzy systems” as follows:

A system S is a fuzzy system if (input) u(t), output y(t), or state s(t) of S or any combination

of them ranges over fuzzy sets, [11, p. 33].

In “Fuzzy Sets and Systems” Zadeh explained that “these concepts relate to sit-

uations in which the source of imprecision is not a random variable or a stochastic
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process but rather a class or classes which do not possess sharply defined bound-

aries.” [11, p. 29] His “simple” examples in this brief summary of his new “way of

dealing with classes in which there may be intermediate grades of membership” were

“the ‘class’ of real numbers which are much larger than, say, 10, and “the ‘class’ of

‘bald man’, and also the ‘class’ of adaptive systems.” [11, p. 29] For further details

on the roots of fuzzy systems in system theory, the reader is referred to the author’s

book [1].

In “Fuzzy Sets” [12], Zadeh introduced the new mathematical entities “fuzzy

sets”: “Such classes are not classes or sets in the usual sense of these terms, since

they do not dichotomize all objects into those that belong to the class and those that

do not.” He introduced “the concept of a fuzzy set, that is a class in which there may

be a continuous infinity of grades of membership, with the grade of membership of

an object x in a fuzzy set A represented by a number fA(x) in the interval [0, 1].”1

Zadeh maintained that these new concepts provide a “convenient way of defining

abstraction — a process which plays a basic role in human thinking and communi-

cation.” [11, p. 29] The question was how to generalize various concepts, union of

sets, intersection of sets, and so forth. Zadeh defined equality, containment, com-
plementation, intersection and union relating to fuzzy sets A, B in any universe of

discourse X as follows (for all x ∈ X; see Fig. 6):

∙ A = B if and only if fA(x) = fB(x),
∙ A ⊆ B if and only if fA(x) ≤ fB(x),
∙ ¬A is the complement of A if and only if f¬A(x) = 1 − fA(x),
∙ A = ∪B if and only if fA∩B(x) = max(fA(x), fB(x)),
∙ A = ∩B if and only if fA∩B(x) = min(fA(x), fB(x)),

For his interpretation of fuzzy unions and intersections he wrote a separate para-

graph, which shows a very important analogy to sieves, because Zadeh wrote:

“Specifically, let fi(x), i = 1,… , n, denote the value of the membership function

of Ai at x. Associate with fi(x) a sieve Si(x) whose meshes are of size fi(x). Then,

Fig. 6 Illustration of the union as maximum of membership functions fA and fB (1, 2) and the

intersection as minimum of membership functions fA and fB (3, 4), [12]

1
Later Zadeh and also the whole “fuzzy community” made use of the greek letter 𝜇 to mark the

membership function in Fuzzy Set Theory.
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fi(x) ∨ fj(x) and fi(x) ∧ fj(x) correspond, respectively, to parallel and series combina-

tions of Si(x) and Sj(x) ,” as shown in Fig. 7.

More generally, a well-formed expression involving Ai,… ,An ∪ and ∩ corre-

sponds to a network of sieves Si(x),… , Sn(x) which can be found by the conventional

synthesis techniques for switching circuits. As a very simple example,

C =
[
(A1 ∪ A2) ∩ A3

]
∪ A4 (1)

corresponds to the network shown in Fig. 8.” [12, p. 344]

If the reader takes into account the fact that the term “sieve” denotes a filter, he

will comprehend the analogy of fuzzy sets and electrical filters as outlined in the first

section.

In the decade that followed the first publications on Fuzzy Sets and Systems [11–

15] Zadeh expected that they would have a role in the future of computer systems

as well as humanities and social sciences. At that time nobody thought that this

theory would be successful in the field of applied sciences and technology. Quite

the contrary, he remarked that he did not expect the incorporation of FSS into the

fields of sciences and engineering: “What we still lack, and lack rather acutely, are

methods for dealing with systems which are too complex or too ill-defined to admit

of precise analysis. Such systems pervade life sciences, social sciences, philosophy,

economics, psychology and many other ‘soft’ fields.” [16]

After “Fuzzy Sets” had appeared in print, Zadeh received many requests for off-

prints. Philosopher Max Black (1909–1988) who had published a paper entitled

Fig. 7 Parallel and serial

combination of sieves

illustrating the fuzzy union,

∪, (maximum) and

intersection, ∩, (minimum),

[12]

Fig. 8 A network of sieves

simulating{(
f1(x) ∨ f2(x)

)
∧ f3(x)

}
∨f4(x) , [12]
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“Vagueness – An Exercise in Logical Analysis” [17] back in 1937 anticipated a vague

idea from Zadeh’s theory , for he wrote:

The vagueness of the word chair is typical of all terms whose application involves the use

of the senses. In all such cases, ‘borderline case’ and ‘doubtful objects’ are easily found to

which we are unable to say either that the class name does or does not apply. [17, p. 434]

He now told Zadeh in a letter:

You were good enough to send me, some time ago, some of your recent papers on topics

connected with ‘Fuzzy Sets’. If I have not written before, the reason has not been lack of

interests, but an inescapable press of other duties. Now that I have had a chance, at least, to

study your work, I want to express my admiration and interest. I believe that your ingenious

construction promises to provide intellectual tools of great value. In case you have not come

across it, I might draw your attention to an early article of mine ... [18]

He referred to his article [17], that was also already reprinted in his book, Lan-
guage and Philosophy [19] and also to his “more recent article on similar topics

...”: “Reasoning with Loose Concepts” [20]. To understand the history of the log-

ical analysis of vagueness let’s go back to the history of modern science and its

philosophy!

4 Philosophy of Science, Vagueness and Fuzzy Sets

Beginning as early as the 17th century, a primary quality factor in scientific work has

been a maximal level of exactness. Galileo Galilei (1564–1642) and René Descartes

(1596–1650) started the process of giving modern science its preciseness through

the use of the tools of logic and mathematics. The language of mathematics has

served as a basis for the definition of theorems, axioms, and proofs. The works of

Isaac Newton (1643–1727), Gottfried Wilhelm Leibniz (1646–1769, Pierre-Simon

Laplace (1749–1827), and many others led to the ascendancy of modern science, fos-

tering the impression that scientists were able to represent – completely and exactly

– all the facts and processes that people observe in the world. But this optimism

has gradually begun to seem somewhat nave in view of the discrepancies between

the exactness of theories and what scientists observe in the real world. From the

empiricist point of view the source of our knowledge is sense experience. John Locke

(1632–1704) used the analogy of the mind of a newborn baby as a “tabula rasa” that

would be written by the sensual perceptions the child has later. In Locke’s opin-

ion these perceptions provide information about the physical world. Locke’s view is

called “material empiricism” whereas so-called idealistic empiricism was the posi-

tion of George Berkeley (1685–1753) and David Hume (1711–1776): the material

world does not exist; only perceptions are real. Immanuel Kant (1724–1804, Fig. 9

(a)) achieved a synthesis of rationalism and empiricism in his magnum opus Cri-
tique of Pure Reason, published in 1781 [21]). Kant argued that human experience

of a world is only possible if the mind provides a systematic structuring of its repre-

sentations that is logically prior to the mental representations that were analyzed by
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empiricists and rationalists. With these philosophical views alone, we would not be

able to explain the nature of our experience because these views only considered the

results of the interaction between our mind and the world, but not the contribution

made by the mind. Kant concluded that it must be the minds structuring that makes

experience possible.

4.1 Heinrich Hertz’ Philosophy of Science

In his book The Principles of Mechanics Presented in a New Form the German physi-

cist Heinrich Hertz (1857–1894, Fig. 9 (b)) had established his theory of knowledge:

he viewed physical theories as “pictures” of reality. He began his introduction with

the following words:

The most direct, and in a sense the most important, problem which our conscious knowledge

of nature should enable us to solve is the anticipation of future events, so that we may arrange

our present affairs in accordance with such anticipation. As a basis for the solution of this

problem we always make use of our knowledge of events which have already occurred,

obtained by chance observation or by pre-arranged experiment. In endeavoring thus to draw

inferences as to the future from the past, we always adopt the following process. We form

for ourselves images or symbols of external objects; and the form which we give them is

such that the necessary consequents of the images in thought are always the images of the

necessary consequents in nature of the things pictured. [...]

The images which we here speak of are our conceptions of things. With the things them-

selves they are in conformity in one important respect, namely, in satisfying the above-

mentioned requirement. For our purpose it is not necessary that they should be in conformity

with the things in any other respect whatever. As a matter of fact, we do not know, nor have

we any means of knowing, whether our conceptions of things are in conformity with them

in any other than this one fundamental respect. [22, p. 1]

We know from experience the conformity between nature and our mind that is

necessary for that: (logically) inadmissible images are “all images which implic-

itly contradict the laws of our thought.” Although images are logically admissible,

they can be incorrect “if their essential relations contradict the relations of external

things.”

For one external object there can exist more than one correct image, differing in

respect to appropriateness:

Of two images of the same object that is the more appropriate which pictures more of the

essential relations of the object, the one which we may call the more distinct. Of two images

of equal distinctness the more appropriate is the one which contains, in addition to the essen-

tial characteristics, the smaller number of superfluous or empty relations, the simpler of the

two. [22, p. 2]

Hertz’s epistemology and his view of scientific theories as mind-created “images”,

based on the scientist’s experience, was contrary to the dominant view at his time.

Most scientists during the years around the turn of the 20th century regarded empir-

ical theories as objective, and in particular, most of them believed in the existence of
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one unique theory. On the other hand, Hertz knew from the experience he had gath-

ered in the genesis of electrodynamics that various theories with different systems

of concepts are possible, and that one theory may eventually become accepted. In

his “Language of images”, he wrote:

What enters into the images for the sake of correctness is contained in the results of expe-

rience, from which the images are built up. What enters into the images, in order that they

may be permissible, is given by the nature of our mind. To the question whether an image is

permissible or not, we can without ambiguity answer yes or no; and our decision will hold

good for all time. And equally without ambiguity we can decide whether an image is correct

or not; but only according to the state of our present experience, and permitting an appeal

to later and riper experience. But we cannot decide without ambiguity whether an image

is appropriate or not; as to this differences of opinion may arise. One image may be more

suitable for one purpose, another for another; only by gradually testing many images can we

finally succeed in obtaining the most appropriate. [22, p. 3]

Hertz spoke about “images” or “symbols” of external objects, because they are

replacements for concepts in physical theories (e.g., mechanics, electricity and mag-

netism, and electrodynamics) that are not accessible to our sensory perceptions.

4.2 Wittgenstein’s Tractatus logico-philosophicus

“A picture is a model of reality.”, “We picture facts to ourselves.”, “A picture is a

fact.” These are three consecutive propositions in Ludwig Wittgenstein’s Tractatus
logico-philosophicus [23, prop. 2.1, 2.12, 2.141]. They demonstrate the influence

of Heinrich Hertz’s Principles of Mechanics on his thinking – a debt that Wittgen-

stein himself acknowledged when he referred to Hertz in his diary [24, p. 476] and

explicitly in another part of the Tractatus: “In the proposition there must be exactly

as many things distinguishable as there are in the state of affairs which it represents.

They must both possess the same logical (mathematical) multiplicity (cf. Hertz’s

Mechanics, on Dynamic Models).” [23, prop. 4.04]

The first two propositions in Wittgenstein’s Tractatus are:

1. The world is everything that is the case.

2. The world is the totality of facts, not of things. [23]

Fig. 9 (a): Immanuel Kant

(b): Heinrich Hertz and

(c): Ludwig Wittgenstein
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Then, in the Tractatus, Wittgenstein (1889–1951, Fig. 9 (c)) wrote that the world

consists of facts. Facts may or may not contain smaller parts. If a fact has no smaller

parts, he calls it an “atomic fact.” If we know all atomic facts, we can describe the

world completely by corresponding “atomic propositions.” – Propositions 3 and 4 in

the Tractatus are:

3. The logical picture of the facts is the thought.

4. The thought is the significant pro position. [23]

“The totality of propositions is language.” [23, prop. 4.001] Wittgenstein argued

that sentences in colloquial language are very complex. He conceded that there is

a “silent adjustment to understand colloquial language” but it is “enormously com-

plicated.” Therefore it is “humanly impossible to gather immediately the logic of

language.” [23, prop. 4.002] This is the task of philosophy: “All philosophy is ‘Cri-

tique of language’.” [23, prop. 4.0031] Wittgenstein knew that common linguistic

usage is vague, but at the time when he wrote the Tractatus, he tried to solve this

problem by constructing a precise language – an exact logical language that gives a

unique picture of the real world. Wittgenstein thought that the Tractatus solved all

philosophical problems.

But the Tractatus spared many problems for the future! One of these philosophical

problems concerns the vagueness in our language and also two founders of modern

logic, Gottlob Frege (1848–1925) and Bertrand Russell (1872–1970), focused atten-

tion on and analyzed this problem. A separate and isolated development took place

at the Lvov-Warsaw School of logicians; one of them was Jan Łukasiewicz (1878–

1956) who introduced in 1920 a three-valued logic and later other multi-valued log-

ics. Simultaneously the American mathematician, Emil L. Post (1897–1954), also

introduced a logic of additional truth degrees with n ≥ 2, where n are the truth

values.

The important contributions of these Polish mathematicians and logicians to mod-

ern logic were recognized when Alfred Tarski (1902–1983) followed an invitation

of the Viennese mathematician Karl Menger to give a lecture in Vienna. All these

thinkers had been influenced by Frege’s studies. This was especially true of Tadeusz

J. S. Kortabinśki (1866–1938), who argued that a concept for a property is vague

(Polish: chwiejne) if the property may be the case by grades [25] and Kazimierz

Ajdukiewicz (1890–1963), who stated the definition that “a term is vague if and

only if its use in a decidable context …will make the context undecidable in virtue of

those [language] rules” [26]. The Polish characterization of “vagueness” was there-

fore the existence of fluid boundaries.

4.3 Vagueness and Logic

The German philosopher and mathematician Gottlob Frege confronted the problem

of vagueness when formalizing the mathematical principle of complete induction:

he saw that some predicates are not inductive, viz. they have been defined for all
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natural numbers, but they result in false conclusions, e.g. the predicate “heap” can-

not be evaluated for all natural numbers [27]. When he revised the basics of his

Begriffsschrift for a lecture to the Society of Medicine and Science in Jena, Germany,

of the beginning year 1891, Frege reinterpreted concept functions and subsequently

he introduced these functions of concepts everywhere. He stated: If “x+1” is mean-

ingless for all arguments x, then the function x + 1 = 10 has no value and no truth

value either. Thus, the concept “that which when increased by 1 yields 10” would

have no sharp boundaries. Accordingly, for functions the demand on sharp bound-

aries entails that they must have a value for every argument [28]. This is a mathe-

matical verbalization of what is called the classical sorites paradox that can be traced

back to the old Greek word 𝜎o𝜌𝜔𝜍 (for “heap”) used by Eubulid of Alexandria (4th

century BC). In his Grundgesetze der Arithmetik (Foundations of Arithmetic) that

appeared in the years 1893–1903, Frege called for concepts with sharp boundaries,

because otherwise we could break logical rules and, moreover, the conclusions we

draw could be false [29]. Frege’s specification of vagueness as a particular phenom-

enon influenced other scholars, notably his British contemporary and counterpart

the philosopher and mathematician Bertrand Russell (1872–1970, Fig. 9 (b)), who

published his article on “Vagueness” in 1923 [30].

Russell quoted the sorites—in fact, he did not use mathematical language in this

article, but, for example, discussed colours and “bald men” (Greek: 𝜑𝛼𝜆𝛼𝜅𝜌o𝜍,

falakros, English: fallacy, false conclusion):

Let us consider the various ways in which common words are vague, and let us begin with

such a word as red. It is perfectly obvious, since colours form a continuum, that there are

shades of color concerning which we shall be in doubt whether to call them red or not, not

because we are ignorant of the meaning of the word red, but because it is a word the extent

of whose application is essentially doubtful. This, of course, is the answer to the old puzzle

about the man who went bald. It is supposed that at first he was not bald, that he lost his

hairs one-by-one, and that in the end he was bald; therefore, it is argued, there must have

been one hair the loss of which converted him into a bald man. This, of course, is absurd.

Baldness is a vague conception; some men are certainly bald, some are certainly not bald,

while between them there are men of whom it is not true to say they must either be bald or

not bald. [30, p. 85].

Russell also argued that a proper name – and here we can take as an example the

name “Lotfi Zadeh” – cannot be considered to be an unambiguous symbol even if

we believe that there is only one person with this name. Lotfi Zadeh “was born, and

being born is a gradual process. It would seem natural to suppose that the name was

not attributable before birth; if so, there was doubt, while birth was taking place,

whether the name was attributable or not. If it be said that the name was attributable

before birth, the ambiguity is even more obvious, since no one can decide how long

before birth the name become attributable.” [30, p. 86]

Russell reasoned “that all words are attributable without doubt over a certain area,

but become questionable within a penumbra, outside which they are again certainly

not attributable.” [30, p. 86f] Then he generalized that words of pure logic also have

no precise meanings, e.g. in classical logic the composed proposition “p or q” is

false only when p and q are false and true elsewhere. He went on to claim that the
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truth values “ ‘true’ and ‘false’ can only have a precise meaning when the symbols

employed – words, perceptions, images … – are themselves precise”. As we have

seen above, this is not possible in practice, so he concludes “that every proposition

that can be framed in practice has a certain degree of vagueness; that is to say, there

is not one definite fact necessary and sufficient for its truth, but certain region of

possible facts, any one of which would make it true. And this region is itself ill-

defined: we cannot assign to it a definite boundary.” Russell emphasized that there is

a difference between what we can imagine in theory and what we can observe with

our senses in reality: “All traditional logic habitually assumes that precise symbols

are being employed. It is therefore not applicable to this terrestrial life, but only to

an imagined celestial existence.” [30, p. 88f]. He proposed the following definition

of accurate representations:

One system of terms related in various ways is an accurate representation of another sys-

tem of terms related in various other ways if there is a oneone relation of the terms of the

one to the terms of the other, and likewise a oneone relation of the relations of the one

to the relations of the other, such that, when two or more terms in the one system have a

relation belonging to that system, the corresponding terms of the other system have the cor-

responding relation belonging to the other system.” And in contrast to this, he stated that

“a representation is vague when the relation of the representing system to the represented

system is not oneone, but onemany. [30, p. 89]

He concluded that “Vagueness, clearly, is a matter of degree, depending upon the

extent of the possible differences between different systems represented by the same

representation. Accuracy, on the contrary, is an ideal limit.” [30, p. 90].

The Cambridge philosopher and mathematician Max Black (1909–1988, Fig. 9

(b)) responded to Russell’s article in his already mentioned article of 1937 [17]. He

differentiated vagueness from ambiguity, generality, and indeterminacy. He empha-

sized

that the most highly developed and useful scientific theories are ostensibly expressed in

terms of objects never encountered in experience. The line traced by a draughtsman, no

matter how accurate, is seen beneath the microscope as a kind of corrugated trench, far

removed from the ideal line of pure geometry. And the ‘point-planet’ of astronomy, the

‘perfect gas’ of thermodynamics, and the ‘pure species’ of genetics are equally remote from

exact realization.” [17, p. 427]

Black proposed a new method to symbolize vagueness: “a quantitative differen-

tiation, admitting of degrees, and correlated with the indeterminacy in the divisions

Fig. 10 (a): Bertrand

Russell, (b): Max Black

and (c): Karl Menger
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made by a group of observers.” [17, p. 441] He assumed that the vagueness of a

word involves variations in its application by different users of a language and that

these variations fulfill systematic and statistical rules when one symbol has to be

discriminated from another. He referred to situations in which a user of the language

makes a decision whether to apply L or ¬L to an object x. Black exemplified: “Such

a situation arises, for instance, when an engine driver on a foggy night is trying to

decide whether the light in the signal box is really a red or a green light” [17, p. 442]

He defined this discrimination of a symbol x with respect to a symbol L by DxL.

(We obtain DxL = Dx¬L by definition.) Most speakers of a language and the same

observer in most situations will determine that either L or ¬L is used. In both cases,

among competent observers there is a certain unanimity, a preponderance of correct

decisions. For all DxL with the same x but not necessarily the same observer, m is

the number of L uses and n the number of ¬L uses. On this basis, Black stated the

following definition (see Fig. 11):

We define the consistency of application of L to x as the limit to which the ratio
m
n

tends

when the number of DxL and the number of observers increase indefinitely. […] Since the

consistency of the application, C, is clearly a function of both L and x, it can be written in

the form C(L, x).” [17, p. 442]

In 1963, Black labeled concepts without precise boundaries as “loose concepts”

rather than “vague” ones, in order to avoid misleading and pejorative implications

[20]. Once again he expressly rejected Russell’s assertion that traditional logic is

“not applicable” as a method of conclusion for vague concepts: “Now, if all empirical

Fig. 11 Consistency of application of a typical vague symbol, [17, p. 443]
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concepts are loose, as I think they are, the policy becomes one of abstention from

any reasoning from empirical premises. If this is a cure, it is one that kills the patient.

If it is always wrong to reason with loose concepts, it will, of course, be wrong to

derive any conclusion, paradoxical or not, from premises in which such concepts are

used. A policy of prohibiting reasoning with loose concepts would destroy ordinary

language – and, for that matter, any improvement upon ordinary language that we

can imagine.” [20, p. 7]

4.4 Menger’s Ensembles Flous

In Vienna in the 1920s and 1930s, Karl Menger (1902–1985, Fig 10 (c)) evolved

into a specialist in topology and geometry, particularly with regard to the theories

of curves, dimensions, and general metrics. After he immigrated to the USA, he

continued his work on these subjects. In 1942, with the intention of generalizing the

theory of metric spaces more in the direction of probabilistic concepts, he introduced

the term “statistical metric”:

A statistical metric is “a set S such that with each two elements (‘points’) p and

q of S, a probability function 𝛱(x; p, q) (The probability that the distance between p
and q is x) is associated satisfying the following conditions:

1. 𝛱(0; p, p) = 1 (The probability is 1 that the distance between p and q is 0.)

2. If p ≠ q, then 𝛱(0; p, p) < 1.

3. 𝛱(x; p, q) = 𝛱(x; q, p).
4. T(𝛱(x; p, q),𝛱(y; q, r) ≤ 𝛱(x + y; p, r).

where T(𝛼, 𝛽) is a function defined for 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛽 ≤ 1, such that

(a) 0 ≤ T(𝛼, 𝛽) ≤ 1.

(b) T is non-decreasing in either variable.

(c) T(𝛼, 𝛽) = T(𝛽, 𝛼).
(d) T(1, 1) = 1.

(e) If 𝛼 > 0 then T(𝛼, 1) > 0. [31, p. 535f]

Condition 4., the “triangular inequality” of the statistical metric S implies the

following inequality for all points q and all numbers x between 0 and z:

𝛱(z; p, r) ≥ Max;T(𝛱(x; p, q),𝛱(z − x; q, r)) (2)

Here, Menger introduced the term triangular norm (t-norm) to indicate the func-

tion T .

In 1951 Menger introduced a new notation 𝛥ab for the non-decreasing cumula-

tive distribution function, associated with every ordered pair (a, b) of elements of a

set S and he wrote: “The value 𝛥ab(x) may be interpreted as the probability that the

distance from a to b be < x.” [32, p. 226] Much more interesting is the following

text passage: “We call a and b certainly-indistinguishable if 𝛥ab = 1 for each x > 0.
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Uniting all elements which are certainly indistinguishable from each other into iden-

tity sets, we decompose the space into disjoint sets A,B,…. We may define for any

a belonging to A and b belonging to B. (The number is independent of the choice of

a and b.) The identity sets form a perfect analog of an ordinary metric space since

they satisfy the condition
2
:

If A ≠ B, then there exists a positive x with 𝛥ab(x) < 1 .”

In the same year Menger addressed the difference between the mathematical con-

tinuum and the physical continuum. Regarding A, B, and C as elements of a con-

tinuum, he referred to a claim of the French mathematician and philosopher Henri

Poincaré, “that only in the mathematical continuum do the equalities A = B and

B = C imply the equality A = C. In the observable physical continuum, ‘equal’

means ‘indistinguishable’, and A = B and B = C by no means imply A = C. ‘The

raw result of experience may be expressed by the relation A = B, B = C, A < C
which may be regarded as the formula for the physical continuum.’ According to

Poincaré, physical equality is a non-transitive relation.” [33, p. 178]

Menger suggested a realistic description of the equality of elements in the physical

continuum by associating with each pair (A,B) of these elements the probability that

A and B will be found to be indistinguishable. He argued:

For it is only very likely that A and B are equal, and very likely that B and C are equal – why

should it not be less likely that A and C are equal? In fact, why should the equality of A and

C not be less likely than the inequality of A and C?” [33, p. 178]

To solve “Poincaré’s paradox” Menger used his concept of probabilistic relations

and geometry: For the probability E(a, b) that a and b would be equal he postulated:

∙ E(a, a) = 1, for every a;

∙ E(a, a) = E(b, a), for every a and b;

∙ E(a, b) ⋅ E(b, c) ≤ E(a, c) for every a, b, c.

If E(a, a) = 1, then he called a and b certainly equal. (In this case we obtain the

ordinary equality relation.) “All the elements which are certainly equal to a may be

united to an ‘equality set’, A. Any two such sets are disjoint unless they are identical.”

[33, p. 179]

In addition to studies of well-defined sets, he called for a theory to be developed

in which the relationship between elements and sets is replaced by the probability

that an element belongs to a set; in contrast to ordinary sets, he called these entities

“ensembles flous” [34, p. 226]. Later, Menger used the English term “hazy set” and

to elucidate the contrast he referred to conventional sets as “rigid sets.” [35].

Menger never envisaged a mathematical theory of loose concepts that differs from

probability theory. At a symposium of the American Association for the Advance-
ment of Science organized in 1966 to commemorate the 50th anniversary of Ernst

2
In the original paper Menger wrote “>”. The present author thanks Erich Peter Klement for this

correction.
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Mach’s death, he spoke about “Positivistic Geometry”. When he compared his

“micro geometry” with the theory of fuzzy sets – he wrote: “In a slightly different

terminology, this idea was recently expressed by Bellman, Kalaba and Zadeh under

the name fuzzy set.” [35, p. 232] – He did not see that the “slight difference” between

“degrees” (fuzziness) and “probabilities” is a difference not just in terminology but

in the meaning of the concepts.

4.5 Wittgenstein’s Family Resemblances

In his later years (after 1947), Wittgenstein turned away from the epistemological

system of the Tractatus with its ideal mapping between the objects of reality and a

logically precise language. This philosophy of his later years is completely different

from that of the Tractatus years. It seems as though the two philosophical systems

were created by different men because this new view said: If we are not able to find

such an exact logical language, then we have to accept the fact that there is vague

linguistic usage in all languages. Then the images, models, and theories that we build

with the words and propositions of our languages to communicate with them are and

will also be vague.

His second main work, the Philosophical Investigations epitomize Wittgenstein’s

late philosophy: “Instead of producing something common to all that we call lan-

guage, I am saying that these phenomena have no one thing in common which makes

us use the same word for all, but that they are related to one another in many different

ways. And it is because of this relationship, or these relationships, that we call them

all ‘language’. I will try to explain this.” [36, §65] We find the following explanation

in the next paragraph of this book, in keeping with the concept of a game:

Consider for example the proceedings that we call “games”. I mean board-games, card-

games, ball-games, Olympic games, and so on. What is common to them all? Don’t say:

“There must be something common, or they would not be called ‘games’ ” but look and see

whether there is anything common to all. For if you look at them you will not see something

that is common to all, but similarities, relationships, and a whole series of them at that.

To repeat: dont think, but look! Look for example at board-games, with their multifarious

relationships.

Now pass to card-games; here you find many correspondences with the first group, but

many common features drop out, and others appear. When we pass next to ball-games, much

that is common is retained, but much is lost. Are they all “amusing”? Compare chess with

noughts and crosses. Or is there always winning and losing, or competition between players?

Think of patience. In ball games there is winning and losing; but when a child throws his

ball at the wall and catches it again, this feature has disappeared. Look at the parts played

by skill and luck; and at the difference between skill in chess and skill in tennis. Think now

of games like ring-a-ring-a-roses; here is the element of amusement, but how many other

characteristic features have disappeared! sometimes similarities of detail. And we can go

through the many, many other groups of games in the same way; can see how similarities

crop up and disappear. And the result of this examination is: we see a complicated network

of similarities overlapping and crisscrossing: sometimes overall similarities. [36, §66]
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In the next paragraph Wittgenstein creates a new concept to describe this new

epistemological system:

I can think of no better expression to characterize these similarities than “family resem-

blances”; for the various resemblances between members of a family: build, features, colour

of eyes, gait, temperament, etc. etc. overlap and crisscross in the same way. And I shall say:

“games” form a family. [36, §67]

Concepts and their families have no sharp boundaries, as he also wrote in [36, §71]:

One might say that the concept “game” is a concept with blurred edges. “But is a blurred

concept a concept at all?” Is an indistinct photograph a picture of a person at all? Is it even

always an advantage to replace an indistinct picture by a sharp one? Isn’t the indistinct one

often exactly what we need? Frege compares a concept to an area and says that an area with

vague boundaries cannot be called an area at all. This presumably means that we cannot do

anything with it. But is it senseless to say: “Stand roughly there”? [36, §71]

And in a later paragraph Wittgenstein wrote: “The results of philosophy are the

uncovering of one or another piece of plain nonsense and bumps that the under-

standing has got by running its head up against the limits of language.” [36, §119]

In other words, our conceptions, images, and symbols of external things or objects

are entities without sharp borders. They are fuzzy entities!

5 Before the “Fuzzy Boom”: Fuzziness
in Language and Meaning

In the 1960s Zadeh was interested in applying fuzzy sets in linguistics. This idea led

to interdisciplinary scientific exchange on the campus of the University of California
at Berkeley between him and the mathematicians Joseph Goguen (1941–2006, Fig

14 (a)) and Hans-Joachim Bremermann, the psychologist Eleanor Rosch (Heider)

and the linguist George Lakoff. Goguen generalized the fuzzy sets to so-called “L-

sets” [37, 38]. An L-set is a function that maps the fuzzy set carrier X into a partially

ordered set L, i.e. L ∶ X → L. The partially ordered set L Goguen called the “truth

set” of A. The elements of L can thus be interpreted as “truth values”; in this respect,

Goguen then referred to a “Logic of Inexact Concepts” [39]. His work was laid out

in terms of logical algebra and category theory, and his proof of a representation

theorem for L-sets within category theory justified fuzzy set theory as an expansion

of set theory.

5.1 Fuzzy Languages and Fuzzy Algorithms

In 1970 Zadeh presented his paper “Fuzzy Languages and their Relations to

Human and Machine Intelligence” at the conference Man and Computer in Bor-

deaux, France: He said: “As computers become more powerful and thus more influ-
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ential in human affairs, the philosophical aspects of this question become increas-

ingly overshadowed by the practical need to develop an operational understanding

of the limitations of the machine judgment and decision making ability.” [40, p. 130]

He called it a paradox that the human brain is always solving problems by manip-

ulating “fuzzy concepts” and “multidimensional fuzzy sensory inputs” whereas “the

computing power of the most powerful, the most sophisticated digital computer in

existence” is not able to do this. Therefore, he stated that “in many instances, the

solution to a problem need not be exact, so that a considerable measure of fuzzi-

ness in its formulation and results may be tolerable. The human brain is designed

to take advantage of this tolerance for imprecision whereas a digital computer, with

its need for precise data and instructions, is not.” [40, p. 132] He intended to push

his theory of fuzzy sets to model the imprecise concepts and directives: “Indeed,

it may be argued that much, perhaps most, of human thinking and interaction with

the outside world involves classes without sharp boundaries in which the transition

from membership to non-membership is gradual rather than abrupt.” [40, p. 131] He

stated:

Although present-day computers are not designed to accept fuzzy data or execute fuzzy

instructions, they can be programmed to do so indirectly by treating a fuzzy set as a data-

type which can be encoded as an array […]. Granted that this is not a fully satisfactory

approach to the endowment of a computer with an ability to manipulate fuzzy concepts, it

is at least a step in the direction of enhancing the ability of machines to emulate human

thought processes. It is quite possible, however, that truly significant advances in artificial

intelligence will have to await the development of machines that can reason in fuzzy and

non-quantitative terms in much the same manner as a human being. [40, p. 132]

In August 1967, the Filipino electrical engineer William Go Wee at Purdue Uni-
versity in Indiana had submitted his dissertation “On Generalizations of Adaptive

Algorithms and Application of the Fuzzy Sets Concept to Pattern Classification”

[41] that he had written under King Sun Fu, one of the pioneers in the field of pat-

tern recognition. Wee had applied the fuzzy sets to iterative learning procedures for

pattern classification and had defined a finite automaton based on Zadeh’s concept

of the fuzzy relation as a model for nonsupervised learning systems: “The decision

maker operates deterministically. The learning section is a fuzzy automaton. The per-

formance evaluator serves as an unreliable ‘teacher’ who tries to teach the ‘student’

to make right decisions.” [40, p. 101]

The fuzzy automaton representing the learning section implemented a “non-

supervised” learning fuzzy algorithm and converged monotonically. Wee showed

that this fuzzy algorithm could not only be used in the area of pattern classification

but could also be translated to control and regulation problems. Working with his

doctoral advisor, Wee presented his findings in the article “A Formulation of Fuzzy

Automata and its Applications as a Model of Learning Systems” [42].

In 1968 Zadeh presented “fuzzy algorithms” [43]. Usual algorithms depend upon

precision. An algorithm must be completely unambiguous and error-free in order to

result in a solution. The path to a solution amounts to a series of commands which

must be executed in succession. Algorithms formulated mathematically or in a pro-

gramming language are based on set theory. Each constant and variable is precisely
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defined; every function and procedure has a definition set and a value set. Each com-

mand builds upon them. Successfully running a series of commands requires that

each result (output) of the execution of a command lies in the definition range of

the following command, that it is, in other words, an element of the input set for

the series. Not even the smallest inaccuracies may occur when defining these coor-

dinated definition and value ranges. He now saw “that in real life situations people

think certain things. They think like algorithms but not precisely defined algorithms

[40]. Inspired by this idea, he wrote:

Essentially, its purpose is to introduce a basic concept which, though fuzzy rather than pre-

cise in nature, may eventually prove to be of use in a wide variety of problems relating to

information processing, control, pattern recognition, system identification, artificial intelli-

gence and, more generally, decision processes involving incomplete or uncertain data. The

concept in question will be called fuzzy algorithm because it may be viewed as a general-

ization, through the process of fuzzification, of the conventional (nonfuzzy) conception of

an algorithm. [40, p. 94]

To illustrate, fuzzy algorithms may contain fuzzy instructions such as:

(a) “Set y approximately equal to 10 if x is approximately equal to 5,” or

(b) “If x is large, increase y by several units,” or

(c) “If x is large, increase y by several units; if x is small, decrease y by several units;

otherwise keep y unchanged.”

The sources of fuzziness in these instructions are fuzzy sets which are identified

by their underlined names. [40, p. 94f]

All people function according to fuzzy algorithms in their daily life, Zadeh wrote

– they use recipes for cooking, consult the instruction manual to fix a TV, follow

prescriptions to treat illnesses or heed the appropriate guidance to park a car. Even

though activities like this are not normally called algorithms: “For our point of view,

however, they may be regarded as very crude forms of fuzzy algorithms.” [40, p. 95]

Already in 1969 Zadeh contributed to a NATO summer school on “Architecture

and Design of Digital Computers” in Grenoble with the title “Toward Fuzziness in

Computer Systems. Fuzzy Algorithms and Languages” [44] The association of fuzzi-

ness and computers must have sounded surprising in the late 1960s and referring to

that Zadeh said in its introduction: “At first glance, it may appear highly incongru-

ous to mention computers and fuzziness in the same breath, since fuzziness connotes

imprecision whereas precision is a major desideratum in computer design.” [44, p. 9]

In the following paragraphs Zadeh justified by with arguing that future com-

puter systems will have to perform many more complex information processing tasks

than the computers that he and his contemporaries in the 1960s knew. He expected

that future computers would have to process more and more imprecise information!

“Fuzziness, then, is a concomitant of complexity. This implies that as the complex-

ity of a task or a system for performing that task exceeds a certain threshold, the

system must necessarily become fuzzy in nature. Thus, with the rapid increase in

the complexity of the information processing tasks which the computers are called

upon to perform, a point is likely to be reached perhaps within the next decade when
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the computers will have to be designed for processing of information in fuzzy form.

In fact, it is this capability – a capability which present-day computers do not pos-

sess – that distinguishes human intelligence from machine intelligence. Without such

capability we cannot build computers that can summarize written text, translate well

from one natural language to another, or perform many other tasks that humans can

do with ease because of their ability to manipulate fuzzy concepts.” [44, p. 10] For

that purpose, Zadeh asserted that “intriguing possibilities for computer systems” are

offered by fuzzy algorithms and fuzzy languages!

To execute fuzzy algorithms by computers they have to get an expression in fuzzy

programming languages. Consequently the next step for Zadeh was to define fuzzy

languages. “All languages, whether natural of artificial, tend to evolve and rise in

level through the addition of new words to their vocabulary. These new words are,

in effect, names for ordered subsets of names in the vocabulary to which they are

added.” [44, p. 16]

Real world phenomena are very complex. To characterize or picture these phe-

nomena in terms of our natural languages we use our vocabulary and because this

set of words is restricted, Zadeh argued that this process leads to fuzziness:

Consequently, when we are presented with a class of very high cardinality, we tend to group

its elements together into subclasses in such a way as to reduce the complexity of the infor-

mation processing task involved. When a point is reached where the cardinality of the class

of subclasses exceeds the information handling capacity of the human brain, the boundaries

of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of

this imprecision. This is the reason why the limited vocabulary we have for the description

of colors makes it necessary that the names of colors such as red, green, bleu [sic.], purple,

etc. be, in effect, names of fuzzy rather than non-fuzzy sets. This is why natural languages,

which are much higher in level than programming languages, are fuzzy whereas program-

ming languages are not. [44, p. 10]

Here, Zadeh argued explicitly for programming languages that are – because of

missing rigidness and preciseness and because of their fuzziness – more like natural

languages. He mentioned the concept of stochastic languages that was published

by the Finnish mathematician Paavo Turakainen in Information and Control in the

foregoing year [45], being such an approximation to our human languages using ran-

domizations in the productions, but Zadeh preferred fuzzy productions to achieve a

formal fuzzy language. Then, he presented a short sketch of his program to extend

non-fuzzy formal languages to fuzzy languages which he published in elaborated

form with the co-author Edward T.-Z. Lee in “Note on Fuzzy Languages” [46]. His

definition in these early papers was given in the terminology of the American com-

puter scientists John Edward Hopcroft and Jeffrey David Ullman that was published

in the same year [47].

L is a fuzzy language if it is a fuzzy set in the set V∗
T , the so-called “Kleene closure

of VT , the set of all finite strings composed of elements of the finite set of terminals

VT , e.g. VT = {a, b, c,… , z} .The membership function 𝜇L(x) ∶ V∗
T → [0, 1] asso-

ciates with each finite string x, composed of elements in VT , its grade of membership

in L. Here is one of the simple examples that he gave in this article [44]:
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Assume that VT = {0, 1}, and take L to be the fuzzy set L = {(0, 0.9), (1, 0.2), (00, 0.8),
(01, 0.3) , (10, 0.7), (11, 0.3)} with the understanding that all the other strings in V∗

T do

not belong to L (i.e., have grade of membership equal to zero). [44, p. 16].

In general the language L has high cardinality and therefore it is not usual to define

it by a listing of its elements but by a finite set of generating rules. Thus, in analogy

to the case of non-fuzzy languages Zadeh defined a fuzzy grammar as

a quadruple G = (VN ,VT ,P, S), where VN is a set of variables (non-terminals) disjoint from

VT , P is a set of [fuzzy] productions and S is an element of VN . The elements of VN (called

[fuzzy] syntactic categories) and S is an abbreviation for the syntactic category ‘sentence’.

The elements of P define conditioned fuzzy sets in (VT ∪ VN ). [44, p. 16]

5.2 Fuzzy Relations and Fuzzy Semantics

In 1971, Zadeh defined similarity relations and fuzzy orderings [48]. In doing so, he

was proceeding from the concept of fuzzy relations as a fuzzification of the relation

concept known in conventional set theory that he had already defined in his seminal

article “Fuzzy Sets” [12]: If X and Y are conventional sets and if X × Y is their

Cartesian product, let: L(X) be the set of all fuzzy sets in X, L(Y) be the set of all

fuzzy sets in Y , and L(X × Y) be the set of all fuzzy sets in X × Y .

Relations between X and Y are subsets of their Cartesian product X × Y , and the

composition t = q ∗ r of the relation q ⊆ X × Y with the relation r ⊆ Y × Z
into the new relation T ⊆ X × Z is given by the following definition: t = q ∗ r =
{(x, z),∃y ∶ (x, y) ∈ q ∧ (y, z) ∈ r}.

Fuzzy relations between sets X and Y are subsets in L(X × Y). For three conven-

tional sets X, Y and Z, the fuzzy relation Q between X and Y and the fuzzy relation

R between Y and Z are defined: Q ∈ L(X × Y) and R ∈ L(Y × Z). The combina-

tion of these two fuzzy relations into a new fuzzy relation T ∈ L(X × Z) between X
and Z can then be defined from the fuzzy relations Q and R into the fuzzy relation

T ∈ L(X × Z) when the logical conjunctions are replaced by the corresponding ones

of the membership functions.

∙ The above definition of the composition of conventional relations includes a logi-

cal AND (∧), which, for the “fuzzification”, is replaced by the minimum operator

that is applied to the corresponding membership functions.

∙ The above definition of the composition of conventional relations includes the

expression “∃y” (“there exists a y”). The existing y ∈ Y is the first or the second

or the third … (and so on); written logically: supy∈Y (∨). In the “fuzzifications”,

the logical OR conjunction is replaced by the maximum operator that is applied

to the corresponding membership functions.

The fuzzy relation T = Q ∗ R is therefore defined via Zadeh’s “rule of max-min

combination” for membership functions: 𝜇T (x, y) = maxy∈Ymin
{
𝜇Q(x, y);𝜇T (y, z)

}
,

y ∈ Y . In infinite sets the max-min composition rule is replaced with the sup-min

composition rule. However, it is adequate to assume here that all of the sets are finite.
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As a generalization of the concept of the equivalence relation Zadeh defined the

concept of “similarity”, since the similarity relation he defined is reflective, symmet-

rical and (max, min) transitive, i.e. for x, y ∈ X the membership function of S has

the following properties:

∙ reflexivity: 𝜇S(x, x) = 1,

∙ symmetry: 𝜇S(x, y) = 𝜇S(y, x),
∙ transitivity: 𝜇S(x, z) ≥ maxy∈Ymin

{
𝜇(x,y), 𝜇S(y, x)

}
.

Zadeh’s occupation with natural and artificial languages gave rise to his studies in

semantics. This intensive work let him to the question “Can the fuzziness of mean-

ing be treated quantitatively, at least in principle?” [49, p. 160] . His 1971 article

“Quantitative Fuzzy Semantics” [49] starts with this hint:

Few concepts are as basic to human thinking and yet as elusive of precise definition as the

concept of ‘meaning’. Innumerable papers and books in the fields of philosophy, psychology,

and linguistics have dealt at length with the question of what is the meaning of ‘meaning’

without coming up with any definitive answers.”
3

[49, p. 159].

Zadeh started a new field of research “to point to the possibility of treating the

fuzziness of meaning in a quantitative way and suggest a basis for what might be

called quantitative fuzzy semantics” combining his results on fuzzy languages and

fuzzy relations. In the section “Meaning” of this paper he set up the basics:

Consider two spaces: (a) a universe of discourse, U, and (b) a set of terms, T , which play

the roles of names of subsets of U. Let the generic elements of T and U be denoted by x and

y, respectively. Then he started to define the meaning M(x) of a term x as a fuzzy subset of

U characterized by a membership function 𝜇(y |x) which is conditioned on x. [49, p. 164f]

One of his examples was:

Let U be the universe of objects which we can see. Let T be the set of terms white, grey,

green, blue, yellow, red, black. Then each of these terms, e.g., red, may be regarded as a

name for a fuzzy subset of elements of U which are red in color. Thus, the meaning of red,

M(red), is a specified fuzzy subset of U. [49, p. 164f]

In the following section of this paper, that is named “Language”, Zadeh regarded

a language L as a “fuzzy correspondence”, more explicitly, a fuzzy binary relation,

from the term set T = {x} to the universe of discourse U = {y} that is characterized

by the membership function 𝜇L ∶ T × U → [0, 1]. If a term x of T is given, then the

membership function 𝜇L(x, y) defines a set M(x) in U with the following membership

function:𝜇M(x)(y) = 𝜇L(x, y). Zadeh called the fuzzy set M(x) the meaning of the term

x; x is thus the name of M(x).
With this framework Zadeh continued in his 1970 article [40] to establish the

basic aspects of a theory of fuzzy languages that is “much broader and more general

than that of a formal language in its conventional sense.” [40, p. 134] In the following

we quote his definitions of fuzzy language, structured fuzzy language and meaning:

3
In a footnote he named the works of 12 known philosophers, linguists or cognitive scientists.
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Definition 1 A fuzzy language L is a quadruple L = (U,T ,E,N), in which U is

a non-fuzzy universe of discourse; T (called the term set) is a fuzzy set of terms

which serve as names of fuzzy subsets of U; E (called an embedding set for T) is a

collection of symbols and their combinations from which the terms are drawn, i.e.,

T is a fuzzy subset of E; and N is a fuzzy relation from E (or more specifically, the

support of T(= supp(T) =
{

x | 𝜇A(x) > 0
}
) that is a non-fuzzy subset, to U which

will be referred to as a naming relation.

In the case that U and T are infinite large sets, there is no table of membership

values for 𝜇T (x) and 𝜇N(x, y) and therefore the values of these membership functions

have to be computed. To this end, universe of discourse U and term set T have to

be endowed with a structure and therefore Zadeh defined the concept of a structured
fuzzy language.

Definition 2 A structured fuzzy language L is a quadruple L = (U, ST ,E, SN), in

which U is a universe of discourse; E is an embedding set for term set T , ST is a

set of rules, called syntactic rules of L, which collectively provide an algorithm for

computing the membership function, 𝜇T , of the term set T; and SN is a set of rules,

called the semantic rules of L, which collectively provide an algorithm for computing

the membership function, 𝜇N , of the fuzzy naming relation N. The collection of

syntactic and semantic rules of L constitute, respectively, the syntax and semantics

of L.

To define the concept of meaning, Zadeh characterized the membership function

𝜇N ∶ supp(T) × U → [0, 1] representing the strength of the relation between a term

x in T and an object y in U. He clarified:

A language, whether structured or unstructured, will be said to be fuzzy if [term set] T or

[naming relation] N or both are fuzzy. Consequently, a non-fuzzy language is one in which

both T and N are non-fuzzy. In particular, a non-fuzzy structured language is a language

with both non-fuzzy syntax and non-fuzzy semantics.” [40, p. 138]

Thus, natural languages have fuzzy syntax and fuzzy semantics whereas program-

ming languages, as they were usual in the early 1970s, were non-fuzzy structured

languages. The membership functions 𝜇T and 𝜇N for term set and naming relation,

respectively, were two-valued and the compiler used the rules to compute these val-

ues 0 or 1. This means that the compiler decides deterministically by using the syn-

tactic rules whether a string x is a term in T or not and it also determines by using the

semantic rules whether a term x hits an object y or not. On the other hand we have

natural languages, e.g. English, and it is possible that we use sentences that are not

completely correct but also not completely incorrect. These sentences have a degree

of grammaticality between 0 and 1. Of course, native speakers usually use correct

sentences. “In most cases, however, the degree of grammaticality of a sentence is

either zero or one, so that the set of terms in a natural language has a fairly sharply

defined boundary between grammatical and ungrammatical sentences”, Zadeh wrote

[40, p. 138].

Much more fuzziness we find in semantics of natural languages: Zadeh gave the

example “if the universe of discourse is identified with the set of ages from 1 to 100,
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then the atomic terms young and old do not correspond to sharply defined subsets

of U. The same applies to composite terms such as not very young, not very young

and not very old, etc. In effect, most of the terms in a natural language correspond

to fuzzy rather than non-fuzzy subsets of the universe of discourse.” [40, p. 139]

Zadeh now identified these fuzzy subsets of the universe of discourse that corre-

spond to terms in natural languages with its “meaning”:

Definition 3 The meaning of a term x in T is a fuzzy subset M(x) of U in which the

grade of membership of an element y of U is given by 𝜇M(x)(y) = 𝜇N(x, y).

Thus, M(x) is a fuzzy subset of U which is conditioned on x as a parameter and

which is a section of N in the sense that its membership function, 𝜇M(x) ∶ U → [0, 1],
is obtained by assigning a particular value, x, to the first argument in the membership

function of N.

Zadeh concluded this paper mentioning that “the theory of fuzzy languages is in

an embryonic stage” but he expressed his hope that based on this framework better

models for natural languages will be developed than the models of the “restricted

framework of the classical theory of formal languages.” [40, p. 163]

Later in the 1970s he published important papers summarizing and developing

the concepts we presented above: in 1973 “Outline of a new approach to the analysis

of complex systems and decision processes” [50] appeared in the IEEE Transaction
on Systems, Man, and Cybernetics, in 1975 the three-part article “The concept of a

Lingustic Variable and its Application to Approximate Reasoning” [51] appeared in

the journal Information Sciences, in the same year Zadeh published “Fuzzy Logic

and Approximate Reasoning” in the philosophical journal Synthese [52] and in 1978

Fig. 12 The components of a fuzzy language: U = universe of discourse; T = term set; E =

embedding set for T ; N = naming relation from E to U; x = term; y = object in U; 𝜇M(x, y) =

strength of the relation between x and y; 𝜇T (x) = grade of membership of x in T . [40, p. 136]

Fig. 13 Membership

functions of fuzzy sets M
(young), M (middle-aged)

and M (old), [40, p. 140]
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Zadeh published “PRUF a meaning representation language for natural languages”

in the International Journal of Man-Machine Studies [53].
4

During the 1970’s Berkeley-psychologist Eleanor Rosch developed her prototype

theory on the basis of empirical studies. This theory assumes that people perceive

objects in the real world by comparing them to prototypes and then ordering them

accordingly. In this way, according to Rosch, word meanings are formed from proto-

typical details and scenes and then incorporated into lexical contexts depending on

the context or situation. Rosch hypothesized that different societies process percep-

tions differently depending on how they go about solving problems [54]. When the

linguist George Lakoff (born 1941, Fig. 14 (b)) heard about Rosch’s experiments,

he was working at the Center for Advanced Study in Behavioral Sciences at Stan-

ford. During a discussion about prototype theory, someone there mentioned Zadeh’s

name and his idea of linking English words to membership functions and establish-

ing fuzzy categories in this way. Lakoff and Zadeh met in 1971/72 at Stanford to

discuss this idea and also the idea of fuzzy logic, after which Lakoff wrote his paper

“Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts” [55]. In this

work, Lakoff employed “hedges” (meaning barriers) to categorize linguistic expres-

sions and he invented the term “fuzzy logic” whereas Goguen had used “logic of

inexact concepts”.

Based on his later research, however, Lakoff decided that fuzzy logic was not an

appropriate logic for linguistics, but: “Inspired and influenced by many discussions

with Professor G. Lakoff concerning the meaning of hedges and their interpretation

in terms of fuzzy sets,” Zadeh had also written an article in 1972 in which he con-

templated “linguistic operators”, which he called “hedges”: “A Fuzzy Set-Theoretic

Interpretation of Hedges”. Here he wrote:

A basic idea suggested in this paper is that a linguistic hedge such as very, more, more or
less, much, essentially, slightly etc. may be viewed as an operator which acts on the fuzzy

set representing the meaning of its operand” [56].

In the 1970s Zadeh had expected that his theory of Fuzzy Sets “provides an

approximate and yet effective means of describing the behavior of systems which

are too complex or too ill-defined to admit of precise mathematical analysis.” [50,

p. 28] He had expected that even at its present stage of development” his new fuzzy

method.

Fig. 14 (a): Joseph Goguen,

(b): George Lakoff and

(c): Ebrahim Mamdani

4
PRUF is an acronym for “Possibilistic Relational Universal Fuzzy.”
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can be applied rather effectively to the formulation and approximate solution of a wide vari-

ety of practical problems, particularly in such fields as economics, management science,

psychology, linguistics, taxonomy, artificial intelligence, information retrieval, medicine and

biology. This is particularly true of those problem areas in these fields in which fuzzy algo-

rithms can be drawn upon to provide a means of description of ill-defined concepts, relations,

and decision rules. [50, p. 44]

In an interview that Zadeh gave in 1994, he mentioned his surprise that Fuzzy

Logic was “embraced by engineers” and “used in industrial process controls and

in ‘smart’ consumer products such as hand-held camcorders that cancel out jitter-

ing and microwaves that cook your food perfectly at the touch of a single button.”

In that interview he also said that he had “expected people in the social sciences

– economics, psychology, philosophy, linguistics, politics, sociology, religion and

numerous other areas to pick up on it [Fuzzy Logic]. It’s been somewhat of a mys-

tery to me, why even to this day, so few social scientists have discovered how useful

it could be.” [57]
5

However, it was the concept of fuzzy algorithms that fell on fertile ground first:

Ebrahim H. Mamdani (1942–2010), Fig. 14 (c)),
6

a professor of electrical engineer-

ing at Queen Mary College in London, had read Zadeh’s article [50] shortly after

it was published and he directed his doctoral student Sedrak Assilian to perform a

trial to realize a fuzzy system under laboratory conditions and he also pointed to this

paper in the article that he published together with Assilian after he had finished his

Ph. D thesis:

The true antecedent of the work described here is an outstanding paper by Zadeh (1973)

which lays the foundations of what we have termed linguistic synthesis … and which had

also been described by Zadeh as approximate reasoning (AR). In the 1973 paper Zadeh

shows how vague logical statements can be used to derive inferences (also vague) from vague

data. The paper suggests that this method is useful in the treatment of complex humanistic

systems. However, it was realized that this method could equally be applied to ‘hard’ systems

such as industrial plant controllers.” [60, p. 325]

This was the kick-off for the “Fuzzy-Boom” and Zadeh’s primary intention trailed

away for decades.

6 A Real-World Application Fuzzy System

The potential of the new techniques of fuzzy sets and fuzzy systems had stimulated

Mamdani to attempt the implementation of a real-world fuzzy system and Sedrak

Assilian designed a fuzzy algorithm to control a small steam engine (Fig. 15) within

a few days. The concepts of linguistic variables and the max-min composition were

suitable to establish fuzzy control rules because input, output and state of the steam

engine system range over fuzzy sets. Thus, Assilian and Mamdani designed the first

5
For Soft Computing methods Social Sciences see also [58].

6
For more details on Abe Mamdani’s work see [59].
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real fuzzy application when they controlled the system with the input variables heat

and throttle and the output variables pressure and speed (Fig. 16) by a fuzzy rule

base system.

It was an experimental study which became very popular. Immediately we had a steam

engine, and the idea was to control the steam engine. We started working at Friday, and – I do

not remember clearly – by Sunday it was working” he said in an interview in 2008 [61, p. 75].

In 1974, Assilian completed his Ph. D. thesis on this first fuzzy control system;

unfortunately, no other facts about Assilian are available; he also does not appear in

later literature about Fuzzy Set Theory and its applications.

The entire system consisted of the combination of a steam engine and a boiler

(see Fig. 17). The steam was supposed to reach a certain predetermined pressure

within the boiler; this was achieved by regulating the temperature. The engine was

to run as consistently as possible at a particular piston speed, for which purpose a

throttle was installed. This was therefore a system with two inputs (heat supplied to

the boiler, engine throttle) and two outputs (pressure in the boiler, engine speed) (see

Fig. 16). These inputs and outputs range over fuzzy sets. Thus, Assilian and Mamdani

designed the first real fuzzy system and also the first real fuzzy application when they

controlled this system by a fuzzy rule base system.

Sensors constantly monitored the boiler and indicated the current pressure. If the

prevailing pressure corresponded to the set point value, then nothing needed be done.

If it deviated from the set point, then some action had to be taken, and this task was

to be assumed by an automatic fuzzy controller.

Fig. 15 Photograph of the “Fuzzy steam engine”, Queen Mary College, 1974, reprint courtesy of

Brian Gaines, see also: [62, p. 18]
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Simple identification tests on the plant proved that it is highly nonlinear with both

magnitude and polarity of the input variables. Therefore the plant possesses differ-

ent characteristics at different operating points, so that the direct digital controller

implemented for comparison purposes had to be returned (by trial and error) to give

the best performance each time the operating point was altered. [63, p. 2]

Assilian and Mamdani defined six linguistic variables (four input and two output

variables):

1. PE (Pressure Error), defined as the difference between the actual value

and the set point of the pressure in the boiler.

2. SE (Speed Error), defined as the difference between the actual value

and the set point of the of the piston speed

3. CPE (Change in pressure error), defined as the difference

between the actual value of PE and its most recent value

4. CSE (Change in speed error), defined as the difference

between the actual value of SE and its most recent value

5. HC (Heat Change) (action variable, as the result of which a command occurs).

6. TC (Throttle Change) (action variable, as the result of which a command occurs).

Fig. 16 The process variables of the fuzzy steam engine, [62, p. 31]

Fig. 17 The system consisting of a steam engine and a boiler, [62, p. 18]
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They introduced linguistic terms for the variables: PB (Positive Big), PM (Pos-

itive medium), PS (Positive Small), P0 (Positive, Zero), N0 (Negative Zero), NS
(Negative Small), NM (Negative Medium), and NB (Negative Big). The variables

were distributed over a number of points in accordance with the universe of dis-

course.

∙ For the variables PE and SE there were 13 points, which ranged from the max-

imum negative error through zero to the maximum positive error, with the zero

being divided into a “negative zero error” N0 and a “positive zero error” P0 (“N0
– just below the set point … P0 – just above the set point” [63, p. 7f].

∙ The variables CPE and CSE were similarly quantized.

∙ The variable HC was ultimately quantized over 15 points.

∙ Similarly, the variable TC was distributed over five points.

Mamdani and Assilian formed the fuzzy sets subjectively and then they defined

24 rules as IF-THEN rules. Table 1 gives three rules as examples, represented as in

[63]. For the sake of simplicity, the authors of that work did not differentiate between

“positive zero” and “negative zero”.

Table 1 Examples of Mamdani’s and Assilian’s IF-THEN rules in [63]

Rule 1:
IF the deviation in pressure is small and positive

AND the deviation in pressure does not change much

THEN reduce the supply of heat a little

IF PE is PS AND SE is N, THEN HC is NS
Rule 2:

IF the deviation in pressure is approximately zero

AND the deviation in pressure does not change much

THEN do not change the supply of heat

IF PE is N AND SE is N, THEN HC is N
Rule 3:

IF the deviation in pressure is small and positive

AND the deviation in pressure is slowly increasing

THEN reduce the supply of heat a little

IF PE is PS AND SE is PS, THEN HC is NS

These rule relationships were implemented as fuzzy relations for which Zadeh

had already indicated the max-min composition rule in his first publication on Fuzzy

Sets. Additionally, a PDP 8/S digital computer [62, p. 17] calculated a corresponding

fuzzy set as a value for the output variable. This method can be represented graphi-

cally in the following way (see Fig. 18):
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Fig. 18 Illustration of the application of the min-max rule based on [64, p. 161]

The sensors indicate sharp values for the input variables pressure deviation and

its change, whose membership values with respect to the corresponding fuzzy sets

can be read on the triangular membership functions. In the illustrated example for

rule 1, the membership value with respect to the fuzzy set pressure deviation PS is

0.2 and it is 0.4 with respect to the fuzzy set change in pressure deviation N. Today

this part of the fuzzy control process is known as “fuzzification”.

The max-min rule prescribes that the minimum of these two values is computed

first. (In the example for rule 1 illustrated above, this value is 0.2). Accordingly,

after executing this rule alone, the output command was “Change heat supply NS”

and it had a membership value of 0.2. The result of rule 1 thus results in a triangu-

lar function that is truncated at the value 0.2 – a trapezoidal membership function.

However, rule 2 and rule 3 have also fired and so they must be evaluated analogously

and parallel to rule 1. The final membership function for the fuzzy set as a value of

the output variable change in pressure deviation is ultimately composed of the trape-

zoidal membership functions of the individual rule results. This composition occurs

according to the max-min rule by forming the maximum of the membership func-

tions of all three output fuzzy sets.

Just how was the output variable change in pressure deviation supposed to be

adjusted, though? For this a sharp (that is, crisp or non-fuzzy) value is required and

Mamdani and Assilian decided on a simple procedure:

Various considerations may influence the choice procedure depending on the particular

application and in our case effectively that action is taken which has the largest member-

ship grade. It is possible of course that more than one peak of a flat is obtained as illustrated

below [see Fig 19]:
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Fig. 19 Illustration of the

selection of the centroid as a

defuzzification method

devised by Assilian and

Mamdani [63, p. 627]

Negative deviations signify a movement toward the set point, positive deviations signify a

movement away from the set point [60, p. 627].

“The particular procedure in our case takes the action indicated by the arrow,

which is midway between the two peaks or at the centre of the plateau.” [63, p. 5]

In his dissertation thesis entitled Artificial Intelligence in the Control of Real
Dynamic Systems that Assilian produced in response to this fuzzy control problem

[62], he wrote that the control strategy they had realized was one that a human oper-

ator could use to control a steam engine.

These control policies were established first by imagining the entire state space (PE × CPE
× SE × CSE) to be divided into a number of areas, and second, writing down a control

policy for each of these areas. Obviously, the first set of rules obtained in this manner does

not necessarily produce the best quality of control possible … [62, p. 135]

Figure 20 shows the “Fuzzy control instructions for heat-pressure loop of steam

engine” [60, p. 627]. This control algorithm was thus profoundly subjective. Not only

the algorithm but also the membership function had been designed subjectively. Yet

as Assilian and Mamdani managed to demonstrate, this Fuzzy Control (FC) sys-

tem exceeded the performance of conventional control systems in several ways (see

Fig. 21).

Fig. 20 FC commands for

the steam engine designed by

Assilian and Mamdani
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∙ Much less information is required for FC than for conventional control.

∙ The verbal knowledge of human experts did not have to be mathematically exact

in order to be processed by the automatic control.

∙ Errors were reduced little by little until the set point could be reached; digital

controllers “overshot” this target instead.

∙ The FC system worked faster than a conventional control system; the possibility

of processing the parallel firing of several rules at the same time shortened the

required control time.

With this fuzzy control of a steam engine – or more precisely a combination of a

boiler and a steam engine – the essential principles for the construction of an entire

class of fuzzy control systems were established and Mamdani went ahead. Already

in January 1976 he organized – together with Brian Gaines, then a professor of com-

puter science at Essex university – a Workshop on “Discrete Systems and Fuzzy

Reasoning” held at London’s Queen Mary College. At this workshop some similar

projects to control technical systems using fuzzy algorithms were presented, e.g. a

basic oxygen steel making process at the British Steel Corporation in Cambridge,

England [65], a sinter making plant at the British Steel Corporation in Middles-

borough, England [66, 67], and a pilot scale batch chemical process in the Warren

Spring Laboratory in Stevenage, England in [68, 69]. Some other FC investigations

of this time were a FC system to control a warm water plant in the Delft Technical

High School in the Netherlands [70] and a heat exchanger at the McMaster Univer-

sity in Canada.

The step forward from small laboratory systems to the first large-scale commercial

fuzzy controlled system was taken very soon. The first “big science” FC system was

built in Denmark by Jens-Jörgen Østergaard and Lauritz Peter Holmblad who joined

the company F. J. Smidth & Co. upon graduation from the Technical University of
Copenhagen. It was a system for the automatic control of a cement kiln. Attempts

Fig. 21 The result of the Assilian-Mamdani FC (◦) compared to a conventional controller.

(Dynamic Divergence Caching (DDC) algorithm damped (⊓⊔) and undamped (x)), [63, p. 6]
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to automate cement production had always failed in the past because the process

of cement burning is highly complex, ovens do not behave linearly and only a few

measurements can be taken during the process [71]. The fuzzy cement kiln developed

by Holmblad and stergaard functioned very successfully and reliably, however. It

was the starting point of the “Fuzzy Boom” that started in the 1980s in Japan and

later pervaded the Western hemisphere. Many fuzzy applications, such as domestic

appliances, cameras and other devices appeared in the last two decades of the 20th

century. Of greater significance, however, was the development of fuzzy process

controllers and fuzzy expert systems that served as trailblazers for scientific and

technological advancements of fuzzy sets and systems.

7 Fuzzy Sets in Humanities and Social Sciences

In 1969 Zadeh proposed his new theory of fuzzy sets to biologists: “The great

complexity of biological systems may well prove to be an insuperable block to the

achievement of a significant measure of success in the application of conventional

mathematical techniques to the analysis of systems.” [72] “By ‘conventional mathe-

matical techniques’ in this statement, we mean mathematical approaches for which

we expect precise answers to well-chosen precise questions concerning a biologi-

cal system that has a high degree of relevance to its observed behaviour. Indeed,

the complexity of biological systems may force us to alter in radical ways our tradi-

tional approaches to the analysis of such systems. Thus, we may have to accept as

unavoidable a substantial degree of fuzziness in the description of the behaviour of

biological systems as well as in their characterization.” [72]

We find great complexity not only in biological systems but also in social sciences

and humanities. At the end of the 1960s and for a greater audience two years later,

Zadeh wrote more generally: “What we still lack, and lack rather acutely, are methods

for dealing with systems which are too complex or too ill-defined to admit of precise

analysis. Such systems pervade life sciences, social sciences, philosophy, economics,

psychology and many other ‘soft’ fields.” [16]

Zadeh was inspired by the remarkable human capability to perform a wide variety

of physical and mental tasks without any measurements and any computations”, e.

g. parking a car, playing golf, deciphering sloppy handwriting, and summarizing a

story. He distinguished between mechanical (or inanimate or man-made) systems at

one hand and humanistic systems at the other hand and he saw the following state of

the art in computer technology:

Unquestionably, computers have proved to be highly effective in dealing with mechanistic

systems, that is, with inanimate systems whose behavior is governed by the laws of mechan-

ics, physics, chemistry and electromagnetism. Unfortunately, the same cannot be said about

humanistic systems, which – so far at least – have proved to be rather impervious to mathe-

matical analysis and computer simulation.
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He defined a “humanistic system” to be

a system whose behaviour is strongly influenced by human judgment, perception or emo-

tions. Examples of humanistic systems are: economic systems, political systems, legal sys-

tems, educational systems, etc. A single individual and his thought processes may also be

viewed as a humanistic system. [51, Part I, p. 200]

Zadeh summarized “that the use of computers has not shed much light on the basic

issues arising in philosophy, literature, law, politics, sociology and other human-

oriented fields. Nor have computers added significantly to our understanding of

human thought processes-excerpting, perhaps, some examples to the contrary that

can be drawn from artificial intelligence and related fields.” [51, Part I, p. 200]

Thus, hard computing has been very successful in hard sciences but it could not

be that successful in humanistic systems in the field of soft sciences. Therefore we

should open the field of applications of soft computing to the soft sciences. This is

what Zadeh had in mind when he proposed the notion of soft computing:

I expected people in the social sciences-economics, psychology, philosophy, linguistics, pol-

itics, sociology, religion and numerous other areas to pick up on it. It’s been somewhat of

a mystery to me why even to this day, so few social scientists have discovered how useful

it could be. Instead, Fuzzy Logic was first embraced by engineers and used in industrial

process controls and in ‘smart’ consumer products such as hand-held camcorders that can-

cel out jittering and microwaves that cook your food perfectly at the touch of a single button.

I didn’t expect it to play out this way back in 1965.” [57].

The field of Soft Computing in Humanities and Social Sciences is at a turning

point. Not very long ago, the very label seemed a little bit odd. Soft Computing is

a technological field while Humanities and Social Sciences fall at the other pole of

the academic field. In recent years, however, this has changed. The strong distinction

between “science” and “humanities” has been criticized from many fronts and, at the

same time, increasing cooperation between the so-called “hard sciences” and “soft-

sciences” is taking place in a wide range of scientific projects dealing with very

complex and interdisciplinary topics [73].

In the last fifteen years the area of Soft Computing has also experienced a gradual

rapprochement to disciplines in the Humanities and Social Sciences [58, 74].

8 Outlook: Computing with Words and Perceptions

Artificial Intelligence (AI) was born in the 1950s in the USA and spread to many

scientific and technological communities throughout the world. The history of AI

is a story of several successes but has lagged behind expectations. AI became a

field of research to build computers and computer programs that act “intelligently”

although no human being controls those systems. AI methods became logic-based

to find exact solutions. However, not all problems can be resolved with these meth-

ods. On the other hand, humans are able to resolve such tasks very well, as Lotfi

Zadeh mentioned in many speeches and articles over the last century. In conclusion,
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Fig. 22 Perception-based

system modeling, [78]

he stated that “thinking machines” do not think as humans do. From the mid-1980s

he focused on “Making Computers Think like People” [75]. For this purpose, the

machine’s ability “to compute with numbers” was supplemented by an additional

ability that was similar to human thinking. In the 1990s he established Computing

with Words (CW) [76, 77] instead of exact computing with numbers, as a method

for reasoning and computing with perceptions based on the theory of fuzzy sets.

In his article “Fuzzy Logic = Computing with Words” in May 1996, he stated that

“the main contribution of fuzzy logic is a methodology for computing with words.

No other methodology serves this purpose.” [75, p. 103] Three years later he wrote

“From Computing with Numbers to Computing with Words – From Manipulation of

Measurements to Manipulation of Perceptions”, to show that a new Computational

Theory of Perceptions, or CTP for short, is based on the methodology of CW. In

CTP, words play the role of labels of perceptions and, more generally, perceptions

are expressed as propositions in natural language. [76, p. 105].

As we said already, he was inspired by the “remarkable human capability to per-

form a wide variety of physical and mental tasks without any measurements and

any computations. [...] Underlying this capability is the brain’s crucial ability to rea-

son with perceptions – perceptions of time, distance, speed, force, direction, shape,

intent, likelihood, truth and other attributes of physical and mental objects.” [77, p.

105]. Zadeh intended to establish a new dimension of artificial intelligence [78, p.

73]. He received an opportunity to propose these considerations concerning “A New

Direction in AI” to the AI community at the beginning of the new millennium, when

his manuscript was accepted for the AI Magazine issue in the spring of 2001 [78].

In this article he presented a new view on system theory, namely perception-based

system modeling: In “perception-based system modeling”, the input, the output and

the states are assumed to be perceptions (Fig. 22).

The 50th anniversary of a scientific theory is a good opportunity to cast a ret-

rospective look at its consequences and achievements. Many aspects of this history

are a matter of course, such as definitions of the theorys entities, theorems and pro-

tagonists of important developments. However, some are facts that were unknown

to most interested persons and also some specialists. The original research work on

the history of the theory of fuzzy sets, as presented in this chapter, shows that its

history cannot be comprehended without reflecting on the history of system theory.

Moreover, fuzzy set theory must be regarded as an inherent part of the history. This
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deep connection is evidenced from the very beginning of Zadeh’s scientific all the

way up to his recent lectures and articles. With his varying views on system theory,

Computing with Words and the Computational Theory of Perceptions, he postulated

new directions for science and technology, in the fields of information science, com-

puter science, and artificial intelligence. Perhaps the lesson to be learned from this

history is that creating new views is one of the most effective means of keeping a

scientific theory – such as fuzzy set theory – alive.
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Fuzzy Logic in Speech
Technology - Introductory
and Overviewing Glimpses

Horia-Nicolai Teodorescu

Abstract The chapter critically reviews several applications of fuzzy logic and
fuzzy systems in speech technology, along the main directions of the filed: speech
synthesis, speech recognition, and speech analysis. A brief incursion in the use of
mixed techniques, combining fuzzy logic, fuzzy classifiers and nonlinear dynamics
is included. A rich list of references complements the chapter.

1 Introduction

The applications of speech technology traditionally fall in three main classes:
speech recognition, speech synthesis, and speech analysis with applications in
psychology – including the more recently developed emotion analysis and related
sociology issues, linguistics (phonetics), and medicine – mainly speech pathology,
respiratory pathology, and dentistry. At least one class of applications, namely
speaker recognition, falls between the sub-domains of speech recognition and
speech analysis. Automatic speech synthesis has historically been the first to be
developed, much before the use of computers, with important studies between 1920
and 1960, supported chiefly by the telephony industry. However, automatic speech
synthesis was successful only after the widespread introduction of microprocessors
and high volume memory chips. Speech recognition became a field of systematic
research only after the introduction of mini- and micro-computers (PCs), and the
development was accelerated since the advent of digital signal processors (DSPs).
Again one of the main beneficiaries has been the automatic response systems in
telephony and later the intelligent phones. A steady development has seen speech
analysis for phonetics and those with medical applications (voice and speech
pathology). On the other hand, speech recognition covers numerous industrial,
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human computer interaction, and communication applications, including voice
command, voice data entry, and query-answer systems (Kasabov and Iliev 2000).
As side products, large repositories (speech databases), corpuses (databases
of annotated speech files), and ontologies were created (see for example Naphade
et al. 2006).

The use of fuzzy logic (FL) in speech technology follows the same main divi-
sions as speech technology. While one could expect that most researches would
apply fuzzy logic to speech recognition, this is not precisely the case. More
attention was paid to speech analysis and applications, at least by the count of
papers. This may be due that good methods for speech recognition based on
Markov chains were available early in the 1990 s, making fuzzy classification less
attractive. The situation largely perpetuates until today. A recent search on the IEEE
Xplore revealed 45 journal papers including in their abstract the words “fuzzy” and
“speech” and 413 conference papers with the same key words. Out of the 45 journal
papers in this database shown that the topics of most papers fall into the categories
speech analysis and speech recognition. The distribution of papers per categories of
topics is shown in Fig. 1.

Fig. 1 Distribution of main topics of papers on speech and fuzzy published in IEEE journals, in %.
Analysis category includes the evaluation of speech quality and identification of speaker.
Applications category includes speech-based control, and processing category includes segmentation

Fig. 2 Worldwide patents in the field of speech technology using FL, according to the targeted
topic(s). Data based on a search on EspacenetTM (74 results found in the Worldwide database for
fuzzy speech in the title or abstract)
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The Worldwide database on EspacenetTM contains (as at October 2014) 74
patents that include the terms “fuzzy” and “speech” in the title or abstract. Figure 2
illustrates the approximate distribution of worldwide patents using FL in speech
technology; the distribution is on topics that differ from those in Fig. 1 to better
reflect the categories found in patents. Some patents fall in two categories, while a
few others in the search results were marginally related to speech technology and
were omitted; therefore the sum is slightly smaller than 74, as obtained in the
search. Interestingly, in contrast to paper literature, by far the main application of
FL in speech technology is speech recognition – more than 40 % - while the topics
of speech processing and various applications maintain a high position.

The division into categories in Figs. 1 and 2 is subjective and partly imposed by
the topics dealt with in the papers in the database; readers may find other classi-
fications of papers and patents more suitable for their purpose.

The number of articles that include in title and abstract both the words fuzzy and
speech in the ScienceDirect database is 114. Interestingly, the yearly number of
papers published in the period since 1995 in the field and reported by ScienceDirect
remained essentially flat, around 4 per year. This is a very low number, taking into
account that this publisher has about 20 journals that published papers in the field,
including the flagship journal Fuzzy Sets and Systems. A much higher number of
articles (including book chapters) is returned for the same keywords in the whole
articles by Springer Link: more than 11’000, out of them more than 3’700 articles,
but we estimate that about 10–30 % of them are actually related to the use of fuzzy
logic in speech processing, analysis, synthesis, and recognition. On the other hand,
a search using the European Patent search engine Espacenet detects 78 results found
in their Worldwide Database for the words fuzzy and speech in the title or abstract.
Most of these patents and patent applications are new, after 2000, and many of them
come from Asian inventors (Japan, China). Also, the result of search in US Patent
Collection for the terms fuzzy and speech, specifically in the claims, produces 79
patents, most of them registered after 2000.

This chapter is partly a review article with reference to a small sample of FL
techniques applied to speech technology of the main papers and to some research
tracks the author was involved in. The review is by no way exhaustive, however
efforts have been done to illustrate a wide range of topics covered by the literature,
including both journal and conference papers, moreover the patent literature,
striking a balance between the two categories of articles – a feature unfortunately
seldom respected in reviews.

In addition to reviewing the subject, the chapter describes in detail and gener-
alizes an approach which, according to the author opinion, deserves further
investigation in the future, namely the approach based on a generalization of fuzzy
information space and related fuzzy classification based on representations in this
space. While not being a review in the proper sense, because of the vast number of
topics and approaches, the reviewing insights are critical in the sense that they
emphasize the limits in the results obtained so far by the application of fuzzy logic
to speech technology; also, the review discusses possible weaknesses and cir-
cumstances that motivated this situation.
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The chapter is intended to help both experts in FL and in speech technology to
understand the other domain and we hope it will help postgraduate students and
young researchers to devise new research fields crossing the boundary from FL to
speech technology and vice versa.

For the benefit of the audience from FL field, we recall a few notions from
speech technology. Speech is either voiced or voiceless. In voiced speech, the vocal
folds vibrate almost periodically; the vibration frequency is named pitch, or
(number) zero formant, denoted by F0. The change in F0 value is the main con-
tributor to the representation of prosody. The basic voice waveform (signal) pro-
duced at the level of the vocal folds is further shaped by the larynx, buccal and
nasal cavities. The sound spectrum in voiced speech is due largely to this shaping,
which determines the main spectral components, named formants – the main being
denoted by F1 to F4. The first two formants, F1 and F2, provide the main infor-
mation needed to recognize the voiced phonemes. All vowels and many consonants
are voiced phonemes. Some phonemes are unvoiced, that is, they are not produced
with the contribution of the vibration of the vocal folds. Examples of these
unvoiced phonemes are the plosive and the fricative consonants.

Beyond the discrete Fourier power spectrum {S(ωj)}j, typically reduced to the
values of the pitch (F0) and of the formants (F1···F4) and of their bandwidths,
speech segments are characterized by several easy to define and compute param-
eters, such as their energy, duration, “number of zero-crossings” (see Sect. 3) and
by the values in the descriptive statistics of these parameters, typically the average
value, spreading (standard deviation), minimum and maximum value, median, first
and third quartiles, and range. After acquisition by a digital system, speech is
originally represented by a sequence of samples, fs t1ð Þ,⋯, s tnð Þ,⋯g, where tn
represent time moments equally spaced. In typical representations, there are
between 16’000 and 96’000 such values per second, depending on the sampling
frequency used. Taking into account that a phoneme lasts between a few mili-
seconds (ms), for plosives to several tens of ms (for sustained, long vowels), the
initial processing for extracting the above parameters is performed on speech
segments of around 10 ms duration. Essentially, speech representation and pro-
cessing techniques belong to time series techniques – a field familiar to scientists
from almost all branches of science. The computation on a ‘time window’ including
W samples of the energy is then performed as E=∑k∈ws

2
k , where the (abusive)

notation k ∊ W means that the time moment tk is in the window W. Assuming that
the central sample of the time window (segment) is tn, we denote the window byWn

and the corresponding energy by En. Similarly, in a second example, the range of
the signal samples in the window is defined as rn = maxk∈Wn sk − mink∈Wn sk. This
phase of processing represents every window by a set of values of several
parameters, En, rn,⋯. Each value of a parameter aggregates information from all
samples in the corresponding speech segment. Preserving the same order of the
parameters from one window to the next, at the end of this representation phase,
the segment is replaced by a vector of parameters, vn = ðF0n,F1n,⋯,En, rn,⋯Þ.
If the successive windows have their centers at a distance L≫ 1, L≤W=2,
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the information in the speech segment may be significantly compressed into the
vectors vn, because there is a single vector every L samples and we assume here that
the number of the components of the vector is much smaller than L. For example, if
L =W/10, there are 10 values of the representation vector for every speech segment.

In the next steps, the sequence vnf gn of vectors representing the information in
the signal successive windows is used for further signal characterization. Again, one
can use the descriptive statistics of the components of the vector vn in the segment
and to create a new vector for every parameter. For example, for every 3 ms, using
windows of 3 ms width with the centers of successive windows every 0.1 ms, there
are 30 values of the vector vi = ðF0i,F1i,⋯,Ei, ri,⋯Þ. Then one can compute the
average of the corresponding values F0i in the segment corresponding to the index n
as F0n = F0 tn − 1. 5msð Þ+F0 tn − 1. 4msð Þ+⋯+F0 tn +1. 5msð Þð Þ=31. The set of
these new parameters can be used as final representation of the signal in the window,
for example to determine if the signal is noise, unvoiced speech, or voiced speech.

The scope of this chapter is limited to providing a general view on the topic, and
a few insights that the author finds more promising or believes are good, yet easy to
understand examples of applications of FL to speech technology. Some minimal
knowledge of FL and rudimentary knowledge of signal processing are required,
rather at the level of terminology than at that of fundamental results. For basic
concepts and methods in speech technology, the reader is referred to books, such as
(Benesty, Sondhi and Huang 2008).

The next sub-section describes applications of FL to voice synthesis. Applica-
tions of fuzzy logic to voice processing and analysis are dealt with in the third
section, which also includes an extended sub-section on the detection of voiced,
unvoiced, speech, and noise segments, moreover a subsection on medical appli-
cations of speech analysis, while the fourth section deals with speech recognition.
The next (fifth) section is a special incursion into the fuzzy information space
representation, which may be a good potential tool in both speech analysis and
speech recognition. This section includes a subsection of speaker recognition. The
sixth section overviews emotion estimation in speech, a currently important topic in
the field. The final section presents conclusions and potential future directions.

2 Applications of Fuzzy Logic to Voice Synthesis

One of the early papers on fuzzy logic applied to speech synthesis is (Raptis and
Carayannis 1997), who used fuzzy logic for rule-based formant speech synthesis.

In a study supported by research grants from the Romanian Academy during
1999 and 2002, Grigoras et al. (1999, 2000), Jitca et al. (2002) proposed a fuzzy
system for controlling the synthesis of the phonemes that are prone to multi-
definitions in rule-based speech synthesizers. The purpose was to control a Klatt-
type synthesizer (Klatt 1980) with the aim of improving the intelligibility and
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naturalness of the speech produced by the basic Klatt synthesizer. The fuzzy system
controls the values (frequency) of the formants and their dynamics. The compu-
tation of the formant values takes into account the context of a sequence of two
syllables. The approach is exemplified in that paper for the liquid phoneme l, for the
Romanian language, because of the difficulty of synthesizing this phoneme cor-
rectly. An increased intelligibility of the TtS (Text to Speech) synthesizer was
demonstrated using the FL controlled synthesizer. However, this type of application
fell into desuetude together with the fall of interest in Klatt synthesizers after 2000.

Also related to the topic of speech synthesis is the theme of articulatory system
modeling. In his paper, Brito (2009) proposed such a model based on a fuzzy-
genetic approach and confirmed its validity for the Spanish vowels. Lin et al. (2004)
presented a text-to-speech (TtS) synthesis system based on FL, namely using
recurrent fuzzy neural network (RFNN) and fuzzy rules for prosodic phrase
structure in a concatenative synthesizer.

A few patents use FL for speech synthesizers. Tanaka and Masanobu (2000)
obtained the United States Patent 6,081,781 titled “Method and apparatus for
speech synthesis and program recorded medium”. Their synthesizer employs as
main idea fuzzy vector quantization for coding the spectrum envelope of speech
segments. Also, Coorman et al. (2007) were granted US Patent no. 7219060 for
“Speech synthesis using concatenation of speech waveforms”. These inventors used
only a form of characterization of the synthesized speech with linguistic degrees;
they name the related representation “fuzzy table”, but there is no true use of FL in
their patent.

We end this brief section signaling a recent patent that uses in a novel way the
context information for improving speech synthesis in TtS (text to speech) syn-
thesis. In the patent US2012221339, “Method, apparatus for synthesizing speech
and acoustic model training method for speech synthesis” the inventors Wang et al.
present a model-based speech synthesizer employing fuzzy context information for
improving speech synthesis; they describe the procedure as “generating fuzzy
context feature labels based on the plurality of candidate pronunciations and
probabilities thereof, and determining model parameters for the fuzzy context
feature labels based on acoustic model with fuzzy decision tree.”

Having advocated for a long time for the ambient-adaptive speech synthesis and
having proposed adaptation ways (Teodorescu et al. 1988), (Teodorescu 2001a),
(Teodorescu 2005) for creating stress rendering, emotion rendering, and relation-
ship rendering, we must agree that these issues remain a largely unchartered
territory. Also, little progresses were made in assessing speech quality, both
synthesized (Teodorescu, Feraru and Zbancioc 2009) and natural speech.

586 H.-N. Teodorescu



3 Applications of Fuzzy Logic to Voice Processing
and Analysis

FL for improving voice communications and general voice signal processing
There are numerous applications in speech technology, especially in speech anal-
ysis, where we see the use of fuzzy logic and fuzzy techniques as one of the primary
choices. For example, detecting speech disabilities is much more difficult than
detecting Parkinson for example, because, in this case, Parkinson has a few and
quite specific signs, while speech disabilities have numerous causes and varied and
subtle ways to manifest them, with many yet unknown processes, imprecision in
knowledge, and variability. Hence, the use of FL and fuzzy classifiers may be a
good choice to deal with this problem. Other similarly difficult problems are the
detection of dialects and sub-dialects in phonology and of the local variants,
especially in cases of small populations speaking a dialect or language variant, thus
making statistical methods only partly useful (due to the small sample effect).

Already in 1994,
Ndousse (1994), in one of the first papers on FL in voice communications,

introduced a FL-based controller in asynchronous transfer mode (ATM) transmis-
sion of voice messages. The motivation of using FL is that “Typical voice cells,
characterized by a high degree of burstiness, complicate any attempt to use clas-
sical control theory in the design of an ATM cell rate controller.” The FL controlled
ATM management proposed by Ndousse is essentially a modified leaky bucket cell
rate control. Ndouse (1998) further details the method in the book chapter on Fuzzy
Expert Systems in ATM Networks.

Cheng and Chang (1996), starting from a paper by Murata et al. (reference 6 in
Cheng’s and Chang’s paper), provide a meticulous analysis of uncertainties in
ATM networks, saying that

“it is difficult for a network to acquire complete statistics of input traffic and, as a result, it is
not easy to accurately determine the effective thresholds or equivalent capacity in various
bursty traffic flow conditions of ATM networks; … therefore, the decision process is full of
uncertainty.”

Cheng and Chang relay on the work by Ndousse, discussed above, and on other
works, for their proposal of a FL-based traffic controller that models an ATM
network. The FL-based traffic controller includes a fuzzy bandwidth predictor
(which predicts the available equivalent capacity), a fuzzy admission controller, a
fuzzy congestion estimator, and a performance estimator. The fuzzy congestion
controller has three inputs, the queue length, the variation (change rate) of the queue
length, and an estimate of the cell loss probability. The fuzzy admission controller
inputs are the output of the fuzzy congestion controller, the estimate of the cell loss
probability, and the result of network resource estimation, determined by another
block. Only two linguistic degrees are used for the change rate, namely “positive”
and “negative”. Triangular and trapezoidal membership functions are used for the
inputs and singletons for the output. The simulation results reported are impressive:
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about halving of the message blocking probability for both voice and video traffic,
and almost null message blocking probability for either low- and high-bit-rate data
traffic.

In another line of research, aimed to characterize and better understand speech
signals and processes, a specific approach in speech analysis and recognition was
presented in (Rodriguez et al. 2000), combining non-linear dynamic characteristics
of speech and fuzzy representation and classification methods. Precisely, the
research aims to represent the dynamics of speech by temporal fuzzy sets and, based
on them, to represent the trajectories of the speech production dynamical system.
The application to speech analysis and potentially phoneme recognition relies on
determination of similarity measures of the corresponding temporal fuzzy sets.

In a single paper, Ciota (2001) considers FL for both improving the signal-to-
noise ratio (SNR) for speech signals and the decision-making process for whole-
word recognition. In tackling the first issue, the author suggests a manner of
sampling the noise spectrum, but we are not convinced about the efficiency.

FL in detection of voiced, unvoiced, speech, and noise segments

Speech vs. non-speech segmentation play an essential role in optimizing the
communication bandwidth by suppressing transmission of un-voiced segments and
in reducing the overall noise level (Bouquin-Jeannes and Faucon 1994). Also,
voiced - unvoiced segmentation, that is, finding the segments of a recording where
the speech is vocalic (produced with the vibration of the vocal folds) and non--
vocalic helps improving the quality of communication and plays an essential role in
speech analysis and recognition.

Although the tasks of segmentation into speech and non-speech (noise) segments
and respectively into voiced and unvoiced segments for the speech segments look
elementary, numerous uncertainties in the process still hamper the solving of these
tasks by technical means. We will discuss in some more detail the topic of seg-
mentation using FL, because the topic is of large technical interest and because it is
narrower and allows us to include it in this brief chapter.

A VAD is an algorithm and the related application aimed at detecting, based on
the features that differentiate speech from other sounds, the temporal boundaries of
the segments of speech in a sound recording. The most obvious features relate to the
Fourier spectrum of the noise and respectively speech. However, the spectrum is
not a perfect indicator of the difference speech – ambient noise, because speech
includes consonant sounds that are, essentially, noise. The typical examples of
noise-like consonants are the unvoiced fricatives [s], [f], [sh], and the (partly)
voiced fricatives, as [z]. Typically, [f] and [s] have almost-uniform (i.e., white
noise) frequency spectrum. Also, plosive consonants, as [p], [d], [b] have the
characteristics of impulsive noise, thus being difficult to differentiate from ambient
noise. The temporal boundaries of the words starting or ending with such consonant
sounds are difficult to establish, even when isolated pronounced and even in low or
no noise conditions. For example, a VAD may have difficulty in detecting, under
continuous speech with words pronounced with no pause between them, that the
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pronunciation of “suppress the sound” is a single segment of continuous speech.
Even at the middle of the words, unvoiced consonants may create errors in the
speech – non-speech segmentation and hence in VADs operation. Therefore, VADs
need more features than the Fourier spectrum (or a set of representative spectral
components) to properly operate.

Some of the features used are the amplitude of the sound and the so called
“number of zero crossings”, NZC, also named “zero crossing counts” or zero
crossing rate (ZCR). For speech, most parameters are computed on time windows
of 3 to 20 ms – time intervals that roughly correspond to the minimal duration of a
phoneme. Because of the use of time windows, the term of instantaneous value (of
the amplitude, for example) denotes another concept as the value of the current
sample of the signal. The (instantaneous) amplitude parameter is usually defined as
the average value of the rectified (absolute) value of the sound signal in a time
window, where the window is centered on the time instant considered. The cor-
responding formula, with An the instantaneous amplitude at time moment n and sn+k
the signal sample amplitude at time moment n + k. is:

An =
1

2N +1
∑N

k= −N jsn+ kj

The NZC is defined as the number of zero-crossings per unit time (time win-
dow), taking into account the effect of the noise. When noise is not accounted for,
the computation of NZC is according to

if sn>0 and sn+1<0ð ÞOR sn<0 and sn+1>0ð Þ then
NZC←NZC +1 increment the NZC counterð Þ.

The incrementing is performed during a specified window, then the counter is
reset to 0; therefore, NZC has one computed value per window and is represented
by a time series, NZCm where m is the index of the time moment representing the
center of the window. Essentially, NZC informs of the main (lower) frequency
component in the signal, when such a component dominates the spectrum, or the
signal is low-pass filtered. An alternative definition of NZC is (see for example
Köhler, Hennig, & Orglmeister (2003),

NZCn =∑k∈Wn

sign skð Þ− signðsk − 1Þ
2

����
����,

where sign represents the function signum (sign),Wn is the window centered at time
moment n and the sum is over all time moments in the window.

Noise occurs both in the recording circuits (microphone and amplifier) and in the
analog to digital conversion (ADC) process, due to the finite resolution of the
conversion. The ambient noise adds to these internal noises. The effect of internal
noise on the NZC is a false, high increase of the NZC count. For avoiding at least
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partly the effect of internal noise, the computation of the NZC uses thresholds θ that
are correlated with the expected internal noise level ν, according to

if sn>θ νð Þ and sn+1<− θ νð Þð ÞOR sn<− θ νð Þ and sn+1>θ νð Þð Þ then
NZC←NZC+1 increment the NZC counterð Þ.

On the other hand, the threshold thresholds θ cannot be larger than the voice
signal at its low levels (i.e., consonants). An optimal threshold can be determined
for specified noise conditions, while an adaptive threshold is needed for varying
ambient noise. The main problem of current VADs is the lack of robustness: their
performance strongly degrades for low signal to noise ratios (SNR), especially
when noise is not stationary and several types of noise occur. The choice of the
threshold could benefit of the FL techniques, when the noise is not stationary or its
value is uncertain. This situation was documented by (Tian et al. 2003), who stress
that

“VAD approaches that use threshold… cannot achieve consistent accuracy since the mean-
value based and the histogram based threshold estimation algorithms are not robust. They
strongly depend on the percentage of voice and background noise in the estimate interval.”

Tian et al. used fuzzy clustering and Bayesian information for estimating the
thresholds for energy features, for VADs; they found the approach robust in non-
stationary environments. Increasing the information aggregated and used in the
decision making also improves the results. The so called higher order counts,
which represent NZC of filtered signals, are also used as features in signal char-
acterization and recognition, for example see Petrantonakis and Hadjileontiadis
(2010). Again, the use of FL information aggregation and FL-based decision
making for utilizing the higher order counts was not studied yet, although it may
bring benefits.

In several papers, Beritelli et al. proposed various VAD algorithms involving
FL. For example, Beritelli, Casale, and Cavallaro (1998, 1999) proposed a fuzzy
voice activity detection (FVAD) algorithm for telephony which, according to the
authors, because it is based on a new manner of pattern matching, using fuzzy logic,
achieves a very good immunity to noise. The authors claim that only six fuzzy rules
optimized by training using the “FuGeNeSys hybrid learning tool”, a supervised
training tool based on both NN and genetic algorithms (GA), able to generate
optimized fuzzy rules.

These authors used the features as in ITU-T Recommendation G.729, namely the
variation (difference) between the current temporal window of the NZC, ΔNZC,
and the average value; the variation of the (full band) energy, ΔEtot, the variation of
the energy in a specified low frequency band, ΔEL, and the spectral change, ΔS,
where the window is 10 ms. In the newer standard ITU-T G.729.1, which super-
sedes and improves G.729, the lower frequency band corresponds to 50–4000 Hz,
and the higher band to 4000–7000 Hz (IUT 2006); however, we are not aware of
any fuzzy implementation of VADs specifically for the newer IUT standard.
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The VAD proposed by Beritelli et al. (2002) uses essentially a Sugeno-type FLS
(that is, crisp output values) with weighted mean (WM) defuzzification and with
Gaussian input membership functions. The rules of the system have variable
number of antecedents, with all antecedents connected by AND. Remarkably,
Beritelli et al. succeed to reduce the knowledge base needed to a set of a few rules,
to eliminate unnecessary antecedents in rules and to obtain very good results,
frequently outperforming other techniques.

Correct speech /non-speech segmentation is important in improving the quality of
hearing aids audition in noisy ambient by reducing noise between the non-speech
duration. The solution proposed by (Ramirez et al. 2004) does not employ fuzzy logics
and the authors show somewhat better results by their non-FL solution than those
previously obtained by Beritelli et al. (1998, 1999), Cavallaro et al. (1998). The same
paper compares results obtained by several methods, with the FL-based method
comparable, but not always better (under various SNRs and noise levels) than the other
solutions. However, because fuzzy logic systems (FLSs) generalize crisp systems and,
according to the representation theorems, FLSs can implement any nonlinear crisp
system, we can confidently say that the application of FL can bring benefit in this
application too. For further researches, we consider that several other parameters
should be used to increase the VADperformance and extensive use of patternmatching
applied for increasing the discrimination between speech and no-speech activity under
high noise levels.We also believe that nonlinear dynamics analysis, possibly combined
with FL as explained in this chapter may find applications in VADs.

An interesting and powerful set of approaches mixing FL, nonlinear dynamics
analysis and various statistical tools (Bayesian information criterion, BIC, among
others) was recently introduced in a set of papers by Zhao et al. In the paper (Zhao
et al. 2011), a robust VAD was proposed based on multi-level Lempel-Ziv com-
plexity (MLZC) with the multiple thresholds determined by a combination of fuzzy
c-means (FCM) clustering and BIC. These authors find that the VAD behaves
roobustly for SNR up to 10 dB, for various types of noises.

There are numerous other contributions to the VAD topic brought under back-
grounds not related to FL, including general statistical, perceptual, clustering, optimal
filtering, and correlative settings. Compared to the number of papers using non-FL
approaches, those using FL in VADs are very few and not always fully convincing.

FL in medical applications of speech analysis

The subtle changes in voice, compared to typical voices of healthy subjects, as well
as significant and rapid changes in a subject voice may be related to a large class of
pathologies. Indeed, voice production jointly and intimately relies on air flux gen-
erated by the chest (lungs and chest muscles under neural control), vocal cords,
larynx, pharynx, buccal and nose cavities, neck and face muscles, teeth, and lips.
Any pathology of these parts of the body, including of their neural control, may
produce voice and speech changes ranging from light to dramatic. The corre-
sponding medical fields can benefit for diagnostic purposes from tools of voice and
speech analysis. For example, low air flux and volume may translate in low voice
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volume, inability of maintaining sustained vowels, higher voice jitter, and degraded
prosody. Neurological disorders in the control of any of the parts contributig to
speech may produce changes in voice and prosody quality, hoarseness and jitter.
Anatomic and functional imperfections of the articulators (tongue, nose cavity,
buccal cavity, teeth, lips) are well known to change speech in a dramatic way.
Actually, numerous diagnostic techniques, devices and applications based on voice
analysis have been proposed in the last 20 years, including entirely new sub-domain,
as ‘gnathophony’ (a study of the relationship between the chewing apparatus and
speech production and deficiencies), some of them based on or connected to FL.
Subsequently, we exemplify some of these directions related to FL. Most uses of FL
in medical applications of speech regard diagnosis, as already stated, and mainly
data aggregation, classification, and decision making in diagnosis.

Stylios et al. (2008) dealt with “voice quality assessment, including nasality of
speech, hoarseness, breathiness, voice tremor, strained voice, voice breaks, diplo-
phonia”, where the voice quality was determined using a fuzzy cognitive map
(FCM). These authors also fuzzified the pitch using a FCM, to render the meaning
of low and high pitch, pitch breaks, and mono-pitch. The final goal was to produce
an instrument for diagnosing of the dysarthria and apraxia of speech, using the
aggregation of the results of the two previous FCMs in a third one. The authored
argued that the results compare well to the diagnostics made by a language
pathologist; however, they studied only four patients.

A partly similar research was reported by Scherer et al. (2013), who studied
“fuzzy-input fuzzy-output support vector machines for robust voice quality clas-
sification”, but their aim was emotion and mood detection rather than pathologies
(see Section on Emotion detection in this chapter).

In a paper on the relationship between denture state and speech quality (Teod-
orescu and Feraru 2008), the authors suggest the use of FL for improving diagnostic
and also suggested a “high-pass” membership function for the degree of speech
discrimination as a voice quality indicator for diagnostic use. The membership
function was defined based on Euclidean distances between phonemes. However,
these authors have left the issue open, with no checking of the capabilities of the
suggested fuzzification method.

We believe that FL has a strong potential in speech-related medical applications,
although it is not yet very well represented in the literature devoted to the field of
speech pathology.

FL in phonetic segmentation

In the paper by Toledano, Crespo and Sardina (1998), a mixture of HMM and fuzzy
logic is used for improving the phonetic segmentation (phoneme boundary detec-
tion) quality. This task does not need to recognize the phonemes, but the transitions
from one to another. These authors used a two-stage segmentation algorithm, where
the FL was used only in the second stage, of decision making and refining the
boundaries of the phonemes, based on time marks produced by a context-dependent
phonetic HMM recognizer and by a feature extraction block. The feature extraction
block characterizes the speech windows employing, among others, mean energy,
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zero crossing rate and mean frequency. The decision on the phoneme boundaries is
made using the degree of confidence produced conjointly by the feature extraction
bloc and the HMM one. The results of segmentations are very good, around 97 %,
which can be explained, according to the authors of that paper, by the use of
context-dependent models. Despite the good results, the research track of using FL
in decision making for phonetic segmentation was not followed by other papers.

4 FL in Speech and Speaker Recognition

The topic of speech and speaker recognition is too vast to deal it in any detail in a
single chapter, therefore this section of the overview remains sketchy.

Speech recognition

When FL is applied in speech recognition it was complementing and improving
established tools as hidden Markov models (HMMs). Some favorable results were
obtained with fuzzy NNs, but also limited in extent. In an early paper, Koo and Un
(1990), used a FL-based method “to smooth hidden Markov model parameters” and
obtained higher recognition scores and lower computational load with their method,
compared to the HMM methods using other smoothing techniques of that time.

Essentially, speech recognition is a pattern recognition process; it is approached
by rule-based methods or by statistical methods, the second class of methods having
higher performance and consequently being preferred nowadays (Burileanu et al.
2010). The development of statistical methods required and produced, as a side
effect, large databases and annotated speech corpuses, where annotations refer to
various levels, from voiced-unvoiced-no-voice segments, to phoneme (including di-
and tri-phones) and prosodic levels. These speech corpuses were then used to create
the so-called speech language models, essentially consisting in statistical repre-
sentations of the speech, from the level of phonemes and sub-phonemes, to the level
of word utterances and prosody. These pronunciation-related statistics are then
combined with the so called natural language (NL) language models, which include
the statistics of letters, syllables, words, etc., together with the corresponding
syntax. The development of statistical tools for analyzing speech, on the other hand,
allowed the automatic annotation of speech recording, which further facilitated the
creation of very large speech corpuses, comprising hundreds of hours of recordings
and millions of spoken words. Speech corpuses are often distinguished according to
their purposes: training of speech recognition systems, training of speaker recog-
nition or validation, emotion recognition, computer interfaces and answering
machines, or general purpose “spoken language repositories”, that may include tens
of millions of spoken words. The particularities of the corpuses depend on their
purposes. Almost any language has today several such corpuses; for example, at
least three corpuses were developed for the Romanian language (Cucu et al. 2014),
(Feararu et al. 2010) and a repository is currently under development.
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Many if not most speech recognition systems in use today are based on hidden
Markov models (HMM) for the language and speech. For example (Burileanu et al.
2010) built a sequential architecture, based on HMMs, which uses MFCC coeffi-
cients or speech signal parameterization (for both training and decoding regimes),
acoustic modeling at the triphone-level, with an HMM trained for each phoneme,
and with each HMM having, for each triphone, five states (including one initial
state and one final state, both nonemitting, and three emitting intermediary states).
Also, the system has a “left-right topology (where transitions towards remote states
and backwards transitions are not allowed) and a continuous output distribution
with weighted linear combination of Gaussian mixtures for each emitting state”
(Burileanu et al. 2010).

In several papers, FL was proposed to advance the HMMs used in speech
recognition. In an early development, Koo and Un (1990) proposed a fuzzy
smoothing of the HMM parameters in speech recognition. Cheok et al. (2001),
introduced novel generalized fuzzy hidden Markov model for speech recognition,
based on the fuzzy integral theory (Choquet integral). According to these authors,
the use of Choquet integral relaxes one of the two independence assumptions in
classical HMM theory. The author claim that, although FL typically require com-
putational-intensive algorithms, their method actually lowers the computation time.

Pal and Mitra, in their early paper in (1992), analyzed the use of multilayer
perceptrons and fuzzy sets in classification applications. In this line, several
research groups endeavored to use FL in speech recognition either combining FL
and NNs or applying fuzzy rules and systems for decision and classification.
(Kasabov and Iliev 2000), in a conference paper, deal with “adaptive speech rec-
ognition in a noisy environment (ASN).” Essentially, the authors describe “a system
based on the described method can store words and phrases spoken by the user and
subsequently recognize them when they are pronounced as connected words in a
noisy environment.” The system relies on a “speech recognition module that uses
evolving fuzzy neural networks (EFuNNs),” able to assign membership degrees to
noisy speech segments to non-noisy speech segments previously learned by the
system. For this purpose, the input vector of features and vectors of features stored
in memory are compared. The algorithm for training the “evolving fuzzy neural
network” (EFuNN) is also given. These authors registered a patent application for
the system, quoted in their paper as “A methodology and a system for adaptive
recognition in a noisy environment based on adaptive noise cancellation and
evolving fuzzy neural networks,”Preliminary Patent, University of Otago, 21
December 1999, New Zealand,” (Kasabov and Iliev, 1999).

In another early paper, Mills and Bowles (1996) applied fuzzy logic to improve
dynamic programming for speech recognition, for overcoming the difficulties of the
crisp dynamic programming under high noise. These authors proved that the
classification accuracy was increased by the use of FL-based technique.

Also an early industrial interest in speech recognition based on FL is the patent US
5,040,215, titled Speech Recognition Apparatus Using Neural Network and Fuzzy
Logic, by inventors Amano et al. (1991), applied by Hitachi, Ltd., Japan. The same
team has partly described the invention in the conference paper (Amano et al. 1989).
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The patent claims a rule-based phoneme recognition system, where FL is used in
decision making. The system employs pair-discrimination rules, that is aim to dis-
criminate among two phonemes for every pair of phonemes. This is essentially a
template matching based on FL.

In a closely connected, although different approach, (Shikano, Nakamura and
Abe 1991) the speech recognition is performed by matching the voice of speakers
to the speech of a reference, “standard” speaker based on codebook mapping. The
approach is not related to a specified speech representation such as HMM or
NN-based, but once the coding for the reference speaker is chosen, the same coding
must be used in the recognition. An advantage of the algorithm is the large range of
applications; for example, one performer speech can be transposed to impersonate
other speakers in games and movies.

Speech recognition relying on fuzzy NNs has been also studied extensively. As a
matter of example, in a book chapter and then in a paper, Melin et al. (2005, 2006)
use FL (type-2 fuzzy logic), NNs and GA for pattern matching and decision making
in the recognition process. However, the presented results are too few to derive
statistically relevant conclusions.

Although not in the proper domain of speech, but intimately related to it,
a special mention deserves the research by Temko, Macho, and Nadeu (2008), who
use information fusion based on FL for dealing with highly confusable non-speech
sounds. Examples of investigated sounds by these authors are cough and throat
produced sounds, laughter, sneeze, sniff, and yawn. These authors find that fuzzy
measures and Choquet fuzzy integrals are suitable tools for fusing several infor-
mation sources, taking into account the importance of the sources. The results
obtained by fusing combinations of SVM, frequency-filtered filter-bank energies
(FFBE), differential ΔFFBE (where Δ indicates the time derivative), and HMM,
according to combinations HMM-FFBE, HMM-ΔFFBE, HMM-FFBE+Δ FFBE,
then combinations of these combinations demonstrated an improvement of several
percentage points compared to the best performing of the above classifiers.

Also worth noting is the approach combining wavelets and fuzzy logic in speech
technology, illustrated by the papers by Avci and Akpolat (2006), who use “a
wavelet packet adaptive network based fuzzy inference system” and by Juang,
Cheng and Chen (2009), who address with similar tools the speech detection in
noisy conditions.

FL in speaker recognition

The speaker recognition field is well illustrated by the paper by (Chibelushi et al.
1993),

“system that uses both acoustic speech and visual speech (motion of visible articulators).…
As an initial step towards this goal, voice has been used together with still face images; this
combination of vocal and facial information has resulted in better recognition accuracy than
from either of the two constituents individually.”
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The authors, notice along with the literature that

“the features examined to accomplish each task are not valid for the other. Specifically, the
features needed to allow reliable phoneme identification must contain detailed information
about the spectrum (high frequency resolution) and therefore have poor time resolution,
while the features with high time resolution needed to allow precise time mark positioning
have poor frequency resolution and therefore don’t allow accurate phoneme identification.”

These authors divide the task in the two respective tasks and perform them in
parallel. At the same time, the two processes are developed as follows. On one side,
the “context-dependent phonetic HMM recognizer” is applied, followed by a
“context-dependent HMM training error cancellation” and “intermediate time
marks” are found. On a second, parallel processing channel, a feature extraction
process is applied to the voice signal, to determine in a second manner the
boundaries. Then, the two time boundary sets of results are input to a fuzzy logic-
based “post correction system” and the final time marks are obtained with high
accuracy. With training, speaker-dependent results reach a precision of about 1 %
compared to the manual segmentation, for segments longer than 35 ms, and of
about 10 % for segments of duration 20 ms (see Fig. 4 in the quoted paper). Also,
for speaker-independent segmentation, the results are not degraded more than about
5 % (Fig. 5 in the quoted paper). Interestingly, the fuzzy rules in that paper directly
refer in their conclusions to the probabilities of transitions from one phoneme to the
next.

5 FL in Emotion Estimation

Emotion detection is a relatively new sub-field in speech technology, which shows
a vivid dynamic, both in papers and patents.

It is somewhat surprising that fuzzy logic has not been more intensively applied
to emotion analysis in speech, and more broadly to speech prosody analysis, as
speech features are reputedly fuzzy. A notable exception is the early paper by
Massaro and Cohen (2000), who used a “fuzzy logical model of perception
(FLMP)” to characterize emotions in speech, and (De Gelder and Vroomen 2000).

In an early paper hugely cited, Cowie et al. (2001) proposed the correlated use of
clues from face image sequences and information from speech, in an intuitively
natural manner, for extracting relevant features in assessing emotions. Also quite
intuitively, they used a hybrid classification system combining neural network and
FL to derive the emotion. It is worth mentioning that similar neuro-fuzzy approa-
ches have been developed later for emotion recognition based solely on face
expressions, see (Ioannou et al. 2005)

In a set of papers published both in conference and journal forms, Lee, Na-
rayanan, Grimm, Kroschel, and co-workers (Lee and Narayanan 2003, 2005;
Grimm, Kroschel and Narayanan 2007; Grimm et al. 2007), investigated several
techniques for emotion recognition in speech, first extracting emotion primitives
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(“valence, activation, and dominance”), including SVM and the corresponding
support vector regressions, and data-driven fuzzy inference systems. According to
these researches, for German speakers,

The results [obtained with SVMs and SVRs] were compared to a rule-based fuzzy logic
classifier and a fuzzy k-nearest neighbor classifier. SVR was found to give the best results
and to be suited well for emotion estimation yielding small classification errors and high
correlation between estimates and reference. (from Grimm et al. 2007)

Recently, Zbancioc and Feraru (2012, 2012) have applied Fuzzy k-Nearest
Neighbor (FkNN) classifiers, FCM and WKNN algorithms to the estimation of
emotion in Romanian speech, on the SRoL corpus. In the approach utilizing FkNN
classifiers, the features vectors consisted of 17 parameters, namely F0, F1-F4
(average, dispersion, median for all formants), jitter and shimmer, all determined at
phoneme-level. These authors report an emotion recognition rate, at phoneme
(vowel) level, for four emotional states (joy, sadness, furry, and normal) between
61 % and 76, with FkNN, for the Romanian language corpus SRoL described in
(Feraru, Teodorescu and Zbancioc 2010). In the second paper, the same authors
apply a variant of Fuzzy C-Means (FCM) classifiers, the recurrent FCM, and
Weighted kNN (WkNN) classifiers to the same corpus, for emotion estimation.
They obtained similar results by the two techniques (WkNN and FCM), all results
being better than those obtained with kNN classifiers, for the same set of features.
Notable, these authors introduced a new classifier, named FCMR algorithm (FCM
recurrent), which performs better than the typical FCM algorithms.

Related to emotion estimation in speech is the topic of human voice quality
estimation (Szekely et al. 2012), (Scherer et al. 2013). As (Scherer et al. 2013) put
it, “The dynamic use of voice qualities in spoken language can reveal useful
information on a speakers attitude, mood and affective states,” but notice that in
assessing the perceived voice quality, human experts frequently disagree. Focusing
on “a voice quality feature set that is suitable for differentiating voice qualities on a
tense to breathy dimension”, these authors introduce a fuzzy-input fuzzy-output
support vector machine (F2SVM) algorithm that was able to estimate the voice
quality of speech recording better than crisp SVMs. Szekely et al. also use fuzzy
SVM.

The meticulous research of Szekely et al. 2012 applied to detecting what the
authors name “target voice styles” in speech combines two classifiers, “namely a
fuzzy-output support vector machine (FSVM), and a Gaussian mixture model
(GMM)”. An agreement optimized ensemble (AOE) voting system then determines
the confidence of the classification results. Confidence thresholds for the two
classifiers are determined by an expression based on relative agreement relA, taking
agreement. Target voice styles were automatically determined with accuracy close
to a remarkable 90 %.
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6 An Incursion into the Fuzzy Information Space
Representation

Because of the less common approach in (Rodriguez et al. 2000) and the intricacy
of the matter and method, the issue deserves a few more explanations and a general
setting to potentiate further research in the area. The work was partly continued in
speech analysis but with no intervention of FL (Rodriguez+Brito). The foundations
of the matter are given in a paper devoted to establishing a method for signal
analysis in the defined space of fuzzy information (Kosanovic, Chaparro, and
Sclabassi 1996), with envisaged specific applications to biomedical (EEG) signal
classification. Subsequently, we reformulate the framework of a slightly general
approach based on fuzzy information.

Preliminaries. Consider a time-dependent process, as a bio-electric signal, or a
set of simultaneously acquired bioelectric signals, e.g., EEG or ECG signals. The
time variable is discretized, as in a sampling process. Assume that a set of features
xj, j=1, . . . ,m is derived from the acquired signal. Denote the time-dependent
vector of these features by xi = ðxijÞ= ðxi1, . . . , ximÞ, where the index i stands for the
time moment and the second index for the component of the vector. Assume that
there are n classes of signals, Ck , k= 1, . . , n. These classes may be statistical, that
is, at some specified moment of time, i, the signal has assigned a set of n proba-
bilities to belong to these classes, p xi∈Ckð Þ. On the other hand, the classes may be
fuzzy categories, that is, signals belong to these classes with a certain degree of
confidence, μ xi∈Ckð Þ.

The assignment of a signal to a class is time-dependent in many non-stationary
processes. As a matter of example, the speech signal may represent one phoneme in
a brief time interval, while in shortly after it may represent another phoneme.
Therefore, we will assume that the probabilities, respectively the membership
functions, according to the case in hand, varies in time. Denote the time-dependent
probabilities (membership functions) by pik = p xi∈Ckð Þ, respectively
μik = μ xi∈Ckð Þ.Then, for a specified classk, we obtain a time-dependent probability,
pkðiÞ= p xi∈Ckð Þ, respectively the membership function μkðiÞ= μ xi∈Ckð Þ. With the
discrete time seen as a variable, pk(i) becomes a distribution of probabilities over
the space of the discrete variable i, that is, over the set of integers, Z, or on a subset
of it, when the process has a finite duration. Similarly, μk(i) is a membership
function defined on the set of integers, Z.

We name the vector of functions μ with the components μk, k = 1, …, n a fuzzy
dynamics. Recall that every component is a function, μk(i). We will say that the
fuzzy process (dynamics) is fuzzy periodic if it has an infinite duration and the
dynamic membership functions μk(i) are periodical. A fuzzy dynamics is chaotic
when the evolution of at least one component μk(i) of the process is chaotic. Then,
the attractor of the process can be constructed in the space of the n variables of the
process.

Two finite duration processes can be compared at the level of their vectors
μ1 = ðμ11, . . . , μ1nÞ and μ2. A simple method of comparison is to determine the
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difference of the membership functions and to compute the average distance
between the respective vectors,

d μ1, μ2ð Þ= 1
N
∑N

i=1d μ11i, . . . , μ
1
ni

� �
, μ21i, . . . , μ

2
ni

� �� �

where N is the duration of the two processes, that is, the number of time moments
they are non-zero.

We will assume the classes are specified and their prototypes are known.
Example 1
Consider the EEG signal is monitored with 4 (active) electrodes and the signal is

sampled. The samples acquired on the four channels are denoted as sij, j=1, 2, 3, 4.
Consider that the selected features to characterize the signals at every time moment
are the frequency fj and the amplitude Aj of the main spectral component in the
Fourier spectrum (determined on a specified window centered on the current
sample.) Consider that the EEG signals are assigned to one of the classes α, β, θ,
based on the two parameters1. Membership functions are defined as functions of the
distance from the “central” (typical, prototype) frequency and amplitude of the
respective classes, namely

μα, j ið Þ= μα, j fj tið Þ,AjðtiÞ
� �

=
1

1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fjðtiÞ− fαðtiÞ
� �2 + Aj tið Þ−AαðtiÞ

� �2q .

The instantaneous average membership degree of the signals to the class α at
time moment i is

μα, 1 ið Þ+ μα, 2 ið Þ+ μα, 3 ið Þ+ μα, 4 ið Þ� �
=4.

The overall membership degree is the average, over the recording duration, of
the instantaneous average degree.

Computing as above the average membership degrees to the classes α, β, θ, the
classification is produced by choosing the class with the highest degree.

Example 2
Speech signal is acquired at a sample rate of 24 kHz and acoustically Fourier

analyzed. The result retains two features, the formants F1 and F2. The frequencies
of the formants are determined on windows of 3 ms during the utterance of vowel-
like sounds.2 Assuming a language with 15 vowel-like sounds,3 consider that the
prototypes of these vowel-type sounds in the formant space ðF1,F2Þ denoted by πv,

1In fact, only frequency is required in this case, but we pursue the two-parameter feature vector for
sake of a more complete example.
2A vowel-like sound is detected when there is a valid pitch, that is, when the vocal folds vibrate.
Pure consonants are produced without a pitch.
3Including [m], [n], [l], [r] etc.
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where v∈ a, e, i, o, u,m, n, . . .f g. For every time moment i determine for the
unknown sound its values for F1 and F2 and define its membership to a vowel class
as

μv ið Þ= μv F1 tið Þ,F2ðtiÞð Þ= 1

1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ðtiÞ−F1vðtiÞð Þ2 + F2 tið Þ−F2vðtiÞð Þ2

q .

For the entire duration of the sound,4 determine the average membership to each
class. The classification result is that class that to which the sound has the largest
membership degree.

The above definitions of the membership functions work well for two classes
and in a one-dimensional space, but have several drawbacks when several classes
are involved and when their representation requires a multi-dimensional space.
Considering n classes with their prototypes denoted by πk x1k , x2k, . . . , xrkð Þ, with
the classes overlapping at least two by two. Assuming that the classes occupy
(hyper)spheres, their intersections define (hyper)planes. Any point on such hyper-
planes has the same membership degree to the respective two classes, potentially a
degree close to 1. That situation is somewhat unintuitive and, when the membership
degrees are close to 1, not convenient for applications (discrimination). An alter-
native definition of the membership function could be

μk Qð Þ=1− d Q, πkð Þ=max
j

d Q, πj
� �

which satisfy the condition that μk Q= πkð Þ=1, but has the drawback of arbitrary
use of maxjd Q, πj

� �
. A better definition is

μk Qð Þ=1− d Q, πkð Þ=max
j

d πk, πj
� �

This definition would allow for negative values, for very far apart Q points.
To correct, we can use

μk Qð Þ= 1− d Q, πkð Þ
max

j
d πk , πjð Þ for d Q, πkð Þ≤max

j
d πk, πj
� �

0 else

(

Still the definition inherits the disadvantage of the Euclidian distance, which
considers all directions equal. This is convenient when the classes have spherical
distributions, but not in the general case. For example, in the case of ellipsoidal
classes (as corresponding to the equal probability /Galton) ellipses for Gauss dis-
tributions, the weighting along the axes of the ellipsoids is justified, see Fig. 2.

4This requires a procedure for determining the boundaries of the sound.
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Building the dynamic (temporal) membership functions. Consider a sampled
signal s(tn) that we wish to classify, where the signal is represented by several
parameters (features) computed on successive windows of specified duration. Then,
the distances to the prototypes are computed in the feature space. The above pro-
cedure produces time-indexed values of the membership functions to the specified
classes, μk(tn). These evolving (time-dependent) membership functions are repre-
sentations of the signal in the fuzzy dynamic space (also called information space).
Considering frames of the same length as above or of different durations, centered
on time moments tn, the dynamics represented by the vectors of values of the
membership functions can be contrasted or compared with prototype dynamics, in
view of final classification of the signal, for example for phoneme recognition.
Specifically, at time moment tn, the signal representation in the fuzzy dynamic
space is

μ1 tnð Þ, μ1 tn+1ð Þ, . . . , μ1 tn+Wð Þð Þ, . . . , μm tnð Þ, μm tn+1ð Þ, . . . , μm tn+Wð Þð Þ,

or

μ1, μ2, . . . , μmð Þn
where m is the number of classes in the features space. Notice that the classes

used to compute the membership functions may be the same as the classes used in
the final recognition process. The difference is that in the feature space, one creates
the membership functions point-wise (in time), while in the final classification, in
the fuzzy dynamics space, we work in matching dynamics (variations in time), not
values. For example, the classification can be performed based on the minimal
distance between trajectories of the membership functions,

min
v

∑hd μh, μhνð Þ

Matching. Beyond the matching by minimal distance, methods of matching
more specific to the nonlinear dynamic field are available, for example Lyapunov
exponents and various fractal dimensions computed locally for a small number of
windows approximately corresponding to the average duration of phonemes. These
specific tools might help improve the overall recognition score and surely increases
the power of speech analysis.

An example of application of the technique reviewed in this section to speech
analysis is provided in (Rodriguez et al., 1997), while applications to the analysis of
various bio-electrical signals are presented in a series of papers by Kosanovic et al.
(cited series of papers, 1994–1996).
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7 Conclusions and Potential Future Directions

The use of FL and FLSs in speech technology has seen a somewhat modest
development and mixed success, which are difficult to explain else than by the large
amount of computations required by both speech characterization and fuzzy sys-
tems. Also, the early development of good statistical models, as HMMs may have
reduced the appetite to apply FL in speech recognition. Also, the advent of con-
catenative synthesizers and the transition from Klatt-type to concatenative-type
speech synthesis may have hampered the use of FL in synthesis for some time.

Interestingly, several patents have been applied, possibly indicating that FL was
more attractive in speech technology for industry than for academia.

Although the overall results of applying FL to speech technology are today
rather limited, we are confident that further researches can successfully involve the
use of FL in speech synthesis, including prosody synthesis, speech analysis with
applications to emotion detection and medical conditions, and in speech and
speaker recognition under noisy environment. We expect that the applications of
speech analysis in medicine and psychology are likely to benefit of the use of FL
and neuro-fuzzy systems. However, for achieving more significant results in speech
technology, FL needs to be used in its forms merged with second order m.f.s and
fuzzy probabilities.

What is striking for a reviewer who compares the processes of speech recog-
nition in humans, as currently known, and today algorithms for speech recognition
is the low parallelism (similarity) between them. In a review chapter on speech
perception, based on empirical findings in the medical and psychological literature,
the authors (Gierur & Pisoni 1988, pp. 253–276) say about speech perception
development in humans:

Children not only used but relied upon multiple cues in perception. Acoustic redundancies
were critical to the perception of the phonemic contrast. … Children assigned relative
weightings to the cues. … With development, children shift attention to more isolated,
discrete segmental cues.

None of these features can be assigned today to speech recognition systems, and
neither the development of these systems nor their evolving during training follows
a path similar to speech recognition by humans during their development from
children to adults. Notice that the relative weighting mentioned by Gierur & Pisoni
may have similarities with the information aggregation in fuzzy systems, or at least
may encourage the attempt to use FL to mimic human perception.

It is unclear what path the use of FL in speech technology will take in the context
of the trends in data analytics, Internet of things, and cloud computing. We may
expect that the extra computational effort required by the advanced and massive use
of FL merged with fuzzy probabilities, which may have hampered the extensive use
of FL in speech technology in the past, will be absorbed under these developments
and will produce FL-based instruments.

FL use in speech technology will increase only side-by-side to new commer-
cially-viable applications. While the application of FL in typical communication
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technology was partly successful, FL has potential to become a major tool in
higher-intelligence applications, where man-machine interactions become ubiqui-
tous. Speech interpretation as a representation of the state of the subjects, including
emotion, intention, and mood, and of subjects’ view on their relationship with the
machine interlocutor [Teodorescu, 2005, Teodorescu, 2001a] might benefit of FL,
and FL development may benefit of researches in this broad field. On the more
research-oriented side, we believe that phonetics and language studies, as well as
psychology and medical applications can tremendously profit in the future from the
use of FL.
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Fuzzy Sets: Towards the Scientific
Domestication of Imprecision

Enric Trillas

Abstract This paper considers fuzzy sets just as science tries to domesticate con-

cepts once abstracted from reality: identifying them with quantities, using these

quantities for building up mathematical models, escaping from just a formal logic

setting, and testing the models against reality before provisionally accepting them.

Its aim is that of trying to go towards a new experimental science of ‘the impre-

cise’; to something like a ‘physics of linguistic imprecision’. It contains a way for

looking at fuzzy sets that, if continued, could offer a new perspective for seeing lin-

guistic imprecision, and whose possible value lies on the idea that several forms of

theorizing always can be better than a single one.

1 Introduction

From its inception by Lotfi A. Zadeh fifty years ago [1], fuzzy sets are linked with the

management of imprecision in real, technological, problems. Imprecision permeates

natural language and common reasoning, and hence also the linguistic description of

the behavior of those systems that either cannot be described by equations, or such

a description is unknown. Imprecision, necessary for transmitting ideas in not too

long pieces of language, is an economic characteristic of natural language. Zadeh’s

paper was, after those by Max Black in 1937 and 1963 [27, 28], a true first attempt

towards a domestication of linguistic imprecision, and his work from 1965 onwards

constitutes a relevant ‘corpus’ of doctrine for it.

In the Introduction at his 1965 seminal paper [1], and to separate from the very

beginning fuzzy sets from both sets and probability, Zadeh stated:
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“…such a framework [that of fuzzy sets] provides a natural way of dealing with

problems in which the source of imprecision is the absence of sharply defined criteria

of class membership rather than the presence of random variables”.

Of course, this ‘class’ approach neither means that there is a lack of relationships

between sets and fuzzy sets, nor that the values of the membership function of a fuzzy

set can never come from some probabilistic computation, but that the genesis of

fuzzy sets neither lies in perfect classification, nor in randomness. The genesis of

fuzzy sets is in language, where predicates (the words naming properties) usually

designate classes or collectives [2] as, for instance, the predicate young (Y) desig-

nates the class or collective of the ‘young Londoners’ ([Y]) when applied to London

inhabitants. The idea of a collective is well rooted in language.

By one side collectives should be mathematically represented to, for instance,

translating statements into formulas, and by the other side most of them should not

be confused with sets as it can be shown by using the Sorites’ methodology [3].

Additionally, it should be remarked that fuzzy sets are not collectives, but only a

partial representation of them depending on the directly available information on

the use of the predicate and, perhaps, on some reasonable hypotheses on such use.

Were, as it is usually done, a fuzzy set just seen as a function X → [0, 1] without

referring to a predicate or linguistic label, the function says nothing on any linguistic

subject. Fuzzy sets do translate into functions the current meaning of predicates on

X, and this paper goal is just to explain what a fuzzy set is, and how fuzzy sets allow

domesticating imprecision as it is usually done in science. Most of the applications of

Zadeh’s fuzzy sets do concern problems involving dynamical systems whose behav-

ior is described by means of linguistic imprecise rules, provided by an expert of the

type ‘If x is P and y is Q, then z is R’.

2 Measurable Predicates

Let X be a universe of discourse whose elements enjoy some property (p) named by

P. What follows will proceed under the following three naïve working hypotheses of

‘perceptive recognition’:

∙ First: For all x in X it can be recognized if “x is P” or x verifies p, can be, or cannot

be, stated.

∙ Second: For some pairs of elements in X it can be recognized if one of them enjoys

p less or equal than the other.

∙ Third: It can be recognized that, in the language, P originates in X a ‘collective’,

called that of the Ps.

If P verifies the three hypotheses or conditions, it will be called “measurable” [4]

in X. Although it does not mean that they are for nothing, non-measurable predicates

will not be considered here. The first question to answer is what it means to actually

measure a measurable predicate.
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Let’s consider the empirically perceived binary relation ≤P defined in X [4] by,

x ≤P y ⇔ x shows P less or equal than y shows P,

provided that, at least. first and second hypotheses hold. This relation reflects that

the elemental statement ‘x is P’ carries less or equal information than ‘y is P’ for

what concerns property p. Hence, the use of a measurable P in X endows it with

the simple mathematical structure given by the graph (X, ≤P), and it will be said

that such graph translates the primary or qualitative meaning of P in X [4]. In this

graph there can be maximal and minimal elements, that is, elements z ∈ X such that

there are no elements x ∈ X verifying, respectively, z ≤P x, or x ≤P z. Maximals can

be recognized by the lack of others showing more p, and minimals by the lack of

others showing less p. Provided there is only a maximal or a minimal, they are said

the maximum and the minimum, respectively. If z is maximal is when, classically,

is said that z is P is true, and if z is minimal that z is P is false; in the setting of

this paper the classical concepts ‘true’ and ‘false’ can be avoided, they are indeed

superfluous.

Notice that X does not need to be previously structured, and that the graph reflects

the intuitive idea that when speaking on something, one tries to introduce ‘some

order’ in the universe on which she/he is speaking of. This seems to be a necessary

first step for reasoning. Notice that X represents a universe whatsoever; properties

can be observed in any kind of universe, and not only in those endowed with some

mathematical structure as it is with the predicate ‘prime’ on the set of natural num-

bers, and it is not with ‘hot’ in a set of cooper samples.

Notice also that the relation ≤P is not, in general, a total or linear one, that is,

there are often elements x and y not-comparable under ≤P, that is, neither verifying

x ≤P y, nor y ≤P x. If, for instance, the predicate white were applied to snow, namely

to a collection of snow’s samples, it will be measurable only provided it can be always

recognized that ‘this sample of snow is less white than that sample of snow’, sup-

posed the collection of samples is actually known. It is easy to imagine that for some

pair of samples it can be very difficult to state if one of them is actually less white
than the other; if the collection of samples is large, almost surely the relation ≤white
will not be linear. Without well enough knowing the elements in the universe of dis-

course, it is very difficult, if not impossible, to consider if a given predicate is or is

not measurable; previous information on X is basic for capturing a qualitative use of

P in X.

If the relation ≤P cannot be stated, the predicate will be said to be metaphysical

in X [4], and without any contempt against them, the consideration of metaphysical

predicates is not a goal of this paper. The kingdom of metaphysical predicates is

philosophy; science and technology are kingdoms of the measurable. It is not to be

forgotten the dictum induced from a 1883 lecture by Lord Kelvin [23], “if you cannot

measure it, it is not science”.

With all that, a measure of the extent up to which each x in X is P, verifies p, or

carries the information provided by P, is a mapping [5] 𝜇P: X → [0, 1], such that:
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(1) If x ≤P y, then 𝜇P (x) ≤ 𝜇P (y), in the order of the real line,

(2) If z is a maximal in (X, ≤P), then 𝜇P (z) = 1,

(3) If z is a minimal in (X, ≤P), then 𝜇P (z) = 0.

Hence, a measure is but a morphism between the graph (X, ≤P) and the totally

ordered unit interval ([0, 1], ≤); it translates a ‘scarcely ordered’ graph into a linear

continuum, and it should be noticed that, in general, the three properties of a measure

are not sufficient to specify a single one. This is like what happens with the definition

of a measure of probability: it does not specify a single one, but more information on

the case is needed for such specification. Notice that neither 𝜇P(x) = 1, nor 𝜇P(x) = 0

mean that x is, respectively, a maximal or a minimal; anyway, maximals are in the

set 𝜇
−1
P (1), and minimals in 𝜇

−1
P (0).

For instance, provided it could be established that 𝜇white is a measure for white,

to know a value 𝜇white(this snow’s sample), either more information, or a reasonable

hypothesis on the comparison of samples, will be needed. Of course, like for assign-

ing a probability to the event ‘six’ in the throw of a dice, it is necessary to know in

which surface the dice will land and if it is tricky, in the case of ‘snow’ some exper-

imentation, even imaginary or by doing a toy-experiment, is necessary for assigning

values to 𝜇white.

Example 1 If X = [0, 1000] and P = small, since it can be taken ≤small coincident
with the inverse ≥ of the total order ≤ of the real line (x is less small than y ⇔ x ≥ y),
with minimum 1000 and maximum 0, the measures of S = small are the mappings

𝜇S:[0, 1000] → [0, 1],

such that:

(1) 𝜇S is decreasing; (2) 𝜇S (0) = 1; 3) 𝜇S (1000) = 0,

of which there are many. For instance, provided it were known that the measure’s
variation should be linear, the only possible measure is 𝜇S(x) = 1 − x/1000, but if
it were known that it should be quadratic, then among the quadratic ones it can be
chosen 𝜇S (x) = (1 − x/1000)2. Provided it were known that the measure is piecewise
linear, then one of them can be chosen by selecting a number, say 250, such that 𝜇S(x)
= 1 if x ∈ [0, 250], and 𝜇S (x) = (1000−x)/750 if x ∈ (250, 1000]. Etc.

Hence, additional information on the variation of the measure should be known, or

supposed, to specify one of them. In any case, the measure will be suitable depending

on the correctness of such knowledge and/or hypotheses. Not only a good enough

knowledge of X, but also of the context on which P is applied to X, should be known

to capture the ‘current meaning’ of P in X.

Notice that if X is an interval [0, M] of the real line, and ≤P can be identified with

either ≤, or ≥, there is just a single linear measure 𝜇P (x) = ax + b since, in the first

case it is 𝜇P (0) = 0 and 𝜇P (M) = 1, with which b = 0, a = 1/M, and 𝜇P (x) = x/M,
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and in the second it is 𝜇P (0) = 1, 𝜇P (M) = 0, with which b = 1, a = -1/M, and 𝜇P
(x) = 1 - x/M. This is the former case in which M = 1000.

Once a measure 𝜇P is specified, the quantity (X, ≤P, 𝜇P) will be called a meaning
of P in X. It represents what is known on both the qualitative use of P in X, and the

context and, perhaps, also the purpose with which it is used. At the end, the concept

of meaning is here interpreted following the Wittgenstein’s idea that “he meaning of

a word is its use in language” [31]. Different uses of the same P, given by different

relations ≤P, or different measures 𝜇P, generate different meanings.

Once a measure is given, the new relation defined by,

x ≤
𝜇p

y ⇔ 𝜇P(x) ≤ 𝜇P(y),

is not only reflexive, anti-symmetric and transitive (a partial order), but a total

one since it is always either 𝜇P(x) ≤ 𝜇P(y), or 𝜇P(x)≥ 𝜇P(y). This new relation ver-

ifies [4],

≤P ⊆≤
𝜇p
,

since: x ≤P y ⇒ 𝜇P (x) ≤ 𝜇P (y) ⇔ x ≤
𝜇p

y. That is, the measure extends the

primary meaning; after actually measuring P its meaning grows in the difference-

set ≤
𝜇p

− ≤P that, provided is non-empty, adds the information supplied by the

measure to the primary or qualitative meaning. In general, it can be said that the act

of measuring changes the primary meaning of the predicate.

As ≤P is not always a total, or linear, relation, both relations cannot coincide in all

cases, and when ≤P is total and coincides with either ≤
𝜇p

, or ≤−1
𝜇p

, it is said that the

measure perfectly reflects [5] the primary meaning of P in X. This is, for instance,

the case of the former example in which ≤small = ≥ = ≤−1
𝜇s

. It is also the case with

the predicate big for which ≤big = ≤ allows to specify a measure, for instance the

only linear one 𝜇big (x) = x/1000, and then ≤big = ≤
𝜇big.

Remarks

(a) Provided ≤P is a preorder, that is, a reflexive and transitive relation, the relation

‘equally P than’, defined by:

=P =≤P ∩ ≤
−1
P ,

under which it is [5],

x =P y ⇔ x ≤P y& y ≤P x,

is a relation of equivalence. This equivalence gives the quotient-set X/ = P,

whose elements are the classes

[x] = {z ∈ X; x =P z}
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consisting of those elements that are equally P than its representative. Provided

there is a measure 𝜇P, it is constant in each equivalence class, since:

z ∈ [x] ⇒ x ≤P z& z ≤P x ⇒ 𝜇P(x) ≤ 𝜇P(z)&𝜇P(z) ≤ 𝜇P(x) ⇒ 𝜇P(z)
= 𝜇P(x).

Consequently, if the primary meaning ≤P is reflexive and transitive, once the

quotient set is partially ordered by

[x] ≤∗
P [y] ⇔ x ≤P y,

a definition not dependent on the representatives of the classes, it can be defined

a measure in X/ = P by

𝜇

∗
P([x]) = 𝜇P(x).

All that gives the quantity (X / = P, ≤
∗
P, 𝜇

∗
P) that also can serve to define a mean-

ing of P in X. Obviously, the number of classes equals that of the different values

the measure takes. For instance, in the case of the predicate big in [0, 1000], it

is x =big y ⇔ x = y, and [x] = {x}, the classes are reduced to singletons. In

the case of predicate prime in the set of positive integers, there is just one class

consisting of all the prime numbers.

(b) In language predicates appear when they are applied to a first universe of dis-

course, possibly after some previous trials consisting in observing and recogniz-

ing some property of its elements. For instance, large was perhaps used by the

first time applied to stones, trees, mountains, lakes, etc., and further on passed

to other objects like rivers, roads, buildings, etc., and finally to numbers. When

applying an old predicate to new elements, the ‘history’ of its former uses is a

help for the new application.

In the same vein, a word P designating a property can be understood in differ-

ent ways by a group of people. For instance if, in a measurable case, n persons

manage P in X each one with a meaning (X, ≤
k
P, 𝜇

k
P), 1≤ k ≤ n, and the inter-

section ≤P = ≤
1
P ∩ ≤

2
P … ∩ ≤

n
P is not empty [5], the group can agree on the

common primary meaning ≤P, and the measure 𝜇P = min (𝜇
1
P, 𝜇

2
P , … , 𝜇

n
P),

as the accepted common meaning of P in X. Provided the intersection of the n

relations ≤
k
P were empty, or there were no agreement on it as a common use,

the group can accept either a partial non-empty intersection, or one of the indi-

vidual meanings. In other case, no common understanding of P in X is possible.

Possibly, it is the need of communication between humans that motivated and

motivates the acceptance of common meanings like those appearing in the dic-

tionaries. It also seems to be the starting point for negotiating.

(c) Since, in the praxis, a predicate P is usually managed in X by a measure once it

is specified, only the relation ≤
𝜇p

is known by the practitioner. For this reason,

≤
𝜇p

will be called the ‘working meaning’ of P in X. Notice also that usually is

not easy to know the full relation ≤P when, for instance, there is a big amount

of links between the elements in X; for this reason, sometimes 𝜇P is build up
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only with the help of context information, and it is not well known if it verifies

the properties of a measure. In this frequent praxis’ situation, the function 𝜇P
should be viewed as an approximation to a measure with an unknown error.

3 Fuzzy Sets

3.1

Once a quantity (X, ≤P, 𝜇P) reflects what is known on the use, or meaning, of P in

X, the following new terminology can be introduced [4]:

Fuzzy setsP,Q, etc., are entities mathematically created under the following rules:

1. P = Q ⇔ (X, ≤P, 𝜇P) = (X, ≤Q, 𝜇Q)

2. P ⊆ Q ⇔ 𝜇P(x) ≤ 𝜇Q(x), for all x in X

3. x ∈r P⇔ r = 𝜇P(x), read ‘x belongs to P with degree of membership r ∈ [0, 1]’.

4. The predicate P is called the linguistic label of the fuzzy set P, and the measure

𝜇P its membership function. For short, P is called ‘the fuzzy set P’.

Example 2 If ([0, 1000], ≤, id/1000) is the quantity representing the use of the
predicate big in [0, 1000], it specifies the fuzzy set B1, with membership function
𝜇

1
big(x) = x/1000, with which it is 500 ∈0.5 B1, 250 ∈0.25 B1, 750 ∈0.75 B1, 0 ∈0 B1,

1000 ∈1 B1, etc.
The same predicate big can also be represented by the different quantity ([0,

1000], ≤, (id/1000)2), specifying the fuzzy set B2, with membership function 𝜇

2
big

(x) = x2/106, with which 500 ∈0.25 B2, 750 ∈0.5625 B2, etc., and that from x2/106 ≤
x/10 shows B2

⊆ B1 and B2 ≠ B1.

This example shows that the collective [P], linguistically generated in X by a

predicate P [4], cannot be confused with those fuzzy sets specifying the predicate

from the information available on its current use. In this sense, the fuzzy sets P can be

seen as states of the collective [P] generated by the predicate; the collective consists

in all the states shown by the corresponding fuzzy sets. The former predicate big
in [0, 1000], for instance, generates a linguistic collective [big] consisting in states

like B1
, B2

, etc. The collective [big] can be seen as defined by all the many actual

quantities defined by the properties:

(1) If x ≤ y, then 𝜇big (x) ≤ 𝜇big (y);

(2) 𝜇big (0) = 0;

(3) 𝜇big (1000) = 1,

once accepted that ≤big is coincidental with the linear order ≤ of the real line.

That is, by all the functions 𝜇big: [0, 1000] → [0, 1] verifying (1) and under the

border conditions (2) and (3). The collective appears as the set of all solutions of a

constrained functional inequality, that is, of all measures of a measurable predicate,
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once accepted that ≤P describes its qualitative use. Each measure is specified by tak-

ing into account some contextual information on the particular use of the predicate;

meaning is not unique but context-dependent.

In language, measurable predicates are usually imprecise, or flexible, that is,

accepting measures taking some values different from 0 and 1. Whenever a pred-

icate is precise, rigid, or not imprecise, it only accepts measures with values in {0,

1}. In Fuzzy Logic precision is seen as a degenerate, isolate, case of imprecision.

3.2

Consider the typically rigid predicate, P = prime in the universe N of natural num-

bers. The use of P is known by stating the elemental statements “n is P” from the

if-and-only-if definition:

n is prime ⇔ the only divisors of n are n and 1,

with which it is just the dichotomous possibility that, given a natural number p,

either p is prime, or p is not prime but composed. Set N is perfectly classified in the

two subsets of prime and composed numbers.

Without introducing a new iff definition, given two natural numbers there is no

way of establishing if one of them is less prime than the other. Different prime num-

bers are equally prime, composed numbers are not comparable by being one less

prime than the other, and given a prime and a composed the second is less prime

than the first. For instance, the prime numbers 5 and 103 are just equally prime, the

numbers 12 and 24 are not comparable, and given 12 and 3, it is obviously 12 less

prime than 3. Hence, the relation ≤P is reduced to:

n ≤P m ⇔ both n and m are primes, or n is composed and m is prime. Conse-

quently, since there is no initial way of distinguishing between prime numbers, the

only admissible measure is given by.

𝜇P(q) = 1 if q is prime, 𝜇P(q) = 0 if q is composed,

that actually verifies n ≤P m ⇒ 𝜇P(n) ≤ 𝜇P(m), and preserves the axioms for

maximals and minimals.

3.3

Mutatis mutandis, a rigid predicate P on X denotes a property p such that the elements

of X either completely verify it, or not verify it at all: the use of P in X can be defined

by an iff condition: “x is P” ⇔ such and such. Hence, X is completely classified in

those elements that fully satisfy p, and those that do not satisfy p at all. The rigid
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predicate P is completely specified by the only set

P = {x ∈ X; x fully satisfies p},

whose elements are the maximals for ≤P. Consequently, there is a single quantity

(X, ≤P, 𝜇P) with

(a) x ≤P y ⇔ Either x, y ∈ P, or x ∈ Pc
and y ∈ P,

(b) 𝜇P(x) = 1 if x ∈ P, and 𝜇P(x) = 0 if x ∈ Pc
,

with which it follows,

𝜇

−1
P (1) = P, 𝜇−1

P (0) = Pc
.

Thus, in the case of a rigid predicate P is

[P] = P = 𝜇

−1
P (1),

the collective is reduced to the set specifying the predicate in X, that, at its turn,

coincides with the anti-image of 1 by the membership function, now reduced to be a

mapping X → {0, 1}. Rigid predicates are specified by a single fuzzy set that is just

a set, and sets are known in Fuzzy Logic as crisp sets.

Notwithstanding, in Fuzzy Logic there are used singular fuzzy sets whose use is

also degenerate; for instance, the fuzzy setsK specified in X by the constant functions

𝜇k (x ) = k ∈ [0, 1],

Remarks

1. The denotation of a fuzzy set P will be sometimes shortened by just naming them

by its membership function 𝜇P.

2. The classical symbols ∈ and ∉, do correspond to the new symbols ∈1 and ∈0,

respectively.

3. The constant fuzzy sets given by the constant membership functions 𝜇0 and 𝜇1
correspond to the sets ∅ and X. The other constant fuzzy sets K, represented by

the membership functions 𝜇k, with 0 < k < 1, 𝜇k (x) = k, are neither with, nor

without points, that is, for no x in X is x ∈1K, or x ∈0K. In this sense, fuzzy sets

K are singular fuzzy sets.

4. The only set that is self-contradictory is the empty set since it is A ⊆ Ac ⇔ A

= ∅, but this is not the case with fuzzy sets. Once the concept of negation is

introduced by associating to each fuzzy set 𝜇P another 𝜇P’ = 𝜇notP, there can be

many fuzzy sets such that 𝜇P ≤ 𝜇P’. For instance, were 𝜇P’ = 1−𝜇P, it will be

𝜇P self-contradictory if and only if it is 𝜇P(x) ≤ 0.5 for all x in X, or 𝜇 ≤ 𝜇0.5,

and, even if there can be points x such that 𝜇P(x) = 0, that is x ∉ P, since 0.5 <

1 there cannot exist any point x such that 𝜇P(x) = 1, no point x in X verifies x ∈
P. As it will be shown latter on, no self-contradictory fuzzy set can have points

totally belonging to it. Perhaps, that the empty set ∅ is self-contradictory, that it

has no a single element, is what makes it difficult (for children) to accept it as a

true set.
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5. Points x such that x ∈ P, with degree one of membership to P, are those recog-

nized as totally verifying the property named by the predicate P. They can be seen

as the prototypes for P in X. Analogously, those x such that x ∉ P, with degree

zero of membership to P, are those recognized as non verifying at all the property

named by P, and can be seen as the anti-prototypes for P in X. Self-contradictory

fuzzy sets have no prototypes.

Both prototypes and anti-prototypes can help to evaluate, through comparison

with them, the degree of membership to P of the other elements in X. In this

sense, those fuzzy sets without prototypes or ant-prototypes can be seen, up to

some extent, as “rare” fuzzy sets since they are without, respectively, maximals

or minimals for the perceptive relation ≤P. For instance, provided the predicate

big were used in the set of positive real numbers R+
, including zero, with ≤P =

≤, and the non-decreasing membership function 𝜇big (x) = x/(x
2
+1)

1∕2
, it is 𝜇big

(0) = 0, accordingly with the fact that 0 is the minimum for ≤, but for no x is

𝜇big(x) = 1, accordingly with the lack of maximals for ≤. In this example, big
has no prototypes in R+

= [0, + ∞). Nevertheless, since it is limx→+∞ 𝜇big (x) =

1, there are many x ∈ R+
for which the corresponding value 𝜇big (x) is as closer

as wished to 1; these x could be called prototypes approximated up to the degree

1 −𝜇big (x).

6. It should be pointed out at once that specifying a imprecise predicate is a more

complex problem than that of specifying a precise one. This, of course, does

not mean that for precise predicates it is easy to recognize the elements with

membership one as it is, for instance, with the predicate transcendent in the real

line as the negation of algebraic.

4 Opposites and Negations

4.1

Predicates are (linguistic) terms, and also its opposites are terms, but their negations

are not so. For instance, the term big is in dictionaries, and so it is the opposite term

small, but it is neither the negation not big, nor the negation not small. If it has sense

to search for the opposites and the negations of big, what has no sense is to search

for an opposite of not big, unless accepting the rule ‘opposite of not P = not opposite

of P’, under which an opposite of not big will be not small.
If a predicate is measurable in X, are their opposites also measurable in X? Pro-

vided a predicate is specified in X by a quantity (X, ≤P, 𝜇P), is there a quantity

specifying an opposite, or antonym, aP?

In the case of big in [0, 10], it is ≤big = ≤, and a (big) = small is with ≤small = ≥:

x is less big than y ⇔ y is less small than x,
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accordingly with the same idea of opposition. Hence, since it can be always supposed

that a(aP) coincides with P, it is ≤aP = ≤
−1
P , the qualitative behavior of aP in X is

described by the graph (X, ≤
−1
P ), and aP is measurable.

To actually measure aP, and continuing with the idea that it is an opposite of P,

it can be taken a symmetry [6] sP : X → X, that is, a bijective mapping such that

s2P = idX , verifying [x ≤P y ⇒ sP (y) ≤P sP (x)], and defining:

𝜇aP = 𝜇P◦sP

that is,

𝜇aP(x) = 𝜇P(sP(x)), for all x in X.

This mapping verifies (shortening it by s):

(1) If x ≤aP y ⇔ x ≤
−1
P y ⇔ y ≤P x ⇒ s (x) ≤P s (y) ⇒ 𝜇P (s (x)) ≤ 𝜇P (s (y)) ⇔

𝜇aP (x) ≤ 𝜇aP (y),

(2) Since if z is a maximal for ≤aP, then s (z) is so for ≤P : 𝜇aP (z) = 𝜇P (s (z)) = 1.

(3) Since if z is a minimal for ≤aP, then s (z) is so for ≤P: 𝜇aP (z) = 𝜇 (s (z)) = 0.

Hence, the quantity (X, ≤
−1
P , 𝜇P ◦ s) specifies an antonym aP of P in X.

Notice that 𝜇a(aP) = 𝜇aP ◦ saP = (𝜇P ◦ sP) ◦ saP = 𝜇P ◦ (sP ◦ saP) = 𝜇P provided

sP = saP. Hence, the antonym of the antonym actually coincides with the original

predicate provided the symmetries allowing to specify them can be taken as coinci-

dental.

For instance, with big in [0, 10], it is 𝜇small (x) = 𝜇big (10−x) = (10−x)/10 = 1−
x/10, with s (x) = 10−x that verifies s2(x) = s (10−x) = x, and x ≤small y ⇔ y ≤ x

⇒ 10−x ≤ 10-y ⇔ s (x) ≤ s (y). With it, the maximum 10 for big is the maximum

s(10) = 0 for small, and the minimum 0 for big is the minimum s (0) = 10 for small:

𝜇small (0) = 1 and 𝜇small (10) = 0. Since it can be taken ssmall = s big = 10−id, it is

a(small) = a (a(big)) = big.
Of course, with each symmetry s in X the use of an opposite is reached, and the

question that remains is to know if these symmetries can be freely taken. The answer

is not. Examples like

‘If the bottle is full, it is not empty’,

with ‘full’ the antonym of ‘empty’, reveal the non reversible rule

If x is aP, then x is not P,

that can be translated into membership functions by

𝜇ap(x) ≤ 𝜇notP(x), for all x in X,

or
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𝜇ap ≤ 𝜇notP ⇔ 𝜇P◦s ≤ 𝜇notP,

showing that the symmetry s should respect this inequality. In the extreme case in

which aP coincides with not P and the sign equal holds in last functional inequality,

it is said that aP is a non-regular antonym.

Notice that the rule is not reversible since it is not, for instance, ‘If the bottle is

not empty, it is full’; in general, with the exception of a non-regular antonym, it is

not “If x is not P, then it is x is aP”. This is the beforehand case of big and small,
since with 𝜇notP (x) = 1−𝜇P(x), is 𝜇small (x) = 1−x/10 = 1−𝜇big (x) = 𝜇notbig (x).

Hence, supposing that not P is specified by

𝜇notP (x) = N(𝜇P (x)), for all x in X [7],

with a numerical function N : [0, 1] →[0,1], there should be kept the inequality

𝜇P◦s ≤ N◦𝜇

constraining both mappings s and N.

4.2

For what concerns the negation not P = P’ of P, the only that can be presupposed in

general is that [4],

x ≤P′ y ⇒ y ≤P x, that is,≤P′⊆≤
−1
P .

For instance, if it seems to be “x is less not hot than y” if and only if “y is less hot

than x”, there are more sophisticated cases in which there is not equivalence between

both conditionals since not always it is not (not P) coincidental with P, as it happens,

for instance, when not all that can be qualified as not P is completely known. This

is, in Prolog, the case of the ‘negation by failure’. Provided the primary meaning of

P’ in X can be described by a graph (X, ≤P′ ), are there effective measures of it? The

answer is yes, but with some conditions on the maximals and the minimals.

Consider the mappings (negation functions) N: [0, 1] → [0, 1], such that,

1. N (0) = 1, and N (1) = 0

2. If a ≤ b, then N (b) ≤ N (a),

and define

𝜇P′ = NP◦𝜇P,

with a suitable function N. Then,
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(a) x ≤P′ y ⇒ y ≤P x ⇒ 𝜇P (y) ≤ 𝜇P (x) ⇒ NP (𝜇P (x)) ≤ NP(𝜇P (y)) ⇔ 𝜇P′ (x) ≤

𝜇P′ (y),

(b) Provided the minimals for ≤P′ are maximals for ≤P: 𝜇P′ (z) = NP (𝜇P (z)) = NP
(1) = 0,

(c) Provided the maximals for ≤P′ are minimals for ≤P: 𝜇P′ (z) = NP(0) = 1,

thus, under these hypotheses NP ◦ 𝜇P can be taken as a measure for P’. Notice that

provided it were ≤P′ = ≤
−1
P , (b) and (c) will hold by the same reason they hold with

the opposite.

Were the ‘not’ involutive, that is, P coincidental with not (not P), function NP
should allow to have 𝜇(P′)′ = NP′ ◦ 𝜇P′ = NP′ ◦ (NP ◦ 𝜇P) = (NP′ ◦ NP) ◦ 𝜇P =

𝜇P, for which it suffices to have NP′ ◦ NP = id[0,1], or NP′ = NP. Those negation

functions N verifying N2
= N ◦ N = id[0,1], are called strong negation functions, or,

for short, strong negations, and can be characterized in the form [7],

N = 𝜑

−1◦(1 − id[0,1])◦𝜑,

or

N (x) = 𝜑

−1(1 − 𝜑(x)), for all x in X,

with 𝜑: [0, 1] → [0, 1], strictly non-decreasing and such that 𝜑 (0) = 0, and 𝜑

(1) = 1. That is, 𝜑 is an auto-morphism of the ordered unit interval ([0, 1], ≤) of the

real line; obviously, strong negations are strictly decreasing functions and, hence,

continuous functions. The auto-morphism 𝜑 is not unique, but there can be several

of them giving the same strong negation.

Notice that negation functions can verify,

N◦N ≤ id[0,1], or id[0,1] ≤ N◦N,

and that among them the only continuous are the strong negations N ◦ N = id[0,1].
The first negation functions are called ‘ordinary’ and the second ‘weak’; of course,

those that are both ordinary and weak are the strong ones. Provided N2
were not

comparable with the identity id[0,1], the negation function will be considered a rare

one.

With the order auto-morphisms,

𝜑(x) = ln (1 + 𝜏x𝜔)1∕𝜏 , 𝜏 > −1, 𝜔 > 0,

where ln shortens logarithm in the base e, is obtained the bi-parametric family of

strong negations

N(x) = (1 − x
𝜔∕1 + 𝜏x𝜔)1∕𝜔.

With 𝜔 = 1 it appears the single-parameter family

N
𝜏

(X) = 1 − x∕1 + 𝜏x, 𝜏 > −1,
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consisting of the only ‘rational’ strong negations, and called the Sugeno’s family of

strong negations. The only ‘linear’ strong negation is that given by 𝜏 = 0,N0(x) =
1 − x.

It should be pointed out that in fuzzy logic only strong negations are managed,

since they never add discontinuities. Because of strong negations are continuous

negation functions, if 𝜇P is continuous it is also so 𝜇P′ = N ◦𝜇P, and if 𝜇P is discon-

tinuous at some points, 𝜇P′ is only discontinuous at the same points.

A strong negation N has a single fixed point r ∈ (0, 1), that is, such that N
(r) = r. To find it, it suffices to solve the equation 𝜑

−1
(1−𝜑(r)) = r ⇔ 1 = 2𝜑(r), or

r = 𝜑

−1
(1/2), and it is r ≠ 0 and r ≠ 1, since N (0) =1, and N(1)=0. For instance, in

the Sugeno’s family it is: N
𝜏

(r) = r ⇔ 1 − r = r(1 + 𝜏r) if 𝜏 ≠ 0, and 1−r = r if

𝜏 = 0 ⇔ r((1 + 𝜏)1∕2 − 1)∕𝜏, if 𝜏 ≠ 0, and r = 1/2 if 𝜏 = 0.

Hence, a fuzzy set 𝜇 is self-contradictory if and only if

𝜇(x) ≤ 𝜇

′(x) = N(𝜇(x)) ⇔ 𝜇(x) ≤ 𝜑

−1(1∕2), for all x in X ⇔ 𝜇 ≤ 𝜇

−1
𝜑(1∕2).

It follows that no self-contradictory fuzzy sets can have prototypes, although it can

have anti-prototypes. It should be pointed out that this result concerns a given strong

negation N, and that the fuzzy sets that are ‘absolutely’ non-self-contradictory, or

non-self-contradictory for all strong negation, are those 𝜇 that, for any r ∈ (0, 1),

there exist points x ∈ X such that 𝜇(x) > r; for instance, those with prototypes also

called normalized fuzzy sets.

Notice that since it is N (0) = 1, and N (1) = 0, provided it were𝜇P the membership

function of a crisp set P, it will be 𝜇P′ (x) = N (𝜇P(x)) ∈ {0, 1}, changing 0 in 1,

and 1 in 0. That is, 𝜇P′ is also the membership function of the crisp set 1 −𝜇P, that

is, Pc
. In this case, all the strong negations collapse in N0.

Examples in X = [0,1]
1. Define 𝜇

∗
P (x) = 1−𝜇P (1−x). It is easy to check that:

∙ There is no negation function N such that 𝜇
∗
P = N o 𝜇P. That is, the operation

* is not decomposable, or functionally expressible.

∙ 𝜇

∗
0 = 𝜇1, 𝜇

∗
1 = 𝜇0

∙ If 𝜇P ≤ 𝜇Q, then 𝜇

∗
Q ≤ 𝜇

∗
P

∙ 𝜇

∗∗
P = 𝜇P

∙ 𝜇

∗
P(x) = 1 ⇔ 𝜇P(1 − x) = 0.

Hence, the mapping given by 𝜇P → 𝜇

∗
P is a ‘symmetry’ for fuzzy sets that

seems to be a strong negation. But it is not so since it does not preserve the

complements of crisp sets: if P is a crisp set in [0, 1], it is x ∈ Pc ⇔ 1−x

∈ P∗
, hence, for instance, it is [0, 0.8]

c
= (0.8, 1], but [0, 0.8]

∗
= [0, 0.2).

Consequently, the mapping * cannot define a negation for fuzzy sets.

Notice that the fixed ‘points’ are those fuzzy sets 𝜇 such that 𝜇(1−x) + 𝜇(x)

= 1 as, for instance, 𝜇= id[0,1], 𝜇 = 1−id[0,1], [1/3, 2/3], and [0, 1].

2. The interval P= [0.4, 0.7] specifies the precise predicate P = between 0.4 and 0.7,

and its negation is specified by the complement P’ = [0.4, 0.6]
c

= [0, 0.4] ∪ [0.7,
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1]. Nevertheless, since 𝜇aP (x) = 𝜇P (1−x) =1 ⇔ 0.3 ≤ x ≤ 0.6, it is aP = [0.3,

0.6], not verifying aP ⊆ P’ since, for instance, 0.5 is in aP but not in P’. Hence,

either the predicate P lacks an antonym, or it should be searched by means of a

symmetry different from s (x) = 1−x, or the negation of P, not between 0.4 and
0.7, should be taken as the opposite. For instance, provided the Sugeno’s strong

negation with 𝜏 = 2 could be taken as a suitable symmetry, it is

𝜇aP(x) = 𝜇P(1 − x∕1 + 2x) = 1 ⇔ x ∈ [1∕8, 1∕3],

gives aP = [1/8, 1/3] ⊆ P’, and it can be taken aP = between 1/8 and 1/3.
It is neither sure that a suitable functionally expressible symmetry s : X → X

to express the opposite, nor a suitable functionally expressible negation function

N : [0, 1] → [0, 1] to express the negation, can always exist. Anyway, if existing,

as it is always supposed in the applications of fuzzy logic, they should verify the

‘compatibility condition’

𝜇◦s ≤ N◦𝜇.

Examples like the last one with between 0.4 and 0.7, suggest the necessity of

doing some controlled experimentation in language for knowing which pairs (sP,

NP) are suitable at each case; of course, the case of mathematical language is the

less important one.

5 Conjunction and Disjunction

5.1

Let P and Q be two measurable predicates in the same universe of discourse X:

Provided ’P and Q’, and ’P or Q’, are defined by:

∙ x is (P and Q) ⇔ (x is P) and (x is Q)

∙ x is (P or Q) ⇔ (x is P) or (x is Q),

are they measurable predicates?

Let’s try to answer this question on the following conditions,

(1) The primary meanings of ‘P and Q’, and ‘P or Q’, based on the primary mean-

ings of P and Q, respectively, are known. It will suffice for it to find operations

F and G such that

≤PandQ= F(≤P,≤Q),≤PorQ= G(≤P,≤Q).

(2) Once respective measures 𝜇P and 𝜇Q are given, it will suffice to find functions

f and g, such that
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𝜇PandQ = f(𝜇P, 𝜇Q), 𝜇PorQ = g(𝜇P, 𝜇Q)

become measures for ‘P and Q’, and ‘P or Q’, respectively.

Functions f are called conjunctions, and functions g disjunctions.

5.2

Concerning the conjunction and, it seems to be also acceptable that at least [5], it is,

≤PandQ ⊆≤P ∩ ≤Q,

with which it is

x ≤PandQ y ⇒ x ≤P y& x ≤Q y.

Then, it suffices to have monotonic binary operations ⋅ in [0, 1] with neutral 1 and

absorbent 0, for continuing last formula by

𝜇P(x) ≤ 𝜇P (y)&𝜇Q (x) ≤ 𝜇Q (y) ⇒ 𝜇P(x) ⋅ 𝜇Q (x) ≤ 𝜇P(y) ⋅ 𝜇Q (y) ⇔
𝜇PandQ(x) ≤ 𝜇PandQ(y),

and the mapping defined by

𝜇PandQ = 𝜇P ⋅ 𝜇Q

verifies the first property of a measure for ‘P and Q’. Provided if z is a maximal

for ≤PandQ, it is so for both ≤P and ≤Q, follows 𝜇PandQ (z) = 1.1 = 1. Provided z

is a minimal for ≤PandQ it is so for, at least, one of the relations ≤P, ≤Q, and it is

analogously 𝜇PandQ (x) = 0. That is, under some reasonable hypotheses, 𝜇P ⋅ 𝜇Q is

a measure for ‘P and Q’.

Remarks

(a) The only that has been proven here is that there are ways of expressing the behav-

ior of ‘P and Q’ by a quantity; that on some conditions this predicate can be mea-

surable. Of course, it does not mean that in all cases 𝜇PandQ will be functionally

expressible by a numerical operation like the ⋅ before considered [26].

(b) The particular case in which ≤PandQ = ≤P ∩ ≤Q, assures that if ≤P and ≤Q are

preorders also ≤PandQ is so.

(c) No hypotheses on the commutativity, associativity, etc., of the conjunction and
are necessary for just studying its measurability.

(d) Obviously, provided the fuzzy sets P and Q are crisp sets, 𝜇P ⋅ 𝜇Q gives the crisp

set P ∩ Q, since the restriction of the operation ⋅ to {0, 1} is min.
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5.3

For what concerns the disjunction or, in the first place it should be noticed that, in

general, it is not acceptable the identity ≤PorQ = ≤P ∪ ≤Q, since when both relations

≤P and ≤Q are preorders it can’t be assured that ≤PorQ is so [5]. The only acceptable

is the inclusion ≤P ∪ ≤Q ⊆ ≤PorQ, that shows ≤PorQ is not empty, and seems to

suggest the identification of this last relation with the minimum one containing both

≤P and ≤Q, that is, to identify ≤PorQ with the direct-sum, ≤P
⨁

≤Q, or closure

of both relations that, if both are preorders, is also a preorder. In this form, and for

instance, if there is a P-arc joining x and y, and a Q-arc joining y and z, there is a

(P or Q)-arc joining x and z. Were this identification accepted, with any monotonic

binary operation + in [0, 1] with neutral 0, and absorbent 1, it can be said:

∙ x ≤PorQ y ⇔ x ≤P y or x ≤Q y ⇒ 𝜇P(x) ≤ 𝜇P(y) or 𝜇Q (x) ≤ 𝜇Q (y) ⇒ 𝜇P(x) +

𝜇Q(x) ≤ 𝜇P(y) + 𝜇Q(y).

∙ If z is a minimal for ≤PorQ, and it is so for both ≤P and ≤Q : 𝜇P(z) + 𝜇Q (z) = 0

+ 0 = 0.

∙ If z is a maximal for ≤PorQ, and it is so for, at least, one of the relations ≤P and

≤Q: 𝜇P(z) + 𝜇Q (z) = 1+something, or something +1, or 1 + 1 = 1.

That is, under some reasonable hypotheses, 𝜇P + 𝜇Q is a measure for ‘P or Q’.

Remarks

(a) The only that is proven here is that on some conditions from the measurability of

P and Q, it follows that of ‘P or Q’. What is not at all proven is that the measure

for ‘P or Q’ should be always functionally expressible [26] from those of P and

Q by a numerical operation like +.

(b) No hypotheses on the commutativity, associativity, etc., of the disjunction or are

necessary for just studying its measurability.

(c) Obviously, provided the fuzzy sets P and Q are crisp sets, 𝜇P + 𝜇Q gives P ∪
Q, since the restriction of + to {0, 1} is max.

(d) The operations ⋅ and + are mappings

[0, 1]X × [0, 1]X → [0, 1]X ,

corresponding, respectively, to the models ⋅ = min, and + = max, but not con-

strained by properties like 𝜇 ⋅ 𝜇 = 𝜇, and 𝜇 + 𝜇 = 𝜇, typical of these two opera-

tions. As it is well known the family of t-norms, and that of t-conorms [8], verify

the basic properties of both operations but adding those of commutativity, asso-

ciativity, etc. , only necessary in some particular cases; among copulas [8] some

less restrictive examples can be found.

Since it is not always the case that (x is P and P) does coincide with (x is P),

it is convenient to have operations preserving such cases, as it is with the con-

tinuous t-norms called ordinal-sums [8] that, notwithstanding, are never used in

the applications since they have not too much simple mathematical expressions.
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The most popular continuous t-norms are, apart from min, the product (prod),

the Lukasiewicz (W), and their 𝜑-transforms:

∙ prod
𝜑

(x,y) = 𝜑

−1
(prod (𝜑(x), 𝜑(y))= 𝜑

−1
(𝜑(x) ⋅ 𝜑(y)),

∙ W
𝜑

(x,y) = 𝜑

−1
(W (𝜑(x), 𝜑(y)) = 𝜑

−1
(max(0, 𝜑(x) + 𝜑(y)-1),

for all auto-morphism 𝜑 of the ordered unit interval in the real line, like, for

instance,

∙ 𝜑(x) = x
r
, r a rational number, with which it is W

𝜑

(x, y) = (max(0, x
r

+

y
r−1))

1∕r
, and prod

𝜑

= prod.

∙ 𝜑(x) = 2x/1+x, with which it is prod
𝜑

(x, y) = 2xy/(1+ y−x + xy).

Notice that prod (𝜇P(x), 𝜇P(x)) = 𝜇P(x)
2 ≠ 𝜇P(x), except if the value of 𝜇P(x)

is 0 or 1. Analogously, W (𝜇P(x), 𝜇P(x)) = max(0, 2𝜇P(x)−1) ≠ 𝜇P(x), except

if the value of 𝜇P(x) is 0 or 1.

To know something on non decomposable connectives, and particularly on nega-

tions, see [26].

(e) It lacks to develop the study of the connectives and, or, when the predicates are

acting on different universes of discourse.

6 Constrained, Qualified and Modified Predicates

6.1

Let (X, ≤P, 𝜇P) and (Y, ≤Q, 𝜇Q) two quantities representing the behavior of the

measurable predicates P in X, and Q in Y.

Each non-empty relation

R(P, Q) ⊆ X(P) x Y(Q) : (x is P, y is Q) ∈ R(P, Q),

allows to define the constrained predicate Q/P = ‘Q if P’, on X x Y, by [5],

(x, y) is Q/P ⇔ (x is P, y is Q) ∈ R(P, Q),

of which an example is obtained when the first term, (x, y) is Q/P, is interpreted as

the conditional statement ‘If x is P, then y is Q’.

Provided Q/P is measurable by means of a quantity (X x Y, ≤Q∕P, 𝜇Q∕P), could it

be studied how to express 𝜇Q∕P by means of 𝜇P and 𝜇Q?

A measure 𝜇Q∕P is said to be functionally expressible or decomposable, if there

exists a function

J: [0, 1] × [0, 1] → [0, 1],
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such that, 𝜇Q∕P (x,y) = J(𝜇P(x), 𝜇Q(y)) for all (x, y) ∈ X x Y. Let’s see which prop-

erties can be required for J in several cases.

(a) Provided it were ≤Q∕P = ≤P x ≤Q, it will suffice that J be non-decreasing in its

two variables to have,

(x1, y1) ≤Q∕P (x2, y2) ⇔ x1 ≤P x2 & y1 ≤Q y2 ⇒ 𝜇P(x1) ≤ 𝜇P(x2) & 𝜇Q(y1)

≤ 𝜇Q(y2) ⇒ J(𝜇P(x1), 𝜇Q (y1)) ≤ J(𝜇P(x2), 𝜇Q (y2)) ⇔ 𝜇Q∕P (x1,y1) ≤ 𝜇Q∕P
(x2,y2).

For what concerns the minimals and the maximals, it suffices that J also verify

J(0,0) = 1, and J(1,1) = 1. Since usually Q/P ≠ P/Q, J will be non-commutative

in general; for instance,

J(x, y) = T(xr
, y),

with a t-norm T (min, prod, W, …), and r > 0, is an example for this case and the

most used of these J in the applications of fuzzy logic, is with either T = min,

or T = prod, and r = 1. The t-norm W, as well as their 𝜑-transforms W
𝜑

, are

never used since they have zero-divisors: W
𝜑

(a, b) = 0 ⇔ 1 ≤ 𝜑(a) + 𝜑(b), and

then a rule ‘If x is P, then y is Q’ can verify the non desirable property 𝜇Q∕P(x,

y) = J(𝜇P(x), 𝜇Q(y)) = 0 with 𝜇P(x) > 0, and 𝜇Q(y) > 0: that is, the degree

up to which the rule holds is zero with both its antecedent and consequent with

a positive degree.

(b) Provided it were ≤Q∕P = ≤P x ≤
−1
Q , it will suffice that J be non-decreasing in its

first variable and decreasing in the second to have:

(x1, y1) ≤Q∕P (x2, y2) ⇔ x1 ≤P x2 & y2 ≤Q y1 ⇒ 𝜇P(x1) ≤ 𝜇P(x2) & 𝜇Q(y2)

≤ 𝜇Q(y1) ⇒ J(𝜇P(x1), 𝜇Q (y1)) ≤ J(𝜇P(x2), 𝜇Q (y2)) ⇔ 𝜇Q∕P (x1,y1) ≤ 𝜇Q∕P
(x2,y2).

For what concerns the minimals and the maximals, it suffices that J also verify

J(0, 1) = J(1, 0) = J(1, 1) =1. An example is given by J(a, b) = max(a, 1−b).

(c) Provided it were ≤Q∕P = ≤
−1
P x ≤Q, it will suffice that J be decreasing in its

first variable and non-decreasing in the second, with J(0, 0) = J(0, 1) = J(1,

1) = 1 and J(1,0) = 0. Example are given by J(a, b) = max(1−a, b), and J(a, b)

= 1−a(1−b), that correspond to the classically called ‘implication functions’.

Another example is given by the functions J(x, y) = Sup {z ∈ [0, 1]; T(x, z) ≤

y} (called residuated implications), that are non functionally expressible unless

if T = W
𝜑

, and that come from the identity p + q’ = Sup {t; p ⋅ t ≤ q} of the

so-called classical material implication, that is only valid in complete Boolean

algebras.

Etc.
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6.2

Let it be (X, ≤P, 𝜇P) the quantity describing the use, or meaning, of a predicate P in

X, and the range 𝜇P(X) ⊆ [0, 1], as well as a measurable predicate 𝜏 acting on 𝜇P(X)

under a relation ≤
𝜏

= ≤, and a measure 𝜇
𝜏

. Define the qualified predicate ‘P is 𝜏’ in

X, by [5],

x is (P is 𝜏) ⇔ 𝜇P (x) is 𝜏,

and suppose ≤Pis𝜏 ⊆ ≤P.

On these conditions, 𝜇Pis𝜏 = 𝜇
𝜏

o 𝜇P : X → [0, 1], verifies:

x ≤Pis𝜏 y ⇒ x ≤P y ⇒𝜇P(x) ≤ 𝜇P(y) ⇒ 𝜇
𝜏

(𝜇P(x)) ≤ 𝜇
𝜏

(𝜇P(y)) ⇔ (𝜇
𝜏

◦

𝜇P)(x) ≤ (𝜇
𝜏

◦𝜇P)(y).

Provided the maximals and the minimals for ≤Pis𝜏 do coincide with those of ≤P, and

𝜇
𝜏

(0)=0, 𝜇
𝜏

(1)=1, it follows the same corresponding values for them under 𝜇
𝜏

◦ 𝜇P;

in another case, it only holds that 𝜇Pis𝜏 is non-decreasing. Hence, on this condition,

the quantity (X, ≤Pis𝜏 , 𝜇
𝜏

o 𝜇P) mathematically describes the use of ‘P is 𝜏’ in X.

Examples

1. Let P = small in X = [0, 10], with ≤P=≥, and 𝜇P(x) = 1− x/10, with which
𝜇P(X) = [0, 1]. Let 𝜏 =large in [0, 1] with 𝜇

𝜏

=≤, and 𝜇
𝜏

(x) = x, for all x in
[0,1].

Then, ‘P is 𝜏’ = small is large, behaves with the measure:𝜇
𝜏

(1−x∕10) = 1−x∕10,
and it can be said that ‘small is large’ coincides with small.

2. In the former example, change X to [0, 1] with P = large, and 𝜇P(x) = 1− x, and
Y to [0, 10] with 𝜏 = small, and 𝜇

𝜏

(x) = x/10. Then ‘P is 𝜏’ = ‘large is small’ is
represented in [0, 1] by 𝜇

𝜏

(𝜇P(x)) = (1 − x)∕10.

6.3

A linguistic modifier or hedge (m), is an adverb acting on the predicate P just in the

form mP, not to be confused with ‘P is m’. For instance, with P = short and m =

very, it is mP = very short, that has nothing to do with the linguistic absurd ‘short is

very’.

A characteristic distinguishing imprecise from precise predicates is that once P

and m are known, mP is immediately understandable. Instead, if P is precise, usually

mP needs a new definition to be understood, as it happens, for instance, with even and

very even in the set of integers. In principle, adverbs m modify but do not abruptly
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change the meaning of a imprecise predicate, and this is a simple test to identify if

P is either precise or imprecise.

If P in X is with ≤P and 𝜇P, and m acts in 𝜇P(X) ⊆ [0, 1] with ≤ ⊆ ≤m and a

measure 𝜇m, provided it is ≤mP ⊆ ≤P, it can be taken 𝜇mP = 𝜇m ◦ 𝜇P, since [5],

x ≤mP y ⇒ x ≤P y ⇒ 𝜇P(x) ≤ 𝜇P(y) ⇒ 𝜇P(x) ≤m 𝜇P(y) ⇒ 𝜇m(𝜇P(x)) ≤

𝜇m(𝜇P(y)) ⇔ (𝜇m◦𝜇P)(x) ≤ (𝜇m◦𝜇P)(y).

Then, provided there is agreement between the corresponding maximals and min-

imals, mP is measured by this composition of functions.

Remarks

(a) Two important types of modifiers are:

∙ Expansive modifiers, those such that id[0,1] ≤ 𝜇m
∙ Contractive modifiers, those such that 𝜇m ≤ id[0,1].

With the expansive it results 𝜇P ≤ 𝜇mP, and with the contractive 𝜇mP ≤ 𝜇P. This

is what happens with the Zadeh’s definitions

𝜇more or less(a) =
√

a, 𝜇very(a) = a2,

since in [0, 1] it is a
2 ≤ a ≤

√
a.

(b) There are again other modifiers.

∙ Those called internal modifiers, like the antonym, in which the measure of P

is modified by a symmetry in the universe of discourse.

∙ Those called external modifiers, like the negation, whose measure is modified

by a negation function ranging in the set [0, 1] where membership functions

take their values.

7 The Algebras of Fuzzy Sets

7.1

A function 𝜎 ∈ [0, 1]
X

only can represent a fuzzy set provided there is a predicate P

acting in X, such that the quantity (X, ≤P, 𝜇P) is with 𝜇P = 𝜎. Hence, the elements

in the set [0, 1]
X

only ‘potentially are fuzzy sets’, analogously that the elements in

the set {0, 1}
X

are sets in the power-set 2X
, by the equivalence:

A ∈ 2X ⇔ It exists 𝜗 ∈ {0, 1}X
such thatA = 𝜗

−1(1).

Thus, the consideration of the (abstract) algebraic structures that can be build up

from [0, 1]
X

, has sense for theoretically studying both the ‘algebras’ of fuzzy sets in
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themselves, and for doing practical computations once fuzzy sets are combined by

operations like the former ⋅, + , and ’, introduced in the last section. The operations to

be taken into account for obtaining such structures are traditionally fixed by analogy

with what happens with sets, where the axiom of specification states that all precise

predicates P, Q, etc., acting in X specify single subsets P, Q, etc., such that:

∙ If ‘x is P and Q’, it is x ∈ P ∩ Q
∙ If ‘x is P or Q’, it is x ∈ P ∩ Q
∙ If ‘x is not P’, it is x ∈ Pc

∙ If ‘If x is P, then x is Q’, it is P ⊆ Q,

with 𝜇P∩Q = min(𝜇P, 𝜇Q), 𝜇P∩Q = max(𝜇P, 𝜇Q), and 𝜇

c
P = 1−𝜇P. Then with

fuzzy sets in [0, 1]
X

, it will be:

(1) P ∩Q (intersection or conjunction), defined by 𝜇P∩Q = 𝜇P ⋅ 𝜇Q, with a suitable

binary operation ⋅ : [0, 1]
X

x [0, 1]
X → [0, 1]

X

(2) P ∪Q (union or disjunction), defined by 𝜇P∪Q = 𝜇P + 𝜇Q, with a suitable binary

operation + : [0, 1]
X

x [0, 1]
X → [0, 1]

X

(3) Pc
(pseudo-complement or negation), defined by 𝜇

c
P = 𝜇

′

P, with a suitable unary

operation ‘: [0, 1]
X → [0, 1]

X

(4) P ⊆ Q (inclusion), defined by [𝜇P ≤ 𝜇Q ⇔ 𝜇P (x) ≤ 𝜇Q (x), for all x in X].

Hence, the algebras of fuzzy sets are five-tuples

([0, 1]X ,≤; ⋅,+, }),

restricted to verify some laws linking ≤, ⋅, +, and ‘. Although current fuzzy logic

mainly works under the hypothesis of decomposability, or functional expressibility

of the three operations ⋅, +, and ‘, it is not at all clear that such hypothesis can be

generally acceptable. This hypothesis has, notwithstanding, the great advantage of

allowing to translate into functional equations the study of the laws. For instance,

denoting by 𝜇r the ‘constant’ fuzzy sets the possible law of non-contradiction,

𝜇 ⋅ 𝜇′ = 𝜇0,

that with sets is P ∩ Pc
= ∅, is translated into the functional equation F(𝜇(x),

𝜇’(x)) = 0, for all 𝜇 and x, and it suffices to solve the equation F(a, N(a)) = 0, provided

there exists numerical functions F: [0,1] × [0, 1] → [0, 1], and N: [0,1] → [0, 1] such

that

(𝜇 ⋅ 𝜎)(x) = F (𝜇(x), 𝜎(x)), and (𝜇′)(x) = N(𝜇(x)),

for all x in X. Of course, to solve such functional equation it is necessary to count

with some properties of F and N, among which continuity is essential. For instance,

if F is a continuous t-norm and N a strong negation, the solutions are F = W
𝜑

, and N

≤ N
𝜑

. Analogously, the validity of the possible distributive law 𝜇 ⋅ (𝜎 + 𝛾) = 𝜇 ⋅ 𝜎
+ 𝜇 ⋅ 𝛾 , particularized with sets to P ∩ (Q ∪ R) = (P ∪Q) ∪ (P ∩ R), can be studied
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by solving the functional equation F (a, G (b, c)) = G (F (a, b), F (a, c)), provided it

exists a second numerical function G: [0, 1] x]0,1] → [0, 1], such that

(𝜇 + 𝜎)(x) = G(𝜇(x), 𝜎(x)),

for all x ∈ X. In the case F is non-decreasing in both variables, a solution is given

by G = max, regardless of which operation ⋅ is taken. The other distributive law

𝜇 + (𝜎 ⋅ 𝛾) = (𝜇 + 𝜎) ⋅ (𝜇 + 𝛾), holds with F = min, regardless of G but provided

it is non-decreasing; of course, both laws jointly hold whenever ⋅= min and + = max.

In the same vein, the validity of the possible laws

𝜇 ⋅ 𝜇 = 𝜇 + 𝜇 = 𝜇,

coming from the classical P ∩ P = P ∪ P = P, is reduced to solve the equations F(a,

a) = a, and G(a, a) = a, with obvious solutions F = min and G = max.

In the applications it is necessary to count with operations verifying some of these

laws. If, for instance, it is known that in the current universe of discourse it is always

“‘x is P’ or ‘x is not P”’, the operation + should be chosen among those for which the

law 𝜇 + 𝜇’ = 𝜇1 holds. On the contrary, for just theorizing and obtaining results of

a general validity, it is better to keep the algebra ([0, 1]
X

, ≤; ⋅ , +, ‘) with a minimal

number of laws, even if sometimes more laws allowing to obtain new properties

should be added.

Notice that the relation ≤ inherits all the properties of the ordering of the unit

interval, except linearity. It is a reflexive, anti-symmetric and transitive relation for

which there are fuzzy sets that are not comparable, that cannot be linked by it; is a

partial order. Hence ([0, 1]
X

, ≤) is a poset whose minimum element is 𝜇0, and whose

maximum is 𝜇1, that is 𝜇0 ≤ 𝜇 ≤ 𝜇1, for every fuzzy set 𝜇.

7.2

By definition, a Basic Algebra of fuzzy sets (BA) [9], 𝛥 = ([0, 1]
X

, ≤; ⋅ , + , ‘),

verifies the following laws or axioms:

(1) If 𝜇 ≤ 𝜎, then 𝜎’ ≤ 𝜇’; 𝜇0’ = 𝜇1; 𝜇1’ = 𝜇0
(2) 𝜇 ⋅ 𝜇0 = 𝜇0 ⋅ 𝜇 = 𝜇0; 𝜇 ⋅ 𝜇1 = 𝜇1 ⋅ 𝜇 = 𝜇

𝜇 + 𝜇0= 𝜇0 + 𝜇= 𝜇; 𝜇 + 𝜇1= 𝜇1 + 𝜇 = 𝜇1,

for all 𝜇 in [0, 1]
X

.

(3) If 𝜇 ≤ 𝜎, then: 𝜇 ⋅ 𝛿 ≤ 𝜎 ⋅ 𝛿; 𝛿 ⋅ 𝜇 ≤ 𝛿 ⋅ 𝜎; 𝜇 + 𝛿 ≤ 𝜎 + 𝛿; 𝛿 + 𝜇 ≤ 𝛿 + 𝜎,

for all 𝛿 in [0, 1]
X

,

(4) In 𝛥0= ({0, 1}
X

, ≤; ⋅ , + , ‘) it is

𝜇 ⋅ 𝜎 = min (𝜇, 𝜎); 𝜇 + 𝜎 = max (𝜇, 𝜎); 𝜇’ = 1- 𝜇,

for all 𝜇, 𝜎 ∈ {0, 1}
X

.

Because of the few and weak laws a BA enjoys, only the following properties can

be deductively proven.
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1. 𝛥0 is isomorphic to the power-set 2X
once endowed with the classical operations

of intersection (∩), union (∪), and complement (
c
), 𝜇0 corresponds to the empty

set ∅, and 𝜇1 to the total X. 𝛥0 is a Boolean algebra.

2. Only with ⋅ = min and + = max, is 𝛥 a lattice. Provided the negation is strong

(𝜇“= 𝜇), 𝛥 is a De Morgan-Kleene algebra since, in this case, it holds 𝜇 ⋅ 𝜇’ ≤ 𝜎

+ 𝜎’, for all 𝜇, 𝜎 in [0, 1]
X

, and 𝛥0 consists in the Boolean elements of 𝛥.

Hence, a BA is neither a Ortho-lattice, nor a fortiori is a Boolean algebra.

3. It is always 𝜇 ⋅ 𝜎 ≤ min (𝜇, 𝜎), and max (𝜇, 𝜎) ≤ 𝜇 + 𝜎.

Hence, it is:

𝜇 ⋅ 𝜎 ≤ 𝜇 ≤ 𝜇 + 𝜎;𝜇 ⋅ 𝜎 ≤ 𝜎 ≤ 𝜇 + 𝜎.

In particular, it holds 𝜇 ⋅ 𝜇 ≤ 𝜇 ≤ 𝜇 + 𝜇, for all fuzzy set 𝜇.

4. It holds:

𝜇 ≤ 𝜎 & 𝛼 ≤ 𝛽 ⇒ 𝜇 ⋅ 𝛼 ≤ 𝜎 ⋅ 𝛽, 𝜇 + 𝛼 ≤ 𝜎 + 𝛽.

5. It holds: 𝜇’ ⋅ 𝜎’ ≤ (𝜇 ⋅ 𝜎)’; (𝜇 + 𝜎)’ ≤ 𝜇’ + 𝜎’.

6. If + = max, and regardless of ⋅ and ‘, it holds:

(𝜇 + 𝜎)’ ≤ 𝜇’ ⋅ 𝜎’.

If ⋅ = min, and regardless of + and ‘, it holds:

(𝜇 ⋅ 𝜎)’ ≤ 𝜇’ + 𝜎’.

7. With ⋅ = min, and regardless of +, it holds:

𝜇 + 𝜎 ⋅ 𝛾 = (𝜇 + 𝜎) ⋅ (𝜇 + 𝛾).

8. With + = max, and regardless of ⋅, it holds:

𝜇 ⋅ (𝜎 + 𝛾) = 𝜇 ⋅ 𝜎 + 𝜇 ⋅ 𝛾 .

9. With the operations: 𝜇 ∧ 𝜎 = (𝜇’ + 𝜎’)’, and 𝜇 ∨ 𝜎 = (𝜇’ ⋅ 𝜎’)’, also 𝛥

∗
= ([0,

1]
X

, ≤; ∧ , ∨, ‘) is a BA called the ‘dual’ of 𝛥, and that inherits all the additional

properties enjoyed by 𝛥.

Remark Since BAs are defined by just a few and weak laws or axioms, only very

simple calculations are allowed in them, but what can be proven in their framework

is of a so very general character that will be preserved in case of considering oper-

ations ⋅, +, and ‘ , with more properties than those just defining the BA. Since no

universal algebra of fuzzy sets can hold for all applications in all domains, as it is

with classical sets, it seems suitable the name ‘basic fuzzy algebra of fuzzy sets’ that

allow to add those properties that can be required at each case as it is, for instance,

the idempotency of the conjunction.
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One of the weaknesses of Boolean and De Morgan algebras, as well as of Ortho-

modular lattices for the study of natural Language and ordinary reasoning, lies in the

big amount of axioms they enjoy and that make such algebraic structures too rigid

to afford the typical flexibility of human’s language and reasoning. These structures

own laws, like the commutative of ⋅, not always are in language where, for instance,

‘time’ often causes the failure of the commutative property for the conjunction ‘and’.

The world of human’s language and reasoning is very different of those of artificial

languages and formal deductive reasoning.

At this respect, the Standard algebras of fuzzy sets [11] (those in which F is a

continuous t-norm, G a continuous t-conorm, and N a (continuous) strong negation),

show a lot of cases in which some Aristotelian forms are valid in one but not in

another algebra. For instance, the classical laws of duality,

(𝜇 ⋅ 𝜎)′ = 𝜇

′ + 𝜎

′
, and (𝜇 + 𝜎)′ = 𝜇

′ ⋅ 𝜎′,

are broken when the t-norm giving the conjunction, and the t-conorm giving the

disjunction, are not duals with respect to the strong negation giving the pseudo-

complement, as it is, for instance, with + = max, and ⋅ = prod. It is also the case

that the von Neumann law of ‘perfect repartition’, 𝜇 = 𝜇 ⋅ 𝜎 + 𝜇 ⋅ 𝜎’, only holds

provided the t-norm and the t-conorm are not dual [11].

In the words of Satosi Watanabe [12], a new land can be perhaps offered to young

researchers, provided “a direct contact with the world of common sense which is the

mother earth of all knowledge” is not disdained at all.

8 Complex Measures and Type-Two Fuzzy Sets

8.1

A practical problem, that often appears with Zadeh’s fuzzy sets 𝜇 ∈ [0, 1]
X

, is when

their values 𝜇(x) in [0, 1] only can be computed approximately. For instance, if it

is known that 𝜇(x) approaches

√
2/2 then, depending on the approximation needed

by the problem at hand, it could be taken a value either between 0.70 and 0.71, or

between 0.706 and 0.707. There is almost always a problem of uncertainty in the

practical management of fuzzy sets.

This problem causes a theoretical trouble since if, for instance, two fuzzy sets 𝜇

and 𝜎 are such that 𝜇(x) = 𝜎(x) for all x in X-{x0}, and 𝜇(x0) < 𝜎(x0), it is not 𝜇

= 𝜎, but 𝜇 ≤ 𝜎 with 𝜇 ≠ 𝜎. If X is with a large number of elements, X = [0, 10
10

]

for instance, the same comes if the difference between 𝜇 and 𝜎 is limited to a few

(say, eight hundred) points in X. It happens analogously when operating with several

fuzzy sets; for instance, with X = [0, 1], 𝜇(x)= x, 𝜎(x)= x
2
, and ⋅ = product, it is

(𝜇 ⋅ 𝜎)(x) = x
3
, and taking the rounding 𝜇(𝜋/4) = 0.7854, and the rounding 𝜎(𝜋/4) =

0.6169, the value (𝜇 ⋅ 𝜎)(𝜋/4) will charge its rounding with the rounding of 𝜋/4 and
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𝜋

2
/4. Of course, this is nothing strange in practical computations where the analysis

of errors is well known. Nevertheless, the situation becomes worst when the value

𝜇(x) is just appreciated empirically without a previous model for the function 𝜇, in

which case the, let’s say, naked eye of the expert, only can appreciate that the value

𝜇(x) is between values 𝜇1(x) and 𝜇2(x). For these reasons it could be suitable to

change the unit interval to a set of intervals whose extremes belong to [0, 1].

There is another problem suggesting a change from Zadeh’s fuzzy sets to func-

tions whose values do not belong to the linearly ordered unit interval. If the qualita-

tive or primary meaning of P in X, is represented by a graph (X, ≤P) and the relation

≤P is not linear, as it often happens, once a measure 𝜇P is specified, the ‘working use’

given by ≤
𝜇P

cannot coincide with the primary meaning ≤P, but such coincidence

could be just possible provided ≤
𝜇P

were not linear. Something that only can come

from re-defining fuzzy sets as functions taking their values in a non-linearly ordered

set. For instance, provided ≤P is a preorder, =P is an equivalence, the quotient set

inherits the partial order ≤
∗
P between classes, and the measure ≤

∗
P is that mentioned

in Sect. 2, it is:

x ≤P y ⇔ [x] ≤∗
P [y] ⇔ 𝜇

∗
P(x) ≤

∗
P 𝜇

∗
P(y),

showing that ≤
𝜇

∗
P

perfectly reflects the primary meaning of P in X. This is at the

cost of avoiding a ‘numerical’ measuring of the extent up to which ‘x is P’, and

substituting it by a ‘qualitative’ type of measuring [32].

An additional view for changing the range [0, 1] by a partially ordered range,

is that with the first the definition of a fuzzy set 𝜇P is too ‘crisp’, since very small

variations of some few values 𝜇P(x) change the fuzzy set to another one, as it is

shown at the beginning of this section, and of which there is no reason whatsoever

for believing that it does not represent a measure of the same predicate.

8.2

Without avoiding numerical measuring, but taking care of the cases like those in

Sect. 8.1, consider the complex unit square,

C = {a + ib; 0 ≤ a ≤ 1&0 ≤ b ≤ 1},

on which some well known measures used in both science and technology take their

values. With the usual ordering given by

a + ib ≤ a
∗ + ib

∗ ⇔ a ≤ a
∗ & b ≤ b

∗
,

(C, ≤) is a poset with minimum 0 = 0 + i0, and maximum 1 = 1 + i.
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If P is used on X with a primary meaning given by ≤P, a complex measure of the

extent up to which x is P [4], is a mapping

𝜇P∶ X → C, 𝜇P(x) = 𝜇

1
P(x) + i𝜇

2
P(x) ∈ C,

verifying the axioms,

1. If x ≤P y, then 𝜇P(x) ≤ 𝜇P(y)

2. If z is a maximal under ≤P, it is 𝜇P(z) = 1
3. If z is a minimal under ≤P, it is 𝜇P(z) = 0
and the complex quantity (X, ≤P, 𝜇P) can be taken to represent the meaning of P in

X. Now the ‘working use’ ≤
𝜇P

is given by:

x ≤
𝜇P

y ⇔ 𝜇P (x) ≤ 𝜇P (y),

verifying ≤P ⊆ ≤
𝜇P

, and even without being sure that the equal sign can hold

between both relations, but since the second is not linear, there are more possibilities

of coincidence whenever the first is not linear. Of course, were ≤P linear then no

coincidence is possible. Notice that 𝜇
1
P and 𝜇

2
P are in [0, 1]

X
. With complex measures

it is possible to consider fuzzy sets as functions in CX
, and translating into it the same

axioms defining a BA.

For instance, instead of the former fuzzy set 𝜇 with value

√
2/2 in some point, it

can be taken a complex one 𝜇 whose value in the same point is the complex number

0.70 + 0.71i. When in praxis it is not possible to determine values of 𝜇 others than

with a certain approximation in the form 𝜇(x) ∈ [𝜇1(x), 𝜇2(x)], it can be appropriate

to take a measure of the type 𝜇(x) = 𝜇1(x) + i𝜇2(x).

Notice that the set of the closed sub-intervals of [0, 1] may be endowed with the

order of C, and with it both sets, those of the sub-intervals of [0, 1] and C, are posets

with [0, 0] the minimum interval, and [0,1] the maximum one. Let X be the set of

those sub-intervals, and P a predicate on X such that

[a1, b1] ≤P [a2, b2] ⇔ a1 ≤ a2 & b1 ≤ b2,

like, for instance, P = to the left, with≤P indicating ‘less to the left than’. The function

𝜇([a, b]) = b + i (a+b),

verifies:

(1) [a1, b1] ≤P [a2, b2] ⇒ a1 ≤ a2 & b1 ≤ b2 ⇒ a1 + b1 ≤ a2 + b2 & b1 ≤ b2 ⇒
b1 + i(a1 + b1) ≤ b2 + i(a2 +b2) ⇔ 𝜇([a1, b1]) ≤ 𝜇([a2, b1]).

(2) ([0, 0]) = 0 + i0

(3) ([0,1]) = 1 + i (0+1) = 1 + i,
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and, thus 𝜇 is a complex measure of P. Notice that if b2−b1 = r, and also a2−a1 = s, it

is 𝜇([a2, b2])−𝜇([a1, b1]) = (b2−b1) + i(a2−a1 + b2−b1) = r + 2si; hence, provided

r ≤ e and s ≤ e, it is r + 2si ≤ e(1 + 2i).

Remarks

(a) The similarity between interval-valued and complex-valued fuzzy sets, reveals

that the more used case of the so-called ‘type-two fuzzy sets’ [13], the interval-

valued ones, are nothing else than complex fuzzy sets.

(b) For what concerns true type-two fuzzy sets, that is those corresponding to pred-

icates whose primary meaning only can be measured linguistically like, for

instance, ‘the degree up to which x is P is high, or 𝜇high(x)’, they correspond

to measures valued in [0, 1]
X

, that is, mappings 𝜇P: X → [0,1]
X

. Since ([0, 1]
X

,

≤) is a poset with minimum 𝜇0 and maximum 𝜇1, the definition of the three

axioms of a measure can be immediately reproduced. Since the ‘working mean-

ing’ ≤
𝜇P

will not be linear, type-two fuzzy sets also can offer more opportunities

to perfectly reflect not linear primary meanings. Although the management of

true type-two fuzzy sets is more complicated than that of fuzzy sets, there is in

their favor the fact that fuzzy sets are, for what has been said, too crisp.

9 Conclusions

9.1

In science, and aside of its informal common use, the word ‘truth’, whose proper

setting of study as a concept is philosophy, deserves no particular attention. What

follows concerns some argumentation on why this is that.

‘Truth’ is an abstract concept whose mother-predicate is true, and that is applied

to statements in the form “‘x is P’ is true”. Thus, the minimal universes of discourse

to be considered for beginning with an analysis of true are the sets X(P) = {x is P; x

∈ X}.

Provided T = true is measurable, that is, a graph (X(P),≤T ) is known, the problem

for grasping the full meaning of T in X(P), lies in obtaining a measure for it, that is,

a mapping 𝜇T : X(P)→ [0, 1] verifying the three axioms of a measure in the graph:

(1) x is P is less T than y is P ⇔ x is P ≤T y is P ⇒ 𝜇T (x is P) ≤ 𝜇T (y is P).

(2) ‘z is P’ is maximal under ≤T (‘z is P’ is completely true) ⇒ 𝜇T (z is P) = 1

(3) ‘z is P’ is minimal under ≤T (‘z is P’ is completely not true) ⇒ 𝜇T (z is P) = 0.

Since T is applied to the statements qualifying by P the elements in X, provided

it were (x is P) ≤T (y is P) ⇒ x ≤P y, with the same maximals and minimals for

both relations, it is sufficient to express 𝜇T through an order auto-morphism 𝜑: [0,

1] → [0, 1]:

𝜇T (x is P) = 𝜑(𝜇P(x)),
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since:

(1) (x is P) ≤T (y is P) ⇒ x ≤P y ⇒ 𝜇P(x) ≤ 𝜇P(y) ⇒ 𝜑(𝜇P(x)) ≤ 𝜑 (𝜇P(y)) ⇔ 𝜇T (x

is P) ≤𝜇T (y is P)

(2) If ‘z is P’ is a maximal, 𝜇T (z is P) = 𝜑 (1)=1

(3) If ‘z is P’ is a minimal, 𝜇T (z is P) = 𝜑 (0)=0.

Of course, the specification of 𝜇T depends on that of 𝜑 that will come from the

contextual information on the considered case. When it can be accepted 𝜑 = id[0,1], it

results𝜇T (x is P) =𝜇P(x), that is what is classically done by accepting that the degree

up to which x is P is true coincides with the degree up to which x is P. Nevertheless,

if it should be taken, for instance, 𝜑(a) = a
2
, or 𝜑(a) =

√
a it will result, respectively,

𝜇T (x is P) ≤ 𝜇P(x), or 𝜇T (x is P) ≥ 𝜇P(x).

The opposite of true is false. Hence, for each symmetry s in X it can be defined

𝜇false (x is P) = 𝜑 (𝜇P(s(x)). In language, the concept of truth is actually managed

through the linguistic variable [29] with principal terms true and false: {true, false,
not true, not false, fairly true, fairly false, . . . }.

9.2

The use of the predicate probable [14, 30], often appearing in the language of science

and actually used in it, deserves some attention since its use is only well known in the

setting of Ortho-modular lattices and, more particularly in Boolean algebras, with

the Kolmogorov’s type definition of a measure of probability once applied to ‘events’

represented by the elements in the Ortho-modular or Boolean lattice.

It should be noticed that the consideration of ‘events’ in a lattice, forces that the

conjunction, disjunction and negation of the statements naming the events, should be

represented, respectively, by a unique intersection, union and complement, provided

the statements are precise. This implies a limitation on the use of ‘probability’ in

language where imprecision and uncertainty are pervasive. For instance, this model

allows to speak of the probability of extracting a ball from a urn with fifteen balls

of which six are red and nine are blue, but it is not applicable when concerning a

urn containing around a dozen of balls of which a few are red and several are blue,

a case that can happen when the urn is observed at some distance by naked eye and

it is impossible to know the exact numbers of balls.

In language, probable is directly applied to usual statements like ‘Is probable that

John is rich’. To do this, and to calculate a measure of how probable ‘John is rich’

is, it is necessary to grasp the meaning of P = probable, that is, to know a graph (X,

≤P), and a measure 𝜇P. But, in science the universe of discourse is supposed to be

an Ortho-modular or a Boolean lattice where the relation ≤P is understood as the

partial order ≤ of the lattice [a ≤ b ⇔ a ⋅ b = a ⇔ a + b = b], with which it seems

evident that a ≤ b implies a ≤P b, even if the reciprocal is not so evident, and hence

the equality ≤P = ≤, or ≤P = ⊆ in the case of a Boolean algebra of sets, is just a

hypothesis.
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A measure of probability is a mapping p: LE(X) → [0, 1], where LE(X) is the

Ortho-modular lattice of events, verifying the axioms:

1. If x ≤ y’, then p (x + y) = p(x) + p(y)

2. p(1) = 1,

from which it follows,

3. p(0) = 0

4. p(x’) = 1− p(x), for all x in LE(X)

5. If x ≤ y, then p(x) ≤ p(y),

with ⋅ , +, and ‘, the three lattice operations, ≤ the ‘natural’ order of the lattice, 1
its maximum, and 0 its minimum. Notice that just in the case of a Boolean algebra it

is [x ≤ y’ ⇔ x ⋅ y = 0]. All that allows to state that p is a measure of probable when

the relation ≤probable coincides with the order of the universe that is either a proper

Ortho-modular lattice, or a Boolean algebra in particular, and it can be proved as

follows: Since in Ortho-modular lattices hold,

x ≤ y ⇔ y = x + x’ ⋅ y, with x ≤ x + y’ = (x’ ⋅ y)′,

provided it were x ≤ y, it will follow p(y) = p (x + x’⋅ y) = p(x) + p(x’ ⋅ y) ≥

p(x).

For weak structures, like the BA with ⋅ = min, + = max, and ‘ = 1−id[0,1], there

is only an almost satisfactory theory [16] with which the (numerical) probability of

a fuzzy event can be computed, but until now there is no satisfactory theory for less

restrictive BA. It still lacks a clear theory in which the probability can take its values

in [0, 1]
X

, a theory that is necessary for a good understanding of the cases in language

in which [15] it is said, for instance, “the probability that John is rich is very low”

That is, a theory of linguistic probabilities.

Analogously to probability, the concepts of possibility, necessity, uncertainty and

imprecision, coming respectively from the mother-predicates possible, necessary,

uncertain and imprecise, still deserve a deep theoretical consideration through its

uses in language [17, 18].

9.3

As it was pointed out in Sect. 2, to specify a measure 𝜇P for a primary use ≤P of

a predicate P in X, some additional information is needed since the three axioms

defining a measure are not sufficient to individuate a single measure. This infor-

mation only can come from the concrete use of P in X, that is, from the context

surrounding such use in which the purpose for it often plays an important role. For

instance, and even if the primary meaning can be fixed, the measure of old will not

be the same if the contextual information is that old is used by people in a primary

school’s class, in a university class, or in an insurance company. It also will not be

the same provided the purpose of using old is purely descriptive, or it is in a fun
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conversation. All this information, jointly with that furnished by the relation ≤P,

is actually summarized in the measure 𝜇P. Hence and for imprecise predicates, the

quantity (X, ≤P, 𝜇P) is context-dependent and purpose-driven. The specification of

a predicate is strictly related with what surrounds the predicate’s use in the universe

of discourse, and except if the predicate is precise, or definable by means of ‘if and

only if’ conditions, the specification is never unique. Up to some extent it happens

analogously with the connectives, the qualified predicates and the modifiers. All of

them should be specified accordingly with the contextual information available on

the corresponding problem.

Hence, solving a problem of fuzzy logic requires a correct design of all the terms

to be represented [19, 20], and specially when the problem concerns a dynamical

system. If from a theoretical view, fuzzy logic is a matter of degree, from a practical

point of view it is a matter of design. To wrongly design a single term, could imply

to pose in fuzzy terms a system different from the current one and whose solutions

rarely will keep any actual relation with it. What it usually does a designer of fuzzy

systems?

In a first place, the designer should work with the information actually available

on the involved terms that, more often than not, can be incomplete and, hence, neither

the total relation ≤P, nor a satisfactory measure 𝜇P will be obtained: The designed

fuzzy set 𝜇P is no more than an approximation to the measure, with an unknown

degree of approximation and giving an also approximate working meaning ≤
𝜇P

.

In a second place, the designer can be forced to add some working hypotheses

that can produce distortions in a model. For example, and as it is often the case,

if the designer accepts a piecewise linear character for the involved membership

functions, and, for the modifier very accepts that it squares the membership function,

non piecewise linear functions are automatically introduced contrarily to the initial

hypothesis. Another hypothesis that is always accepted without any kind of testing

is that all the rules linguistically describing the behavior of a dynamical system are

represented by the same function J of those in Sect. 6.1.

The practitioner of fuzzy logic should have a good mastering of the design of

systems involving imprecision, and this requires a sufficient knowledge of the sev-

eral mathematical models that can be employed. Fuzzy systems should be carefully

designed.

9.4

Many questions still deserve a more deep study, and several are not just of a purely

theoretical character since their possible answers require a previous checking within

language and reasoning before being accepted (even in the provisory form typical of

science). Provided some of these answers come from a mathematical model, can it

be expected to found such model by just purely mathematical thinking?, or, should

it come from abstraction on the information furnished by reality?, that is, from data

captured through controlled processes of observation and experimentation within
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language and reasoning. The concept of a fuzzy set, once seen as a state of the col-

lective generated in language by its predicate or linguistic label, seems to be more a

scientific object than a purely logical one; and scientific objects are those typically

analyzed by science. Which should be the best working methodology to follow: just

theoretic thinking, like that of pure mathematics often based in second order abstrac-

tions and at once responding to theoretic interests, or mixed experimental and the-

oretic thinking like that of physics, where theoretic models should be tested against

an observed reality?

Is it possible to conduct a mathematical analysis of language and reasoning with-

out previously considering the nuances, dynamism and variability of the natural mat-

ter for such study? And, is not natural language plus common reasoning such natural

matter? Possibly fuzzy logic needs to evolve towards an experimental science of

‘language and reasoning’ with a methodology analogous to that of physics; towards

a kind of physics of language and reasoning, but with a working methodology based

on computer science [24].

Such a scientific-like modeling of language and reasoning, jointly with that on

how the human brain actually works, is one of the big challenges for science in the

XXI Century, and the starting point for both the continuation of the Leibniz’s ‘Cal-

culemus’, and the real possibility of having machines thinking like people. Such a

new way of studying imprecision and uncertainty in natural languages and common

reasoning, without missing that of ambiguity, is what the author hopes it will come

from the right now fifty years old fuzzy sets. At the end, it is with fuzzy logic that

mathematical analysis actually begun into use for representing language and infer-

ence as people do. Like it happened before with the natural sciences where mathe-

matics shown, in the words of Eugene Wigner, ‘an unreasonable effectiveness’ [21].

To end, let’s say that in the author’s view, Zadeh’s Computing with Words [22,

25], should be theoretically re-modeled by, for instance, departing from the view of

fuzzy sets presented in this paper, and being closely connected with natural language

and common reasoning. It is a nice challenge for young researchers to whom the

author wishes the ability of posing good questions conducting to fertile solutions

like professor Zadeh’s work is full of.
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Type 1 and Full Type 2 Fuzzy System
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I. Burhan Türkşen

Abstract We first present a brief review of the essentials fuzzy system models:
Namely (1) Zadeh’s rulebase model, (2) Takagi and Sugeno’s model which is partly
a rule base and partly a regression function and (3) Türkşen fuzzy regression
functions where a fuzzy regression function correspond to each fuzzy rule. Next we
review the well known FCM algorithm which lets one to extract Type 1 mem-
bership values from a given data set for the development of Type 1 fuzzy system
models as a foundation for the development of Full Type 2 fuzzy system models.
For this purpose, we provide an algorithm which lets one to generate Full Type 2
membership value distributions for a development of second order fuzzy system
models with our proposed second order data analysis. If required one can generate
Full Type 3,…, Full Type n fuzzy system models with an iterative execution of our
algorithm. We present our application results graphically for TD_Stockprice data
with respect to two validity indeces, namely: (1) Çelikyılmaz-Türkşen and
(2) Bezdek indeces.

1 Fuzzy System Models
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2 Type 1 Fuzzy Rule Base Models

The most commonly applied fuzzy system models are fuzzy rule bases. Here, we
only deal with Multi-Input Single Output (MISO) systems. Generally fuzzy system
models represent relationships between the input and output variables which are
expressed as a collection of IF-THEN rules that utilize linguistic labels, which are
represented with fuzzy sets. The general fuzzy rule base structure which is known
as Zadeh- Fuzzy Rule Base, Z-FRB, can be written as follows:

R: ALSO
c*

i = 1
IF antecedentiTHENconsequentið Þ,

where c* is the number of rules in a rule base either given by experts or it is
determined by a fuzzy clustering algorithm such as FCM, Fuzzy-C-Means (Bezdek
[1]) or IFC, Improved Fuzzy Clustering (Çelikyılmaz and Türkşen [2]). The fuzzy
rule base structures determined by various alternatives mainly differ in the repre-
sentation of the consequents. If the consequent is represented with fuzzy sets then
the fuzzy rule base is known as Zadeh [13] version which is originally applied by
Mamdani, et al., [3], and a modified version is proposed by Sugeno and Yasukawa,
SY-FRB, [6]. Whereas, if the consequents are represented with linear equations of
input variables, then the rule base structure is the Takagi-Sugeno Fuzzy Rule Base,
TS-FRB, [5] structure. These are the main models amongst others which we do not
review in this paper. In particular Zadeh Fuzzy Rule Bases, Z-FRB can be for-

malized as: R: ALSO
c*

i=1
IF x∈X isr Ai THEN y∈Y isr Bið Þ

In general, let nv be the number of selected input variables in the system. Then,
the multidimensional antecedent, x, can be defined as x = (x1,x2,…,xnv), where xj is
the jth input variable of the antecedent and the domain of x in X, can be defined as
X = X1 × X1 × … × Xnv, Xj ⊆ ℜ.

In particular, the Z-FRB structure can be expressed as follow, where the
multi-dimensional antecedent fuzzy subset of ith rule is Ai. This multi-dimensional
antecedent fuzzy subset determination eliminates the search for the appropriate
t-norm for the combination of antecedent fuzzy subsets with “AND”.

Thus, variations of Z-FRB are Sugeno-Yasukawa, SY-FRB, and Takagi-Sugeno
(TS-FRB) Fuzzy Rule Base structures:

SY−FRBð Þ R: ALSO
c*

i=1
IF x∈X isr Ai THEN y∈ Y isr Bið Þ

TS−FRBð Þ R: ALSO
c*

i=1
ðIF antecedenti THEN yi = aixT + biÞ

where, antecedenti = x ∈ X isr Ai, and ai = (ai,1,…, ai,NV) is the regression coef-
ficient vector associated with the ith rule together with bi which is the scalar
associated with the ith rule. For these special cases of Z-FRB, again each degree of
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firing, di, associated with the-ith rule, is determined directly from the corresponding
ith multi-dimensional antecedent fuzzy subset Ai and applied to the consequent
fuzzy subset for the SY-FRB or to the classical ordinary regression for the case of
TS-FRB.

3 Fuzzy Regression Functions

There are a number of variations of the proposed Fuzzy Regression Functions. We
discuss here only one alternative in this paper, namely, Fuzzy Regression Functions
which we have proposed with LSE.

3.1 Fuzzy Regression Functions with LSE (FF-LSE)

In ordinary LSE (Least Square Estimation) method, the dependent variable, y, is
assumed to be a linear function of input, variables, x, plus an error component:

y= β0 + β1x1 + . . . + βnvxnv + ϵ

where y is the dependent output, xj’s are the explanatory variables input, for j = 1,
…, nv, nv is the number of selected inputs and ε is the independent error term which
is typically assumed to be normally distributed. The goal of the least squares
method is to obtain estimates of the unknown parameters, βj’s, j = 0,1,…, nv, which
indicate how a change in one of the independent variables affects the dependent
variable.

β= XTX
� �− 1

XTy

The proposed generalization of LSE as FF-LSE (Fuzzy Functions with LSE,
more appropriately know as Fuzzy Regression Functions with LSE), requires
that a fuzzy clustering algorithm, such as FCM, or IFC be available to determine the
interactive (joint) membership values of input-output variables in each of the fuzzy
clusters that can be identified for a given training data set. Let (Xk,Yk), k = 1,…, nd,
be the set of observations in a training data set, such that Xk = (xjk | j = 1,…, nv).
First, one determines the optimal (m*, c*) pair for a particular performance mea-
sure, i.e., a cluster validity indeces such as Bezdek […], and Celikyılmaz and
Türkşen […] with an iterative search and an application of FCM or IFC algorithm,
where m is the level of fuzziness (in our experiments we usually take m = 1.4,
…,2.5), Ozkan and Turksen […]) and c is the number of clusters (in our experi-
ments we usually take c = 2,…,10). The well known FCM (Bezdek 1973) algo-
rithm can be stated as follows:
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min JðU,VÞ= ∑
nd

k= 1
∑
c

i=1
ðuikÞmð xk − vik kÞA

s. t. 0≤ uik ≤ 1, ∀i, k

∑
c

i=1
uik =1, ∀k

0≤ ∑
nd

k =1
uik ≤ nd, ∀i

,

where J is objective function to be minimized, ||.||A is a norm that specifies a
distance based similarity between the data vector xk and a fuzzy cluster center vi. In
particular, A = I is the Euclidian Norm and A = C−1 is the Mahalonobis Norm, etc.

Once the optimal pair (m*, c*) is determined with the application of FCM
algorithm, and a cluster validity index, one next identifies the

cluster centers for m = m* and c = 1,…,c* as:

vXjY , j
m*

= ðxc1, j, x
c
2, j,⋯, xcnv, j, y

c
jÞ

From this, we identify the cluster centers of the input space again for m = m*
and c = 1,…,c* as: vX, j

m*
= ðxc1, j, xc2, j,⋯, xcnv, jÞ.

Next, one computes the normalized membership values of each vector of
observations in the training data set with the use of the cluster center values
determined in the previous step. There are generally two steps in this calculations:

First we determine the (local) optimum membership values uik‘s and then
determine µik ‘s that are above an α- cut in order to eliminate harmonics generated
by FCM as:

uik = ∑
c

j=1

xk − vX, ik k
xk − vX, j
�� ��

 ! 2
m− 1

0
@

1
A

− 1

, μik ≥ α,

where µik denotes the membership value of the kth vector, k = 1,…,nd, in the ith rule,
i = 1,…,c* and xk denotes the k

th vector and for all the input variables j = 1,…, nv,
in the input space. (2) Next, we normalize them as:

γijðxjÞ=
μijðxjÞ

∑
c

i0 =1
μi0jðxjÞ

where γij is the normalized membership value of xj, j = 1,…, nv, in the ith rule,
i = 1,…,c*, which in turn will indicate the membership value that will constitute an
new input variable in our proposed scheme of function identification for the
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representation of ith cluster. Let Γi = ðγijji=1, . . . , c*; j=1, . . . , nvÞ be the mem-
bership values of X in the ith cluster, i.e., rule.

Next we determine a new augmented input matrix X for each of the clusters
which could take on several forms depending on which transformations of mem-
bership values we want to or need to include in our system structure identification
for our intended system analyses. Examples of these are:

X′

i = 1,Γi,X½ �, X′
0
i = 1,Γ2

i ,X
� �

, X′′′

i = 1,Γ2
i ,Γ

m
i , expðΓiÞ,X

� �
,

etc., where Xi′, Xi″, Xi″′ are the new input matrices to be used in least squares
estimation of a new system structure identification where

Γi = ðγijji=1, . . . , c*; j=1, . . . , nvÞ.

The choice depends on whether we want to or need to include just the mem-
bership values or some of their transformations as new input variables in order to
obtain a best representation of a system behavior. In particular, this is done in order
to get a higher value of R2 to show that a better model is obtained for an appli-
cation. A new augmented input matrix, say Xi′, would look as shown below for the
special case of X = Xj, i.e., the matrix X is just a vector of a single variable, Xj = (xjk
|k = 1,…,nd) for the jth variable:

X′
ij = ½1,Γi,Xij�=

1 γi1 xij1
⋮ ⋮ ⋮
1 γind xijnd

2
4

3
5

Thus the fuzzy regression function, Yi = βi0 + βi1Γi + βi2Xij, that represents the i
th

rule corresponding to the ith interactive (joint) cluster in space ðYi,Γi,XjÞ,
β*i = ðXij′

TX′

ijÞ− 1ðXij′
TYiÞ, X′

ij = 1,Γi,Xij
� �

.

Such that β*i = ðβ*i0, β*i1, β*i2Þ and the estimate of Yi would be obtained as
Y*
i = β*i0 + β*i1Γi + β*i2Xij.
Within the proposed framework, the general form of the shape of a cluster can be

conceptually captured by a second order (cone) in the space of U × X × Y which
can be illustrated with a prototype shown in Fig. 1.

One usually determines Type 1 membership values with an application of FCM
[…] algorithm shown below:
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where Eq. 1 stated in the algorithm above is:

μðtÞik = ∑
c

j=1

d xk , υ
ðt− 1Þ
i

� �
d xk , υ

ðt− 1Þ
j

� �
0
@

1
A

2
m− 1

2
64

3
75

− 1

And Eq. 2 is:

γji

•

•

xji0.0

y

Fig. 1 A Fuzzy cluster in U
× X × Y space
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υðtÞi = ∑
n

k =1
μðtÞik
� �m

xk

	 
�
∑
n

k=1
μðtÞik
� �m

, ∀i=1, . . . , c

4 Generation of Full Type 2 Membership Values

For this purpose, we propose and hence introduce an new algorithm in order to
generate Full Type 2 membership value distribution from the results obtained with
an application of FCM which produce a Type 1 membership value distribution for
our studies of Full Type 2 investigations.

5 Full Type 2 Fuzziness i.e., Membership of Membership

Here we want to show how one determines the second order degree of fuzziness in
order to develop Full Type 2 fuzzy system models.

It should be noted that depending on where x∈X is there may be more than one
second order membership value distribution.

6 Full Type 2 Fuzzy Set Extraction Algorithms

We propose the following Full Type 2 fuzzy set extraction algorithm from a given
data set called FT2FCM (Türkşen, 2012):

Full Type 2 Fuzzy Clustering Algorithm

Min j′ðU′ðUÞ, WÞ=

= ∑
nd

k =1
∑
c′

i=1
∑
1

l=0
μμi xkð Þ Zð Þ
� �

μμi xkð Þ Zlð Þ− μ ̄ xkð Þ Zlð Þ Ak
���� �

, k=1, . . . , nd;

i=1, . . . , c′

st. 0≤ μμi xkð ÞðZÞ≤ 1

0≤ μi xkð Þ≤ 1

0≤ ∑
nd

k=1
μi xkð Þ≤ nd
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μi xkð Þ ϶ 0, 1½ �; μμiðxkÞðZÞ ϶ 0, 1½ �; l ϶ 0, 1½ �

where j′ is the objective function to be minimized for a given xk ∈X, .k kA is a
norm, i.e., Euclidian or Mahalanobis, that specifies a distance measure based on a
membership values for a given xk ∈X and its second order fuzzy cluster center
μī xkð Þ.

Next one computes the normalized membership values of these Full Type 2
membership values for each vector of membership values obtained in an initial
application of the original FCM or IFC algorithm in the first stage.

There are generally two steps in these calculations:
We first determine (local) optimum membership of membership values μμi xkð Þ’s

and then apply an α-cut in order to eliminate the second order harmonics generated
by an application of FT2FCM as:

μμi xkð Þ
xk ∈X

= ∑
c′

i=1

μμi xkð Þ− μ ̄i xkð Þ�� ��
μμi xkð Þ− μj xkð Þ�� ��

 ! 2
m− 1

2
4

3
5

− 1

γ′μμi ðxkÞ =
μμiðxkÞ xk ∈Xj
∑c′

i=1 μμiðxkÞ
, μμiðxkÞ≥ α, γ′μμi ðxkÞ ≥ α

where γ′μμi ðxkÞ
denotes the membership values of the membership values of the kth

vector k = 1,..,nd in the ith rule, or ith fuzzy regression function (Türkşen, 2012)
and xk ∈X denotes the kth vector and for all the input variables, k = 1,.., nd in the
input space.

Recall that we are able to obtain the membership value distribution as:

X′

ij = ½1,Γi,Xij�=
1 γi1 xi1
⋮ ⋮ ⋮
1 γind xind

2
4

3
5

Γi = ðγikji=1, . . . , c*; k=1, . . . , ndÞ

Γi = γijji=1, . . . , c*; j=1, . . . , nd
� �

Γi =
γ11 γ21 ⋯γc*1
⋮ ⋮ ⋮

γ1nd γ2nd ⋯γc*nd

2
4

3
5

We process each γi via our Full Type 2 clustering algorithm given above, called
FT2FCM, to determine Full Type 2 distribution for each cluster i, Γi = γijji=1,

�
. . . , c*; j=1, . . . , ndÞ.

Thus we apply to each Γi, ALGORITHM 2 given below to generate Full Type
2 membership, values, i.e., membership of membership.
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7 Experimental Results

We present here our experimental results for TD_Stock Price Data set that is
available for all researchers on the internet.

Çelikyılmaz-Türkşen’s validity index results for TD_Stockprice data:
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Fuzzy classification of TD_Stockprice data: (c* = 2,m* = 1.8)

Cluster-2 view for TD_Stockprice data:
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Cluster-2 results of TD-Stockprice data (c* = 2,m* = 1.8)
According Çelikyılmaz-Türkşen index, the suitable number of cluster

should be chosen as c’ = 2 (µik data is the membership values of first study’s
cluster-2). Where c’ = 2, m’ = 1.8.
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A possible three cluster view:

TD_Stockprice Data set:
According to Bezdek’s validity index results (shown as follows), the suitable

number of cluster was chosen as c* = 3:
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Fuzzy classification of TD_Stockprice data: (c* = 3,m* = 2.0)
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Çelikyılmaz-Türkşen’s Validity Index for µik data:
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Cluster-2 results of TD-Stockprice data (c* = 3,m* = 2.0) for membership
of membership.

According Çelikyılmaz-Türkşen index, the suitable number of cluster
should be chosen as c’ = 2 (the µik data is the membership values of first
study’s cluster-2). Where c’ = 2,m’ = 2.0.
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A possible three cluster view:
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8 Conclusions

In this paper, we have first review the essentials fuzzy system models: such as
(1) Zadeh’s rulebase model, (2) Takagi and Sugeno’s partly a rule base and partly a
regression function model and (3) Türkşen’s “Fuzzy Regression Functions” model
where a fuzzy regression function correspond to each fuzzy rule and thus a fuzzy
rule base is replaced with “Fuzzy Regression Functions” model. Next we review the
well known FCM algorithm which lets one to extract Type 1 membership values
from a given data set for the development of “Type 1” fuzzy system models as a
foundation for the development of “Full Type 2” fuzzy system models. For this
purpose, we provide an algorithm which lets one to generate Full Type 2 mem-
bership value distributions for a development of second order fuzzy system models
with our proposed second order data analysis. If required one can generate Full
Type 3,…, Full Type n fuzzy system models with an iterative execution of our
algorithm. Finally we present our results graphically for TD_Stockprice data with
respect to two validity indeces, namely: (1) Çelikyılmaz-Türkşen and (2) Bezdek
indeces. Based on our development, we expect in the future new results would be
obtained in “Full Type 3,…, Full Type n” fuzzy system model analyses.
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Complex Fuzzy Sets and Complex Fuzzy
Logic an Overview of Theory
and Applications

Dan E. Tamir, Naphtali D. Rishe and Abraham Kandel

Abstract Fuzzy Logic, introduced by Zadeh along with his introduction of fuzzy
sets, is a continuous multi-valued logic system. Hence, it is a generalization of the
classical logic and the classical discrete multi-valued logic (e.g. Łukasiewicz’
three/many-valued logic). Throughout the years Zadeh and other researches have
introduced extensions to the theory of fuzzy setts and fuzzy logic. Notable exten-
sions include linguistic variables, type-2 fuzzy sets, complex fuzzy numbers, and
Z-numbers. Another important extension to the theory, namely the concepts of
complex fuzzy logic and complex fuzzy sets, has been investigated by Kandel et al.
This extension provides the basis for control and inference systems relating to
complex phenomena that cannot be readily formalized via type-1 or type-2 fuzzy
sets. Hence, in recent years, several researchers have used the new formalism, often
in the context of hybrid neuro-fuzzy systems, to develop advanced complex fuzzy
logic-based inference applications. In this chapter we reintroduce the concept of
complex fuzzy sets and complex fuzzy logic and survey the current state of com-
plex fuzzy logic, complex fuzzy sets theory, and related applications.
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1 Introduction

The development of computers and the related attempt to automate human rea-
soning and inference have posed a challenge to researchers. Humans, and in many
cases machines, are not always operating under strict and well defined two-valued
logic or discrete multi-valued logic. Their perception of sets and classes is not as
crisp as implied by the traditional set and class theory. To capture this perception,
L. A. Zadeh has introduced the theory of fuzzy sets and fuzzy logic [1–7]. The
seminal paper [1],1 published by Zadeh in 1965, ignited tremendous interest among
a large number of researchers. Following the introduction of the concepts of fuzzy
logic and set theory, several researchers, [8–10], have established an axiomatic
framework for these concepts.

The five decades that followed Zadhe’s pioneering work have produced exten-
sive research work and applications related to control theory [11, 12], artificial
intelligence [7, 13–15], inference, and reasoning [16, 17]. In recent years, fuzzy
logic has been applied in many areas, including fuzzy neural networks [18],
neuro-fuzzy systems and other bio-inspired fuzzy systems [19], clustering [20–22],
data mining [13, 23, 24], and software testing [25, 26]. In 1975 Zadeh introduced
the concept of linguistic variable and the induced concept of type-2 (type-n) fuzzy
sets [3, 27–30]. Other notable extensions to the theory of fuzzy sets and fuzzy logic
include complex fuzzy numbers [31], and Z-numbers [32].

Many natural phenomena are complex and cannot be modelled using
one-dimensional classes and/or one-dimensional variables. For example, in pattern
recognition, objects can be represented by a set of measurements and are regarded
as vectors in a multidimensional space. Often, it is not practical to assume that this
multidimensional information can be represented via a simple combination of
variables and operators on one-dimensional clauses. Specifically, consider a set of
values where each value is a member of a fuzzy set. This set, referred to as fuzzy set
of type-2, cannot be compactly represented by basic operations on fuzzy sets of
type-1 [3, 27–30]. This type of sets however, can be represented via complex
classes presented next.

Another important extension to the theory of fuzzy logic and fuzzy sets, namely
complex fuzzy logic (CFL) and complex fuzzy sets (CFS), has been developed by
Kandel and his coauthors [10, 33–36]. Moses et al. introduced an aggregation of
two fuzzy sets into one complex fuzzy set [33]. Next, Ramot et al. introduced the
concept of a complex degree of membership represented in polar coordinates,
where the amplitude is the degree of membership of an object in a CFS and the role
of the phase is to add information which is generally related to spatial or temporal
periodicity in the specific fuzzy set defined by the amplitude component. They used
this formalism along with the theory of relations to establish the concept of CFL.
Finally, Tamir et al. developed an axiomatically-based CFL system and used CFL

1The first documented reference by Zadeh to the concepts of Fuzzy Mathematics appeared in a
1962 paper.
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to provide a new and general formalism of CFS. These formalisms significantly
enhance the expressive power of type-1 and type-2 fuzzy sets [30, 37]. The suc-
cessive definitions of the theory of CFL and CFS represent an evolution from a
relatively naïve and restricted practice to a sound, well founded, practical, and
axiomatically-based form. In recent years, several researchers have used the new
formalism, often in the context of hybrid neuro-fuzzy systems to develop advanced
complex fuzzy logic-based inference applications.

There is a substantial difference between the definitions of complex fuzzy
numbers given by J. Buckley [31, 38–41] and the concept of complex fuzzy sets or
complex fuzzy logic. Buckley is concerned with generalizing the number theory
while the CFL and CFS theories are concerned with the generalization of fuzzy set
theory and fuzzy logic [10, 42, 43]. Complex fuzzy numbers have been utilized in
several numerical applications [44–46]. Yet, the concept of a complex fuzzy
number is different from the concept of complex fuzzy sets or complex fuzzy
classes. Recently, Zadeh introduced the concept of Z-numbers. A Z-number,
Z = ðA,BÞ, is an ordered pair of two fuzzy numbers. In this context A, provides a
restriction on a real-valued variable X and B is a restriction on the degree of
certainty that X is A [32]. Nevertheless, this concept is used to qualify the reliability
of fuzzy quantities rather than to define complex fuzzy sets [10, 36].

The present chapter includes an introduction to the succession of definitions of
CFL and CFS, concentrating on the axiomatic-based approach. In addition, the
chapter includes a survey the current state of research into complex fuzzy logic,
complex fuzzy set theory, and related applications.

The rest of the chapter is organized in the following way: Sect. 2 introduces the
axiomatic-based theory of fuzzy set and fuzzy logic. Section 3 surveys the theory of
complex fuzzy logic and complex fuzzy sets, concentrating on the
axiomatically-based formulation of the theories. Section 4 includes a survey of
recent developments in the theory and applications of CFL and CFS. Finally,
Sect. 5 presents conclusions and directions for further research.

2 Fuzzy Logic and Set Theory

In 1965, L.A. Zadeh introduced the theory of fuzzy sets, where the degree of
membership of an item in a set can get any value in the interval [0, 1] rather than the
two values f∉, ∈ g [1]. Additionally, he introduced the notion of fuzzy logic [1–4].
Fuzzy logic is a continuous (analog) multi-valued extension of classical logic where
propositions can get truth values in the interval [0, 1], and are not limited to one of
the two values {True, False} (or {0, 1}) [17]. These concepts can be considered as
an extension of the multi-valued logic proposed by Łukasiewicz [47]. The intro-
duction of the concepts of fuzzy sets and fuzzy logic was followed by extensive
research into fuzzy systems and their applications, related theories, and extensions
of the concept [1–4, 6, 13, 17, 19, 22, 26, 48–53]. One direction of research has
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concentrated on the formulation of an axiomatically-based foundation of fuzzy sets
and fuzzy logic [8–10, 54–63]. This is described next.

2.1 Axiomatic Fuzzy Logic

Several researchers presented an axiomatically-based formulation of fuzzy logic and
fuzzy set theory [8–10, 55, 56, 58]. In this section we briefly review an axiomatic
framework that is founded on the basic fuzzy propositional and predicate logic
(BL), along with the fuzzy Łukasiewicz (Ł) and fuzzy product (Π) logical systems
[8–10, 55, 56, 58]. We refer to the propositional logic system as ŁΠ and to the first
order predicate fuzzy logic system as ŁΠ∀.

Propositional Fuzzy Logic

Several axiom-based logical systems have been investigated [8–10, 55, 56, 58].
Běhounek et al. ([8]) use the ŁΠ/ ŁΠ∀ as the basis for the definition of fuzzy class
theory (FCT). Our definition of complex propositional logic presented in Sect. 3
[10, 36], closely follows ŁΠ, the system used by Běhounek et al. For clarity, we
reintroduce some of the important notions, notations, and concepts from that paper.

A fuzzy proposition P can get any truth value in the real interval [0, 1], where ‘0’
denotes “False,” and ‘1’ denotes “True”. Furthermore, the relation ≤ , over the
interval ½0, 1� implies a monotonically increasing ordering on the truth values
associated with the proposition. A fuzzy interpretation of a proposition P is an
assignment of a fuzzy truth value to P. Let P, Q and R denote fuzzy propositions
and let iðRÞ denote the fuzzy interpretation of R. Table 1, includes the basic con-
nectives of ŁΠ. Table 2 includes connectives that can be derived from the basic
connectives. The constant 0 is assumed and the constant 1 can be derived from 0
and the basic connectives.

Table 1 Basic ŁΠ
connectives

Operation Interpretation

Ł-Implication iðP→ LQÞ=minð1, 1− iðPÞ+ iðQÞÞ
Π-Implication iðP→∏QÞ=minð1, iðPÞ=iðQÞÞ
Π-Conjunction iðP⊗QÞ= iðPÞ ⋅ iðQÞ

Table 2 Derived ŁΠ
connectives

Operation Interpretation

Ł-Negation ið′PÞ=1− iðPÞ
Π-Delta ΔðiðPÞÞ=1 if iðPÞ=1 else ΔðiðPÞÞ=0
Equivalence iðP↔QÞ= iðP→ LQÞ⊗iðQ→ LPÞ
P ⊖ Q iðP ⊖ QÞ=maxð0, iðPÞ− iðQÞÞ
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Běhounek et al. use the basic and derived connectives along the truth constants
and the following set of axioms [8]:

(1) The Łukasiewicz set of axioms
(2) The product set of axioms
(3) The Łukasiewicz Delta axiom
(4) The Product Delta axiom
(5) The axiom:

R ⊗ (P ⊖ Q)↔ LðR⊗PÞ ⊖ ðR⊗QÞ ð1Þ
The rules of inference are:

(1) Modus ponens
(2) Product necessitation.

Reference [8] includes several theorems that follow from the definition of ŁΠ
propositional fuzzy logic. In the next section, we define the ŁΠ first order predicate
fuzzy logic (ŁΠ∀).

First Order Predicate Fuzzy Logic

Following the classical logic, the ŁΠ first order predicate fuzzy logic, referred to as
ŁΠ∀, extends the ŁΠ propositional fuzzy logic. The primitives include constants,
variables, arbitrary-arity functions and arbitrary-arity predicates. Formulae are
constructed using (1) the basic connectives defined in Table 1; (2) derived con-
nectives, such as the connectives presented in Table 2; (3) the truth constants;
(4) the quantifier ∀ and (5) the identity sign “=”. The quantifier ∃ can be used to
abbreviate formulae derived from the basic primitives and connectives. A fuzzy
interpretation of a proposition Pðx1, . . . , xnÞ over a domain M is a mapping that
assigns a fuzzy truth value to each n-tuple of elements of M As in the case of ŁΠ,
we closely follow the system used in ref. [8].

Assuming that y can be substituted for x in P and x is not free in Q the following
axioms are used:

(1) Instances of the axioms of ŁΠ obtained through substitution
(2) Universal axiom I:

ð∀xÞPðxÞ→PðyÞ ð2Þ

(3) Universal axiom II:

ð∀xÞðP→ LQÞ→ LðP→ Lð∀xÞQÞ ð3Þ

(4) Identity axiom I:

x= x ð4Þ
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(5) Identity axiom II:
ðx= yÞ→ΔðPðxÞ↔PðYÞÞ ð5Þ

Modus ponens, product necessitation, and generalization are used for inference.
In the next section, we define propositional and first order predicate CFL.

2.2 Axiomatic Fuzzy Class Theory

The axiomatic fuzzy logic can serve as a basis for establishing an axiomatic FCT.
Several variants of FCT exists, most of them use a similar approach and mainly
differ in the selection of the logic base. Another difference between various
approaches is the selection of class theory axioms [64]. Běhounek et al. present and
analyze a few variants of FCT. Ref. [8] presents an ŁΠ∀ based FCT.

3 Complex Fuzzy Logic and Set Theory

The first formalization of complex fuzzy sets and complex fuzzy logic investigated
by Kandel and his coauthors [35, 65] is a special case of the formalism presented by
Tamir et al. [10]. Hence, in this section only two formalisms for complex fuzzy sets
and complex fuzzy logic are considered: (1) the formal definitions provided by
Ramot et al. [33], (2) the generalization of these concepts developed by Tamir et al.
[10, 36, 43, 66].

3.1 Complex Fuzzy Sets (Ramot et al. [33] )

This section reviews the basic concepts and operations of complex fuzzy set as
defined by Ramot et al. [34, 67]. According to Ramot et al., a complex fuzzy set
S on a universe of discourse U is a set defined by a complex-valued grade of
membership function μsðxÞ [33, 34]:

μsðxÞ= rsðxÞejωsðxÞ ð6Þ

where j=
ffiffiffiffiffiffiffiffi
− 1

p
. The function μsðxÞ maps U into the unit disc of the complex plane.

This definition utilizes polar representation of complex numbers along with con-
ventional fuzzy set definition; where rsðxÞ, the amplitude part of the grade of
member-ship, is a fuzzy function defined in the interval [0, 1]. On the other hand,
ωsðxÞ is a real valued function standing for the phase part of the grade of
membership.
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In the definition provided by Ramot, the absolute value, or the amplitude part of
the membership grade, behaves in the same way as in traditional fuzzy sets. Its
value is mapped into the interval [0, 1]. On the other hand, the phase component of
the expression is not a fuzzy function; it is a real valued function that can get any
real value. Furthermore, the grade of membership is not influenced by the phase.
The phase role is to add information which is generally related to spatial or tem-
poral periodicity in the specific fuzzy set defined by the amplitude component. For
example, fuzzy information related to solar activity along with crisp information
that relates to the date of measurement of the solar activity [33]. Another example
where complex fuzzy set has an intuitive appeal comes from the stock market.
Intuitively, the periodicity of the stock market along with fuzzy set based estimate
of the current values of stocks can be represented by a complex grade of mem-
bership such as the one proposed by Ramot. The amplitude conveys the information
contained in a fuzzy set such as “strong stock” while the phase conveys a crisp
information about the current phase in the presumed stock market cycle.

Following the basic definition of complex-valued grade of membership function
Ramot et al. define the basic set operations such as complement, union, and
intersection. Each of these operations is defined via a set of theorems [42].

3.2 Complex Fuzzy Logic (Ramot et al. [34])

There are several ways to define fuzzy logic, fuzzy inference, and fuzzy logic
system (FLS). One of these ways is to use fuzzy set theory to define fuzzy relations,
and then define logical operations, such as implication and negation, as well as
inference rules, as special types of relations on fuzzy sets. Alternatively, fuzzy logic
can be formalized as a direct generalization of classical logic. Under this “tradi-
tional” approach, notions that relate to the syntax and semantics of classical logic,
such as propositions, interpretation, and inference are used to define fuzzy logic.
Although the relations-based definition can be carefully formalized, it is generally
less rigorous than the traditional approach.

Ramot et al. use the first approach [34]. They use the definition of complex fuzzy
relations to define complex fuzzy logic via the definition of logical operations.
Additionally, Ramot et al. restrict complex fuzzy logic to propositions of the form
‘X is A’ , where X is a variable that receives values x from a universal set U and A is
a complex fuzzy set on U. They use this type of propositions to introduce impli-
cations of the form ‘if X is A then Y is B’ . Finally, they use modus ponens to
produce a complex fuzzy inference system. Clearly their approach is limited due to
two facts: (1) they rely on complex fuzzy sets and relations to define CFL and
(2) their fuzzy inference system is limited to propositions on complex fuzzy sets.
These limitations are resolved via the axiomatically-based approach presented in
the next section.
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3.3 Generalized Complex Fuzzy Logic (Tamir et al. [10])

This section presents the generalized form of complex fuzzy logic investigated by
Tamir et al. [10].

Propositional and First Order Predicate Complex Fuzzy Logic

A complex fuzzy proposition P is a composition of two propositions each of which
can accept a truth value in the interval ½0, 1�. In other words, the interpretation of a
complex fuzzy proposition is a pair of truth values from the Cartesian interval
½0, 1� × ½0, 1�. Alternatively, the interpretation can be formulated as a mapping to
the unit circle. Formally a fuzzy interpretation of a complex fuzzy proposition P is
an assignment of fuzzy truth value of the form iðprÞ + j ⋅ iðpiÞ or of the form
iðrðpÞÞejσiðθðpÞÞ, where σ is a scaling factor in the interval ð0, 2π�, to P.

For example, consider a proposition of the form “x… A… B…,” along with the
definition of a linguistic variables and constants. Namely, a linguistic variable is a
variable whose domain of values is comprised of formal or natural language words
[3]. Generally, a linguistic variable is related to a fuzzy set such as
fvery young male, young male, old male, very old maleg and can get any value
from the set. A linguistic constant has a fixed and unmodified linguistic value, i.e. a
single word or phrase from a formal or natural language.

Thus, in a proposition of the form “ x … A … B … ,” where A and B are
linguistic variables, iðprÞ ðiðrðpÞÞÞ can be assigned to the term A and
iðpiÞ ðiðθðpÞÞÞ can be assigned to term B .

Propositional CFL extends the definition of propositional fuzzy logic and first
order predicate CFL extends the notion of first order predicate fuzzy logic. Nev-
ertheless, since propositional CFL is a special case of first order predicate CFL, we
only present the formalism for first order predicates CFL here.

Tables 3 and 4 present the basic and derived connectives of ŁΠ∀ CFL. In
essence, the connectives are symmetric with respect to the real and imaginary parts
of the predicates.

Table 3 Basic ŁΠ∀ CFL connectives

Operation Interpretation

L-Implication iðP→ L QÞ=minð1, 1− iðprÞ+ iðqrÞÞ+ j ⋅minð1, 1− iðpiÞ+ iðqiÞÞ
Π-Implication iðP→∏ QÞ=minð1, iðprÞ=iðqrÞ+ j ⋅minð1, iðpiÞ=iðqiÞÞ
Π-Conjunction iðP ⊗ QÞ= iðprÞ ⋅ iðqrÞÞ+ j ⋅ ðiðpiÞ ⋅ iðqiÞÞ

Table 4 Derived ŁΠ∀ CFL connectives

Operation Interpretation

L-Negation ið′PÞ=1+ j1− iðPÞ
Π-Delta ΔðiðPÞÞ= if ði(PÞÞ=1+ j1 else Δ ði(PÞÞ=0+ j0
Equivalence iðP↔ QÞ= iðPr → L QrÞ ⊗ iðQr → L PrÞ+ j ⋅ iðPi → L QiÞ⊗ iðQi → L PiÞ
P ⊖ Q iðP ⊖ QÞ=maxð0, iðprÞ− iðqrÞÞ+ j ⋅maxð0, iðpiÞ− iðqiÞÞ
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Following classical logic, ŁΠ∀ CFL extends, ŁΠ CFL. The primitives include
constants, variables, arbitrary-arity functions and arbitrary-arity predicates. For-
mulae are constructed using the basic connectives defined in Table 3, derived
connectives such as the connectives presented in Table 4, the truth constants, the
quantifier ∀ and the identity sign = The quantifier ∃ can be used to abbreviate
formulae derived from the basic primitives and connectives. A fuzzy interpretation
of a proposition Pðx1 , . . . , xnÞ=Prðx1 , . . . , xnÞ+ j . Piðx1 , . . . , xmÞ over a
domain M is a mapping that assigns a fuzzy truth value to each (n-tuple) × (m-
tuple) of elements of M. As in the case of ŁΠ fuzzy logic, we closely follow the
system used in ref [8].

The same axioms used for first order predicate fuzzy logic are used for first order
predicate complex fuzzy logic; Modus ponens as well as product necessitation, and
generalization are the rules of inference.

Complex Fuzzy Propositions and Inference Examples
Consider the following propositions:

1. P(x) ≡ “x is a destructive hurricane with high surge”
2. Q(x) ≡ “x is a destructive hurricane with fast moving center”

Let A be the term “destructive hurricane.” Let B be the term “high surge,” and
let C be the term “fast moving center.” Hence, P is of the form: “x is a A with B”
and Q is of the form “x is A with C” In this case, the terms “destructve hurricane,”
“high surge,” and “fast moving center,” are values assigned to the linguistic vari-
ables A,B,Cf g. Furthermore, the term “destructve hurricane” can get fuzzy truth
values (between 0 and 1) or fuzzy linguistic values such as: “catastriphic,” “dev-
astating,” and” disastrous.” Assume that the complex fuzzy interpretation (i.e., the
degree of confidence or complex fuzzy truth value) of P is pr + jpi, while the
complex fuzzy interpretation of Q is qr + jqi. Thus, the truth value of “x is a dev-
astating hurricane” is pR, the truth value of “x is in a high surge” is pi, the truth
value of “ x is a catastriphic huricane” is qr, and the truth value of “x is a fast
moving center” is qi, Suppose that the term “moderate” stands for “non –

destructive” which stands for “NOT destructive,” the term “low” stands for “NOT
high,”, and the term “slow” stands for “NOT fast.” In this context, NOT is inter-
preted as the fuzzy negation operation. Note that this is not the only way to define
these linguistic terms and it is used to exemplify the expressive power and the
inference power of the logic. Then, the complex fuzzy interpretation of the noted
composite propositions is:

(1) f ′P
� �

= ð1− prÞ+ jð1− pIÞ
That is, ′P denotes the proposition:
“x is a moderate hurricane with a low surge.” The confidence level in ′P is
ð1− prÞ+ jð1− piÞ; where the fuzzy truth value of the term “x is a non –

destructive hurricane,” is ð1− prÞ and the fuzzy truth value of the term “low
surge,” is ð1− piÞ.
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(2) ′P→ ′Q=minð1, qr − prÞ+ j×min 1, qi − pIð Þ
Thus, ′P→ ′Q

� �
denotes the proposition: If “x is a moderate hurricane with a

low surge”
THEN x is a moderate huricane with low moving center.” The truth values of
individual terms, as well as the truth value of ′P→ ′Q are calculated according
to Table 1.

(3) f P⊕′Q
� �

=maxðpr, 1− qrÞ+ j×maxðpi, 1− qiÞ.
That is, P⊕′Q

� �
denotes a proposition such as: “x is a destructive hurricane

with high surge” OR
“x is a moderate huricane with slow moving center” The truth values of
individual terms, as well as the truth value of P⊕′Q are calculated according to
Table 1.

(4) f ′P⊗Q
� �

=minð1− pr, qrÞ+ j×minð1− pi, qiÞ
That is, ′P⊗Q

� �
denotes the proposition “x is a moderate hurricane with low

surge” AND “x is a destructive huricane with fast moving center.”
The truth values of individual terms, as well as the truth value of ′P⊗Q are
calculated according to Table 1.

Complex Fuzzy Inference Example
Assume that the degree of confidence in the proposition R= ′P defined above is

rr + jri. Let S= ′Q and assume that the degree of confidence in the fuzzy impli-
cation T =R→ S is tr + jti. Then, using Modus ponens

R
R→ S
S

one can infer S with a degree of confidence min rr, trð Þ+ j×min ri, tið Þ.
In other words if one is using:
“x is a non – destructive hurricane with a low surge”
IF “x is a non – destructive hurricane with a low surge” THEN
“x is non – destructive huricane with slow moving center”
“x is non – destructive huricane with slow moving center.”

Hence, using Modus ponens one can infer:
“x is moderate hurricane with slow moving center.” with a degree of confidence

of min rr, trð Þ+ j×min ri, tið Þ.

3.4 Generalized Complex Fuzzy Class Theory
(Tamir et al. [10])

The axiomatic fuzzy logic can serve as a basis for formal FCT. Similarly, axiomatic
based complex fuzzy logic can serve as the basis for formal definition of complex
fuzzy classes. In this section we provide a formulation of complex fuzzy class
theory (CFCT) that is based on the logic theory presented in Sect. 3.3.
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The main components of FCT are:

(1) Variables

(a) Variables denoting objects (potentially complex objects)
(b) Variables denoting crisp sets, i.e. a universe of discourse and its subsets
(c) Variables denoting complex fuzzy classes of order 1
(d) Variables denoting complex fuzzy classes of order n, that is, complex

fuzzy classes of complex fuzzy classes of order n-1.

(2) The LΠ∀ CFL system along with its variables, connectives, predicates, and
axioms as defined in Sect. 3.3.

(3) Additional predicates

(a) A binary predicate ∈ x,Γð Þ denoting membership of objects in complex
fuzzy classes and/or in crisp sets

(4) Additional Axioms

(a) Instances of the comprehension schema (further explained below)

ð∃ΓÞΔð∀xÞðx∈Γ↔P xð ÞÞ ð7Þ

Where x is a complex fuzzy object, Γ is a complex fuzzy class, and PðÞ is
a complex fuzzy predicate.

(b) The axiom of extensionality

∀xð ÞΔ x∈Γ↔ x∈Ψð Þ→Γ=Ψ ð8Þ

Where, x is a complex fuzzy object, Γ is a complex fuzzy class, and PðÞ is a
complex fuzzy predicate.

Note that a grade of membership is not a part of the above specified terms; yet it
can be derived or defined using these terms.

The comprehension schema is used to “construct” classes. It has the basic form
of: ð∀xÞðx∈Γ↔P xð ÞÞ. Intuitively, this schema refers to the class Γ of all the
objects x that satisfy the predicate PðÞ. Instances of this schema have the generic
form:ð∃ΓÞð∀xÞðx∈Γ↔P xð ÞÞ. Associated with this schema are comprehension
terms of the form: ∈ fxjP xð Þ↔P yð Þg. The Δ operation introduced in Eq. 8 is used
to produce precise instances of the extensionality schema and ensure the conser-
vatism of comprehension terms.

Fixing a standard model over the CFCT enables the definition of commonly used
terms, set operations, and definitions, as well as proving CFCT theorems. Some of
these elements are listed here:

(1) The complex characteristic function χx∈Γ ≡ χΓ and the grade of membership
function μx∈Γ ≡ μΓ
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(2) Complex class constants, α-cuts, iterated complements, and primitive binary
operations, such as union, intersection etc. These operations are constructed
using the schema OP Γð Þ≡ fxjP x∈Γð Þg. Table 5 lists some of these elements.

(3) Uniform and supreme relations defined in ref. [8] enable the definition of fuzzy
class relations such as inclusion

(4) Theorems, primitive fuzzy class operations, and fuzzy class relations [8].

Following the axiomatically-based definition of grade of membership, Eqs. (9-
11) can be used as a basis for the definition of “membership grade based” com-
plement, union, and intersection.

Complex Fuzzy Classes and Connectives Examples
In order to provide a concrete example, we define the following complex fuzzy

classes using the comprehension schema. Let the universe of discourse be the set of
all the stocks that were available for trading on the opening of the New York stock
exchange (NYSE) market on January 5, 2015 along with a set of attributes related
to historical price performance of each of these stocks.

Consider the following complex propositions:
P(x) ≡ “x is a volatile stock in a strong portfolio”
Q(x) ≡ “x is a stock in a decline trend in a strong portfolio”

Then, the proposition: ð∃ΓÞΔð∀xÞðx∈Γ↔ P xð Þ⊗Q xð Þð Þ, where x is any member
of the universe of discourse, defines a complex fuzzy class Γ that can be “described”
as the class of “volatile stocks in a decline trend in strong portfolios.” On the other
hand, the proposition ð∃ΓÞΔð∀xÞðx∈Γ↔ ′P xð Þ∨Q xð Þ� �

, where x is any member of
the universe of discourse, defines a complex fuzzy class Γ that can be “described” as
the class of “non – volatile stocks in a decline trend in strong portfolios.”

3.5 Pure Complex Fuzzy Classes

Often it is useful to define complex fuzzy sets via membership functions rather than
through axioms. To this end, Tamir et al. have introduced the concept of pure
complex fuzzy sets [42]. This concept is reviewed in this section.

Table 5 Derived primitive class operations

Term Symbol P Comments

Empty complex class Θ 0
Universal complex class Φ 1
Strict complement \Γ ∼ ∼ stands for Gödel (G) negation
Complex class
intersection

∩ ⊕ ⊕ stands for a G, Ł, or Π conjunction T-norm

Complex class union ∪ ∨ ∨ stands for a G, Ł, or Π disjunction
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The Cartesian representation of the pure complex grade of membership is given
in the following way:

μ V , xð Þ= μr Vð Þ+ jμi zð Þ ð9Þ

Where μr Vð Þ and μi zð Þ, the real and imaginary components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
μr Vð Þ and μi zð Þ can get any value in the interval ½0, 1�. The polar representation of
the pure complex grade of membership is given by:

μ V , xð Þ= rðVÞejσϕðzÞ ð10Þ

Where r Vð Þ and ϕ zð Þ, the amplitude and phase components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
they can get any value in the interval ½0, 1�. The scaling factor σ is in the interval
ð0, 2π�. It is used to control the behavior of the phase within the unit circle
according to the specific application. Typical values of σ are f1, π

2 , π, 2πg.
The main difference between pure complex fuzzy grades of membership and the

complex fuzzy grade of membership proposed by Ramot et al. [33, 34] is that both
components of the membership grade are fuzzy functions that convey information
about a fuzzy set.

4 Recent Developments in the Theory and Applications
of CFL and CFS

In this section we review recent literature on complex fuzzy logic and complex
fuzzy sets. First we review papers that enhance the theoretical basis of CFL/CFS.
Next, we outline some of the recent reports on CFL/CFS related applications.

4.1 Advances in the Theoretical Foundations of CFL/CFS

Yager et al. have presented the idea of Pythagorean membership grades and the
related idea of Pythagorean fuzzy subsets [68]. They have focused on the negation
operation and its relationship to the Pythagorean Theorem. Additionally, they
examined the basic set operations for the case of Pythagorean fuzzy subsets. Yager
et al. further note that the idea of Pythagorean membership grades can provide an
interesting semantics for complex number-valued membership grades used in
complex fuzzy sets.

Greenfield et al. ([69]) have compared and contrasted the FCS formalism pro-
posed by Ramot et al. ([33]) as well as the “innovation of pure complex fuzzy sets,
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proposed by Tamir et al. ([42])” with type-2 fuzzy sets [30, 37]. They have con-
centrated on the rationales, applications, definitions, and structures of these con-
structs. In addition, they have compared pure complex fuzzy sets with type-2 fuzzy
sets in relation to inference operations. They have concluded that complex fuzzy
sets and type-2 fuzzy sets differ in their roles and applications. They have identified
similarities between pure complex fuzzy sets and type-2 fuzzy sets; but concluded
that type-2 fuzzy sets were isomorphic to pure complex fuzzy sets.

Apolloni et al. propose to define and manage a complex fuzzy set by computing
its membership function using a few variables quantized into a few elementary
granules and elementary functions connecting the variables [70].

Guosheng et al. have introduced three complex fuzzy reasoning schemes:
Principal Axis, Phase Parameters, and Concurrence Reasoning Scheme [49]. They
have demonstrated that a variety of conjunction operators and implication operators
can be selected to compose the corresponding instances of complex reasoning
schemes.

Guangquan et al. have investigated various operation properties of complex
fuzzy relations [71]. They have defined a distance measure for evaluating the
differences between the grades as well as the phases of two complex fuzzy relations.
Furthermore, they have used the distance measure to define δ-equalities of complex
fuzzy relations. Finally, they have examined fuzzy inference in the framework of δ-
equalities of complex fuzzy relations.

Tamir et al. have proposed a complex fuzzy logic (CFL) system that is based on
the extended Post multi-valued logic system (EPS) of order p>2, and have dem-
onstrated its utility for reasoning with fuzzy facts and rules. The advantage of this
formalism is that it is discrete. Hence, it better fits real time applications, digital
signal processing, and embedded systems that use integer processing units.

4.2 Applications of CFL/CFS

A group of researchers working along with Dick have developed the concept of
Adaptive Neuro Fuzzy Complex Inference System (ANCFIS) and explored related
applications by integrating complex fuzzy logic into Adaptive Neuro Fuzzy
Complex Inference System (ANFIS) [72].

Man et al. have extended the concept of ANFIS and introduced ACNFIS [73].
They have applied ANCFIS in time series forecasting. They compared ACNFIS to
three commonly cited time series datasets and demonstrated that ACNFIS was able
to accurately model relatively periodic data.

An extension of this work, including synthetic time series and several real-world
forecasting problems, is presented by Zhifei et al. [74]. They have found that
ANCFIS performs well on these problems and is also very parsimonious. Their
work demonstrates the utility of complex fuzzy logic on real-world problems.

Aghakhani et al. have developed an online learning algorithm for ACNFIS and
applied it to time series prediction [75]. Their experimental results show that the
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online technique is comparable to existing results, although slightly inferior to the
off-line ANCFIS results.

Yazdanbaksh et al. applied ANCFIS to the problem of short-term forecasts of
Photovoltaic power generation [76]. They compared ANFIS and radial basis
function networks against ANCFIS. Their experimental results have demonstrated
that the ANCFIS based approach was more accurate in predicting power output on
a simulated solar cell. Additionally, in a recent paper Yazdanbaksh et al. presented a
recommended approach to determining input windows that balances the accuracy
and computation time [77].

Another group that is active in exploring CFL/CFS applications is led by Li [14,
78]. Li et al. have proposed a novel complex neuro-fuzzy autoregressive integrated
moving average (ARIMA) computing approach and applied it to the problem of
time-series forecasting [79]. They have found that their new formalism, referred to
as CNFS-ARIMA, has excellent nonlinear mapping capability for time-series
forecasting.

Additionally, Li et al. have presented a neuro-fuzzy approach using complex
fuzzy sets (CNFS) for the problem of knowledge discovery [80]. They have devised
a hybrid learning algorithm to evolve the CNFS for modeling accuracy, combining
artificial bee colony algorithm and recursive least squares estimator method. They
have tested the CNFS based approach in knowledge discovery through experi-
mentation, and concluded that the proposed approach outperforms comparable
approaches.

Another application of CNFS presented by Li et al. is adaptive image noise
cancelling [81]. Two cases of image restoration have been used to test the proposed
approach and have shown a good restoration quality. Additionally, Li et al. have
presented a hybrid learning method that enables efficient and quick CNFS con-
vergence procedure and applied the hybrid learning based CNFS to the problem of
function approximation [14, 81]. They have concluded that the CNFS shows much
better performance than its traditional neuro-fuzzy counterpart and other compared
approaches.

Ma et al. applied complex fuzzy sets to the problem of multiple periodic factor
prediction (MPFP) [46]. They have developed a product-sum aggregation operator
(PSAO), which is a set of complex fuzzy sets. PSAO has been used to integrate
information with uncertainty and periodicity. Next, they have developed a
PSAO-based prediction (PSAOP) method to generate solutions for MPFP prob-
lems. The experimental results indicate that the proposed PSAOP method effec-
tively handles the uncertainty and periodicity in the information of multiple periodic
factors simultaneously and can generate accurate predictions for MPFP problems.

Tamir et al. have considered numerous applications of CFL [24, 36, 43, 66, 82,
83]. They have introduced several soft computing based methods and tools for
disaster mitigation [24] and epidemic crises prediction [83]. Additionally, they have
demonstrated the potential use of complex fuzzy graphs as well as incremental
fuzzy clustering in the context of complex and high order fuzzy logic systems.
Additionally, they have developed an axiomatic based framework for discrete
complex fuzzy logic and set theory [66].
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In [82] Tamir et al. have presented a complex fuzzy logic based inference system
used to account for the intricate relations between software engineering constraints
such as quality, software features, and development effort. The new model con-
centrates on the requirements specifications part of the software engineering pro-
cess. Moreover, the new model significantly improves the expressive power and
inference capability of the soft computing component in a soft computing based
quantitative software engineering paradigm.

5 Conclusion

We have reviewed the theoretical basis of complex fuzzy logic and complex fuzzy
sets and the current state of related applications. We have surveyed the research
related to the underlying theory as well as recent applications of the theory in
complex fuzzy based algorithms and complex fuzzy inference systems.

The concepts of complex fuzzy logic and complex fuzzy sets have undergone an
evolutionary process since they were first introduced [35]. The initial definitions
were practical but somewhat naïve and limited [33, 34, 65, 67]. The introduction of
axiomatically based approach ([10, 36, 43]) has enabled extending the concepts,
maintaining practicality, and providing a solid foundation for further theoretical
development. Several applications of the new theories have emerged; based on
recent reports this area of applications is gaining momentum.

There are numerous fields where fuzzy concepts interact in intricate ways, which
can be effectively captured by the semantics of FCL FCS, pure complex fuzzy
classes, and discrete signals. We plan to investigate some of these concepts in the
near future. Of particular interest are multimedia signals. Often, these signals are
represented using complex functions. On the other hand, due to noise, the pro-
cessing of such signals might require using complex fuzzy logic. We plan to assess
the utility of CFS, CFL, and complex fuzzy sets to the processing of signals in
certain noisy situations.
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